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Part I. Gradient flows

Many physical problems can be modeled by PDEs that take
the form of gradient flows. Examples include heat equation,
Allen-Cahn equation, Cahn-Hilliard equation, PNP equations,
Erickssen-Leslie liquid crystal models, phase-field models, ...

Gradient flows are dynamics driven by a free energy, e.g.,

heat equation: E (φ) =
∫

Ω
1
2 |∇φ|2

Allen-Cahn and Cahn-Hilliard equation:
E (φ) =

∫
Ω

( 1
2 |∇φ|2 + F (φ))

and satisfy a dissipative energy law:

d

dt
E (φ) = −‖δE (φ)

δφ
‖2
X .

It is important that numerical schemes preserve the energy
dissipation while being as efficient and accurate as possible.
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Gradient flows

Given a free energy functional E (φ), the gradient flow in L2:

∂φ

∂t
= −∂E (φ)

∂φ
;

or the gradient flow in H−1:

∂φ

∂t
= ∆

δE (φ)

δφ
.

If E (φ) =
∫

Ω[ 1
2 |∇φ|2 + F (φ)]dx with F (φ) being a double-well

type potential, then the gradient flow in L2 is the so called
Allen-Cahn equation (Allen & Cahn ’79):

∂φ

∂t
= ∆φ− F ′(φ),

and the gradient flow in H−1 is the so called Cahn-Hilliard
equation (Cahn & Hilliard ’58):

∂φ

∂t
= −∆(∆φ− F ′(φ)).

It is easy to see that they satisfy, respectively, the following energy
laws:

d

dt
E (φ) = −‖δE (φ)

δφ
‖2,

or
d

dt
E (φ) = −‖∇δE (φ)

δφ
‖2.
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Examples: Allen-Cahn and Cahn-Hillard equations

If E (φ) =
∫

Ω[ 1
2 |∇φ|2 + F (φ)]dx with F (φ) being a double-well

type potential, then the gradient flow in L2 is the so called
Allen-Cahn equation (Allen & Cahn ’79):

∂φ

∂t
= ∆φ− F ′(φ),

subjected to either periodic boundary conditions or the Neumann
boundary condition ∂φ

∂n |Ω = 0;
and the gradient flow in H−1 is the so called Cahn-Hilliard
equation (Cahn & Hilliard ’58):

∂φ

∂t
= −∆(∆φ− F ′(φ)),

subjected to either periodic boundary conditions or the Neumann
boundary conditions ∂φ

∂n |Ω = ∂∆φ
∂n |Ω = 0.

Both equations play very important roles in materials science and
fluid dynamics.
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Time discretizations of gradient flows

To fix the idea, we let E (φ) =
∫

Ω[ 1
2 |∇φ|2 + 1

η2F (φ)]dx , where

F (φ) is a general nonlinear free energy, η may be a small
parameter, and consider the gradient flow in H−1:

φt = ∇ · ∇δE
δφ
, ∂nw |∂Ω = 0;

w =
δE

δφ
= −∆φ+

1

η2
F ′(φ), ∂nφ|∂Ω = 0,

which satisfies the energy law:

∂

∂t

∫

Ω

(
1

2
|∇φ|2 +

1

η2
F (φ)

)
= −

∫

Ω
|∇(−∆φ+

1

η2
F ′(φ))|2.

Goal: Design simple, efficient and accurate numerical schemes
that satisfy a discrete energy law.
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Some simple schemes

Linearly implicit with explicit treatment of nonlinear terms:

1

δt
(φn+1 − φn) = ∆wn+1,

wn+1 = −∆φn+1 +
1

η2
F ′(φn).

• Need δt ≤ Cη4 to have energy stability E (φn+1) ≤ E (φn).
Full implicit schemes. many results available, including:
• Du & Nicolaides (1991) proposed a nonlinear implicit scheme
which is unconditionally energy stable, but still need a severe time
step restriction for the solution to be unique.
• Feng & Prohl (2003-2005) carried out a sequence of work on the
error analysis of Allen-Cahn and Cahn-Hilliard equations, and
derived error estimates with polynomial growth in η.
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Convex splitting

The convex splitting was perhaps originally proposed Elliott and
Stewart ’93 (see also Eyre ’98).
Assume that we can write F (φ) = Fc(φ)− Fe(φ) where Fc(φ) and
Fe(φ) are both convex functions, the convex splitting scheme is:

1

δt
(φn+1 − φn) = ∆wn+1,

wn+1 = −∆φn+1 +
1

η2
(F ′c(φn+1)− F ′e(φn)).

(Example: For GL potential, we write F (φ) = 1
4 (φ4 + 1)− 1

2φ
2.)

It is easy to show that the above scheme enjoys the following
properties:

It is unconditionally stable;

It is uniquely solvable;

At each time step, it can be interpreted as a minimization of a
strictly convex functional.
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The convex splitting idea has been generalized to many other
situations, cf. Hu, Wise, Wang, Lowengrub (2009), S., Wang,
Wang, Wise (2012), W. Chen, C. Wang, X. Wang, S. Wise
(2014), ...

Second-order convex-splitting schemes for some special cases
can be constructed.

Main disadvantages:

A nonlinear equation has to be solved at each time step.

It is very difficult, or even impossible, to construct second- or
higher-order convex-splitting schemes with complicated free
energies.
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Stabilized schemes

Given a stabilization parameter S , we solve:

1

δt
(φn+1 − φn) = ∆wn+1,

wn+1 +
S

η2
(φn+1 − φn) = −∆φn+1 +

1

η2
F ′(φn).

(Similar idea has been used in Zhu, Chen & S. ’99; Tang & Xu
’06; S. & Yang ’10,...)
• One can determine constants c1, c2 such that the above system
becomes (Yue, Feng, Liu & S. ’04):

c1ψ
n+1 −∆ψn+1 = gn,

c2φ
n+1 −∆φn+1 = ψn+1.

Fast solvers can be used.
• An extra consistent error introduced by the stabilization term is
of the same order as the linearized (or convex splitting) approach.
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Remarks:

Under the assumption ‖F ′′‖L∞ ≤ L, it is shown that the
scheme is unconditionally energy stable with a suitable choice
of S .

The condition ‖F ′′‖L∞ ≤ L is not “directly satisfied” by the
Ginzburg-Landau potential F (φ) = 1

4 (φ2 − 1)2. However, it is
shown by Caffarelli and Muler (1995) that, with the modified
GL potential, the L∞-norm of the solution is bounded. Hence,
we can modify the potential to quadratic growth at infinity.

It can be interpreted as a special convex splitting scheme.

In general, direct second-order extensions are not
unconditionally stable; but is possible with additional
stabilization terms involving higher-order derivatives, cf.
recent work by Z. Qiao & D. Li, and L. Wang & H. Yu.

Another class of energy stable schemes related to stabilized
schemes, can be constructed by using the exponential time
differentiation (ETD) scheme (see recent work by Q. Du, L.
Ju, J. Zhang, etc.)
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The method with a Lagrange multiplier (Badia et al. ’11,
Tiera & Guillen-Gonzalez ’13)

If F (φ) = 1
4 (φ2 − 1)2 so F ′(φ) = (φ2 − 1)φ. Introduce a Lagrange

multiplier (auxiliary function) q = φ2 − 1, and rewrite the
Allen-Cahn equation ∂φ

∂t = ∆φ− F ′(φ) as

∂φ

∂t
= ∆φ− qφ,

∂q

∂t
= 2φ

∂φ

∂t
.

Taking the inner products of the above with φt and 1
2q, we obtain

the energy law:

d

dt
(

1

2
‖∇φ‖2 +

1

4
‖q‖2) = −‖φt‖2.
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• One can then construct linear, unconditionally energy stable
schemes for the above modified system:

φn+1 − φn
∆t

=∆φn+1 − qn+1φn,

qn+1 − qn

∆t
=2φn

φn+1 − φn
∆t

Taking the inner products of the above with φn+1−φn
∆t and 1

2q
n+1,

respectively, one obtains immediately:

1

∆t

[1

2
‖∇φn+1‖2 +

1

4

∫

Ω
(qn+1)2 − 1

2
‖∇φn‖2 − 1

4

∫

Ω
(qn)2

+
1

2
‖∇(φn+1 − φn)‖2 +

1

4

∫

Ω
(qn+1 − qn)2

]
= −‖φ

n+1 − φn
∆t

‖2.

• However, this approach only works with very special F (φ) such
that q′(φ) = cφ, so its applicability is very limited; and it requires
solving coupled equations with variable coefficients.
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Invariant Energy Quadratization (IEQ) Method (X. Yang,
Q. Wang, ...)

Assuming that F (φ) is bounded from below, i.e., F (φ) > −C0, and
introducing two auxiliary functions

ū(t, x ;φ) = ∇φ, v(t, x ;φ) =
√

F (φ) + C0,

so the free energy becomes

E (ū, v ;φ) =

∫

Ω
(

1

2
ū2 + v2 − C0)dx ,

and the original gradient flow can be recast as:

∂φ

∂t
= ∆w

w = −∇ · ∇φ+ 2v
δv

δφ
,

∂v

∂t
=
δv

δφ

∂φ

∂t
,

∂ū

∂t
= ∇∂φ

∂t
.
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Unconditionally stable schemes

Consider the following first-order scheme:

φn+1 − φn
∆t

=∆wn+1,

wn+1 =−∇ · ∇φn+1 + 2vn+1 δv

δφ
|φ=φn ,

vn+1 − vn

∆t
=
δv

δφ
|φ=φn

φn+1 − φn
∆t

,

ūn+1 − ūn

∆t
=∇φ

n+1 − φn
∆t

.

Taking the inner products of the above with wn+1, φn+1−φn
∆t , 2vn+1

and ūn+1, respectively, one obtains immediately:

1

∆t

[ ∫

Ω

(1

2
|ūn+1|2 + (vn+1)2

)
−
∫

Ω

(1

2
|ūn|2 + (vn)2

)

+
1

2

∫

Ω

(
|ūn+1 − ūn|2 + (vn+1 − vn)2

)]
= −‖∇wn+1‖2.
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Main advantages of the IEQ approach

This approach leads to efficient and flexible numerical schemes:

It can be efficiently implemented: one can eliminate qn+1,
ūn+1 and wn+1 from the coupled system, leading to a
fourth-order equation for φn+1 with variable coefficients at
each time step;

It can be easily extended to higher-order with the BDFk
scheme, with BDF2 being unconditionally stable.

It allows us to deal with a large class of gradient flows (cf. X.
Yang, Q. Wang, L. Ju, J. Zhao, S., etc, 2016, 2017).
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Although the IEQ approach has proven to be a very powerful way
to construct energy stable schemes, it does leave somethings to be
desired:

It involves solving problems with complicated VARIABLE
coefficients.

It requires that the free energy density F (φ) is bounded from
below.

For gradient flows with multiple components, it leads to
coupled system.

Q. Can we do better?
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The scalar auxiliary variable (SAV) approach

The SAV approach is inspired by the IEQ method. It preserves
their advantages while overcomes most of its shortcomings.
Assuming that E1(φ) :=

∫
Ω F (φ)dx is bounded from below, i.e.,

E1(φ) > −C0 for some C0 > 0, and introduce one scalar auxiliary
variable (SAV):

r(t) =
√

E1(φ) + C0.

Then, the original gradient flow can be recast as:

∂φ

∂t
= ∆w

w = −∆φ+
r(t)√

E1[φ] + C0

F ′(φ)

rt =
1

2
√
E1[φ] + C0

∫

Ω
F ′(φ)φtdx .
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Unconditionally stable, linear and decoupled schemes

First-order scheme:

φn+1 − φn
∆t

=∆wn+1,

wn+1 =−∆φn+1 +
rn+1

√
E1[φn] + C0

F ′(φn),

rn+1 − rn

∆t
=

1

2
√
E1[φn] + C0

∫

Ω
F ′(φn)

φn+1 − φn
∆t

dx .

Taking the inner products of the above with wn+1, φn+1−φn
∆t and

2rn+1, respectively, one obtains immediately:

1

∆t

[1

2
‖∇φn+1‖2 + (rn+1)2 − 1

2
‖∇φn‖2 − (rn)2

+
1

2
‖∇(φn+1 − φn)‖2 + (rn+1 − rn)2

]
= −‖∇wn+1‖2.
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Second-order BDF scheme:

3φn+1 − 4φn + φn−1

2∆t
= ∆wn+1,

wn+1 = −∆φn+1 +
rn+1

√
E1[φ̃n+1] + C0

F ′(φ̃n+1),

3rn+1 − 4rn + rn−1

2∆t
=

∫

Ω

F ′(φ̃n+1)

2
√

E1[φ̃n+1] + C0

3φn+1 − 4φn + φn−1

2∆t
dx ,

where g(φ̃n+1) := 2g(φn)− g(φn−1).

Taking the inner products of the above with wn+1,
3φn+1−4φn+φn−1

2∆t and 2rn+1, respectively, one can also derive
that the scheme is unconditionally stable.

One can also construct k-th order scheme based on BDF-k
and Adam-Bashforth, while they are not unconditionally
stable, but they do have very good stability property as
high-order schemes.
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Efficient implementation

We can write the schemes as a matrix system



c1I −∆ 0
∆ c2I ∗
∗ 0 c3





φn+1

wn+1

rn+1


 = b̄n,

So we can solve rn+1 with a block Gaussian elimination, which
requires solving a system with constant coefficients of the form

(
c1I −∆
∆ c2I

)(
φ
w

)
= b̄.

With rn+1 known, we can obtain (φn+1,wn+1) by solving one
more equation in the above form.
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Main advantages of the SAV approach

The SAV schemes, up to second-order, are unconditionally
energy stable, and can be easily extended to higher-order with
the BDFk schemes.

It only requires solving decoupled, linear system with
CONSTANT coefficients.

It only requires E1(φ) :=
∫

Ω F (φ)dx , instead of F (φ), be
bounded from below, so it applies to a larger class of gradient
flows.

For gradient flows with multiple components, the scheme will
lead to decoupled equations with constant coefficients to solve
at each time step.
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Some numerical examples
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Fig. 3. (Example 3) The evolution of radius with different time step.

Scheme ∆t=1.6e-4 ∆t=8e-5 ∆t=4e-5 ∆t=2e-5 ∆t=1e-5

SAVT/CN
Error 1.74e-7 4.54e-8 1.17e-8 2.94e-9 2.01e-10
Rate - 1.93 1.96 1.99 2.01

SAVT/BDF
Error 1.38e-6 3.72e-7 9.63e-8 2.43e-8 5.98e-9
Rate - 1.89 1.95 1.99 2.02

Table 1
(Example 4) Errors and convergence rates of SAVT/CN and SAVT/BDF for the Cahn–Hilliard

equation.

and the time step ∆t = 8×10−6. The initial value is the sum of a randomly generated
function φ0(x, y) and a constant ¯phi that gives the average of φ:

φ̄ =
1

4π2

∫

0≤x,y≤2π

dxdy φ.

The average φ̄ is chosen as 0.25, 0, −0.25, respectively.

We use the SAVT/BDF scheme to investigate the configuration at T = 0.032,
which is drawn in FIG. 4. Regardless of ū, we observe that for a smaller fractional
order α, the phase separation and coarsening process appear slower, displaying a phase
structure more heterogeneous. This observation is consistent with the results in [1].

4.2. Phase field crystals. We turn to gradient flows of φ(x) that describes
modulated phases. Free energy of this kind was first found in Brazovskii’s work
[5], known as the Landau-Brazovskii model. Since then, the free energy, including
many variants, has been adopted to study various physical systems (see for example
[24, 3, 26, 44]). The free energy may take different forms. Here, we will use the
following form,

(4.9) E(φ) =

∫

Ω

{
1

4
φ4 +

1− ε
2

φ2 − |∇φ|2 +
1

2
(∆φ)2

}
dx.

In addition, it requires φ to be conserved, that is, the average φ̄ shall be a constant.
Therefore, when considering gradient flows, usually the H−1 type is used. The H−1
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The proposed schemes are unconditionally energy stable with a
modified energy. How about the dissipation of original energy?
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Figure: Solid line: current method; dash line: another method
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Fig. 8. (Example 7) Numerical convergences of BDF3 and BDF4.
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Fig. 9. (Example 7) Numerical comparison among BDF2, BDF3 and BDF4.

more accurate numerical results. When the time step is reduced to ∆t = 10−4, it is
seen that all BDF schemes get almost the same numerical solutions as the reference
one by naked eyes. The energy curves indicate that BDF3 and BDF4 produce nearly
identical energy curves as the reference one, but BDF2 is still a little bit away from.

5. Error estimate. Generally speaking, the energy dissipation itself does not
guarantee the convergence, because it may be not sufficient to establish estimates
for regularities of the PDE. In this section, we state a theorem for the convergence of
gradient flows with some extra conditions. The theorem is suitable for the Allen–Cahn
and Cahn–Hilliard equations, as well as the classical phase field crystals, the H−1

gradient flow of the energy (4.9). We only prove the convergence for the SAVT/CN
scheme, and it can be done similarly for the SAVT/BDF scheme.

In this section, we use the following notations

G(u) = (u,−Gu), L(u) = (u,Lu).

Theorem 5.1. Assume E1 ≥ C0 > 0. For the exact solution φ(t), assume φ, Lφ,
Gφ, GLφ ∈ C3([0, T ];L2), E [φ(t)] ∈ C3([0, T ]), and

||U [φ]||2, ||U [
(
3φ(tn)− φ(tn−1)

)
/2]||2, G(U [φ]),

G
(
U [
(
3φ(tn)− φ(tn−1)

)
/2]
)
≤ C1.

Figure: High-order BDF schemesJie Shen Part I. Efficient and Accurate Numerical Schemes for Gradient Flows



Adaptive time stepping

Thanks to its unconditionally energy stability, one can (and should)
couple the scheme with an adaptive time stepping strategy.
A simple but effective strategy is to update the time step size by
using the formula:

Adp(e, τ) = ρ(
tol

e
)

1
2 τ,

where e is a relative error, τ is the time step, tol is the error
tolerance and ρ is a parameter.
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Second-order daptive time stepping with CN-SAV

Given Solutions at time steps n and n− 1; parameters tol , ρ, δtmin

and δtmax .

Step 1 Compute (φ1,U1,V1)n+1 by the first-order SAV
scheme with δt.

Step 2 Compute (φ2,U2,V2)n+1 by CN-SAV with δt.
Step 3 Calculate

en+1 = max{‖U
n+1
2 −Un+1

1 ‖
‖Un+1

2 ‖ ,
‖V n+1

2 −V n+1
1 ‖

‖V n+1
2 ‖ ,

‖φn+1
2 −φn+1

1 ‖
‖φn+1

2 ‖ }.
Step 4 if en+1 > tol , then

Recalculate time step
t ← max{δtmin,min{Adp(en+1, δt), δtmax}}.

Step 5 goto Step 1
Step 6 else

Update time step
tn+1 ← max{δtmin,min{Adp(en+1, δt), δtmax}}.

Step 7 endif
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Adaptive time stepping: numerical results

Figure: Numerical comparisons among small time steps, adaptive time
steps, and large time steps
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Figure: Numerical comparisons among small time steps, adaptive time
steps, and large time steps
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Convergence and error analysis (S. & J. Xu)

The SAV schemes are semi-implicit schemes. Previous stability
and error analysis on semi-implicit schemes usually assume a
Lipschitz condition on the derivative of the free energy, which
is not satisfied by even the double-well potential.

Thanks to the unconditional energy stability of the SAV
schemes, we can derive H2 bounds for the numerical solution
under mild conditions on the free energy.

The H2 bounds on the numerical solution will enable us to
establish the convergence, and with additional smoothness
assumption, the error estimates.
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H2 bounds

Theorem.

For the L2 gradient flow, let u0 ∈ H3, and

|F ′′(x)| < C (|x |p+1), p > 0 if n = 1, 2; 0 < p < 4 if n = 3.

Then

‖∆un‖2+
∆t

2

n∑

k=0

‖∇∆uk‖2 ≤ C (T+1)+‖∆u0‖2+∆t‖∇∆u0‖2.

For the H−1 gradient flow, let u0 ∈ H4, and additionally

|F ′′′(x)| < C (|x |p′ + 1), p′ > 0 if n = 1, 2; 0 < p′ < 3 if n = 3.

Then

‖∆un‖2+
∆t

2

n∑

k=0

‖∆2uk‖2 ≤ C (T+1)+‖∆u0‖2+∆t‖∆2u0‖2.

Jie Shen Part I. Efficient and Accurate Numerical Schemes for Gradient Flows



Convergence results

Let u∆t(·, t) (resp. r∆t(·, t)) be a piece-wise linear function such
that u∆t(·, tn) = un (resp. r∆t(·, tn) = rn).
Theorem. Under the same assumptions needed for the H2

bounds, we have:

For L2 gradient flow: when ∆t → 0, we have

u∆t → u strongly in L2(0,T ;H3−ε)∀ε > 0, weakly in
L2(0,T ;H3), weak-star in L∞(0,T ;H2);
r∆t → r =

√
E1 weak-star in L∞(0,T ).

For H−1 gradient flow: when ∆t → 0, we have

u∆t → u strongly in L2(0,T ;H4−ε)∀ε > 0, weakly in
L2(0,T ;H4), weak-star in L∞(0,T ;H2);
r∆t → r =

√
E1 weak-star in L∞(0,T ).
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Error estimates

Theorem.
• For L2 gradient flow, we assume additionally

ut ∈ L∞(0,T ; L2) ∩ L2(0,T ; L4), utt ∈ L2(0,T ; L2).

Then, for all 0 ≤ n ≤ T/∆t, we have

1

2
‖∇(un − u(·, tn)‖2 + (rn − r(tn))2

≤C exp
(

(1− C∆t)−1tn
)

∆t2

∫ tn

0
(‖utt(s)‖2 + ‖ut(s)‖2

L4)ds.

• For H−1 gradient flow, we assume additionally

ut ∈ L∞(0,T ;H−1) ∩ L2(0,T ;H1), utt ∈ L2(0,T ;H−1).

Then, for all 0 ≤ n ≤ T/∆t, we have

1

2
‖∇(un − u(·, tn)‖2 + (rn − r(tn))2

≤C exp
(

(1− C∆t)−1tn
)

∆t2

∫ tn

0
(‖utt(s)‖2

H−1 + ‖ut(s)‖2
H1)ds.

Jie Shen Part I. Efficient and Accurate Numerical Schemes for Gradient Flows



Several applications
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Gradient flows of several functions

Consider the energy functional

E (φ) =
k∑

i=1

(φi ,Liφi ) + E1[φ1, . . . , φk ],

where Li are non-negative linear operators, E1[φ1, . . . , φk ] > −C0.
Introduce r(t) =

√
E1 + C0. Then then gradient flow associated

with E (φ) reads:

∂φi
∂t

=∆µi , i = 1, · · · , k ,

µi =Liφi +
r√

E1 + C0

δE1

δφi
, i = 1, · · · , k ,

rt =
1

2
√
E1 + C0

∫

Ω

k∑

i=1

δE1

δφi

∂φi
∂t

dx .
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Setting Ui = δE1
δφi

, the 2nd-order scheme based on Crank-Nicolson:

φn+1
i − φni

∆t
=∆µ

n+1/2
i , i = 1, · · · , k ,

µ
n+1/2
i =Li

φn+1
i + φni

2
+

rn+1 + rn

2
√
E1[φ̄

n+1/2
j ] + C0

Ui [φ̄
n+1/2
j ], i = 1, · · · , k ,

rn+1 − rn =

∫

Ω

k∑

i=1

Ui [φ̄
n+1/2]

2
√

E1[φ̄
n+1/2
j ] + C0

(φn+1
i − φni )dx .

Multiplying the above three equations with ∆tµ
n+1/2
i ,

φn+1
i − φni , rn+1 + rn and taking the sum over i , we can show

that the scheme is unconditionally energy stable.
We can determine rn+1 explicitly which requires solving k
decoupled equations with constant coefficients of the form:

(I − λ∆Li )φi = fi , i = 1, · · · , k ;

then obtain {φj} by solving another k decoupled equations in
the above form.
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Preliminary results on grain growth (with Longqing Chen)

Cahn-Hilliard system with k = 100 order parameters, and
E1 =

∫
Ω f (φ1, · · · , φk) with

f (φ1, · · · , φk) = −α
2

k∑

i=1

φ2
i +

β

4
(

k∑

i=1

φ2
i )2+(γ−β

2
)

k∑

i=1

∑

j>i

φ2
i φ

2
j .

Existing schemes use explicit or semi-implicit discretization,
requiring possible severe time step constraint.
The SAV scheme is unconditionally stable and only required
solving PDEs with constant-coefficients that can be solved
fast by FFT.

Figure: Grain growth with 100 coupled CH equations: 500, 1000 2000
time steps.
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Molecular beam epitaxial (MBE) without slope selection
(with Qing Cheng and X. Yang)

Consider the energy function:

E (φ) =

∫

Ω
[−1

2
ln(1 + |∇φ|2) +

η2

2
|∆φ|2]dx .

Note that the first part of the energy density, −1
2 ln(1 + |∇φ|2), is

unbounded from below, but one can show that

E1(φ) =

∫

Ω
[−1

2
ln(1 + |∆φ|2) +

α

2
|∆φ|2]dx > −C0, ∀α > 0.

Hence, we take α < η2 and split E (φ) as

E (φ) = E1(φ) +

∫

Ω

η2 − α
2
|∆φ|2dx

and introduce

r(t) =

√∫

Ω

α

2
|∆φ|2 − 1

2
ln(1 + |∇φ|2)dx + C0.
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MBE (continued)

We can then rewrite the original system as

φt + (η2 − α)∆2φ+
r(t)

G (φ)

δE1(φ)

δφ
= 0,

rt =
1

2G (φ)

∫

Ω

δE1(φ)

δφ
φtdx ,

where

G (φ) =

√∫

Ω

α

2
|∆φ|2 − 1

2
log(1 + |∇φ|2)dx + C0.

Taking the inner product of the above equations with φt and
2r(t), respectively, we obtain:

d

dt
[

∫

Ω

η2 − α
2
|∆φ|2dx + r2(t)] = −‖φt‖2.
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MBE (continued):

Let φ̄n+1/2 = 3
2φ

n − 1
2φ

n−1. A second-order, unconditionally
energy stable scheme for the modified system is:

φn+1
i − φni

∆t
+ (η2 − α)∆2φ

n+1
i + φni

2
+

rn+1 + rn

2G (φ̄n+1/2)

δE1

δφ
[φ̄n+1/2)] = 0,

rn+1 − rn =
1

2G (φ̄n+1/2)

∫

Ω

δE1

δφ
[φ̄n+1/2)](φn+1

i − φni )dx .

It is easy to show that the above scheme is unconditionally
energy stable.

One can solve rn+1 explicitly, and then obtain φn+1 by solving
a fourth-order equation with constant coefficients.
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Figure 7. The isolines of the numerical solutions of the height function φ and its
Laplacian ∆φ for the slope model with random initial condition (4.6) using Scheme-
1 and time step δt = 10−4 . For each subfigure, the left is φ and the right is ∆φ .
Snapshots are taken at t = 0, 1, 10, 50, 100, 500, respectively.
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EFFICIENT SCHEMES FOR THE MOLECULAR BEAM EPITAXY MODEL 15

Figure 1. Time evolution of the free energy functional for five different time steps
of δt = 0.005, 0.0025, 0.00125, 0.000625, and 0.0003125 for initial value as (4.3) with
the parameter (4.1) . The energy curves show the decays for all time steps, which
confirms that our algorithm is unconditionally energy stable. The small inset figure
shows the small differences in the energy evolution for all four time steps.

Figure 2. Time evolution of the free energy functional for five different time steps

of δt = 0.0025, 0.00125, 0.000625, 0.0003125, and 0.00015625 for φ̂0 = 0 with
parameter in (4.5). The energy curves show the decays for all time steps, which
confirms that our algorithm is unconditionally energy stable. The small inset figure
shows the small differences in the energy evolution for all four time steps.

the energy decays rather rapidly like o(− log 10(t)) as predicted in [12]. The growth rate of the

roughness is o(t
1
2

) is shown in Fig.10. All of these numerical solutions present similar and consistent
features to those obtained in [12,17–19,29,30] using the other energy stable numerical schemes.

5. Concluding remarks

In this paper, we presented a set of efficient time discretization schemes for solving the MBE
model with slope selection and without slope selection. The schemes are (i) second order accurate
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Figure 8. The isolines of the numerical solutions of the height function φ and
its Laplacian ∆φ for the noslope model with random initial condition (4.6) using
Scheme-3 and time step δt = 10−4 . For each subfigure, the left is φ and the right
is ∆φ . Snapshots are taken at t = 0, 1, 10, 50, 100, 500, respectively.

Figure 9. The loglog, and semi-log plots of the time evolution of the energy for the
slope model and the noslope model, respectively. For the slope model, the energy de-
creases like o(t1/3) while for the noslope model, the energy decreases like o(log 10(t))
, until saturation. The blue lines represent the energy plot obtained by the simu-
lations, while the straight red lines are obtained by least square approximations to
the energy data. The least squares fit is only up to about time t = 500.

Figure: Simulation of MBE: Left, energy evolution; Right, semi-log fit of the energy.
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Gradient flows with non-local terms

Consider, e.g., phase field crystal model with free energy:

E (φ) =

∫

Ω

{
1

4
φ4 +

1− ε
2

φ2 + φLδφ+
1

2
(Lδφ)2

}
dx ,

where Lδ is a non-local diffusion operator, e.g., (−∆)1−δ or:

Lδφ(x) =

∫

B(x ,δ)
ρδ(|y − x |)

(
φ(y)− φ(x)

)
dy .

Its gradient flow is given by

∂φ

∂t
= Lδ(L2

δφ+ 2Lδφ+ (1− ε)φ+ φ3).

Due to the non-local terms, the above equation is very challenging
if the discretized system is nonlinear or involves variable
coefficients.
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The SAV approach

We split the free energy as

E (φ) =

∫

Ω
[
1

4
φ4 +

1− ε
2

φ2]+[φLδφ+
1

2
(Lδφ)2]dx = E1(φ)+E2(φ).

Denote r(t) =
√

E1(φ) + ε. We rewrite the original gradient flow
as:

∂φ

∂t
= Lδw ,

w = L2
δφ+ 2Lδφ+

r(t)√
E1(φ) + ε

δE1(φ)

δφ
,

rt =
1

2
√

E1(φ) + ε

∫

Ω

δE1(φ)

δφ
φtdx .

As before, we can construct unconditionally stable, 2nd-order SAV
schemes which only require solving decoupled, linear systems with
constant coefficients.
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Phase-field vesicle membrane model

Bending energy:

Eb(φ) =
ε

2

∫

Ω

(
−∆φ+

1

ε2
G (φ)

)2
dx ,

where G (φ) = F ′(φ).
Volume and surface area of the vesicle:

A(φ) =
1

2

∫

Ω
(φ+ 1)dx and B(φ) =

∫

Ω

( ε
2
|∇φ|2 +

1

ε
F (φ)

)
dx .

Total energy:

Etot(φ) = Eb(φ) +
1

2γ

(
A(φ)− α

)2
+

1

2η

(
B(φ)− β

)2
,

where γ and η are two small parameters, and α, β represent the
initial volume and surface area.
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To apply the SAV approach, we need to fist split the free energy
into two parts: one with (high-order) linear terms and the other
with nonlinear terms.
Note that G (φ) = F ′(φ) = (φ2 − 1)φ, we find

Eb(φ) =
ε

2

∫

Ω

(
−∆φ+

1

ε2
G (φ)

)2
dx

=
ε

2

∫

Ω

(
|∆φ|2 − 2

ε2
|∇φ|2 +

6

ε2
φ2|∇φ|2 +

1

ε4
(G (φ))2

)
dx .

So the first two terms should be in the first part, and for the
remaining terms, we introduce a SAV:

r(t) =

√∫

Ω

ε

2

( 6

ε2
φ2|∇φ|2 +

1

ε4
(G (φ))2

)
+

1

2γ
(A(φ)− α)2 +

1

2η
(B(φ)− β)2 + C .

However, the nonlinear terms in Etot behave very differently so a
single SAV does not lead to accurate numerical results
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Multiple SAV approach

.
Therefore, we introduce

U = B(φ)− β, V =

√∫

Ω

( 6

ε2
φ2|∇φ|2 +

1

ε4
(G (φ))2

)
dx + C ,

where C is a positive constant, so the total energy becomes

Etot =
ε

2

∫

Ω

(
|∆φ|2− 2

ε2
|∇φ|2

)
dx+

1

2γ
(A(φ)−α)2+

U2

2η
+
ε

2
(V 2−C ).

Then, the L2 gradient flow can be written as:

φt = −Mµ,

µ =
δEtot

δφ
= ε∆2φ+

2

ε
∆φ+

1

γ
(A(φ)− α) +

1

η
U
δU

δφ
+ εV

δV

δφ
,

Ut =

∫

Ω

δU

δφ
φtdx , , Vt =

∫

Ω

δV

δφ
φtdx ,
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Second-order MSAV-CN scheme

φn+1 − φn
δt

= −Mµn+ 1
2 ,

µn+ 1
2 = ε∆2φn+ 1

2 +
2

ε
∆φ?,n+ 1

2

+
1

γ
(A(φn+ 1

2 )− α) +
1

η
Un+ 1

2
δU

δφ
(φ?,n+ 1

2 ) + εV n+ 1
2
δV

δφ
(φ?,n+ 1

2 ),

Un+1 − Un =

∫

Ω

δU

δφ
(φ?,n+ 1

2 )(φn+1 − φn)dx ,

V n+1 − V n =

∫

Ω

δV

δφ
(φ?,n+ 1

2 )(φn+1 − φn)dx ,

where φ?,n+ 1
2 = 3

2φ
n − 1

2φ
n−1 is a second-order extrapolation for

φn+ 1
2 .
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One can first solve Un+1 and V n+1 by bock Gaussian
elimination which leads to a 2× 2 linear system.

Then, one can determine (φn+1, µn+1) as in previous models.

The above scheme satisfies the following energy law:

En+1,n
cn − En,n−1

cn ≤ −δtM‖µn+ 1
2 ‖2,

where

En+1,n
cn =

ε

2
‖∆φn+1‖2 − 1

ε
‖∇φn+1‖2 +

1

2ε
‖∇φn+1 −∇φn‖2

+
1

2η
(Un+1)2 +

ε

2
(V n+1)2 +

1

2γ
(A(φn+1)− α)2,
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Figure: The dynamical behaviors of four spherical vesicles without the
volume and surface area constraints using the Scheme 2 with the time
step size δt = 0.0001. Snapshots of the numerical approximation of the
isosurfaces of φ = 0 are taken at t = 0, 0.005, 0.002, 0.1, 0.5, 2.
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Figure: Collision of four spherical vesicles with the volume and surface
area constraints (i.e., η = γ = 0.02). Snapshots of the iso-surfaces of
φ = 0 at t = 0, 0.005, 0.002, 0.1, 0.5, 2.
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Figure: Collision of four spherical vesicles with the volume and surface
area constraints (i.e., η = γ = 0.001). Snapshots of the iso-surfaces of
φ = 0 at t = 0, 0.005,0.002, 0.1, 0.5,2
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Phase-field model for two-phase incompressible flows

Let F (φ) = 1
4η2 (φ2 − 1)2. Consider the mixing free energy:

Emix(φ) = λ

∫

Ω
(

1

2
|∇φ|2 + F (φ)) dx = λ

∫

Ω

1

2
|∇φ|2 dx + E1(φ).

• Cahn-Hilliard phase-field equation:

φt + (u · ∇)φ = ∇ · (γ∇w),

w =
δEmix

δφ
= −λ∆φ+ λF ′(φ).

• Momentum equation:

ρ0(ut + (u · ∇)u) = ν∆u −∇p + w∇φ.

• Incompressibility:
∇ · u = 0.
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Energy dissipation law:

d

dt

∫

Ω
{ρ0

2
|u|2 +

λ

2
|∇φ|2 +λF (φ)} = −

∫

Ω
{µ|∇u|2 + γ|∇δEmix

δφ
|2}.

As before, we introduce r(t) =
√

E1(φ) + δ, and replace

w = −λ∆φ+ λF ′(φ)

by

w = −λ∆φ+ λ
r(t)√

E1(φ) + δ
F ′(φ),

rt =
1

2
√

E1(φ) + δ

∫

Ω
(F ′(φ)

dφ

dt
)dx .
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Concluding remarks

We presented the SAV approach for gradient flows, which is
inspired by the Lagrange multiplier/IEQ methods. It preserves all
their advantages, plus:

It leads to linear, decoupled equations with CONSTANT
coefficients. So fast direct solvers are often available!

It only requires the nonlinear energy functional, instead of
nonlinear energy density, be bounded from below, so it applies
to a larger class of gradient flows.

For gradient flows with multiple components, the scheme will
lead to decoupled equations with constant coefficients to solve
at each time step.
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A particular advantage of unconditionally energy stable
scheme is that it can be coupled with an adaptive time
stepping strategy.

The proofs are based on variational formulation with simple
test functions, so that they can be extended to full discrete
discretization with Galerkin approximation in space.

We have performed rigorous error analysis to show that, under
mild conditions, the solution of proposed schemes converge to
the solution of the original problem.

Thank you!
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