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Liquid crystal: vortex



Liquid crystal: a very important type of complex fluids

Main types of liquid crystal:



Transport of directors

Define :

X Lagrangian coordinate
x Eulerian coordinate
F ∂x

∂X
u velocity of the liquid crystal flow

Transport of F (Chain Rule):

Ft + u · ∇F = ∇u · F

Transport of F−T :

F−Tt + u · ∇F−T = −(∇u)T · F−T



Transport of directors

For rodlike shape:

d(x, t) = F · d0(X)

dt + u · ∇d =
d

dt
F · d0(X ) = (∇u)F · d0(X ) = (∇u)d

For disklike shape:

d(x, t) = F−Td0(X)

dt+u·∇d =
d

dt
F−T ·d0(X) = −(∇u)TF−T ·d0(X) = −(∇u)Td
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Transport of directors

For E generated by −(β∇u + (1 + β)(∇u)T ) where
−1 ≤ β ≤ 0

d

dt
E = −(β∇u + (1 + β)(∇u)T )E

and d transported by

d(x, t) = E · d0(X)

we have

dt + u · ∇d =
d

dt
E · d0(X) = −(β∇u + (1 + β)(∇u)T )d

G. B. Jeffery, The Motion of Ellipsoidal Particles Immersed in a Viscous

Fluid§Proceeding of Royal Society of London, 1922.
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Coupled system

∂u

∂t
+ u · ∇u +∇p − ν∆u− λ∇ ·

(
(∇d)T (∇d)

+β(∆d− f(d))dT + (β + 1)d(∆d− f(d))T )
)

= 0

∇ · u = 0
∂d

∂t
+ u · ∇d + (β∇u + (1 + β)(∇u)T )d− γ(∆d− f(d)) = 0

With initial and boundary conditions:

u|t=0 = u0, d|t=0 = d0, u|∂Ω = u0|∂Ω = gu, d|∂Ω = d0|∂Ω = gd.

where f(d) = (1/ε2)(|d|2 − 1)d



Energy law

Independent to the parameter β, we have energy law

d

dt
E = −

(
ν‖∇u‖2

L2(Ω) + λγ‖∆d− f(d)‖2
L2(Ω)

)
where

E =
1

2
‖u‖2

L2(Ω) +
λ

2
‖∇d‖2

L2(Ω) + λ

∫
Ω

F (d)dx

and F = 1
4ε2 (|d|2 − 1)2



About the energy law

These energy laws are particularly important when the
singularities are involved in our study of hydrodynamical
motions of these liquid crystal materials. The physical
singularities we are seeking/tracking are those energetically
admissible ones.

For this reason, one of the crucial problems in solving the
system is that how to preserving the energy law.



Reformulated energy law

d

dt
E = −

(
ν‖∇u‖2

L2(Ω) +
λ

γ
‖dt + (u · ∇)d‖2

L2(Ω)

)
where

E =
1

2
‖u‖2

L2(Ω) +
λ

2
‖∇d‖2

L2(Ω) + λ

∫
Ω

F (d)dx

make C 0 finite element method feasible.
Ping Lin, Chun Liu, Hui Zhang, J. Comp. Phys., 227 (2007),
1411-1427



Weak formulation and continuous energy law

From the director equation we can express:

∆d =
1

γ
(dt + (u · ∇)d + (Dβ(u))d + γf(d))

where Dβ(u) = β∇u + (β + 1)(∇u)T , we then have

∇ ·
(

(∇d)T∇d
)

=
1

γ
(∇d)T

(
dt + (u · ∇)d + Dβ(u)d

)
+∇

(
|∇d|2/2 + F (d)

)
∇ ·
(

(∆d− f(d)dT )
)

=
1

γ
∇ ·
(

(dt + (u · ∇)d + Dβ(u)d)dT
)

∇ ·
(
d(∆d− f(d)T )

)
=

1

γ
∇ ·
(
d(dt + (u · ∇)d + Dβ(u)d)T

)



Weak formulation

Find u ∈W1,2+σ
gu (Ω), p ∈ L2

0(Ω), d ∈W1,2+σ
gd (Ω) such that

∫
Ω

(
ut · v + (u · ∇)u · v − p(∇ · v) + ν∇u : ∇v +

λ

γ

(
dt + (u · ∇)d + Dβ(u)d

)
· (v · ∇)d

+
λ

γ

(
dt + (u · ∇)d + Dβ(u)d

)
· Dβ(v)d

)
dx = 0, ∀v ∈W1,2+σ

0 (Ω) (1)∫
Ω

(∇ · u)qdx = 0, ∀q ∈ L2(Ω) (2)∫
Ω

(
dt · e + (u · ∇)d · e + Dβ(∇u)d · e + γ(∇d : ∇e + f(d) · e)

)
dx = 0, ∀e ∈W1,2+σ

0 (Ω)

(3)

where ”:” represents an inner product of two matrices.

Energy law can be easily obtained by taking v = u and e = (λ/γ)dt .



A modified midpoint scheme

∫
Ω

(
un+1
t̄
· v + (u

n+ 1
2

h · ∇)u
n+ 1

2
h · v +

1

2
(∇ · un+ 1

2
h )u

n+ 1
2

h · v − p
n+ 1

2
h (∇ · v) + ν∇un+ 1

2
h : ∇v

+
λ

γ

(
dn+1
t̄

+ (u
n+ 1

2
h · ∇)d

n+ 1
2

h + Dβ(u
n+ 1

2
h )d

n+ 1
2

h

)
· (v · ∇)d

n+ 1
2

h

+
λ

γ

(
dn+1
t̄

+ (u
n+ 1

2
h · ∇)d

n+ 1
2

h + Dβ(u
n+ 1

2
h )d

n+ 1
2

h

)
· Dβ(v)d

n+ 1
2

h

)
dx = 0, (4)∫

Ω
(∇ · un+ 1

2
h )qdx = 0, (5)∫

Ω

(
dn+1
t̄
· e + (u

n+ 1
2

h · ∇)d
n+ 1

2
h · e + Dβ(u

n+ 1
2

h )d
n+ 1

2
h · e

+ γ∇dn+ 1
2

h : ∇e +
γ

ε2
gh(dnn, d

n+1
h ) · e

)
dx = 0, (6)

for all (v, q, e) ∈ Wh
0 , where un+1

t̄
=

un+1
h

−unh
∆t

, dn+1
t̄

=
dn+1
h

−dnh
∆t

, u
n+ 1

2
h =

1
2

(un+1
h + unh), d

n+ 1
2

h = 1
2

(dn+1
h + dnh), p

n+ 1
2

h = 1
2

(pn+1
h + pnh), and

gh(dnn, d
n+1
h ) =

(|dn+1
h |2 − 1) + (|dnh|2 − 1)

2

dn+1
h + dnh

2



Discrete energy law

Take v = u
n+ 1

2
h and e = dn+1

t̄ , we can then obtain a discrete
energy law:(

1

2
‖un+1

h ‖2
L2 +

λ

2
‖∇dn+1

h ‖2
L2 + λ

∫
Ω

F (dn+1
h )

)
t̄

=

−
(
ν‖∇un+ 1

2
h ‖2

L2 +
λ

γ
‖dn+1

t̄ + (u
n+ 1

2
h · ∇)d

n+ 1
2

h + Dβ(u
n+ 1

2
h )d

n+ 1
2

h ‖2
L2

)
.



Example

We consider the hydrodynamic liquid crystal model , where the

initial director field d(x) = d̃(x)/
√
|d̃(x)|2 + ε2, and

d̃(x) = (x2
1 + x2

2 − α2, 2αx2).

We simply choose α = 0.5. This director field has singularities at
x = (±α, 0) with unit degrees of opposite signs. 16

Figure 5.1: Initial director field and director and flow fields at the annihilation time t = 0.26
with β = −0.2.

From the computation we observe that the annihilation time is roughly t = 0.262 for
this example using this energy law preserving method. The result is consistent when we
use a smaller time step ∆t = 0.0001 or use a finer mesh 64 × 64. This provides another
evidence that the method is pretty robust in simulating the singularity transportation.
We depict the director and flow fields at the annihilation time in Figure 5.1. From the

penalized divergence free equation (3.10) we have ‖∇ · un+ 1
2

h ‖L2 ≤ δ‖pn+
1
2

h ‖L2 . Figure 3.1

indicates that maxn ‖pn+
1
2

h ‖L2 is about 14, so ‖∇ · un+ 1
2

h ‖L2 ≤ 14δ ≈ 1.4 × 10−5. So the
divergence free condition is maintained well with the method. The following table gives
roughly computed annihilation times for a number of values of β.

β 0.0 -0.2 -0.5 -0.8 -1.0
Annihilation time 0.267 0.262 0.251 0.238 0.231

The energy has no significant change after reaching 1.33249. We may consider the solution
reaches the steady state at this energy. For different values of β the time when the solution
reaches the steady state is slightly different (for example, t = 0.73 for β = −1.0, t = 0.7
for β = −0.5 and t = 0.68 for β = 0.0, respectively). But it seems that the steady state
solution does not depend on β. The figure below shows the steady state solution with
β = 0, −0.5 and −1.0. We do not observe any significant difference between these figures
with these different β values.

5.1 Computing the small molecule case with various Reynolds
numbers

In [21, 23, 20] a simpler case where the liquid crystal molecule is assumed to be small is
considered. Thus the motion of liquid crystal molecule is represented by the motion at
its center of mass. The model is equations (1.1)-(1.3) but removing Dβ(u)d in (1.3) and
removing its corresponding stress term (i.e. no last term in the left hand side of (1.1)). In



Annihilation time with different parameters

β 0.0 -0.2 -0.5 -0.8 -1.0

Annihilation time 0.267 0.262 0.251 0.238 0.231

Table: β vs time

19

Figure 5.5: Energy vs time

Figure 5.6: Two types of rotational initial velocities u1 and u2 with ω = 20.

5.2 Rheological behavior under different kinematic transporta-
tion

In this section we will consider the large molecule liquid crystal flow in a square domain
or a square domain with a circular hole. Initial director field is the same as Example 5.1.
Initial velocity field is either u1 = (−ωy, ωx) or u2 = (−ωx, ωy) (See Figure 5.6). We
would like to see how singularity transports in these velocity fields. Difference to the small
molecule case (calculated in [20]) would be observed.

We first consider a square domain with a rotational velocity field u1 with ω = 20. Figure
5.7 depicted director fields at four different times. Clearly, the annihilation time is around
t = 0.2.

Next we calculate the same problem in a square domain with a circular hole. We
have done the computation for small molecule model in [20] where two initial singularities
approach the boundary of the circular hole and then rotate around the hole. These two



Simple case: ”1+2” model

Assuming that Ω = [−1, 1]× [−1, 1], u = (0, v(z , x), 0)T , p =
p(z , x),d = (0, d2(z , x), d3(z , x))T , (z , x) ∈ Ω, the full model can
be simplified as follows for this shear flow case

vt = µ4v + λτz , (7)

τ = βd3(4d2 − f2) + (β + 1)d2(4d3 − f3), (8)

d2t + βd3vz = γ(4d2 − f2), (9)

d3t + (1 + β)d2vz = γ(4d3 − f3), (10)

where fi = (4/ε2)(d2
2 + d2

3 − 1)di , i = 2, 3 with the initial data
v 0 = ξz , d0

2 , d
0
3 and the boundary conditions:

∂v

∂z

∣∣∣
z=±1

= ξ,
∂v

∂x

∣∣∣
x=±1

= 0, (11)

∂di

∂n
= −2

δ
(di − d0

i ), i = 2, 3 on ∂Ω. (12)



Finite difference method

For the space discretization we adopt the semi-implicit scheme and
use the forward difference scheme for the time discretization,

d2
n+1
j ,i − d2

n
j ,i

dt
+ βd3

n
ji

δ0zvn
j ,i

2h
= γ

(
δ2
zd2

n+1
j ,i + δ2

xd2
n+1
j ,i

h2
− f3

n
j ,i

)
,

d3
n+1
j ,i − d3

n
j ,i

dt
+ (1 + β)d2

n
j ,i

δ0zvn
j ,i

2h
= γ

(
δ2
zd3

n+1
j ,i + δ2

xd3
n+1
j ,i

h2
− f3

n
j ,i

)
,

τnj ,i = βd3
n
j ,i

1

γ

(
d2

n+1
j ,i − d2

n
j ,i

dt
+ βd3

n
j ,i

δ0zvn
j ,i

2h

)

+(β + 1)d2
n
j ,i

1

γ

(
d3

n+1
j ,i − d3

n
j ,i

dt
+ (1 + β)d2

n
j ,i

δ0zvn
j ,i

2h

)
,

vn+1
j ,i − vn

j ,i

dt
= µ

(
δ2
zvn+1

j ,i + δ2
xvn+1

j ,i

h2

)
+ λ

δ0zτ
n
ji

2h
,



where δ0zvn
j ,i = vn

j ,i+1 − vn
j ,i−1, δ2

zdj ,i = dj ,i+1 + dj ,i−1 − 2dj ,i ,

δ2
xdj ,i = dj+1,i + dj−1,i − 2dj ,i .

fk
n
j ,i = (4/ε2)[(d2

n
j ,i )

2 + (d3
n
j ,i )

2 − 1]dk
n
j ,i , k = 2, 3, h = 2/M. The

discretization of the boundary conditions are as follows

dk
n+1
j ,M − dk

n+1
j ,M−1

h
= −2

δ
(dk

n+1
j ,M − dk

0
j ,M), (13)

dk
n+1
j ,1 − dk

n+1
j ,0

h
=

2

δ
(dk

n+1
j ,0 − dk

0
j ,0), (14)

dk
n+1
M,i − dk

n+1
M−1,i

h
= −2

δ
(dk

n+1
M,i − dk

0
M,i ), (15)

dk
n+1
1,i − dk

n+1
0,i

h
=

2

δ
(dk

n+1
0,i − dk

0
0,i ), (16)

vn+1
j ,M − vn+1

j ,M−1

h
= ξ,

vn+1
j ,1 − vn+1

j ,0

h
= ξ, (17)

vn+1
M,i = vn+1

M−1,i , vn+1
0,i = vn+1

1,i . (18)



Impact of parameters

We set the mesh grid M ×M = 40× 40 and the time step
dt = 1× 10−4. We mainly focus on the impact of β and ξ and the
other parameters are set to
be:γ = 1, µ = 1, λ = 1, ε = 0.1, δ = 5× 10−5.

Figure: β = −0.5, energy function with different ξ

.



Impact of parameters

Here we investigate what impact on system with different β. We
fix the shear rate ξ = 30 and the other parameters are same as
previous page.

Figure: ξ = 30, energy function with different β.



Defects

Figure: Defects with different strength.



Defects
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α

φ

Figure: φ = sα + c

where α is made by director orientation along the polar line(x-axis)
and φ is made by director end along the polar line(x-axis) and c is
a constant. The director is on the polar line if s = 1 and c = 0 and
on a circle if s = 1 and c = π

2 .



Defects

Now we define the complex function gsj (X − X 0
j ) as follows

gsj (X − X 0
j ) = ‖X − X 0

j ‖[cos(φj) + i sin(φj)] = ||X − X 0
j ||e iφj ,

φj = sjαj + c ,

Multiply all this complex function :

g0(X ) =


N∏
j=1

gsj (X − X 0
j )

||X − X 0
j ||

, X ∈ Ω \ {X 0
j , j = 1, · · · ,N},

0, X ∈ {X 0
j , j = 1, · · · ,N}.

(19)

Thus we can get the initial value d0
2 (X ) and d0

3 (X ) from the
complex function g0(X ) as follows

d0
2 (X ) = Im(g0(X )), d0

3 (X ) = Re(g0(X )). (20)



Figure: case1-(a)
N = 2,X 0

1 = (−0.2, 0),X 0
2 = (0.2, 0), s1 = s2 = 1, ξ = 3.



Figure: left:case1-
(b)N = 2,X 0

1 = (−0.85, 0),X 0
2 = (0.85, 0), s1 = 1, s2 = −1, ξ = 3.

right: energy function



Figure: case2-(a)N = 3,X 0
1 = (−0.2, 0),X 0

2 = (0, 0),X 0
3 = (0.2, 0), s1 =

s2 = s3 = 1, ξ = 3.



Figure: left:case2-(b)N = 3,X 0
1 = (−0.85, 0),X 0

2 = (0, 0),X 0
3 =

(0.85, 0), s1 = s3 = 1, s2 = −1, ξ = 3. right:energy function



Figure: case2-(c):N = 3,X 0
1 = (−0.1×

√
3,−0.1),X 0

2 = (0, 0.2),X 0
3 =

(0.1×
√

3,−0.1), s1 = s2 = s3 = 1, ξ = 3.



Figure: left:case2-(d), N = 3,X 0
1 = (−0.4×

√
3,−0.4),X 0

2 =
(0, 0.8),X 0

3 = (0.4×
√

3,−0.4), s1 = s3 = 1, s2 = −1, ξ = 3.
right:energy function



Figure: case3-(a): N = 4,X 0
1 = (−0.1×

√
3,−0.1),X 0

2 = (0, 0.2),X 0
3 =

(0.1×
√

3,−0.1),X 0
0 = (0, 0), s0 = s1 = s2 = s3 = 1, ξ = 3.



Figure: left:case3-(b),
N = 4,X 0

1 = (−0.4×
√

3,−0.4),X 0
2 = (0, 0.8),X 0

3 =
(0.4×

√
3,−0.4),X 0

0 = (0, 0), s1 = s2 = s3 = 1, s0 = −1, ξ = 3.
right:energy function



Figure: case4-(a): N = 5,X 0
1 = (−0.2, 0),X 0

2 = (0, 0.2),X 0
3 =

(0.2, 0),X 0
4 = (0,−0.2),X 0

0 = (0, 0), s0 = s1 = s2 = s3 = s4 = 1, ξ = 3.



Figure: left:case4-(b),
N = 5,X 0

1 = (−0.4, 0),X 0
2 = (0, 0.4),X 0

3 = (0.4, 0),X 0
4 =

(0,−0.4),X 0
0 = (0, 0), s1 = s2 = s3 = s4 = 1, s0 = −1, ξ = 3.

right:energy function



Figure: left(up: s = + 1
2 ; down: s = − 1

2 ) right: energy function



Figure: left(up: s1 = s2 = + 1
2 ; down: s1 = + 1

2 , s2 = − 1
2 ) right:energy

function



Ericksen-Leslie system without penalty function

F.H. Lin (1989) proposed a simplified E-L system

dt + (u · ∇)d = 4d + |∇d|2d, (21)

|d| = 1, (22)

ut + u · ∇u +∇P = 4u−∇ · ((∇d)T∇d), (23)

∇ · u = 0. (24)

With the boundary conditions and initial conditions

u = 0,
∂d

∂n
= 0, on ∂Ω× (0,T ), (25)

d(x, 0) = d0(x), u(x, 0) = u0(x), in Ω, (26)

the system satisfies the energy relation

d

dt
(

1

2
‖u‖2 +

1

2
‖∇d‖2) + ‖∇u‖2 + ‖4d + |∇d|2d‖2 = 0, (27)



The constraint |d| = 1 is difficulty to at the discrete level. Thus
many works for this system are based on the discretization of the
penalized problem.

However, we find that the sphere constraint |d| = 1 is satisfied
automatically due to the equation (21).

Theorem
Assume (u,d) is the smooth solution of the following equation:

dt + (u · ∇)d = 4d + |∇d|2d, (28)

in Ω× (0,T ) with d(x, 0) = d0(x). If the initial condition satisfies
|d0| = 1, then |d| = 1 constantly.



Hence, we can rewrite the system (21)-(24) by denoting
d(x, t) = d(x , y , t) = (cos θ(x , y , t), sin θ(x , y , t))T , where
x = (x , y) ∈ Ω ⊂ R2.
The whole system (21)-(24), denoting P̃ = P + 1

2 |∇θ|2, reads as:

θt + (u · ∇)θ −4θ = 0, (29)

ut + u · ∇u +∇P̃ −4u +4θ∇θ = 0, (30)

∇ · u = 0, (31)

with the boundary conditions and initial conditions

u = 0, ∇θ · n = 0, on ∂Ω× (0,T ), (32)

θ(x, 0) = θ0(x), u(x, 0) = u0(x), in Ω, (33)

Then the system (29)-(31) satisfies the following energy law:

d

dt
E + ‖4θ‖2 + ‖∇u‖2 = 0, (34)

where E = 1
2‖u‖2 + 1

2‖∇θ‖2.



Energy stable scheme

Given the initial conditions θ0, u0 and P0, having computed for θn,
un, Pn and P̃n = Pn + 1

2 |∇θn|2 for n > 0, we compute θn+1, un+1,
Pn+1 by
Step 1.

θn+1 − θn
δt

+ (un∗ · ∇)θn = 4θn+1, (35)

with

un∗ = un − δt[
θn+1 − θn

δt
+ (un∗ · ∇)θn]∇θn. (36)



Energy stable scheme

Step 2.

ũn+1 − un∗
δt

+ (un · ∇)ũn+1 −4ũn+1 +∇P̃n = 0, (37)

ũn+1|∂Ω = 0. (38)

Step 3.

un+1 − ũn+1

δt
+∇(P̃n+1 − P̃n) = 0, (39)

∇ · un+1 = 0, (40)

un+1 · n|∂Ω = 0. (41)

And

Pn+1 = P̃n+1 − 1

2
|∇θn+1|2. (42)



Energy stable scheme

Theorem
The scheme (35)-(41) is stable, with the following discrete energy
dissipation law:

En+1 +
δt2

2
‖∇P̃n+1‖2 + δt‖θ

n+1 − θn
δt

+ (u∗ · ∇)θn‖2

+δt‖∇ũn+1‖2 ≤ En +
δt2

2
‖∇P̃n‖2, (43)

where E n = 1
2‖un‖2 + 1

2‖∇θn‖2.



Ericksen-Leslie system without penalty function

Example 1 Initial conditions:

u0 ≡ 0, θ0(x) = θ0(x , y) = 2π(cos(x)− sin(y)). (44)

We choose mesh size h = 1/50, time step size δt = 0.001.



Figure: Numerical results of d.



Figure: Numerical results of u.



Figure: Evolution in time of the energies. Kinetic energy(left), potential
energy(middle) and total energy(right).



Figure: L2 errors of velocity and function θ(left) and pressure(right).



Example 2

Initial conditions:

u0 ≡ 0, d0 =
d̃

|d̃|
,

where d̃ = ((x − 0.5)2 + (y − 0.5)2 − 0.09, y − 0.5)T ,

so we choose the initial θ0(x , y) ∈ [0, 2π] satisfying
(cos θ0, sin θ0)T = d0. This director field has singularities at
(0.2, 0.5) and (0.8, 0.5) with unit degrees of opposite signs. We
choose mesh size h = 1/55, the time step size δt = 0.001



Figure: Numerical results of d.



Figure: Numerical results of u.



Figure: Evolution in time of the energies. Kinetic energy(left), potential
energy(middle) and total energy(right).



Example 3

We choose the singularities to be (0.35, 0.5) and (0.65, 0.5). The
mesh size h = 1/55, and the time step size δt = 0.001.
u0 is set as in Example 2.



Figure: Numerical results of d.



Figure: Numerical results of u.



Example 4

Initial velocity is set to be a rotating flow of the form:

u0 = 100(−y , x)T ,

d0 is set as in Example 2. And the mesh size h = 1/55, the time
step size δt = 0.0001.



Figure: Numerical results of d.



Figure: Numerical results of u.
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Numerical results and discussion

1 E-L system with penalty function can describe the annihilation
of singularity.

2 E-L system including rotation term with penalty can describe
the rotation beside annihilation of singularity.

3 For the ”1+2” model with penalty function we show that the
fact Ó5ü½§É5�á�

4 E-L model without penalty function is not physical model but
include many mathematical analysis phenomena.



——————

Thank you!

——————
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