The scalar auxiliary variable (SAV) approach for Gradient Flows

Jie Shen

Purdue University

Collaborators: Jie Xu and Jiang Yang, Qing Cheng

IMS workshop, National University of Singapore, May 14-18, 2018

Motivation

 Many physical problems can be modeled by PDEs that take the form of gradient flows. Examples include heat equation, Allen-Cahn equation, Cahn-Hilliard equation, thin film epitaxy, PNP equations, quasi-crystal models, phase-field models, ...

Motivation

- Many physical problems can be modeled by PDEs that take the form of gradient flows. Examples include heat equation, Allen-Cahn equation, Cahn-Hilliard equation, thin film epitaxy, PNP equations, quasi-crystal models, phase-field models, ...
- Gradient flows are dynamically driven by a free energy $E(\phi)$, and takes the form:

$$\frac{\partial \phi}{\partial t} = -\mathcal{L}\frac{\delta E(\phi)}{\delta \phi},$$

where \mathcal{L} is a positive operator, and satisfy a dissipative energy law:

$$\frac{d}{dt}E(\phi) = -(\mathcal{L}\frac{\delta E(\phi)}{\delta \phi}, \frac{\delta E(\phi)}{\delta \phi}).$$

Motivation

- Many physical problems can be modeled by PDEs that take the form of gradient flows. Examples include heat equation, Allen-Cahn equation, Cahn-Hilliard equation, thin film epitaxy, PNP equations, quasi-crystal models, phase-field models, ...
- Gradient flows are dynamically driven by a free energy $E(\phi)$, and takes the form:

$$\frac{\partial \phi}{\partial t} = -\mathcal{L}\frac{\delta E(\phi)}{\delta \phi},$$

where \mathcal{L} is a positive operator, and satisfy a dissipative energy law:

$$\frac{d}{dt}E(\phi) = -(\mathcal{L}\frac{\delta E(\phi)}{\delta \phi}, \frac{\delta E(\phi)}{\delta \phi}).$$

Examples:

- heat equation: $E(\phi) = \int_{\Omega} \frac{1}{2} |\nabla \phi|^2$
- Allen-Cahn and Cahn-Hilliard equation: $E(\phi) = \int_{\Omega} (\frac{1}{2} |\nabla \phi|^2 + F(\phi))$

Gradient flows

Given a free energy functional $E(\phi)$, the gradient flow in L^2 $(\mathcal{L} = I)$:

$$\frac{\partial \phi}{\partial t} = -\frac{\partial E(\phi)}{\partial \phi};$$

or the gradient flow in H^{-1} ($\mathcal{L} = -\Delta$):

$$\frac{\partial \phi}{\partial t} = \Delta \frac{\delta E(\phi)}{\delta \phi}.$$

Gradient flows

Given a free energy functional $E(\phi)$, the gradient flow in L^2 $(\mathcal{L} = I)$:

$$\frac{\partial \phi}{\partial t} = -\frac{\partial E(\phi)}{\partial \phi};$$

or the gradient flow in H^{-1} ($\mathcal{L} = -\Delta$):

$$\frac{\partial \phi}{\partial t} = \Delta \frac{\delta E(\phi)}{\delta \phi}.$$

If $E(\phi) = \int_{\Omega} \left[\frac{1}{2} |\nabla \phi|^2 + F(\phi)\right] dx$ with $F(\phi)$ being a double-well type potential, then the gradient flow in L^2 is the so called Allen-Cahn equation (Allen & Cahn '79):

$$\frac{\partial \phi}{\partial t} = \Delta \phi - F'(\phi),$$

and the gradient flow in H^{-1} is the so called Cahn-Hilliard equation (Cahn & Hilliard '58):

$$rac{\partial \phi}{\partial t} = -\Delta (\Delta \phi - F'(\phi))$$

Time discretizations of gradient flows

To fix the idea, we let $E(\phi) = \int_{\Omega} [\frac{1}{2} |\nabla \phi|^2 + \frac{1}{\eta^2} F(\phi)] dx$, where $F(\phi)$ is a general nonlinear free energy, η may be a small parameter, and consider the gradient flow in H^{-1} :

$$\phi_t = \nabla \cdot \nabla \frac{\delta E}{\delta \phi}, \qquad \partial_n w|_{\partial \Omega} = 0;$$

$$w = \frac{\delta E}{\delta \phi} = -\Delta \phi + \frac{1}{\eta^2} F'(\phi), \qquad \partial_n \phi|_{\partial \Omega} = 0,$$

which satisfies the energy law:

$$\frac{\partial}{\partial t} \int_{\Omega} \left(\frac{1}{2} |\nabla \phi|^2 + \frac{1}{\eta^2} F(\phi) \right) = - \int_{\Omega} |\nabla (-\Delta \phi + \frac{1}{\eta^2} F'(\phi))|^2.$$

Time discretizations of gradient flows

To fix the idea, we let $E(\phi) = \int_{\Omega} \left[\frac{1}{2} |\nabla \phi|^2 + \frac{1}{\eta^2} F(\phi)\right] dx$, where $F(\phi)$ is a general nonlinear free energy, η may be a small parameter, and consider the gradient flow in H^{-1} :

$$\phi_t = \nabla \cdot \nabla \frac{\delta E}{\delta \phi}, \qquad \partial_n w|_{\partial \Omega} = 0;$$

$$w = \frac{\delta E}{\delta \phi} = -\Delta \phi + \frac{1}{\eta^2} F'(\phi), \qquad \partial_n \phi|_{\partial \Omega} = 0,$$

which satisfies the energy law:

$$\frac{\partial}{\partial t} \int_{\Omega} \left(\frac{1}{2} |\nabla \phi|^2 + \frac{1}{\eta^2} F(\phi) \right) = - \int_{\Omega} |\nabla (-\Delta \phi + \frac{1}{\eta^2} F'(\phi))|^2.$$

Goal: Design simple, efficient and accurate numerical schemes that satisfy a discrete energy law.

Existing approaches for time discretization

- Full implicit schemes: Du & Nicolaides '91, Feng & Prohl '03-'05, ...
- Linearly implicit and stabilized schemes: Chen & S. '98, Xu & Tang '06, S. & Yang '10, Li, Qiao & Tang '16, ...
- Convex splitting: Elliott and Stewart '93 (see also Eyre '98),
 ...
- The method with a Lagrange multiplier: Badia et al. '11, Tiera & Guillen-Gonzalez '13

Existing approaches for time discretization

- Full implicit schemes: Du & Nicolaides '91, Feng & Prohl '03-'05, ...
- Linearly implicit and stabilized schemes: Chen & S. '98, Xu & Tang '06, S. & Yang '10, Li, Qiao & Tang '16, ...
- Convex splitting: Elliott and Stewart '93 (see also Eyre '98),
 ...
- The method with a Lagrange multiplier: Badia et al. '11, Tiera & Guillen-Gonzalez '13

Desired properties:

- Second-order unconditionally energy stable;
- Only requiring solving decoupled, linear, positive definite system with constant coefficients, even for multi-component systems;
- Applicable to a large class of gradient flows;
- Amenable to error analysis without resorting to a Lipschitz condition.

Invariant Energy Quadratization (IEQ) Method (X. Yang, Q. Wang, ...)

Assuming that $F(\phi)$ is bounded from below, i.e., $F(\phi) > -C_0$, and introducing two auxiliary functions

$$\bar{u}(t, x; \phi) = \nabla \phi, \quad v(t, x; \phi) = \sqrt{F(\phi) + C_0},$$

so the free energy becomes

$$E(\bar{u}, v; \phi) = \int_{\Omega} (\frac{1}{2}\bar{u}^2 + v^2 - C_0) dx,$$

and the original gradient flow can be recast as:

$$\begin{split} &\frac{\partial \phi}{\partial t} = \Delta w \\ &w = -\nabla \cdot \nabla \phi + 2v \frac{\delta v}{\delta \phi}, \\ &\frac{\partial v}{\partial t} = \frac{\delta v}{\delta \phi} \frac{\partial \phi}{\partial t}, \\ &\frac{\partial \bar{u}}{\partial t} = \nabla \frac{\partial \phi}{\partial t}. \end{split}$$

Unconditionally stable schemes

Consider the following first-order scheme:

$$\begin{split} \frac{\phi^{n+1} - \phi^n}{\Delta t} &= \Delta w^{n+1}, \\ w^{n+1} &= -\nabla \cdot \nabla \phi^{n+1} + 2v^{n+1} \frac{\delta v}{\delta \phi} |_{\phi = \phi^n}, \\ \frac{v^{n+1} - v^n}{\Delta t} &= \frac{\delta v}{\delta \phi} |_{\phi = \phi^n} \frac{\phi^{n+1} - \phi^n}{\Delta t}, \\ \frac{\bar{u}^{n+1} - \bar{u}^n}{\Delta t} &= \nabla \frac{\phi^{n+1} - \phi^n}{\Delta t}. \end{split}$$

Unconditionally stable schemes

Consider the following first-order scheme:

$$\begin{split} \frac{\phi^{n+1} - \phi^n}{\Delta t} &= \Delta w^{n+1}, \\ w^{n+1} &= -\nabla \cdot \nabla \phi^{n+1} + 2v^{n+1} \frac{\delta v}{\delta \phi} |_{\phi = \phi^n}, \\ \frac{v^{n+1} - v^n}{\Delta t} &= \frac{\delta v}{\delta \phi} |_{\phi = \phi^n} \frac{\phi^{n+1} - \phi^n}{\Delta t}, \\ \frac{\bar{u}^{n+1} - \bar{u}^n}{\Delta t} &= \nabla \frac{\phi^{n+1} - \phi^n}{\Delta t}. \end{split}$$

Taking the inner products of the above with w^{n+1} , $\frac{\phi^{n+1}-\phi^n}{\Delta t}$, $2v^{n+1}$ and \bar{u}^{n+1} , respectively, one obtains immediately:

$$\begin{split} \frac{1}{\Delta t} \Big[\int_{\Omega} \left(\frac{1}{2} |\bar{u}^{n+1}|^2 + (v^{n+1})^2 \right) - \int_{\Omega} \left(\frac{1}{2} |\bar{u}^{n}|^2 + (v^{n})^2 \right) \\ + \frac{1}{2} \int_{\Omega} \left(|\bar{u}^{n+1} - \bar{u}^{n}|^2 + (v^{n+1} - v^{n})^2 \right) \Big] &= - \|\nabla w^{n+1}\|^2. \end{split}$$

This approach leads to efficient and flexible numerical schemes:

• It can be efficiently implemented: one can eliminate v^{n+1} , \bar{u}^{n+1} and w^{n+1} from the coupled system, leading to a fourth-order equation for ϕ^{n+1} with variable coefficients at each time step;

This approach leads to efficient and flexible numerical schemes:

- It can be efficiently implemented: one can eliminate v^{n+1} , \bar{u}^{n+1} and w^{n+1} from the coupled system, leading to a fourth-order equation for ϕ^{n+1} with variable coefficients at each time step;
- It can be easily extended to higher-order with the BDFk scheme, with BDF2 being unconditionally stable.

This approach leads to efficient and flexible numerical schemes:

- It can be efficiently implemented: one can eliminate v^{n+1} , \bar{u}^{n+1} and w^{n+1} from the coupled system, leading to a fourth-order equation for ϕ^{n+1} with variable coefficients at each time step;
- It can be easily extended to higher-order with the BDFk scheme, with BDF2 being unconditionally stable.
- It allows us to deal with a large class of gradient flows (cf. X. Yang, Q. Wang, L. Ju, J. Zhao, S., etc, 2016, 2017, ...).

Although the IEQ approach has proven to be a very powerful way to construct energy stable schemes, it does leave somethings to be desired:

- It involves solving problems with complicated VARIABLE coefficients.
- It requires that the free energy density $F(\phi)$ is bounded from below.
- For gradient flows with multiple components, it leads to coupled system.

Although the IEQ approach has proven to be a very powerful way to construct energy stable schemes, it does leave somethings to be desired:

- It involves solving problems with complicated VARIABLE coefficients.
- It requires that the free energy density $F(\phi)$ is bounded from below.
- For gradient flows with multiple components, it leads to coupled system.
- Q. Can we do better?

Although the IEQ approach has proven to be a very powerful way to construct energy stable schemes, it does leave somethings to be desired:

- It involves solving problems with complicated VARIABLE coefficients.
- It requires that the free energy density $F(\phi)$ is bounded from below.
- For gradient flows with multiple components, it leads to coupled system.

Q. Can we do better?

Yes, if the free energy takes the following form:

$$E(\phi) = \int_{\Omega} \{\frac{1}{2}(\mathcal{L}\phi, \phi) + F(\phi)\} dx,$$

where \mathcal{L} is linear and positive definite, $F(\phi)$ includes only "lower-order" nonlinear terms.

The scalar auxiliary variable (SAV) approach

The SAV approach is inspired by the IEQ method. It preserves their advantages while overcomes most of its shortcomings.

Assuming that $E_1(\phi) := \int_{\Omega} F(\phi) dx$ is bounded from below, i.e., $E_1(\phi) > -C_0$ for some $C_0 > 0$, and introduce one scalar auxiliary variable (SAV):

$$r(t) = \sqrt{E_1(\phi) + C_0}.$$

Then, the original gradient flow can be recast as:

$$\begin{split} \frac{\partial \phi}{\partial t} &= \Delta w \\ w &= -\Delta \phi + F'(\phi) \frac{r(t)}{\sqrt{E_1[\phi] + C_0}} \\ r_t &= \frac{1}{2\sqrt{E_1[\phi] + C_0}} \int_{\Omega} F'(\phi) \phi_t dx. \end{split}$$

Unconditionally stable, linear and decoupled schemes

First-order scheme:

$$\frac{\phi^{n+1} - \phi^n}{\Delta t} = \Delta w^{n+1},$$

$$w^{n+1} = -\Delta \phi^{n+1} + \frac{r^{n+1}}{\sqrt{E_1[\phi^n] + C_0}} F'(\phi^n),$$

$$\frac{r^{n+1} - r^n}{\Delta t} = \frac{1}{2\sqrt{E_1[\phi^n] + C_0}} \int_{\Omega} F'(\phi^n) \frac{\phi^{n+1} - \phi^n}{\Delta t} dx.$$

Unconditionally stable, linear and decoupled schemes

First-order scheme:

$$\frac{\phi^{n+1} - \phi^n}{\Delta t} = \Delta w^{n+1},$$

$$w^{n+1} = -\Delta \phi^{n+1} + \frac{r^{n+1}}{\sqrt{E_1[\phi^n] + C_0}} F'(\phi^n),$$

$$\frac{r^{n+1} - r^n}{\Delta t} = \frac{1}{2\sqrt{E_1[\phi^n] + C_0}} \int_{\Omega} F'(\phi^n) \frac{\phi^{n+1} - \phi^n}{\Delta t} dx.$$

Taking the inner products of the above with w^{n+1} , $\frac{\phi^{n+1}-\phi^n}{\Delta t}$ and $2r^{n+1}$, respectively, one obtains immediately:

$$\begin{split} \frac{1}{\Delta t} \left[\frac{1}{2} \| \nabla \phi^{n+1} \|^2 + (r^{n+1})^2 - \frac{1}{2} \| \nabla \phi^n \|^2 - (r^n)^2 \right. \\ \left. + \frac{1}{2} \| \nabla (\phi^{n+1} - \phi^n) \|^2 + (r^{n+1} - r^n)^2 \right] = - \| \nabla w^{n+1} \|^2. \end{split}$$

Efficient implementation

We can write the schemes as a matrix system

$$\begin{pmatrix} c_1 I & -\Delta & 0 \\ \Delta & c_2 I & * \\ * & 0 & c_3 \end{pmatrix} \begin{pmatrix} \phi^{n+1} \\ w^{n+1} \\ r^{n+1} \end{pmatrix} = \bar{b}^n,$$

Efficient implementation

We can write the schemes as a matrix system

$$\begin{pmatrix} c_1 I & -\Delta & 0 \\ \Delta & c_2 I & * \\ * & 0 & c_3 \end{pmatrix} \begin{pmatrix} \phi^{n+1} \\ w^{n+1} \\ r^{n+1} \end{pmatrix} = \bar{b}^n,$$

So we can solve r^{n+1} with a block Gaussian elimination, which requires solving a system with constant coefficients of the form

$$\begin{pmatrix} c_1 I & -\Delta \\ \Delta & c_2 I \end{pmatrix} \begin{pmatrix} \phi \\ w \end{pmatrix} = \bar{b},$$

which, under Neumann conditions for ϕ and w, can be further reduced to a set of decoupled equations:

$$\alpha \psi - \Delta \psi = \bar{f}, \beta \phi - \Delta \phi = -\psi.$$

Second-order BDF scheme:

$$\begin{split} \frac{3\phi^{n+1}-4\phi^n+\phi^{n-1}}{2\Delta t} &= \Delta w^{n+1},\\ w^{n+1} &= -\Delta\phi^{n+1} + \frac{r^{n+1}}{\sqrt{E_1[\tilde{\phi}^{n+1}]+C_0}} F'(\tilde{\phi}^{n+1}),\\ \frac{3r^{n+1}-4r^n+r^{n-1}}{2\Delta t} &= \int_{\Omega} \frac{F'(\tilde{\phi}^{n+1})}{2\sqrt{E_1[\tilde{\phi}^{n+1}]+C_0}} \frac{3\phi^{n+1}-4\phi^n+\phi^{n-1}}{2\Delta t} \, dx, \end{split}$$

where
$$g(\tilde{\phi}^{n+1}) := 2g(\phi^n) - g(\phi^{n-1})$$
.

Second-order BDF scheme:

$$\frac{3\phi^{n+1} - 4\phi^n + \phi^{n-1}}{2\Delta t} = \Delta w^{n+1},$$

$$w^{n+1} = -\Delta \phi^{n+1} + \frac{r^{n+1}}{\sqrt{E_1[\tilde{\phi}^{n+1}] + C_0}} F'(\tilde{\phi}^{n+1}),$$

$$\frac{3r^{n+1} - 4r^n + r^{n-1}}{2\Delta t} = \int_{\Omega} \frac{F'(\tilde{\phi}^{n+1})}{2\sqrt{E_1[\tilde{\phi}^{n+1}] + C_0}} \frac{3\phi^{n+1} - 4\phi^n + \phi^{n-1}}{2\Delta t} dx,$$

where
$$g(\tilde{\phi}^{n+1}) := 2g(\phi^n) - g(\phi^{n-1})$$
.

- Taking the inner products of the above with w^{n+1} , $\frac{3\phi^{n+1}-4\phi^n+\phi^{n-1}}{2\Delta t}$ and $2r^{n+1}$, respectively, one can also derive that the scheme is unconditionally stable.
- One can also construct k-th order scheme based on BDF-k and Adam-Bashforth, while they are not unconditionally stable, but they do have very good stability property as high-order schemes.

 The SAV schemes, up to second-order, are unconditionally energy stable, and can be easily extended to higher-order with the BDFk schemes.

- The SAV schemes, up to second-order, are unconditionally energy stable, and can be easily extended to higher-order with the BDFk schemes.
- It only requires solving decoupled, linear system with CONSTANT coefficients.

- The SAV schemes, up to second-order, are unconditionally energy stable, and can be easily extended to higher-order with the BDFk schemes.
- It only requires solving decoupled, linear system with CONSTANT coefficients.
- It only requires $E_1(\phi) := \int_{\Omega} F(\phi) dx$, instead of $F(\phi)$, be bounded from below, so it applies to a larger class of gradient flows.

- The SAV schemes, up to second-order, are unconditionally energy stable, and can be easily extended to higher-order with the BDFk schemes.
- It only requires solving decoupled, linear system with CONSTANT coefficients.
- It only requires $E_1(\phi) := \int_{\Omega} F(\phi) dx$, instead of $F(\phi)$, be bounded from below, so it applies to a larger class of gradient flows.
- For gradient flows with multiple components, the scheme will lead to decoupled equations with constant coefficients to solve at each time step.

Some numerical examples

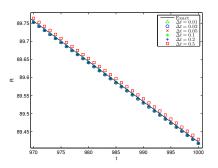


Fig. 3. (Example 3) The evolution of radius with different time step.

Scheme		$\Delta t = 1.6e-4$	Δt =8e-5	Δt =4e-5	$\Delta t = 2e-5$	$\Delta t=1e-5$
SAVT/CN	Error	1.74e-7	4.54e-8	1.17e-8	2.94e-9	2.01e-10
	Rate	-	1.93	1.96	1.99	2.01
SAVT/BDF	Error	1.38e-6	3.72e-7	9.63e-8	2.43e-8	5.98e-9
	Rate	-	1.89	1.95	1.99	2.02

Table 1

The proposed schemes are unconditionally energy stable with a modified energy. How about the dissipation of original energy?

The proposed schemes are unconditionally energy stable with a modified energy. How about the dissipation of original energy?

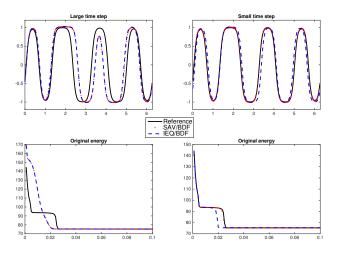


Figure: Solid line: current method; dash line: another method

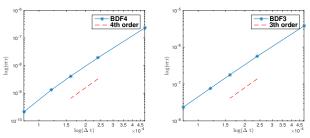


Fig. 8. (Example 7) Numerical convergences of BDF3 and BDF4.

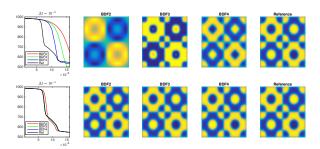


Fig. 9. (Example 7) Numerical comparison among BDF2, BDF3 and BDF4.

Adaptive time stepping

Thanks to its unconditionally energy stability, one can (and should) couple the scheme with an adaptive time stepping strategy.

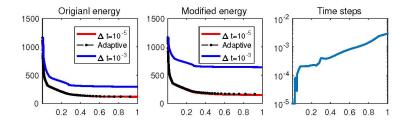
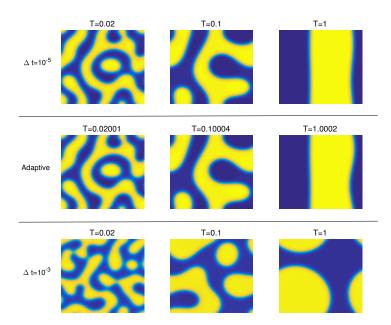


Figure: Numerical comparisons among small time steps, adaptive time steps, and large time steps



Convergence and error analysis (S. & J. Xu)

 The SAV schemes are semi-implicit schemes. Previous stability and error analysis on semi-implicit schemes usually assume a Lipschitz condition on the derivative of the free energy, which is not satisfied by even the double-well potential.

Convergence and error analysis (S. & J. Xu)

- The SAV schemes are semi-implicit schemes. Previous stability and error analysis on semi-implicit schemes usually assume a Lipschitz condition on the derivative of the free energy, which is not satisfied by even the double-well potential.
- Thanks to the unconditional energy stability of the SAV schemes, we can derive H² bounds for the numerical solution under mild conditions on the free energy.

Convergence and error analysis (S. & J. Xu)

- The SAV schemes are semi-implicit schemes. Previous stability and error analysis on semi-implicit schemes usually assume a Lipschitz condition on the derivative of the free energy, which is not satisfied by even the double-well potential.
- Thanks to the unconditional energy stability of the SAV schemes, we can derive H² bounds for the numerical solution under mild conditions on the free energy.
- The H² bounds on the numerical solution will enable us to establish the convergence, and with additional smoothness assumption, the error estimates.

H^2 bounds

Theorem.

• For the L^2 gradient flow, let $u^0 \in H^3$, and

$$|F''(x)| < C(|x|^p+1), \quad p > 0 \text{ if } n = 1, 2; \quad 0$$

Then

$$\|\Delta u^n\|^2 + \frac{\Delta t}{2} \sum_{k=0}^n \|\nabla \Delta u^k\|^2 \le C(T+1) + \|\Delta u^0\|^2 + \Delta t \|\nabla \Delta u^0\|^2.$$

H^2 bounds

Theorem.

• For the L^2 gradient flow, let $u^0 \in H^3$, and

$$|F''(x)| < C(|x|^p+1), \quad p > 0 \text{ if } n = 1, 2; \quad 0$$

Then

$$\|\Delta u^n\|^2 + \frac{\Delta t}{2} \sum_{k=0}^n \|\nabla \Delta u^k\|^2 \le C(T+1) + \|\Delta u^0\|^2 + \Delta t \|\nabla \Delta u^0\|^2.$$

• For the H^{-1} gradient flow, let $u^0 \in H^4$, and additionally

$$|F'''(x)| < C(|x|^{p'} + 1), \quad p' > 0 \text{ if } n = 1, 2; \quad 0 < p' < 3 \text{ if } n = 3.$$

Then

$$\|\Delta u^n\|^2 + \frac{\Delta t}{2} \sum_{k=0}^n \|\Delta^2 u^k\|^2 \le C(T+1) + \|\Delta u^0\|^2 + \Delta t \|\Delta^2 u^0\|^2.$$

Convergence results

Let $u_{\Delta t}(\cdot, t)$ (resp. $r_{\Delta t}(\cdot, t)$) be a piece-wise linear function such that $u_{\Delta t}(\cdot, t^n) = u^n$ (resp. $r_{\Delta t}(\cdot, t^n) = r^n$).

Convergence results

Let $u_{\Delta t}(\cdot, t)$ (resp. $r_{\Delta t}(\cdot, t)$) be a piece-wise linear function such that $u_{\Delta t}(\cdot, t^n) = u^n$ (resp. $r_{\Delta t}(\cdot, t^n) = r^n$).

Theorem. Under the same assumptions needed for the H^2 bounds, we have:

- ullet For L^2 gradient flow: when $\Delta t
 ightarrow 0$, we have
 - $u_{\Delta t} \rightarrow u$ strongly in $L^2(0, T; H^{3-\epsilon}) \, \forall \epsilon > 0$, weakly in $L^2(0, T; H^3)$, weak-star in $L^{\infty}(0, T; H^2)$;
 - $r_{\Delta t} \to r = \sqrt{E_1}$ weak-star in $L^{\infty}(0, T)$.

Convergence results

Let $u_{\Delta t}(\cdot, t)$ (resp. $r_{\Delta t}(\cdot, t)$) be a piece-wise linear function such that $u_{\Delta t}(\cdot, t^n) = u^n$ (resp. $r_{\Delta t}(\cdot, t^n) = r^n$).

Theorem. Under the same assumptions needed for the H^2 bounds, we have:

- For L^2 gradient flow: when $\Delta t \rightarrow 0$, we have
 - $u_{\Delta t} \to u$ strongly in $L^2(0, T; H^{3-\epsilon}) \forall \epsilon > 0$, weakly in $L^2(0, T; H^3)$, weak-star in $L^{\infty}(0, T; H^2)$;
 - $r_{\Delta t} \to r = \sqrt{E_1}$ weak-star in $L^{\infty}(0, T)$.
- ullet For H^{-1} gradient flow: when $\Delta t o 0$, we have
 - $u_{\Delta t} \to u$ strongly in $L^2(0, T; H^{4-\epsilon}) \, \forall \epsilon > 0$, weakly in $L^2(0, T; H^4)$, weak-star in $L^{\infty}(0, T; H^2)$;
 - $r_{\Delta t} \to r = \sqrt{E_1}$ weak-star in $L^{\infty}(0, T)$.

Error estimates

Theorem.

 \bullet For L^2 gradient flow, we assume additionally

$$u_t \in L^{\infty}(0, T; L^2) \cap L^2(0, T; L^4), \quad u_{tt} \in L^2(0, T; L^2).$$

Then, for all $0 \le n \le T/\Delta t$, we have

$$\begin{split} &\frac{1}{2}\|\nabla(u^n - u(\cdot, t^n)\|^2 + (r^n - r(t^n))^2 \\ &\leq C \exp\left((1 - C\Delta t)^{-1}t^n\right)\Delta t^2 \int_0^{t^n} (\|u_{tt}(s)\|^2 + \|u_t(s)\|_{L^4}^2) ds. \end{split}$$

Error estimates

Theorem.

• For L^2 gradient flow, we assume additionally

$$u_t \in L^{\infty}(0, T; L^2) \cap L^2(0, T; L^4), \quad u_{tt} \in L^2(0, T; L^2).$$

Then, for all $0 \le n \le T/\Delta t$, we have

$$\begin{split} &\frac{1}{2}\|\nabla(u^n - u(\cdot, t^n)\|^2 + (r^n - r(t^n))^2 \\ &\leq C \exp\left((1 - C\Delta t)^{-1}t^n\right)\Delta t^2 \int_0^{t^n} (\|u_{tt}(s)\|^2 + \|u_t(s)\|_{L^4}^2) ds. \end{split}$$

ullet For H^{-1} gradient flow, we assume additionally

$$u_t \in L^{\infty}(0, T; H^{-1}) \cap L^2(0, T; H^1), \quad u_{tt} \in L^2(0, T; H^{-1}).$$

Then, for all $0 \le n \le T/\Delta t$, we have

$$\begin{split} &\frac{1}{2}\|\nabla(u^n - u(\cdot, t^n)\|^2 + (r^n - r(t^n))^2 \\ &\leq C \exp\left((1 - C\Delta t)^{-1}t^n\right)\Delta t^2 \int_{t^n}^{t^n} (\|u_{tt}(s)\|_{H^{-1}}^2 + \|u_t(s)\|_{H^{\frac{1}{2}}}^2) ds \end{split}$$

Several applications

Molecular beam epitaxy (MBE)

Consider the energy functional for MBE without slope selection (SAV can be applied directly to the case with slope selection):

$$E(\phi) = \int_{\Omega} [-\frac{1}{2} \ln(1 + |\nabla \phi|^2) + \frac{\eta^2}{2} |\Delta \phi|^2] dx.$$

Note that the first part of the energy density, $-\frac{1}{2}\ln(1+|\nabla\phi|^2)$, is unbounded from below, but one can show that

$$E_1(\phi) = \int_{\Omega} \left[-\frac{1}{2} \ln(1 + |\Delta \phi|^2) + \frac{\alpha}{2} |\Delta \phi|^2 \right] dx > -C_0, \quad \forall \alpha > 0.$$

Hence, we take $\alpha < \eta^2$ and split $E(\phi)$ as

$$E(\phi) = E_1(\phi) + \int_{\Omega} \frac{\eta^2 - \alpha}{2} |\Delta \phi|^2 dx$$

and introduce

$$r(t) = \sqrt{\int_{\Omega} \frac{\alpha}{2} |\Delta \phi|^2 - \frac{1}{2} \ln(1 + |\nabla \phi|^2) dx + C_0}.$$

MBE (continued)

We can then rewrite the original system as

$$\phi_t + (\eta^2 - \alpha)\Delta^2 \phi + \frac{r(t)}{G(\phi)} \frac{\delta E_1(\phi)}{\delta \phi} = 0,$$
 $r_t = \frac{1}{2G(\phi)} \int_{\Omega} \frac{\delta E_1(\phi)}{\delta \phi} \phi_t dx,$

where

$$G(\phi) = \sqrt{\int_{\Omega} rac{lpha}{2} |\Delta \phi|^2 - rac{1}{2} \log(1 + |
abla \phi|^2) dx} + C_0.$$

• Taking the inner product of the above equations with ϕ_t and 2r(t), respectively, we obtain:

$$\frac{d}{dt}\left[\int_{\Omega} \frac{\eta^2 - \alpha}{2} |\Delta \phi|^2 dx + r^2(t)\right] = -\|\phi_t\|^2.$$

MBE (continued):

Let $\bar{\phi}^{n+1/2}=\frac{3}{2}\phi^n-\frac{1}{2}\phi^{n-1}$. A second-order, unconditionally energy stable scheme for the modified system is:

$$\frac{\phi_i^{n+1} - \phi_i^n}{\Delta t} + (\eta^2 - \alpha) \Delta^2 \frac{\phi_i^{n+1} + \phi_i^n}{2} + \frac{r^{n+1} + r^n}{2G(\bar{\phi}^{n+1/2})} \frac{\delta E_1}{\delta \phi} [\bar{\phi}^{n+1/2})] = 0,$$

$$r^{n+1} - r^n = \frac{1}{2G(\bar{\phi}^{n+1/2})} \int_{\Omega} \frac{\delta E_1}{\delta \phi} [\bar{\phi}^{n+1/2})] (\phi_i^{n+1} - \phi_i^n) dx.$$

MBE (continued):

Let $\bar{\phi}^{n+1/2}=\frac{3}{2}\phi^n-\frac{1}{2}\phi^{n-1}.$ A second-order, unconditionally energy stable scheme for the modified system is:

$$\frac{\phi_i^{n+1} - \phi_i^n}{\Delta t} + (\eta^2 - \alpha) \Delta^2 \frac{\phi_i^{n+1} + \phi_i^n}{2} + \frac{r^{n+1} + r^n}{2G(\bar{\phi}^{n+1/2})} \frac{\delta E_1}{\delta \phi} [\bar{\phi}^{n+1/2})] = 0,$$

$$r^{n+1} - r^n = \frac{1}{2G(\bar{\phi}^{n+1/2})} \int_{\Omega} \frac{\delta E_1}{\delta \phi} [\bar{\phi}^{n+1/2})] (\phi_i^{n+1} - \phi_i^n) dx.$$

- It is easy to show that the above scheme is unconditionally energy stable.
- One can solve r^{n+1} explicitly, and then obtain ϕ^{n+1} by solving a fourth-order equation with constant coefficients.

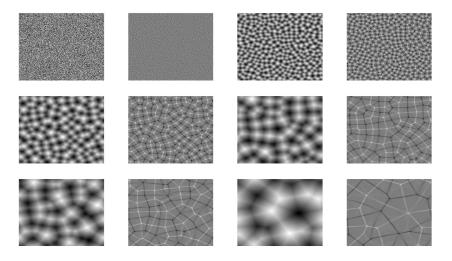


FIGURE 7. The isolines of the numerical solutions of the height function ϕ and its Laplacian $\Delta\phi$ for the slope model with random initial condition (4.6) using Scheme-1 and time step $\delta t = 10^{-4}$. For each subfigure, the left is ϕ and the right is $\Delta\phi$. Snapshots are taken at t=0,1,10,50,100,500, respectively.

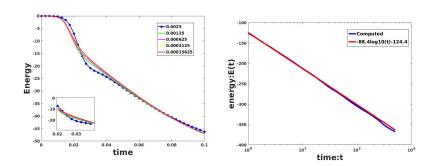


Figure: Simulation of MBE: Left, energy evolution; Right, log-log plot of the energy compared with $o(\log_{10} t)$.

Phase-field vesicle membrane model

Bending energy:

$$E_b(\phi) = \frac{\epsilon}{2} \int_{\Omega} \left(-\Delta \phi + \frac{1}{\epsilon^2} G(\phi) \right)^2 dx,$$

where $G(\phi) = F'(\phi)$.

Phase-field vesicle membrane model

Bending energy:

$$E_b(\phi) = rac{\epsilon}{2} \int_{\Omega} \Big(-\Delta \phi + rac{1}{\epsilon^2} G(\phi) \Big)^2 dx,$$

where $G(\phi) = F'(\phi)$.

Volume and surface area of the vesicle:

$$A(\phi) = rac{1}{2} \int_{\Omega} (\phi + 1) dx \quad ext{and} \quad B(\phi) = \int_{\Omega} \Big(rac{\epsilon}{2} |
abla \phi|^2 + rac{1}{\epsilon} F(\phi)\Big) dx.$$

Phase-field vesicle membrane model

Bending energy:

$$E_b(\phi) = \frac{\epsilon}{2} \int_{\Omega} \left(-\Delta \phi + \frac{1}{\epsilon^2} G(\phi) \right)^2 dx,$$

where $G(\phi) = F'(\phi)$.

Volume and surface area of the vesicle:

$$A(\phi) = rac{1}{2} \int_{\Omega} (\phi + 1) dx$$
 and $B(\phi) = \int_{\Omega} \left(rac{\epsilon}{2} |
abla \phi|^2 + rac{1}{\epsilon} F(\phi)
ight) dx.$

Total energy:

$$E_{tot}(\phi) = E_b(\phi) + \frac{1}{2\gamma} \left(A(\phi) - \alpha \right)^2 + \frac{1}{2\eta} \left(B(\phi) - \beta \right)^2,$$

where γ and η are two small parameters, and $\alpha,\,\beta$ represent the initial volume and surface area.

Note that $G(\phi) = F'(\phi) = (\phi^2 - 1)\phi$, we find

$$E_b(\phi) = \frac{\epsilon}{2} \int_{\Omega} \left(-\Delta \phi + \frac{1}{\epsilon^2} G(\phi) \right)^2 dx$$

= $\frac{\epsilon}{2} \int_{\Omega} \left(|\Delta \phi|^2 - \frac{2}{\epsilon^2} |\nabla \phi|^2 + \frac{6}{\epsilon^2} \phi^2 |\nabla \phi|^2 + \frac{1}{\epsilon^4} (G(\phi))^2 \right) dx.$

Note that $G(\phi) = F'(\phi) = (\phi^2 - 1)\phi$, we find

$$E_b(\phi) = \frac{\epsilon}{2} \int_{\Omega} \left(-\Delta \phi + \frac{1}{\epsilon^2} G(\phi) \right)^2 dx$$

= $\frac{\epsilon}{2} \int_{\Omega} \left(|\Delta \phi|^2 - \frac{2}{\epsilon^2} |\nabla \phi|^2 + \frac{6}{\epsilon^2} \phi^2 |\nabla \phi|^2 + \frac{1}{\epsilon^4} (G(\phi))^2 \right) dx.$

So the first two terms should be in the first part, and for the remaining terms, we introduce a SAV:

$$r(t) = \sqrt{\int_{\Omega} \frac{\epsilon}{2} \left(\frac{6}{\epsilon^2} \phi^2 |\nabla \phi|^2 + \frac{1}{\epsilon^4} (G(\phi))^2\right) + \frac{1}{2\gamma} (A(\phi) - \alpha)^2 + \frac{1}{2\eta} (B(\phi) - \beta)^2} + \frac{1}{2\eta} (A(\phi) - \alpha)^2 + \frac{1}{2\eta} (B(\phi) - \beta)^2 + \frac{1$$

Note that $G(\phi) = F'(\phi) = (\phi^2 - 1)\phi$, we find

$$E_b(\phi) = \frac{\epsilon}{2} \int_{\Omega} \left(-\Delta \phi + \frac{1}{\epsilon^2} G(\phi) \right)^2 dx$$

= $\frac{\epsilon}{2} \int_{\Omega} \left(|\Delta \phi|^2 - \frac{2}{\epsilon^2} |\nabla \phi|^2 + \frac{6}{\epsilon^2} \phi^2 |\nabla \phi|^2 + \frac{1}{\epsilon^4} (G(\phi))^2 \right) dx.$

So the first two terms should be in the first part, and for the remaining terms, we introduce a SAV:

$$r(t) = \sqrt{\int_{\Omega} \frac{\epsilon}{2} \left(\frac{6}{\epsilon^2} \phi^2 |\nabla \phi|^2 + \frac{1}{\epsilon^4} (G(\phi))^2\right) + \frac{1}{2\gamma} (A(\phi) - \alpha)^2 + \frac{1}{2\eta} (B(\phi) - \beta)^2} + \frac{1}{2\eta} (A(\phi) - \alpha)^2 + \frac{1}{2\eta} (B(\phi) - \beta)^2 + \frac{1$$

However, the nonlinear terms in E_{tot} behave very differently so a single SAV does not lead to accurate numerical results

Multiple SAV approach

.

Therefore, we introduce

$$U = B(\phi) - \beta,$$
 $V = \sqrt{\int_{\Omega} \left(\frac{6}{\epsilon^2}\phi^2 |\nabla \phi|^2 + \frac{1}{\epsilon^4} (G(\phi))^2\right) dx} + C,$

where C is a positive constant, so the total energy becomes

$$E_{tot} = \frac{\epsilon}{2} \int_{\Omega} \left(|\Delta \phi|^2 - \frac{2}{\epsilon^2} |\nabla \phi|^2 \right) dx + \frac{1}{2\gamma} (A(\phi) - \alpha)^2 + \frac{U^2}{2\eta} + \frac{\epsilon}{2} (V^2 - C).$$

Multiple SAV approach

Therefore, we introduce

$$U = B(\phi) - \beta, \qquad V = \sqrt{\int_{\Omega} \left(\frac{6}{\epsilon^2} \phi^2 |\nabla \phi|^2 + \frac{1}{\epsilon^4} (G(\phi))^2\right) dx + C},$$

where C is a positive constant, so the total energy becomes

$$E_{tot} = \frac{\epsilon}{2} \int_{\Omega} \left(|\Delta \phi|^2 - \frac{2}{\epsilon^2} |\nabla \phi|^2 \right) dx + \frac{1}{2\gamma} (A(\phi) - \alpha)^2 + \frac{U^2}{2\eta} + \frac{\epsilon}{2} (V^2 - C).$$

Then, the L^2 gradient flow can be written as:

$$\begin{split} \phi_t &= -M\mu, \\ \mu &= \frac{\delta E_{tot}}{\delta \phi} = \epsilon \Delta^2 \phi + \frac{2}{\epsilon} \Delta \phi + \frac{1}{\gamma} (A(\phi) - \alpha) + \frac{1}{\eta} U \frac{\delta U}{\delta \phi} + \epsilon V \frac{\delta V}{\delta \phi}, \\ U_t &= \int_{\Omega} \frac{\delta U}{\delta \phi} \phi_t dx, , \quad V_t &= \int_{\Omega} \frac{\delta V}{\delta \phi} \phi_t dx, \end{split}$$

Second-order MSAV-CN scheme

$$\begin{split} &\frac{\phi^{n+1} - \phi^{n}}{\delta t} = -M\mu^{n+\frac{1}{2}}, \\ &\mu^{n+\frac{1}{2}} = \epsilon \Delta^{2} \phi^{n+\frac{1}{2}} + \frac{2}{\epsilon} \Delta \phi^{\star,n+\frac{1}{2}} \\ &+ \frac{1}{\gamma} (A(\phi^{n+\frac{1}{2}}) - \alpha) + \frac{1}{\eta} U^{n+\frac{1}{2}} \frac{\delta U}{\delta \phi} (\phi^{\star,n+\frac{1}{2}}) + \epsilon V^{n+\frac{1}{2}} \frac{\delta V}{\delta \phi} (\phi^{\star,n+\frac{1}{2}}), \\ &U^{n+1} - U^{n} = \int_{\Omega} \frac{\delta U}{\delta \phi} (\phi^{\star,n+\frac{1}{2}}) (\phi^{n+1} - \phi^{n}) dx, \\ &V^{n+1} - V^{n} = \int_{\Omega} \frac{\delta V}{\delta \phi} (\phi^{\star,n+\frac{1}{2}}) (\phi^{n+1} - \phi^{n}) dx, \end{split}$$

where $\phi^{\star,n+\frac{1}{2}}=\frac{3}{2}\phi^n-\frac{1}{2}\phi^{n-1}$ is a second-order extrapolation for $\phi^{n+\frac{1}{2}}$.

- One can first solve U^{n+1} and V^{n+1} by bock Gaussian elimination which leads to a 2×2 linear system.
- Then, one can determine (ϕ^{n+1}, μ^{n+1}) as in previous models.

- One can first solve U^{n+1} and V^{n+1} by bock Gaussian elimination which leads to a 2×2 linear system.
- Then, one can determine (ϕ^{n+1}, μ^{n+1}) as in previous models.

The above scheme satisfies the following energy law:

$$E_{cn}^{n+1,n} - E_{cn}^{n,n-1} \le -\delta t M \|\mu^{n+\frac{1}{2}}\|^2,$$

where

$$E_{cn}^{n+1,n} = \frac{\epsilon}{2} \|\Delta \phi^{n+1}\|^2 - \frac{1}{\epsilon} \|\nabla \phi^{n+1}\|^2 + \frac{1}{2\epsilon} \|\nabla \phi^{n+1} - \nabla \phi^n\|^2 + \frac{1}{2\eta} (U^{n+1})^2 + \frac{\epsilon}{2} (V^{n+1})^2 + \frac{1}{2\gamma} (A(\phi^{n+1}) - \alpha)^2,$$

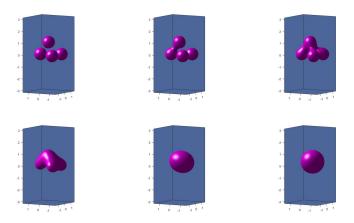


Figure: The dynamical behaviors of four spherical vesicles without the volume and surface area constraints using the **Scheme 2** with the time step size $\delta t = 0.0001$. Snapshots of the numerical approximation of the isosurfaces of $\phi = 0$ are taken at t = 0, 0.005, 0.002, 0.1, 0.5, 2.

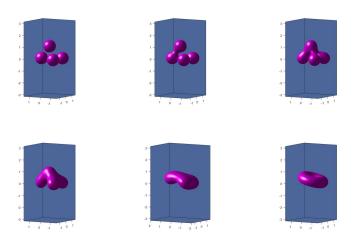


Figure: Collision of four spherical vesicles with the volume and surface area constraints (i.e., $\eta = \gamma = 0.001$). Snapshots of the iso-surfaces of $\phi = 0$ at t = 0, 0.005,0.002, 0.1, 0.5,2

Multi-component gradient flows

Consider the energy functional

$$E(\phi) = \sum_{i=1}^{k} (\phi_i, \mathcal{L}_i \phi_i) + E_1[\phi_1, \dots, \phi_k],$$

where \mathcal{L}_i are non-negative linear operators, $E_1[\phi_1,\ldots,\phi_k]>-C_0$. Introduce $r(t)=\sqrt{E_1+C_0}$. Then then gradient flow associated with $E(\phi)$ reads:

$$\begin{split} \frac{\partial \phi_{i}}{\partial t} = & \Delta \mu_{i}, \quad i = 1, \cdots, k, \\ \mu_{i} = & \mathcal{L}_{i} \phi_{i} + \frac{r}{\sqrt{E_{1} + C_{0}}} \frac{\delta E_{1}}{\delta \phi_{i}}, \quad i = 1, \cdots, k, \\ r_{t} = & \frac{1}{2\sqrt{E_{1} + C_{0}}} \int_{\Omega} \sum_{i=1}^{k} \frac{\delta E_{1}}{\delta \phi_{i}} \frac{\partial \phi_{i}}{\partial t} dx. \end{split}$$

Setting $U_i = \frac{\delta E_1}{\delta \phi_i}$, the 2nd-order scheme based on Crank-Nicolson:

$$\frac{\phi_{i}^{n+1} - \phi_{i}^{n}}{\Delta t} = \Delta \mu_{i}^{n+1/2}, \quad i = 1, \dots, k,$$

$$\mu_{i}^{n+1/2} = \mathcal{L}_{i} \frac{\phi_{i}^{n+1} + \phi_{i}^{n}}{2} + \frac{r^{n+1} + r^{n}}{2\sqrt{E_{1}[\bar{\phi}_{j}^{n+1/2}] + C_{0}}} U_{i}[\bar{\phi}_{j}^{n+1/2}], \quad i = 1, \dots$$

$$r^{n+1} - r^{n} = \int_{\Omega} \sum_{i=1}^{k} \frac{U_{i}[\bar{\phi}_{i}^{n+1/2}]}{2\sqrt{E_{1}[\bar{\phi}_{i}^{n+1/2}] + C_{0}}} (\phi_{i}^{n+1} - \phi_{i}^{n}) dx.$$

- Multiplying the above three equations with $\Delta t \mu_i^{n+1/2}$, $\phi_i^{n+1} \phi_i^n$, $r^{n+1} + r^n$ and taking the sum over i, we can show
- As before, we can determine r^{n+1} by solving k decoupled equations with constant coefficients of the form:

$$(I - \lambda \Delta \mathcal{L}_i)\phi_i = f_i, \quad i = 1, \dots, k;$$

then obtain $\{\phi_j\}$ by solving another k decoupled equations in the above form.

that the scheme is unconditionally energy stable.

Preliminary results on grain growth (with Longqing Chen)

• Allen-Cahn system with k=100 order parameters, and $E_1=\int_{\Omega}f(\phi_1,\cdots,\phi_k)$ with

$$f(\phi_1, \dots, \phi_k) = -\frac{\alpha}{2} \sum_{i=1}^k \phi_i^2 + \frac{\beta}{4} (\sum_{i=1}^k \phi_i^2)^2 + (\gamma - \frac{\beta}{2}) \sum_{i=1}^k \sum_{i>i} \phi_i^2 \phi_j^2.$$

- Existing schemes use explicit or semi-implicit discretization, requiring possible severe time step constraint.
- The SAV scheme is unconditionally stable and only required solving PDEs with constant-coefficients that can be solved fast by FFT.

Phase separation of diblock co-polymers (with Y. Nishiura)

Consider the free energy of Ohta-Kawasaki type (Nishiura et al. '16):

$$E(u,v) = \int_{\Omega} \left\{ \frac{\epsilon_u}{2} |\nabla u|^2 + \frac{\epsilon_v}{2} |\nabla v|^2 + W(u,v) + \frac{\sigma}{2} |(-\Delta)^{-1/2} (v - \overline{v})|^2 \right\},$$

where $ar{v}=rac{1}{|\Omega|}\int_{\Omega}v$ and

$$W(u,v) = \frac{1}{4}(u^2-1)^2 + \frac{1}{4}(v^2-1)^2 + b_1uv + b_2\frac{uv^2}{2}.$$

- u: volume fraction of constrained co-polymers, $u=\pm 1$: co-polymers or solvant.
- v: micro-phase separation variable: $v=\pm 1$ A-polymer rich or B-polymer rich.
- b_1 : incompatibility; b_2 bounds of co-polymer rich domain.

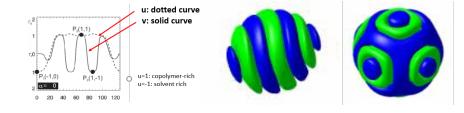


Figure: (a) sketch of typical profile for u, v; (b) a case with $b_1 = 0$: morphology does not change; (b) a case with $b_1 \neq 0$: different morphology appears.

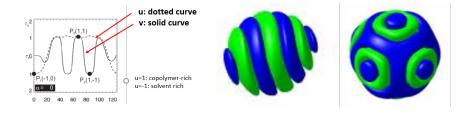


Figure: (a) sketch of typical profile for u, v; (b) a case with $b_1 = 0$: morphology does not change; (b) a case with $b_1 \neq 0$: different morphology appears.

- The non-local term can be treated implicitly along with the linear term.
- By using the Young's inequality, it can be easily shown that $W(u,v) > C_0$.

Hence, one can introduce $r(t) = \sqrt{\int_{\Omega} W(u,v) + \frac{C_0}{|\Omega|}}$ and apply the standard SAV approach.

Phase-field model for two-phase incompressible flows

Let $F(\phi) = \frac{1}{4n^2}(\phi^2 - 1)^2$. Consider the mixing free energy:

$$E_{mix}(\phi) = \lambda \int_{\Omega} \left(\frac{1}{2} |\nabla \phi|^2 + F(\phi)\right) dx = \lambda \int_{\Omega} \frac{1}{2} |\nabla \phi|^2 dx + E_1(\phi).$$

Phase-field model for two-phase incompressible flows

Let $F(\phi) = \frac{1}{4\eta^2}(\phi^2 - 1)^2$. Consider the mixing free energy:

$$E_{mix}(\phi) = \lambda \int_{\Omega} \left(\frac{1}{2} |\nabla \phi|^2 + F(\phi)\right) dx = \lambda \int_{\Omega} \frac{1}{2} |\nabla \phi|^2 dx + E_1(\phi).$$

• Cahn-Hilliard phase-field equation:

$$\begin{split} \phi_t + (u \cdot \nabla)\phi &= \nabla \cdot (\gamma \nabla w), \\ w &= \frac{\delta E_{mix}}{\delta \phi} = -\lambda \Delta \phi + \lambda F'(\phi). \end{split}$$

Phase-field model for two-phase incompressible flows

Let $F(\phi) = \frac{1}{4n^2}(\phi^2 - 1)^2$. Consider the mixing free energy:

$$E_{mix}(\phi) = \lambda \int_{\Omega} \left(\frac{1}{2} |\nabla \phi|^2 + F(\phi)\right) dx = \lambda \int_{\Omega} \frac{1}{2} |\nabla \phi|^2 dx + E_1(\phi).$$

• Cahn-Hilliard phase-field equation:

$$\phi_t + (u \cdot \nabla)\phi = \nabla \cdot (\gamma \nabla w),$$

$$w = \frac{\delta E_{mix}}{\delta \phi} = -\lambda \Delta \phi + \lambda F'(\phi).$$

• Momentum equation:

$$\rho_0(u_t + (u \cdot \nabla)u) = \nu \Delta u - \nabla p + w \nabla \phi.$$

• Incompressibility:

$$\nabla \cdot \mu = 0$$
.

Energy dissipation law:

$$\frac{d}{dt}\int_{\Omega}\{\frac{\rho_0}{2}|u|^2+\frac{\lambda}{2}|\nabla\phi|^2+\lambda F(\phi)\}=-\int_{\Omega}\{\mu|\nabla u|^2+\gamma|\nabla\frac{\delta E_{\text{mix}}}{\delta\phi}|^2\}.$$

Energy dissipation law:

$$\frac{d}{dt}\int_{\Omega}\{\frac{\rho_0}{2}|u|^2+\frac{\lambda}{2}|\nabla\phi|^2+\lambda F(\phi)\}=-\int_{\Omega}\{\mu|\nabla u|^2+\gamma|\nabla\frac{\delta E_{\text{mix}}}{\delta\phi}|^2\}.$$

Energy dissipation law:

$$\frac{d}{dt}\int_{\Omega}\{\frac{\rho_0}{2}|u|^2+\frac{\lambda}{2}|\nabla\phi|^2+\lambda F(\phi)\}=-\int_{\Omega}\{\mu|\nabla u|^2+\gamma|\nabla\frac{\delta \textit{E}_{\textit{mix}}}{\delta\phi}|^2\}.$$

As before, we introduce $r(t) = \sqrt{E_1(\phi) + \delta}$, and replace

$$w = -\lambda \Delta \phi + \lambda F'(\phi)$$

by

$$w = -\lambda \Delta \phi + \lambda \frac{r(t)}{\sqrt{E_1(\phi) + \delta}} F'(\phi),$$
 $r_t = \frac{1}{2\sqrt{E_1(\phi) + \delta}} \int_{\Omega} (F'(\phi) \frac{d\phi}{dt}) dx.$

Second-order SAV scheme

Let
$$\bar{\phi}^{n+1} := 2\phi^n - \phi^{n-1}$$
, $\bar{u}^{n+1} := 2u^n - u^{n-1}$ and $\hat{u}^{n+1} = 2u^n - u^{n-1}$ or \tilde{u}^{n+1} .
$$\frac{3\phi^{n+1} - 4\phi^n + \phi^{n-1}}{2\delta t} + \hat{u}^{n+1} \cdot \nabla \bar{\phi}^{n+1} = \gamma \Delta w^{n+1},$$

$$w^{n+1} = -\lambda \Delta \phi^{n+1} + \frac{\lambda r^{n+1}}{\sqrt{E_1[\bar{\phi}^{n+1}] + \delta}} F'(\bar{\phi}^{n+1}),$$

$$\frac{3r^{n+1} - 4r^n + r^{n-1}}{2\Delta t} = \int_{\Omega} \frac{F'(\bar{\phi}^{n+1})}{2\sqrt{E_1[\bar{\phi}^{n+1}] + \delta}} \frac{3\phi^{n+1} - 4\phi^n + \phi^{n-1}}{2\Delta t} dx;$$

Second-order SAV scheme

Let
$$\bar{\phi}^{n+1} := 2\phi^n - \phi^{n-1}$$
, $\bar{u}^{n+1} := 2u^n - u^{n-1}$ and $\hat{u}^{n+1} = 2u^n - u^{n-1}$ or \tilde{u}^{n+1} .
$$\frac{3\phi^{n+1} - 4\phi^n + \phi^{n-1}}{2\delta t} + \hat{u}^{n+1} \cdot \nabla \bar{\phi}^{n+1} = \gamma \Delta w^{n+1},$$

$$w^{n+1} = -\lambda \Delta \phi^{n+1} + \frac{\lambda r^{n+1}}{\sqrt{E_1[\bar{\phi}^{n+1}] + \delta}} F'(\bar{\phi}^{n+1}),$$

$$\frac{3r^{n+1} - 4r^n + r^{n-1}}{2\Delta t} = \int_{\Omega} \frac{F'(\bar{\phi}^{n+1})}{2\sqrt{E_1[\bar{\phi}^{n+1}] + \delta}} \frac{3\phi^{n+1} - 4\phi^n + \phi^{n-1}}{2\Delta t} dx;$$

$$\rho_0 \{ \frac{3\tilde{u}^{n+1} - 4u^n + u^{n-1}}{2\delta t} + \bar{u}^{n+1} \cdot \nabla \tilde{u}^{n+1} \}$$

$$- \nu \Delta \tilde{u}^{n+1} + \nabla \rho^n - w^{n+1} \nabla \bar{\phi}^{n+1} = 0;$$

Second-order SAV scheme

Let
$$\bar{\phi}^{n+1} := 2\phi^n - \phi^{n-1}$$
, $\bar{u}^{n+1} := 2u^n - u^{n-1}$ and $\hat{u}^{n+1} = 2u^n - u^{n-1}$ or \tilde{u}^{n+1} .
$$\frac{3\phi^{n+1} - 4\phi^n + \phi^{n-1}}{2\delta t} + \hat{u}^{n+1} \cdot \nabla \bar{\phi}^{n+1} = \gamma \Delta w^{n+1},$$

$$w^{n+1} = -\lambda \Delta \phi^{n+1} + \frac{\lambda r^{n+1}}{\sqrt{E_1[\bar{\phi}^{n+1}]} + \delta} F'(\bar{\phi}^{n+1}),$$

$$\frac{3r^{n+1} - 4r^n + r^{n-1}}{2\Delta t} = \int_{\Omega} \frac{F'(\bar{\phi}^{n+1})}{2\sqrt{E_1[\bar{\phi}^{n+1}]} + \delta} \frac{3\phi^{n+1} - 4\phi^n + \phi^{n-1}}{2\Delta t} \, dx;$$

$$\rho_0 \{ \frac{3\tilde{u}^{n+1} - 4u^n + u^{n-1}}{2\delta t} + \bar{u}^{n+1} \cdot \nabla \tilde{u}^{n+1} \}$$

$$- \nu \Delta \tilde{u}^{n+1} + \nabla p^n - w^{n+1} \nabla \bar{\phi}^{n+1} = 0;$$

$$\Delta (p^{n+1} - p^n) = \frac{3\rho_0}{2\delta t} \nabla \cdot \tilde{u}^{n+1}, \quad \partial_n (p^{n+1} - p^n)|_{\partial\Omega} = 0;$$

$$u^{n+1} = \tilde{u}^{n+1} - \frac{2\delta t}{3\rho_0} \nabla (p^{n+1} - p^n).$$

• The pressure is decoupled from the rest by a pressure-correction projection method.

- The pressure is decoupled from the rest by a pressure-correction projection method.
- If we take $\hat{u}^{n+1} = \tilde{u}^{n+1}$, the scheme is unconditionally stable, linear and 2nd-order, but weakly coupled between $(\phi^{n+1}, w^{n+1}, \tilde{u}^{n+1})$ by the term $u^{n+1} \cdot \nabla \bar{\phi}^{n+1}$. The weakly coupled linear system is positive definite.

- The pressure is decoupled from the rest by a pressure-correction projection method.
- If we take $\hat{u}^{n+1} = \tilde{u}^{n+1}$, the scheme is unconditionally stable, linear and 2nd-order, but weakly coupled between $(\phi^{n+1}, w^{n+1}, \tilde{u}^{n+1})$ by the term $u^{n+1} \cdot \nabla \bar{\phi}^{n+1}$. The weakly coupled linear system is positive definite.
- If we take $\hat{u}^{n+1} = 2u^n u^{n-1}$, the scheme is linear, decoupled and 2nd-order, only requires solving a sequence of Poisson type equations at each time step, but not unconditionally energy stable.

- The pressure is decoupled from the rest by a pressure-correction projection method.
- If we take $\hat{u}^{n+1} = \tilde{u}^{n+1}$, the scheme is unconditionally stable, linear and 2nd-order, but weakly coupled between $(\phi^{n+1}, w^{n+1}, \tilde{u}^{n+1})$ by the term $u^{n+1} \cdot \nabla \bar{\phi}^{n+1}$. The weakly coupled linear system is positive definite.
- If we take $\hat{u}^{n+1} = 2u^n u^{n-1}$, the scheme is linear, decoupled and 2nd-order, only requires solving a sequence of Poisson type equations at each time step, but not unconditionally energy stable.
- One can use the decoupled scheme with $\hat{u}^{n+1} = 2u^n u^{n-1}$ as a preconditioner for the coupled scheme if large time step is used.

Concluding remarks

We presented the SAV approach for gradient flows, which is inspired by the Lagrange multiplier/IEQ methods. It preserves many of their advantages, plus:

 It leads to linear, decoupled equations with CONSTANT coefficients. So fast direct solvers are often available!

Concluding remarks

We presented the SAV approach for gradient flows, which is inspired by the Lagrange multiplier/IEQ methods. It preserves many of their advantages, plus:

- It leads to linear, decoupled equations with CONSTANT coefficients. So fast direct solvers are often available!
- It only requires the nonlinear energy functional, instead of nonlinear energy density, be bounded from below, so it applies to a larger class of gradient flows.

Concluding remarks

We presented the SAV approach for gradient flows, which is inspired by the Lagrange multiplier/IEQ methods. It preserves many of their advantages, plus:

- It leads to linear, decoupled equations with CONSTANT coefficients. So fast direct solvers are often available!
- It only requires the nonlinear energy functional, instead of nonlinear energy density, be bounded from below, so it applies to a larger class of gradient flows.
- For gradient flows with multiple components, the scheme will lead to decoupled equations with constant coefficients to solve at each time step.

- A particular advantage of unconditionally energy stable scheme is that it can be coupled with an adaptive time stepping strategy.
- The proofs are based on variational formulation with simple test functions, so that they can be extended to full discrete discretization with Galerkin approximation in space.
- We have performed rigorous error analysis to show that, under mild conditions, the solution of proposed schemes converge to the solution of the original problem.

References:

- "The scalar auxiliary variable (SAV) approach for gradient flows", by J. S., Jie Xu and Jiang Yang, J. Comput. Phys., 2018.
- "A new class of efficient and robust energy stable schemes for gradient flows", by J. S., Jie Xu and Jiang Yang, Submitted to SIAM Reviews.
- "Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows", by Jie Shen and Jie Xu, in revision, SIAM J. Numer. Anal.

References:

- "The scalar auxiliary variable (SAV) approach for gradient flows", by J. S., Jie Xu and Jiang Yang, J. Comput. Phys., 2018.
- "A new class of efficient and robust energy stable schemes for gradient flows", by J. S., Jie Xu and Jiang Yang, Submitted to SIAM Reviews.
- "Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows", by Jie Shen and Jie Xu, in revision, SIAM J. Numer. Anal.

Thank you!