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Part |. Gradient flows

@ Many physical problems can be modeled by PDEs that take
the form of gradient flows. Examples include heat equation,
Allen-Cahn equation, Cahn-Hilliard equation, PNP equations,
Erickssen-Leslie liquid crystal models, phase-field models, ...

@ Gradient flows are dynamics driven by a free energy, e.g.,

o heat equation: E(¢) = [, 3[Vo|?
e Allen-Cahn and Cahn-Hilliard equation:
E(¢) = Jo(3IVel* + F(¢))

and satisfy a dissipative energy law:

d E(o)

_ 2
GEO = 175715

@ It is important that numerical schemes preserve the energy
dissipation while being as efficient and accurate as possible.
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Gradient flows

Given a free energy functional E(¢), the gradient flow in L2:

¢ _0E(9).

ot 0p
or the gradient flow in H™1:

99 _  OE(9)

ot A 5

If E(¢) = [o[3V0[?> + F(#)]dx with F(¢) being a double-well
type potential, then the gradient flow in L2 is the so called
Allen-Cahn equation (Allen & Cahn '79):

9% _ py P
o = D= F(s),

and the gradient flow in H™1 is the so called Cahn-Hilliard
equation (Cahn & Hilliard '58):

¢
!/
— = —-A(A¢ — F'(¢)).
ot
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Examples: Allen-Cahn and Cahn-Hillard equations

If E(¢) = [V o[+ F(#)]dx with F(¢) being a double-well
type potential, then the gradient flow in L2 is the so called
Allen-Cahn equation (Allen & Cahn '79):

¢
ot

subjected to either periodic boundary conditions or the Neumann
boundary condition %‘Q =0;

and the gradient flow in H~1 is the so called Cahn-Hilliard
equation (Cahn & Hilliard '58):

09 :
G = A0 - F(6),

= A¢ — F'(¢),

subjected to either periodic boundary conditions or the Neumann
boundary conditions ad)’Q = 8A¢]

Both equations play very important roIes in materials science and
fluid dynamics.
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Time discretizations of gradient flows

To fix the idea, we let E(¢) = [o[3V|* + ;5 F(¢)]dx, where
F(¢) is a general nonlinear free energy, 7 may be a small
parameter, and consider the gradient flow in H-1L:

oE
¢t=V'V%, OnWloq = 0;
5E
W= A¢+ F (#), Ondlon =0,

which satisfies the energy law:
0 1 s 1 1, 5
— - —F =— —A —F .
5 | (5IVor+ F@) == [1V(-a0+ ZF(o)

Goal: Design simple, efficient and accurate numerical schemes
that satisfy a discrete energy law.
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Some simple schemes

Linearly implicit with explicit treatment of nonlinear terms:

S ) = dwn,

1
Wn—‘,—l — _A¢n+1 + ?F'((b").

e Need 6t < Cn* to have energy stability E(¢™1) < E(¢").

Full implicit schemes. many results available, including:

e Du & Nicolaides (1991) proposed a nonlinear implicit scheme
which is unconditionally energy stable, but still need a severe time
step restriction for the solution to be unique.

e Feng & Prohl (2003-2005) carried out a sequence of work on the
error analysis of Allen-Cahn and Cahn-Hilliard equations, and
derived error estimates with polynomial growth in 7.
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Convex splitting

The convex splitting was perhaps originally proposed Elliott and
Stewart '93 (see also Eyre '98).

Assume that we can write F(¢) = Fc(¢) — Fe(¢) where Fc(¢) and
Fe(¢) are both convex functions, the convex splitting scheme is:

(=g = Awn,

1
Wt = —AGT g S (RO ~ FLO)

(Example: For GL potential, we write F(¢) = 3(¢* + 1) — 2¢2.)
It is easy to show that the above scheme enjoys the following
properties:

@ It is unconditionally stable;
@ It is uniquely solvable;

@ At each time step, it can be interpreted as a minimization of a
strictly convex functional.

Jie Shen Part |. Efficient and Accurate Numerical Schemes for Gradient FI



@ The convex splitting idea has been generalized to many other
situations, cf. Hu, Wise, Wang, Lowengrub (2009), S., Wang,
Wang, Wise (2012), W. Chen, C. Wang, X. Wang, S. Wise
(2014), ...

@ Second-order convex-splitting schemes for some special cases
can be constructed.

Main disadvantages:

@ A nonlinear equation has to be solved at each time step.

@ It is very difficult, or even impossible, to construct second- or
higher-order convex-splitting schemes with complicated free

energies.
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Stabilized schemes

Given a stabilization parameter S, we solve:

%((bn—i—l _ ¢n) — AW”+1,

S 1
Wn—i—l + ?(¢n+1 _ ¢n) — —A¢"+1 + ?F/(¢n)_

(Similar idea has been used in Zhu, Chen & S. '99; Tang & Xu
'06; S. & Yang '10,...)

e One can determine constants cj, ¢ such that the above system
becomes (Yue, Feng, Liu & S. '04):

C1'l/1n+1 . A¢n+1 _ gn7
C2¢n+l o A¢"+1 — ’l/)n+1.

Fast solvers can be used.
e An extra consistent error introduced by the stabilization term is
of the same order as the linearized (or convex splitting) approach.
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Remarks:

e Under the assumption ||F”||;~ < L, it is shown that the
scheme is unconditionally energy stable with a suitable choice
of S.

@ The condition ||F"||;~ < L is not “directly satisfied” by the
Ginzburg-Landau potential F(¢) = 3(¢? — 1)2. However, it is
shown by Caffarelli and Muler (1995) that, with the modified
GL potential, the L°°-norm of the solution is bounded. Hence,
we can modify the potential to quadratic growth at infinity.

@ It can be interpreted as a special convex splitting scheme.

@ In general, direct second-order extensions are not
unconditionally stable; but is possible with additional
stabilization terms involving higher-order derivatives, cf.
recent work by Z. Qiao & D. Li, and L. Wang & H. Yu.

@ Another class of energy stable schemes related to stabilized
schemes, can be constructed by using the exponential time
differentiation (ETD) scheme (see recent work by Q. Du, L.
Ju, J. Zhang, etc.)
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The method with a Lagrange multiplier (Badia et al. '11,

Tiera & Guillen-Gonzalez '13)

If F(¢) = 2(¢* — 1)? so F'(¢) = (¢* — 1)¢. Introduce a Lagrange
multiplier (auxiliary function) g = ¢?> — 1, and rewrite the
Allen-Cahn equation % =A¢p— F'(¢) as

99 _

Frie A¢ — qo,
dq _, 0¢
o~ o

Taking the inner products of the above with ¢; and %q, we obtain
the energy law:

d, 1

2, 2y 2
LIVl + ;lal?) = ~ ol
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e One can then construct linear, unconditionally energy stable
schemes for the above modified system:

¢n+1 ¢n , ) )
At _A¢+1_q+1¢7

qn+1 o qn :2¢n ¢n+1 o ¢n
At At

. n+1l__ +n
Taking the inner products of the above with ‘ﬂif and %q’”’l,
respectively, one obtains immediately:

1 12 / nt1y2 1 n2_1/ "2
At HV¢ 1©+ Q(q ) 2||V<Z> I 2 Q(q)

1 n+1 n
IV =P+ g @ -] = 1T

e However, this approach only works with very special F(¢) such
that ¢'(¢) = c¢, so its applicability is very limited; and it requires
solving coupled equations with variable coefficients.
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Invariant Energy Quadratization (IEQ) Method (X. Yang,

Q. Wang, ...)

Assuming that F(¢) is bounded from below, i.e., F(¢) > —Cp, and
introducing two auxiliary functions

a(t,x;¢) = Vo, v(t,x;¢) =V F(¢)+ Co,

so the free energy becomes

E@.vio) = [ (57 + v - G,

2
Q
and the original gradient flow can be recast as:
¢
E = Aw
w = —v-v¢+2v%,
ov _ dv o
ot ¢ Ot’
oa Ao
o = Vor
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Unconditionally stable schemes

Consider the following first-order scheme:
¢n+1 ¢n AWIH-l

At
Wn+1 - _ v . v¢n+1 + 2vn+157‘/| e
5¢ =0
Vn—|—1 —yn (SV ¢n+1 ¢n
At ’¢ A
Un+1 — " ¢n+1 _ ¢n
At At

. . . n+1
Taking the inner products of the above with w1, ¢T 2yl
n+1 respectively, one obtains immediately:

and o
1 ]'—n 12 n+1y\2 ]'—n2 ny2
il Gl R+ ) - [ Glae + )
1 =n =n n n n
43 [ arp e @t )] = v
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Main advantages of the IEQ approach

This approach leads to efficient and flexible numerical schemes:
e It can be efficiently implemented: one can eliminate g"*!,
g"t1 and w™! from the coupled system, leading to a
fourth-order equation for ¢"1 with variable coefficients at
each time step;

@ It can be easily extended to higher-order with the BDFk
scheme, with BDF2 being unconditionally stable.

o It allows us to deal with a large class of gradient flows (cf. X.
Yang, Q. Wang, L. Ju, J. Zhao, S., etc, 2016, 2017).
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Although the IEQ approach has proven to be a very powerful way
to construct energy stable schemes, it does leave somethings to be
desired:

@ It involves solving problems with complicated VARIABLE
coefficients.

@ It requires that the free energy density F(¢) is bounded from
below.

e For gradient flows with multiple components, it leads to
coupled system.

Q. Can we do better?
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The scalar auxiliary variable (SAV) approach

The SAV approach is inspired by the IEQ method. It preserves
their advantages while overcomes most of its shortcomings.
Assuming that E1(¢) := [ F(¢)dx is bounded from below, i.e.,
Ei(¢) > —Cp for some Cy > 0, and introduce one scalar auxiliary

variable (SAV):
r(t) = VE(9) + Go.

Then, the original gradient flow can be recast as:

06

% _

w=—np+ " prg)
VE[6]+ G

1 !
rt:42 /7E]_[¢]+CO/QF(¢)

Aw

¢)th.
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Unconditionally stable, linear and decoupled schemes

First-order scheme:
¢n+1 ¢n
At
n+1

n+1:_A n+1+ r F/ n’
S T
¢n+1 ¢n

At

n+1
=Aw"

rn+1 n

—r

At 2 JE] ¢>~] i co/

Taking the inner products of the above with w1,
2r"*1 respectively, one obtains immediately:

7¢"+A1;¢" and

1 1 n n 1 n n
2z |5 IVE P + (7 = V6|2 - ()

1 n n n n n
SV = 9P + (= )] = || Vw2
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Second-order BDF scheme:

3¢n+1 _ 4¢n 4 ¢n71

— A n+1
2At v

wtl — _A¢n+1 + i+l F/(Q'gnJrl)?

\/ Ei[omH1] + Go

3l g0 + -1 _ / F/(q';n—i—l) 3¢n+1 _ 4¢n + (bn—l

where g(¢" 1) := 2g(¢") — g(¢" ).

@ Taking the inner products of the above with whtl
n+1l__ n n—1 . .
% and 2,71 respectively, one can also derive

that the scheme is unconditionally stable.
@ One can also construct k-th order scheme based on BDF-k
and Adam-Bashforth, while they are not unconditionally

stable, but they do have very good stability property as
high-order schemes.

dx,
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Efficient implementation

We can write the schemes as a matrix system
¢n+1

al A 0 )
A ol x w'tl | = p",
* 0 c3 ptl

So we can solve r"t1 with a block Gaussian elimination, which
requires solving a system with constant coefficients of the form

al A\ (6) _;
A C2/ w -
With r™1 known, we can obtain (¢"*1, w™1) by solving one

more equation in the above form.
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Main advantages of the SAV approach

@ The SAV schemes, up to second-order, are unconditionally
energy stable, and can be easily extended to higher-order with
the BDFk schemes.

@ It only requires solving decoupled, linear system with
CONSTANT coefficients.

o It only requires E1(¢) := [, F(¢)dx, instead of F(¢), be
bounded from below, so it applies to a larger class of gradient
flows.

e For gradient flows with multiple components, the scheme will

lead to decoupled equations with constant coefficients to solve
at each time step.
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Some numerical examples

a5

970 975 980 985 990 995 1000
t

F1G. 3. (Ezample 3) The evolution of radius with different time step.

Scheme At=1.6e-4 | At=8e-5 | At=4e-5 | At=2e-5 | At=1e-5
Error 1.74e-7 4.54e-8 1.17e-8 2.94e-9 | 2.01e-10
SAVT/CN Rate - 1.93 1.96 1.99 2.01
Error 1.38e-6 3.72e-7 9.63e-8 2.43e-8 5.98e-9
SAVT/BDF Rate - 1.89 1.95 1.99 2.02
TABLE 1
(Ezample 4) Errors and convergence rates of SAVT/CN and SAVT/BDF for the Cahn—Hilliard
equation.
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The proposed schemes are unconditionally energy stable with a
modified energy. How about the dissipation of original energy?

Large time step Small time step

o 1 2 3 4 5 6 0 1 2 3 4 5 6
Reference
SAV/BDF
IEQ/BDF
Original energy 50 Original energy
140
130
120
110
100
90 1
80 !
v
70
0.04 0.06 0.08 0.1 o 0.02 0.04 0.06 0.08 0.1

Figure: Solid line: current method; dash line: another method
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BDF3
3th order

-10 5
o 1 1.5 25 3 35 445 o 1

2 15 2
log(A t) %10 log(A t)

F1G. 8. (Ezample 7) Numerical convergences of BDF3 and BDF.

25 3 35 4 45
%10

at=10" BDF2 BDF3 BOF4 Reference

BOF2 BDF3 BOF4

5 0 15
108

F1c. 9. (Ezample 7) Numerical comparison among BDF2, BDF3 and BDF}.
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Adaptive time stepping

Thanks to its unconditionally energy stability, one can (and should)
couple the scheme with an adaptive time stepping strategy.

A simple but effective strategy is to update the time step size by
using the formula:

tol .1
Adp(evT) = p(?)ﬂ',

where e is a relative error, 7 is the time step, tol is the error
tolerance and p is a parameter.
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Second-order daptive time stepping with CN-SAV

Given Solutions at time steps n and n — 1; parameters tol, p, dtmin

and 0tmax.
Step 1 Compute (¢1, Ur, V1)™1 by the first-order SAV
scheme with dt.
Step 2 Compute (¢, Uz, Vo)™ by CN-SAV with §t.
Step 3 Calculate
_ R i O N | L s |
ent1 = maxd g S g
Step 4 if e,41 > tol, then
Recalculate time step
t <= max{dtmin, min{Agp(€nt1,0t), Stmax}}.
Step 5 goto Step 1
Step 6 else

Update time step
thy1 < max{étm,-,,, min{Adp(e,,+1, (51‘), (5tmax}}.
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Adaptive time stepping: numerical results

Origianl ener Modified ener Time steps
1500 = 9 1500 o 102 i
— A t=1075 _At=1075
1000 —=— Adaptive 1000 —=— Adaptive 1073
—At=10" \ —At=10"

500 107

0 0
02 04 06 08 1 02 04 06 08 1 02 04 06 08 1

Figure: Numerical comparisons among small time steps, adaptive time
steps, and large time steps
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T=0.02

@

T=0.02001 T=0.10004 T=1.0002
r L ‘ F -
Adaptive Q 3
T=0.02

E R
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Convergence and error analysis (S. & J. Xu)

@ The SAV schemes are semi-implicit schemes. Previous stability
and error analysis on semi-implicit schemes usually assume a
Lipschitz condition on the derivative of the free energy, which
is not satisfied by even the double-well potential.

@ Thanks to the unconditional energy stability of the SAV
schemes, we can derive H? bounds for the numerical solution
under mild conditions on the free energy.

@ The H? bounds on the numerical solution will enable us to
establish the convergence, and with additional smoothness
assumption, the error estimates.
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Theorem.
e For the L2 gradient flow, let O € H3, and

IF"(x)| < C(|x|P+1), p>0ifn=1,2; 0<p<4ifn=3.
Then

At
HAUWR+7;§:HVAUW2§C(T+U+WMMF+AmVAu%%
k=0

@ For the H1 gradient flow, let u® € H*, and additionally
IF"(x)] < C(Ix[P +1), p'>0ifn=1,2 0<p <3ifn=3.

Then

At &
IIAU”H2+7Z [A%UK|? < C(T+1)+| AL P+At| A%
k=0
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Convergence results

Let ua¢(+, t) (resp. rat(+, t)) be a piece-wise linear function such
that ua¢(-, t") = u” (resp. ra¢(:, t") = r").
Theorem. Under the same assumptions needed for the H?
bounds, we have:
e For L2 gradient flow: when At — 0, we have
o up: — u strongly in L2(0, T; H37¢) Ve > 0, weakly in
L2(0, T; H®), weak-star in L>°(0, T; H?);
o rar — r =+/E; weak-star in L*°(0, T).
e For H™! gradient flow: when At — 0, we have
o up: — u strongly in L2(0, T; H*=¢) Ve > 0, weakly in
L2(0, T; H*), weak-star in L>(0, T; H?);
o rar — r =+/E; weak-star in L°(0, T).
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Error estimates

Theorem.
e For L2 gradient flow, we assume additionally

up € L0, T; L2) N L2(0, T; L*), ug € L2(0, T; L2).
Then, for all 0 < n < T/At, we have

IV = u( )P+ (07 = ()

tn
<Cexp (1= AN AR [ (Juels)|? + lue(s) ).
0
e For H™! gradient flow, we assume additionally
ue € L0, T; HHY N 120, T; HY),  we € L2(0, T; H7Y).
Then, for all 0 < n < T/At, we have

SIV(" — ()2 (77— (7))

tn

<Cexp ((1— CA ')A [ (fu(s)lEys + llue(s) ) ds.
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ral applications
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Gradient flows of several functions

Consider the energy functional

k
E(¢) = Z(¢i7 £i¢i) + E1[¢17 o 7¢k]7
i=1
where L£; are non-negative linear operators, Eq[¢1,..., k] > —Co.

Introduce r(t) = v/E1 + Co. Then then gradient flow associated
with E(¢) reads:

dp; .
=A iy - 17 7k7
ot Hir
r 5E1 .
,':,C,','—l-ii, I:].,'”,k,
Hi =Lidi + = c* 30;

r / 5E1 a¢l
£ 2\//51 T G < 6¢; Ot
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Setting U; = ‘;El the 2nd-order scheme based on Crank-Nicolson:

¢ 1
n+l n
W =apl im0,k
n+1 n n+1 n B
7+1/2 :Eid?, 2+ o N r ' +r ULV, i=1
2/ El5 )+ G

k [an+1/2
rn+1 _n _/ Z Ul[jb / ] (¢;‘l+1 _ ¢7)dX
Qin 2\/E1[qu'-’+1/2] + G

@ Multiplying the above three equations with At,unﬂ/2
qu’H or,r r"™1 4 r" and taking the sum over i, we can show
that the scheme is unconditionally energy stable.

@ We can determine r™t1 explicitly which requires solving k
decoupled equations with constant coefficients of the form:

(/—)\Aﬁ,’)¢,‘:f;, I':].,”-,k;

then obtain {¢;} by solving another k decoupled equations in
the above form.

Jie Shen Part |. Efficient and Accurate Numerical Schemes for Gradient FI



Preliminary results on grain growth (with Longging Chen)

@ Cahn-Hilliard system with kK = 100 order parameters, and
El = fQ f(¢17 e 7¢k) with

k k k
fon o0 = 3 S+ -0 S S et
i=1 1

i= i=1 j>i

@ Existing schemes use explicit or semi-implicit discretization,
requiring possible severe time step constraint.

@ The SAV scheme is unconditionally stable and only required
solving PDEs with constant-coefficients that can be solved

fast by FFT.

PRy
e

mtl A
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Molecular beam epitaxial (MBE) without slope selection

(with Qing Cheng and X. Yang)

Consider the energy function:
1 2
E() = [ [-5 (1 + Vo) + Ao ldx

Note that the first part of the energy density, —3 In(1+|V¢|?), is
unbounded from below, but one can show that

Ei(¢) = /Q[—; In(1+|A¢%) + %IAqﬁ!Q]dx > —Cy, VYa>0.

Hence, we take a < n? and split E(¢) as
2

E0) = Ei(0)+ | T 0Pdx

and introduce
« ) 1 5
r(t) = —|A¢|2 — = In(1+ |Vo|?)dx + Co.
Q2 2




MBE (continued)

We can then rewrite the original system as

ORISTE)
O (" — )%+ o

1 0E1(0)
@ o

—0,

where

G(o) = \//Q %|A¢|2 — %Iog(l + |Vé[2)dx + Co.

@ Taking the inner product of the above equations with ¢; and
2r(t), respectively, we obtain:

d. [ 77—
G5 80P b (0] = ol

Jie Shen Part |. Efficient and Accurate Numerical Schemes for Gradient FI



MBE (continued):

Let ¢"+1/2 = 3¢n — 1¢"=1. A second-order, unconditionally
energy stable scheme for the modified system is:

¢n+1 ¢n 2¢?+1 + gbf rmtt +r" 0E; Tn+1/2
S T - 2G(6m1/2) 56 Go 0TN=0
1 OE
M S Jy 5 1O NN — o

@ It is easy to show that the above scheme is unconditionally
energy stable.

@ One can solve r"*1 explicitly, and then obtain ¢"*! by solving
a fourth-order equation with constant coefficients.
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FIGURE 7. The isolines of the numerical solutions of the height function ¢ and its
Laplacian A¢ for the slope model with random initial condition (4.6) using Scheme-

1 and time step 6t = 10™* . For each subfigure, the left is ¢ and the right is A¢ .
Snapshots are taken at ¢t = 0, 1, 10, 50, 100, 500, respectively.

[m] = -

Jie Shen
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-100
sl ~—o0.0025
0.00125
——0.000625
10 .
0.0003125 150
ast —0.00015625
—_
20 w200
g w
5
w -30 =
(]
40
-350
ast
-50
o 0.02 0.04 0.06 0.08 0.1 400

Figure: Simulation of MBE: Left, energy evolution; Right, semi-log fit of the energy.

Jie Shen
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Gradient flows with non-local terms

Consider, e.g., phase field crystal model with free energy:
1 1—¢ 1
E@) = [ {300+ 556+ oLss+ S(LsoP | ox
0 L4 2 2
where Ls is a non-local diffusion operator, e.g., (—A)*~° or:
L0t = [ oslly =) (o)~ o)y

Its gradient flow is given by

o¢ _

i L5(L50 +2Ls) + (1 — €)p + ¢°).

Due to the non-local terms, the above equation is very challenging
if the discretized system is nonlinear or involves variable
coefficients.
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The SAV approach

We split the free energy as

(ﬁéﬁb) ldx = E1(9) + E2(9).

Denote r(t) = \/E1(¢) + €. We rewrite the original gradient flow
as:

9
a—qf = Lsw,
w= L3 +2L56 + r(t) PEs(9)

VE(®) Fe 09
. /(5E1
£ 2\/E1 —|—6

As before, we can construct unconditionally stable, 2nd-order SAV
schemes which only require solving decoupled, linear systems with
constant coefficients.
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Phase-field vesicle membrane model

Bending energy:

€

E(0) =5 | (- 80+ 56(0)) d,

where G(¢) = F'(¢).

Volume and surface area of the vesicle:

A@) =5 [@+ 1o and B(0) = [ (5190 + LF(0))dx

Total energy:

1 2 1 2
2= 5000+ 2 (40 -0) '+ 2 (500 )’
x() = Eo(0) + 5 (A(0) ~ )"+ 5 (B(0) - 5
where v and 7 are two small parameters, and «, 5 represent the
initial volume and surface area.
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To apply the SAV approach, we need to fist split the free energy
into two parts: one with (high-order) linear terms and the other
with nonlinear terms.

Note that G(¢) = F'(¢) = (¢* — 1)¢, we find

€

Eo(0) = 5 [ (= B0+ 56(0)) o

€

2 6 1
=5 [ (1807 = ZIV6R + SHIT0F + 5(6(0)?) dx.

So the first two terms should be in the first part, and for the
remaining terms, we introduce a SAV:

r(t) = % | 5(5190R + S(G(@)7) + 53-(A0) - )2 + 5-(B(e) — 3 <

However, the nonlinear terms in E;,: behave very differently so a
single SAV does not lead to accurate numerical results
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Multiple SAV approach

Therefore, we introduce

U=B()-p5 V= \/ | (Gever + 4(6r) e+ C,

where C is a positive constant, so the total energy becomes

€ 2 1 U? ¢
Eior = = ApPP—= 2 —(A()—a)?+—+=(V?>-0Q).
ot = 5 | (1807~ 51V0P) s o (A@) =)+ +5(V2=C)

Then, the L2 gradient flow can be written as:
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Second-order MSAV-CN scheme

¢n+1 (bn

1

= _My"tz
st ne2,
Mn-i—% :€A2¢n+%+gA¢*7n+%
€
1 1 1 10U 1 10V 1
T2(A n+3 — +7Un+§7 *,N+5 —|—6V"+§7 *,n+§7
LA - a) + oS ) )
1)
Un-‘rl _ Un — £(¢*,n+%)(¢n+l o (bn)dX
Q 0¢
% *,n+1 n n
VIl v = | (9P 2) (67— 9")dx
Q 09

1 . .
where ¢*"t2 = %qﬁ" — %qﬁ”*l is a second-order extrapolation for

9",
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@ One can first solve U™ and V"1 by bock Gaussian
elimination which leads to a 2 x 2 linear system.

@ Then, one can determine (¢™*1, u"™1) as in previous models.

The above scheme satisfies the following energy law:

EDFLn — ELn—L < _tM||u" 3|2,

where
1 1
ELFLn = AP = S| Vo2 + = | Vgt — Vo2
2 € 2¢
1 € 1
- n+1\2 e Vn+1 2 (A n+1y 2
o (UM SV (AT — )
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Figure: The dynamical behaviors of four spherical vesicles without the
volume and surface area constraints using the Scheme 2 with the time

step size 6t = 0.0001. Snapshots of the numerical approximation of the
isosurfaces of ¢ = 0 are taken at t = 0, 0.005, 0.002, 0.1, 0.5, 2.
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Figure: Collision of four spherical vesicles with the volume and surface
area constraints (i.e., n = v = 0.02). Snapshots of the iso-surfaces of
¢=0att=0,0.005, 0.002, 0.1, 0.5, 2.
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Figure: Collision of four spherical vesicles with the volume and surface
area constraints (i.e., n =y = 0.001). Snapshots of the iso-surfaces of
¢ =0att=0,0.0050.002, 0.1, 0.5,2
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Phase-field model for two-phase incompressible flows

Let F(¢) = #((f —1)2. Consider the mixing free energy:

1 1
Enix(®) = A [ (GIVOP + F(@) dx = [ F1Vof? b+ Ex(o).
e Cahn-Hilliard phase-field equation:

¢t +(u-V)p=V-(7Vw),

0 Emix o /
= 50 = A0 AF(9).

e Momentum equation:

w

po(us + (u-V)u) =vAu—Vp+ wVe.

e Incompressibility:
V-u=0.
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Energy dissipation law:

5Emix 2

d PO, 2 A 2 _ 2
& [+ 3190P + AF(9)) =~ [ (v 491

As before, we introduce r(t) = \/Ei(¢) + d, and replace

w = —AA¢ + AF'(¢)

_ rt) o
w=—-MAd+ A E1(¢)+5F(¢),

N
JRGIOEALR

re

1
NGO
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Concluding remarks

We presented the SAV approach for gradient flows, which is
inspired by the Lagrange multiplier/IEQ methods. It preserves all
their advantages, plus:

@ It leads to linear, decoupled equations with CONSTANT
coefficients. So fast direct solvers are often available!

@ It only requires the nonlinear energy functional, instead of
nonlinear energy density, be bounded from below, so it applies
to a larger class of gradient flows.

@ For gradient flows with multiple components, the scheme will
lead to decoupled equations with constant coefficients to solve
at each time step.
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@ A particular advantage of unconditionally energy stable
scheme is that it can be coupled with an adaptive time
stepping strategy.

@ The proofs are based on variational formulation with simple
test functions, so that they can be extended to full discrete
discretization with Galerkin approximation in space.

@ We have performed rigorous error analysis to show that, under
mild conditions, the solution of proposed schemes converge to
the solution of the original problem.

Thank youl!
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