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@ Many physical problems can be modeled by PDEs that take
the form of gradient flows. Examples include heat equation,
Allen-Cahn equation, Cahn-Hilliard equation, thin film epitaxy,
PNP equations, quasi-crystal models, phase-field models, ...
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@ Many physical problems can be modeled by PDEs that take
the form of gradient flows. Examples include heat equation,
Allen-Cahn equation, Cahn-Hilliard equation, thin film epitaxy,
PNP equations, quasi-crystal models, phase-field models, ...

e Gradient flows are dynamically driven by a free energy E(¢),
and takes the form:

9 __OE(9)
ot 5o
where L is a positive operator, and satisfy a dissipative
energy law:
d __(OE(9) JE(9)
@) = (5250,
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@ Many physical problems can be modeled by PDEs that take
the form of gradient flows. Examples include heat equation,
Allen-Cahn equation, Cahn-Hilliard equation, thin film epitaxy,
PNP equations, quasi-crystal models, phase-field models, ...

e Gradient flows are dynamically driven by a free energy E(¢),
and takes the form:

06 __ ()
ot 5o
where L is a positive operator, and satisfy a dissipative
energy law:
d 6E(¢) 0E(9)
@) = (5250,
Examples:

o heat equation: E(¢) = [, 3[Vo|?
e Allen-Cahn and Cahn-Hilliard equation:
E(¢) = [o(5IVol? + F(4))
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Gradient flows

Given a free energy functional E(¢), the gradient flow in L2

(L=1):
96 OE(9).
o 9¢ '
or the gradient flow in H=! (L = —A):
99 _ OE(¢)
o 8 56
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Gradient flows

Given a free energy functional E(¢), the gradient flow in L2

(L=1):
96 OE(9).
o 9¢ '
or the gradient flow in H=! (L = —A):
99 _ OE(¢)
o 8 56

If E(¢) = [o[3IVo[?> + F(#)]dx with F(¢) being a double-well
type potential, then the gradient flow in L2 is the so called
Allen-Cahn equation (Allen & Cahn '79):

0% _ pu P
5 = D= F(s).

and the gradient flow in H™! is the so called Cahn-Hilliard
equation (Cahn & Hilliard '58):

o = —AB0— F(9),

Jt
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Time discretizations of gradient flows

To fix the idea, we let E(¢) = [o[3V|* + ;5 F(¢)]dx, where
F(¢) is a general nonlinear free energy, 7 may be a small
parameter, and consider the gradient flow in H-1L:

oE
¢t=V'V%, OnWloq = 0;
5E
W= A¢+ F (#), Ondlon =0,

which satisfies the energy law:

0 1 1 1,
at/Q <2V¢‘2 * 772F(¢)) = —/Q!V(—A<z5+ 2F (6).
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Time discretizations of gradient flows

To fix the idea, we let E(¢) = [o[3V|* + ;5 F(¢)]dx, where
F(¢) is a general nonlinear free energy, 7 may be a small
parameter, and consider the gradient flow in H-1L:

oE
¢t=V'V%, OnWloq = 0;
5E
W= A¢+ F (#), Ondlon =0,

which satisfies the energy law:
0 1 s 1 1, 5
— - —F =— —A —F .
5 | (5IVor+ F@) == [1V(-a0+ ZF(o)

Goal: Design simple, efficient and accurate numerical schemes
that satisfy a discrete energy law.
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Existing approaches for time discretization

@ Full implicit schemes: Du & Nicolaides '91, Feng & Prohl
'03-'05, ...

@ Linearly implicit and stabilized schemes: Chen & S. '98, Xu &
Tang '06, S. & Yang '10, Li, Qiao & Tang '16, ...

e Convex splitting: Elliott and Stewart '93 (see also Eyre '98),

@ The method with a Lagrange multiplier: Badia et al. 11,
Tiera & Guillen-Gonzalez '13
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Existing approaches for time discretization

@ Full implicit schemes: Du & Nicolaides '91, Feng & Prohl
'03-'05, ...

@ Linearly implicit and stabilized schemes: Chen & S. '98, Xu &
Tang '06, S. & Yang '10, Li, Qiao & Tang '16, ...

e Convex splitting: Elliott and Stewart '93 (see also Eyre '98),

@ The method with a Lagrange multiplier: Badia et al. 11,
Tiera & Guillen-Gonzalez '13

Desired properties:

@ Second-order unconditionally energy stable;

@ Only requiring solving decoupled, linear, positive definite
system with constant coefficients, even for multi-component
systems;

@ Applicable to a large class of gradient flows;

@ Amenable to error analysis without resorting to a Lipschitz

condition.
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Invariant Energy Quadratization (IEQ) Method (X. Yang,

Q. Wang, ...)

Assuming that F(¢) is bounded from below, i.e., F(¢) > —Cp, and
introducing two auxiliary functions

a(t,x;¢) = Vo, v(t,x;¢) =V F(¢)+ Co,

so the free energy becomes

E@.vio) = [ (57 + v - G,

2
Q
and the original gradient flow can be recast as:
¢
E = Aw
w = —v-v¢+2v%,
ov _ dv o
ot ¢ Ot’
oa Ao
o = Vor
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Unconditionally stable schemes

Consider the following first-order scheme:
¢n+1 ¢n AWIH-l

At
Wn+1 - _ v . v¢n+1 + 2vn+157‘/| e
5¢ =0
Vn—|—1 —yn (SV ¢n+1 ¢n
At ’¢ A
Un+1 — " ¢n+1 _ ¢n
At =V At
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Unconditionally stable schemes

Consider the following first-order scheme:
¢n+1 ¢n AWIH-l

At
Wn+1 - _ v . v¢n+1 + 2vn+157‘/| e
5¢ =0
Vn—|—1 —yn (SV ¢n+1 ¢n
At ’¢ A
Un+1 — " ¢n+1 _ ¢n
At At

. . . n+1
Taking the inner products of the above with w1, ¢T 2yl
n+1 respectively, one obtains immediately:

and o
1 ]'—n 12 n+1\2 ]'—n2 ny2
il Gl R+ ) - [ Glae + )
1 =n =n n n n
43 [ g ot = v
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Main advantages of the IEQ approach

This approach leads to efficient and flexible numerical schemes:

@ It can be efficiently implemented: one can eliminate v+l

g"t1 and w™! from the coupled system, leading to a
fourth-order equation for ¢"1 with variable coefficients at
each time step;
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Main advantages of the IEQ approach

This approach leads to efficient and flexible numerical schemes:

@ It can be efficiently implemented: one can eliminate v+l

g"t1 and w™! from the coupled system, leading to a
fourth-order equation for ¢"1 with variable coefficients at
each time step;

@ It can be easily extended to higher-order with the BDFk
scheme, with BDF2 being unconditionally stable.
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Main advantages of the IEQ approach

This approach leads to efficient and flexible numerical schemes:
@ It can be efficiently implemented: one can eliminate v+l
g"t1 and w™! from the coupled system, leading to a
fourth-order equation for ¢"1 with variable coefficients at
each time step;

@ It can be easily extended to higher-order with the BDFk
scheme, with BDF2 being unconditionally stable.

o It allows us to deal with a large class of gradient flows (cf. X.
Yang, Q. Wang, L. Ju, J. Zhao, S, etc, 2016, 2017, ...).
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Although the IEQ approach has proven to be a very powerful way
to construct energy stable schemes, it does leave somethings to be
desired:
@ It involves solving problems with complicated VARIABLE
coefficients.
@ It requires that the free energy density F(¢) is bounded from
below.
o For gradient flows with multiple components, it leads to
coupled system.
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Although the IEQ approach has proven to be a very powerful way
to construct energy stable schemes, it does leave somethings to be
desired:

@ It involves solving problems with complicated VARIABLE
coefficients.

@ It requires that the free energy density F(¢) is bounded from
below.

o For gradient flows with multiple components, it leads to
coupled system.

Q. Can we do better?
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Although the IEQ approach has proven to be a very powerful way
to construct energy stable schemes, it does leave somethings to be
desired:

@ It involves solving problems with complicated VARIABLE
coefficients.

@ It requires that the free energy density F(¢) is bounded from
below.

o For gradient flows with multiple components, it leads to
coupled system.

Q. Can we do better?

Yes, if the free energy takes the following form:

E(0) = [ 15(£6.0)+ F(o))o

where L is linear and positive definite, F(¢) includes only
"lower-order” nonlinear terms.
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The scalar auxiliary variable (SAV) approach

The SAV approach is inspired by the IEQ method. It preserves
their advantages while overcomes most of its shortcomings.
Assuming that E1(¢) := [ F(¢)dx is bounded from below, i.e.,
Ei(¢) > —Cp for some Cy > 0, and introduce one scalar auxiliary

variable (SAV):
r(t) = VE(9) + Go.

Then, the original gradient flow can be recast as:

06
% _
w=—0d+ F(9)

Aw

r(t)
VEi[¢] + G

1
= F’ sdx.
' mmm+@é (0)0
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Unconditionally stable, linear and decoupled schemes

First-order scheme:

¢n+1 ¢n AWn+1
At ’
Wn+l — Ad)n+1 + r”+1 F/(an)
V Ei[o"] + Go
rn+1 .

¢n+1 ¢n
At 2 JE] ¢>~] T G / At
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Unconditionally stable, linear and decoupled schemes

First-order scheme:
¢n+1 ¢n
At
n+1

n+1:_A n+1+ r F/ n’
S T
¢n+1 ¢n

At

n+1
=Aw"

rn+1 n

—r

At 2E] ¢>~] ¥ co/

Taking the inner products of the above with w1,
2r™*1 respectively, one obtains immediately:

7¢"+A1;¢" and

1 1 n n 1 n n
= G196 + (72 = S92 - (7Y

1 n n n n n
SV = 9P + (= )] = [ Vw2
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Efficient implementation

We can write the schemes as a matrix system

al —A 0 [¢m1\
A ol x wtl ] = b",
* 0 c3 s
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Efficient implementation

We can write the schemes as a matrix system

al —A 0\ [¢m1\
A ol x wtt | = b",
* 0 o ritl

So we can solve r™1 with a block Gaussian elimination, which
requires solving a system with constant coefficients of the form

C1/ —A ng T
(@ ) (2)-=2

which, under Neumann conditions for ¢ and w, can be further
reduced to a set of decoupled equations:

ap — A = F, 8¢ — Ap = .
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Second-order BDF scheme:

3¢n+1 _ 4¢n 4 ¢n71
2At

rn+1
Wn+1 _ _A¢n+1 +

_ +1
= Aw",

e

F/(ggnJrl)’

Ei[omH1] + Go

F/(q';n—i-l) 3¢n+1 _ 4¢n + (bn—l

3rn+1 — 4" 4 rn—l _/

dx,

where g(¢" 1) := 2g(¢") — g(¢" ).

Jie Shen
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Second-order BDF scheme:

3¢n+1 _ 4¢n 4 ¢n71

— A n+1
2At v

wtl — _A¢n+1 + i+l F/(Q'gnJrl)?

\/ Ei[omH1] + Go

3l g0 + -1 _ / F/(q';n—i—l) 3¢n+1 _ 4¢n + (bn—l

where g(¢" 1) := 2g(¢") — g(¢" ).

@ Taking the inner products of the above with whtl
n+1l__ n n—1 . .
% and 2,71 respectively, one can also derive

that the scheme is unconditionally stable.
@ One can also construct k-th order scheme based on BDF-k
and Adam-Bashforth, while they are not unconditionally

stable, but they do have very good stability property as
high-order schemes.

dx,
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Main advantages of the SAV approach

@ The SAV schemes, up to second-order, are unconditionally
energy stable, and can be easily extended to higher-order with
the BDFk schemes.
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Main advantages of the SAV approach

@ The SAV schemes, up to second-order, are unconditionally
energy stable, and can be easily extended to higher-order with
the BDFk schemes.

@ It only requires solving decoupled, linear system with
CONSTANT coefficients.
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Main advantages of the SAV approach

@ The SAV schemes, up to second-order, are unconditionally
energy stable, and can be easily extended to higher-order with
the BDFk schemes.

@ It only requires solving decoupled, linear system with
CONSTANT coefficients.

o It only requires E1(¢) := [, F(¢)dx, instead of F(¢), be
bounded from below, so it applies to a larger class of gradient
flows.
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Main advantages of the SAV approach

@ The SAV schemes, up to second-order, are unconditionally
energy stable, and can be easily extended to higher-order with
the BDFk schemes.

@ It only requires solving decoupled, linear system with
CONSTANT coefficients.

o It only requires E1(¢) := [, F(¢)dx, instead of F(¢), be
bounded from below, so it applies to a larger class of gradient
flows.

@ For gradient flows with multiple components, the scheme will

lead to decoupled equations with constant coefficients to solve
at each time step.
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Some numerical examples

a5

970 975 980 985 990 995 1000
t

F1G. 3. (Ezample 3) The evolution of radius with different time step.

Scheme At=1.6e-4 | At=8e-5 | At=4e-5 | At=2e-5 | At=1e-5
Error 1.74e-7 4.54e-8 1.17e-8 2.94e-9 | 2.01e-10
SAVT/CN Rate - 1.93 1.96 1.99 2.01
Error 1.38e-6 3.72e-7 9.63e-8 2.43e-8 5.98e-9
SAVT/BDF Rate - 1.89 1.95 1.99 2.02
TABLE 1
(Ezample 4) Errors and convergence rates of SAVT/CN and SAVT/BDF for the Cahn—Hilliard
equation.
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The proposed schemes are unconditionally energy stable with a
modified energy. How about the dissipation of original energy?
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The proposed schemes are unconditionally energy stable with a
modified energy. How about the dissipation of original energy?

Large time step Small time step

o 1 2 3 4 5 6 o 1 2 3 4 5 6
Reference
SAV/BDF
IEQ/BDF
Original energy 50 Original energy
140
130
120
110
100
90 1
80 !
v
70
0.04 0.06 0.08 0.1 o 0.02 0.04 0.06 0.08 0.1

Figure: Solid line: current method; dash line: another method
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BDF3
3th order

-10 5
o 1 1.5 25 3 35 445 o 1

2 15 2
log(A t) %10 log(A t)

F1G. 8. (Ezample 7) Numerical convergences of BDF3 and BDF.

25 3 35 4 45
%10

at=10" BDF2 BDF3 BOF4 Reference

BOF2 BDF3 BOF4

5 0 15
108

F1c. 9. (Ezample 7) Numerical comparison among BDF2, BDF3 and BDF}.
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Adaptive time stepping

Thanks to its unconditionally energy stability, one can (and should)
couple the scheme with an adaptive time stepping strategy.

Origianl ener: Modified ener Time steps
1500 = 9 1500 o 102 i
— 110 —_— a0
1000 —+— Adaptive 1000 —=— Adaptive 1073
—At=107 \ —At=107
500 \ 107
0 10
02 04 06 08 1 02 04 06 08 1 02 04 06 08 1

Figure: Numerical comparisons among small time steps, adaptive time
steps, and large time steps
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T=0.02

@

T=0.02001 T=0.10004 T=1.0002
r L ‘ F -
Adaptive Q 3
T=0.02

E R
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Convergence and error analysis (S. & J. Xu)

@ The SAV schemes are semi-implicit schemes. Previous stability
and error analysis on semi-implicit schemes usually assume a
Lipschitz condition on the derivative of the free energy, which
is not satisfied by even the double-well potential.
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Convergence and error analysis (S. & J. Xu)

@ The SAV schemes are semi-implicit schemes. Previous stability
and error analysis on semi-implicit schemes usually assume a
Lipschitz condition on the derivative of the free energy, which
is not satisfied by even the double-well potential.

@ Thanks to the unconditional energy stability of the SAV
schemes, we can derive H? bounds for the numerical solution
under mild conditions on the free energy.
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Convergence and error analysis (S. & J. Xu)

@ The SAV schemes are semi-implicit schemes. Previous stability
and error analysis on semi-implicit schemes usually assume a
Lipschitz condition on the derivative of the free energy, which
is not satisfied by even the double-well potential.

@ Thanks to the unconditional energy stability of the SAV
schemes, we can derive H? bounds for the numerical solution
under mild conditions on the free energy.

@ The H? bounds on the numerical solution will enable us to
establish the convergence, and with additional smoothness
assumption, the error estimates.
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Theorem.
e For the L2 gradient flow, let O € H3, and

IF"(x)| < C(|x|P+1), p>0ifn=1,2; 0<p<4ifn=3.
Then

At
|]Au”]!2+72 IVAUK|2 < C(T+1)+]|Ad|2+At| VAL 2
k=0
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Theorem.
e For the L2 gradient flow, let O € H3, and

IF"(x)| < C(|x|P+1), p>0ifn=1,2; 0<p<4ifn=3.
Then

At
HAUWR+7;§:HVAUW2§C(T+U+WMMF+AmVAu%%
k=0

@ For the H1 gradient flow, let u® € H*, and additionally
IF"(x)] < C(Ix[P +1), p'>0ifn=1,2 0<p <3ifn=3.
Then

At &
IIAU”H2+7Z [A%UK]? < C(T+1)+|| AL P+At| A%
k=0
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Convergence results

Let ua¢(+, t) (resp. rat(+, t)) be a piece-wise linear function such
that ua¢(-, t") = u” (resp. ra¢(:, t") = r").
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Convergence results

Let ua¢(+, t) (resp. rat(+, t)) be a piece-wise linear function such
that ua¢(-, t") = u” (resp. ra¢(:, t") = r").
Theorem. Under the same assumptions needed for the H?
bounds, we have:
e For L2 gradient flow: when At — 0, we have
o up: — u strongly in L2(0, T; H37¢) Ve > 0, weakly in
L2(0, T; H®), weak-star in L>°(0, T; H?);
o ra; — r = v/E; weak-star in L>°(0, T).
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Convergence results

Let ua¢(+, t) (resp. rat(+, t)) be a piece-wise linear function such
that ua¢(-, t") = u” (resp. ra¢(:, t") = r").
Theorem. Under the same assumptions needed for the H?
bounds, we have:
e For L2 gradient flow: when At — 0, we have
o up: — u strongly in L2(0, T; H37¢) Ve > 0, weakly in
L2(0, T; H®), weak-star in L>°(0, T; H?);
o rar — r =+/E; weak-star in L*°(0, T).
o For H™! gradient flow: when At — 0, we have
o up: — u strongly in L2(0, T; H*=¢) Ve > 0, weakly in
L2(0, T; H*), weak-star in L>(0, T; H?);
o rar — r =+/Ey weak-star in L°(0, T).
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Error estimates

Theorem.
e For L2 gradient flow, we assume additionally

up € L0, T; L2) N L2(0, T; L*), ug € L2(0, T; L2).
Then, for all 0 < n < T/At, we have

%HV(U” —u( P+ (" = ()’

<Cexp (1= CAOT )AL [ (Jun(9)? + fu(s) ).
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Error estimates

Theorem.
e For L2 gradient flow, we assume additionally

up € L0, T; L2) N L2(0, T; L*), ug € L2(0, T; L2).
Then, for all 0 < n < T/At, we have

IV = u( )P+ (07 = ()

tn
<Cexp (1= AN AR [ (Juels)|? + lue(s) ).
0
e For H™! gradient flow, we assume additionally
ue € L0, T; HHY N 120, T; HY),  we € L2(0, T; H7Y).
Then, for all 0 < n < T/At, we have

SIV(" — )2+ (77— (7))

tn

<Cexp ((1— CA ") A [ (u(s)|Eys + lue(s) ) ds.
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ral applications
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Molecular beam epitaxy (MBE)

Consider the energy functional for MBE without slope selection
(SAV can be applied directly to the case with slope selection):

E(6) = 13 n(a+ Vo) + ()N

Note that the first part of the energy density, —3 In(1+|V¢|?), is
unbounded from below, but one can show that

Ei(¢) = /Q[—; In(1+|Ag|?) + %|A¢>]2]dx > —Co, Va>0.

Hence, we take a < % and split E(¢) as

2—0&

E(0) = E(o) + [ 15 180Pdx

and introduce

r(t) = \//Q %|A¢|2 - %In(l + |Vo[2)dx + Go.
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MBE (continued)

We can then rewrite the original system as

ORISTE)
O (" — )%+ o

1 dE1(9)
”‘2G(¢)/Q 5 %

—0,

where

G(o) = \//Q %|A¢|2 — %Iog(l + |Vé[2)dx + Co.

@ Taking the inner product of the above equations with ¢; and
2r(t), respectively, we obtain:

d. [ 77—
G5 80P b (0] = ol
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MBE (continued):

Let ¢"+1/2 = 3¢n — 1¢"=1. A second-order, unconditionally
energy stable scheme for the modified system is:

¢n+1 ¢n 2¢?+1 + gbf rmtt +r" 0E; Tn+1/2
S T - 2G(6m1/2) 56 Go 0TN=0
1 OE
M S Jy 5 1O NN — o
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MBE (continued):

Let ¢"+1/2 = 3¢n — 1¢"=1. A second-order, unconditionally
energy stable scheme for the modified system is:

¢n+1 ¢n 2¢?+1 + gbf rmtt +r" 0E; Tn+1/2
S T - 2G(6m1/2) 56 Go 0TN=0
1 OE
M S Jy 5 1O NN — o

@ It is easy to show that the above scheme is unconditionally
energy stable.

@ One can solve r"*1 explicitly, and then obtain ¢"*! by solving
a fourth-order equation with constant coefficients.
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FIGURE 7. The isolines of the numerical solutions of the height function ¢ and its
Laplacian A¢ for the slope model with random initial condition (4.6) using Scheme-

1 and time step 6t = 10™* . For each subfigure, the left is ¢ and the right is A¢ .
Snapshots are taken at ¢t = 0, 1, 10, 50, 100, 500, respectively.

[m]
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100
st —~—0.0025
0.00125
—0.000625
10+ E
0.0003125 150
as) \ —0.00015625
= -200
>0 >
o w
=251 S
g ;-zsa L
w30+ =
; g
35 @ 300
-10
a0}
20
-350
ast
0.02
-50
o 0.02 0.04 0.06 0.08 01 -a00
time 10° 10! 102 10°

Figure: Simulation of MBE: Left, energy evolution; Right, log-log plot of the energy
compared with o(logy t).
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Phase-field vesicle membrane model

Bending energy:

where G(¢) = F'(¢).
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Phase-field vesicle membrane model

Bending energy:

€

E(0) =5 | (- 80+ 56(0)) d,

where G(¢) = F'(¢).

Volume and surface area of the vesicle:

A@) = [@+1dx and B0) = [ (5190 + LF0))dx
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Phase-field vesicle membrane model

Bending energy:

€

E(0) =5 | (- 80+ 56(0)) d,

where G(¢) = F'(¢).

Volume and surface area of the vesicle:

A@) = [@+1dx and B0) = [ (5190 + LF0))dx

Total energy:

Eur(9) = Eold) + 5-(A0) —a) + 5-(B(0) = 5) |

where v and 7 are two small parameters, and «, [ represent the
initial volume and surface area.
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To apply the SAV approach, we need to fist split the free energy
into two parts: one with (high-order) linear terms and the other
with nonlinear terms.
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To apply the SAV approach, we need to fist split the free energy
into two parts: one with (high-order) linear terms and the other

with nonlinear terms.
Note that G(¢) = F'(¢) = (¢* — 1)¢, we find

Eo(0) = 5 [ (= 0+ 56(0)) o
2 6 1
5 | (1868 = SIV0 + S6V6? + (6(0) ) .
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To apply the SAV approach, we need to fist split the free energy
into two parts: one with (high-order) linear terms and the other
with nonlinear terms.

Note that G(¢) = F'(¢) = (¢* — 1)¢, we find

Eo(0) = 5 [ (= 0+ 56(0)) o

2 6 1
=5 [ (1807 = ZIV6R + SHIT0F + Z(6()?) o

So the first two terms should be in the first part, and for the
remaining terms, we introduce a SAV:

() = % | 5(5190R + S(G0)7) + 5-(A0) - )2 + 5-(B(e) ~ 3 <
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To apply the SAV approach, we need to fist split the free energy
into two parts: one with (high-order) linear terms and the other
with nonlinear terms.

Note that G(¢) = F'(¢) = (¢* — 1)¢, we find

€

Eo(0) = 5 [ (= 0+ 56(0)) o

€

2 6 1
=5 [ (1807 = ZIV6R + SHIT0F + Z(6()?) o

So the first two terms should be in the first part, and for the
remaining terms, we introduce a SAV:

r(t) = % | 5(5190R + S(G0)7) + 5-(A0) - )2 + 5-(B(e) ~ 3 <

However, the nonlinear terms in E;,; behave very differently so a
single SAV does not lead to accurate numerical results
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Multiple SAV approach

Therefore, we introduce

U=B()-p5 V= \/ | (Gever + 4(6r) e+ C,

where C is a positive constant, so the total energy becomes
€ U?

_ 2_ 2 1962 dxt L (A(S) -2+ Lo v
Eut = 5 | (1801~ 51V0P) s o= (A) =)+ +5(V2=C).
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Multiple SAV approach

Therefore, we introduce

U=B()-p5 V= \/ | (Gever + 4(6r) e+ C,

where C is a positive constant, so the total energy becomes

€ 2 1 U? ¢
Eior = = ApPP—= 2 —(A()—a)?+—+=(V?>-0Q).
ot = 5 | (1807~ 51V0P) s o (A@) =)+ +5(V2=C)

Then, the L2 gradient flow can be written as:
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Second-order MSAV-CN scheme

¢n+1 (bn

1

= _My"tz
st ne2,
Mn-i—% :€A2¢n+%+gA¢*7n+%
€
1 1 1 10U 1 10V 1
_~_7A n+§ — +7Un+§7 *,n+§ —|—6V"+§7 *,n+§7
LA - a) + oS ) )
1)
Un-‘rl _ Un — £(¢*,n+%)(¢n+l o (bn)dX
Q 0¢
% *,n+1 n n
VIl v = | (9P 2) (67— 9")dx
Q 09

1 . .
where ¢*"t2 = %qﬁ" — %qﬁ”*l is a second-order extrapolation for

9",
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@ One can first solve U™ and V"1 by bock Gaussian
elimination which leads to a 2 x 2 linear system.

@ Then, one can determine (¢™*1, u"™1) as in previous models.
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@ One can first solve U™ and V"1 by bock Gaussian
elimination which leads to a 2 x 2 linear system.

@ Then, one can determine (¢™*1, u"™1) as in previous models.

The above scheme satisfies the following energy law:

EDFLn — ELn—L < —tM|u" 3|2,

where
1 1
ELFLn = AP = S| Vo2 + = | Vgt — Vo2
2 € 2¢
1 € 1
- n+1\2 = Vn+1 2 (A n+1y 2
o (UM SV (AT — )
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Figure: The dynamical behaviors of four spherical vesicles without the
volume and surface area constraints using the Scheme 2 with the time

step size 6t = 0.0001. Snapshots of the numerical approximation of the
isosurfaces of ¢ = 0 are taken at t = 0, 0.005, 0.002, 0.1, 0.5, 2.
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Figure: Collision of four spherical vesicles with the volume and surface
area constraints (i.e., n =y = 0.001). Snapshots of the iso-surfaces of
¢ =0att=0,0.0050.002, 0.1, 0.5,2
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Multi-component gradient flows

Consider the energy functional

k
E(¢) = Z(¢i7 £i¢i) + E1[¢17 o 7¢k]7
i=1
where L£; are non-negative linear operators, Eq[¢1,..., k] > —Co.

Introduce r(t) = v/E1 + Co. Then then gradient flow associated
with E(¢) reads:

dp; .
=A iy - 17 7k7
ot Hir
r 5E1 .
,':,C,','—l-ii, I:].,'”,k,
Hi =Lidi + = c* 30;

r / 5E1 a¢l
£ 2\//51 T G < 6¢; Ot
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Setting U; = ‘;El the 2nd-order scheme based on Crank-Nicolson:

¢ 1
n+l n
P A =k,
n+1 n n+1 n B
7+1/2 :Eid?, 2+ o N r ' +r UL, =1,
2/ El5 )+ G

SN st
Pl — d (¢7+1 — ¢ )dx
/Q; 2\/E1[(/;Jr_7+1/2] + CO

@ Multiplying the above three equations with At,unﬂ/2

qu’H or,r r"™1 4 r" and taking the sum over i, we can show
that the scheme is unconditionally energy stable.

e As before, we can determine r™t! by solving k decoupled
equations with constant coefficients of the form:

(/—)\Aﬁ,’)¢,‘:f;, I':].,”-,k;

then obtain {¢;} by solving another k decoupled equations in

the above form.
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Preliminary results on grain growth (with Longging Chen)

@ Allen-Cahn system with k = 100 order parameters, and
El = fQ f(¢17 e 7¢k) with

k k k
fon o0 = 3 S+ -0 S S et
i=1 1

i= i=1 j>i

@ Existing schemes use explicit or semi-implicit discretization,
requiring possible severe time step constraint.

@ The SAV scheme is unconditionally stable and only required
solving PDEs with constant-coefficients that can be solved

fast by FFT.

PRy
e

mtl A
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Phase separation of diblock co-polymers (with Y. Nishiura)

Consider the free energy of Ohta-Kawasaki type (Nishiura et al.
'16):

€y €y o _ _
() = [ {962 I+ Wl )+ 5 (-8) (=)},

v— 1
where v = al fQ v and

2

1 1
W(u,v) = Z(U2 — 1)+ Z(V2 — 1)+ buv + bz%.

@ u: volume fraction of constrained co-polymers, u = +1:
co-polymers or solvant.

@ v: micro-phase separation variable: v = +1 A-polymer rich or
B-polymer rich.

@ by: incompatibility; by bounds of co-polymer rich domain.
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u: dotted curve
v: solid curve

u=1: copolymer-rich
u=-1: solvent rich

0 60 80 100 120

Figure: (a) sketch of typical profile for u, v; (b) a case with b; = 0:
morphology does not change; (b) a case with by # 0: different
morphology appears.
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u: dotted curve
v: solid curve

u=1: copolymer-rich
u=-1: solvent rich

0 20 40 60 80 100 120

Figure: (a) sketch of typical profile for u, v; (b) a case with b; = 0:
morphology does not change; (b) a case with by # 0: different
morphology appears.

@ The non-local term can be treated implicitly along with the
linear term.

@ By using the Young's inequality, it can be easily shown that
W(u,v) > G.

Hence, one can introduce r(t) = \/fQ u,v)+ ‘ y and apply the
standard SAV approach.
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Phase-field model for two-phase incompressible flows

Let F(¢) = #((f —1)2. Consider the mixing free energy:

Enix(®) = A [ (GIVOP + F(@) dx = [ F1Vof? b+ Ex(o).
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Phase-field model for two-phase incompressible flows

Let F(¢) = #((f —1)2. Consider the mixing free energy:

1 1
Enix(®) = A [ (GIVOP + F(@) dx = [ F1Vof? b+ Ex(o).
e Cahn-Hilliard phase-field equation:

¢+ (u-V)p=V-(7Vw),

0 Emix o /
= 50 = A0 AF(9).

w
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Phase-field model for two-phase incompressible flows

Let F(¢) = #((f —1)2. Consider the mixing free energy:

1 1
Enix(®) = A [ (GIVOP + F(@) dx = [ F1Vof? b+ Ex(o).
e Cahn-Hilliard phase-field equation:

¢+ (u-V)p=V-(7Vw),

5Emix o /
= 50 = A0 AF(9).

e Momentum equation:

w

po(us + (u-V)u) =vAu—Vp+ wVe.

e Incompressibility:
V-u=0.
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Energy dissipation law:

5Emix 2

d PO o A 2 _ 2
& [+ 3190P + AF(9)) =~ [ (v 491
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Energy dissipation law:

5Emix 2

d PO o A 2 _ 2
& [+ 3190P + AF(9)) =~ [ (v 491
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Energy dissipation law:

5Emix 2

d PO, 2 A 2 _ 2
& [+ 3190P + AF(9)) =~ [ (v 491

As before, we introduce r(t) = \/Ei(¢) + d, and replace

w = —AA¢ + AF'(¢)

- rt) o
w=—-MAd+ A E1(¢)+5F(¢),

N
JRGIOEALR

re

1
NGO
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Second-order SAV scheme

Let ¢"t1 :=2¢" — "1 G"t1:=2u" — "1 and

gt =20 — y"1 or gl

3¢n+1 _ 4¢n + (/J)nfl
20t

4 0[1-{—1 . v&n—}—l _ ,YAWn-i—l,
)\rn+1

/El[ggnﬂ] 40

3rn+1 — 4" ¢ rn—l B / F/(Q_S'H_l) 3¢n+1 _ 4¢n + ¢n—1

2At Q 2v/E1[¢" 1] + 6 2At

Wn—s—l _ _/\A¢n+l + F/( _n—i—l)

)

dx;
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Second-order SAV scheme

Let ¢"t1 :=2¢" — "1 G"t1:=2u" — "1 and

gt =20 — y"1 or gl

3¢n+1 _ 4¢n + (/J)nfl
20t

4 0[1-{—1 . v&n—}—l _ ,YAWn-i—l,
)\rn+1
/El[ggnﬂ] 40
3rn+1 — 4" ¢ rn—l B / F/(Q_S'H_l) 3¢n+1 _ 4¢n + ¢n—1
2At Q 2v/E1[¢" 1] + 6 2At

rn+1 -1

. VAL']n+1 + vpn . Wn+1v(z_)n+l — O,

Wn—s—l _ _/\A¢n+l + F/( _n—i—l)

)

dx;

po{
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Second-order SAV scheme

Let ¢"t1 :=2¢" — "1 G"t1:=2u" — "1 and

gt =20 — y"1 or gl

3¢n+1 _ 4¢n + (/J)nfl
20t

4 0[1-{—1 . v&n—}—l _ ,YAWn-i—l,
)\rn+1
/El[ggnﬂ] 40
3rn+1 — 4" ¢ rn—l B / F/(Q_S'H_l) 3¢n+1 _ 4¢n + ¢n—1
2At Q 2v/E1[¢" 1] + 6 2At

rn+1 -1

_ VAL']n+1 + vpn . Wn+1v(z_)n+l — O,

Wn—s—l _ _/\A¢n+l + F/( _n—i—l)

)

dx;

po{

3 “n n n
A(anrl_pn):T?zv.qul’ an(P +1_p )’aQ:O;

ntl _ g+l @V

n+1 n
— p .
3p0 )

(p
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Several remarks:

@ The pressure is decoupled from the rest by a
pressure-correction projection method.
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Several remarks:
@ The pressure is decoupled from the rest by a
pressure-correction projection method.

o If we take 0"t = "t1, the scheme is unconditionally stable,
linear and 2nd-order, but weakly coupled between
("1, wtL {§7+1) by the term u™! . V@1 The weakly
coupled linear system is positive definite.
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Several remarks:

@ The pressure is decoupled from the rest by a
pressure-correction projection method.

o If we take 0"t = "t1, the scheme is unconditionally stable,
linear and 2nd-order, but weakly coupled between
(¢, witl [i"+1) by the term u"t! . V"1, The weakly
coupled linear system is positive definite.

o If we take 0"t = 2u" — "1, the scheme is linear, decoupled
and 2nd-order, only requires solving a sequence of Poisson
type equations at each time step, but not unconditionally
energy stable.
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Several remarks:

@ The pressure is decoupled from the rest by a
pressure-correction projection method.

o If we take 0"t = "t1, the scheme is unconditionally stable,
linear and 2nd-order, but weakly coupled between
("1, wtL {§7+1) by the term u™! . V@1 The weakly
coupled linear system is positive definite.

o If we take 0"t = 2u" — "1, the scheme is linear, decoupled
and 2nd-order, only requires solving a sequence of Poisson
type equations at each time step, but not unconditionally
energy stable.

@ One can use the decoupled scheme with §"+1 = 24" — y"!

as a preconditioner for the coupled scheme if large time step is

used.
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Concluding remarks

We presented the SAV approach for gradient flows, which is
inspired by the Lagrange multiplier/IEQ methods. It preserves
many of their advantages, plus:
@ It leads to linear, decoupled equations with CONSTANT
coefficients. So fast direct solvers are often available!
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Concluding remarks

We presented the SAV approach for gradient flows, which is
inspired by the Lagrange multiplier/IEQ methods. It preserves
many of their advantages, plus:
@ It leads to linear, decoupled equations with CONSTANT
coefficients. So fast direct solvers are often available!
@ It only requires the nonlinear energy functional, instead of
nonlinear energy density, be bounded from below, so it applies
to a larger class of gradient flows.
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Concluding remarks

We presented the SAV approach for gradient flows, which is
inspired by the Lagrange multiplier/IEQ methods. It preserves
many of their advantages, plus:

@ It leads to linear, decoupled equations with CONSTANT
coefficients. So fast direct solvers are often available!

@ It only requires the nonlinear energy functional, instead of
nonlinear energy density, be bounded from below, so it applies
to a larger class of gradient flows.

@ For gradient flows with multiple components, the scheme will
lead to decoupled equations with constant coefficients to solve
at each time step.
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@ A particular advantage of unconditionally energy stable
scheme is that it can be coupled with an adaptive time
stepping strategy.

@ The proofs are based on variational formulation with simple
test functions, so that they can be extended to full discrete
discretization with Galerkin approximation in space.

@ We have performed rigorous error analysis to show that, under
mild conditions, the solution of proposed schemes converge to
the solution of the original problem.
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Thank youl!
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