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The Problem  

How to solve the differential equations with  

dynamic boundary conditions: 

 

 

 

 

 

 



The big problem. 

More general PDEs with dynamic boundary conditions 

 

 

 

 

 Nonlinear Cahn-Hilliard equation with dynamic BC,  

 Navier-Stokes/Stokes with dynamic BC 

 …… 

 

The dynamic boundary condition has been used to model 

many physical phenomena, including the moving contact 

lines, electro-wetting, and the dynamic interactions of fluid 

with domain wall. 



Energy form 

• Solving the Laplace equation with dynamic boundary 

condition is equivalent to solving 

 

 

 

 

 

 

• More complex equations can also be derived using 

energetic/variational methods 

 



Potential theory based numerical method? 

We consider integral equation approach using Green’s 

function, layer and volume potentials (interactions). 

 

Linear constant coefficient problems ? 

Linear variable coefficient problems ?? 

Nonlinear problems ??? 

Moving interfaces ??? 

 

Layer potentials? Moving layer potentials ??? 

Layer potentials + volume potentials (or FDM/FEM)? 

Integral operators as preconditioners ? 

…… 



Today: A Boundary Integral Equation Method for the 

Laplace Equation with Dynamic Boundary Conditions 

How to solve differential equations with dynamic boundary 

conditions: 

 

 

 

 

 

 



Potential Theory (Interactions) 

• Green’s function (potential field due to point charge) 

 

 

 

 

• Single (simple) Layer Potential (charge on boundary) 

 

 

 

• Double Layer Potential (dipole on boundary) 



Dimension Reduction and Boundary 

Integral Equation Formulation 

• Using the single layer potential, the solution becomes 

 

 

 

Where  

 

 

 

 

 

Note that the time-dependent unknowns are only defined on 

the boundary. 

 



Semi-discrete Boundary Integral Equation 

Applying the jump conditions of the layer potentials 

 

 

 

 

 

Apply backward Euler in time 

 

 



Stability of the Semi-discrete Formulation 

If the integral operator is evaluated analytically, the semi-

discrete formulation is numerically stable. 

 

The proof is based on the spectral analysis of the single layer 

potential operator. 

 

 

 

 

 

 

 

 



Spatial Discretization 

State of the art high order numerical quadratures for near-

singular, singular, and hyper-singular integrals include 

 

Quadratures with end-point corrections (e.g, trapezoidal 

rule with a few additional point corrections) 

• Kapur-Rokhlin quadrature 

• Alpert quadrature 

 

Quadratures using potential theory (+ FMM acceleration) 

• Quadrature by Expansion (QBX) 



Trapezoidal Rule with end-point corrections 

• Kapur-rokhlin Quadrature 

 

 

• Alpert Quadrature 

 

 



Implementations for DC: Numerical 

Results 

• However, numerical results show that the method is 

UNSTABLE!!! 

 

 

 

 

 

 

 

 

     K-R         Alpert 

 

 



Analyzing the Instability – continuous case 

• Consider a circle with radius r  – using 

 

 

 

and the solution in Fourier series 

 

 

analytical solution is described by the stiff ODE system 

 

 

 

Solution is then  



Semi-Discrete:  

Continuous in x, backward Euler in t 

 

A little algebra shows that applying the backward Euler 

to the PDE = applying the backward Euler (BE) to the stiff 

ODE system in the frequency domain 

 

 

 

using standard ODE theory, solving the semi-discrete 

system using BE is numerically stable 



Problem is from the spatial quadrature 

• Analytical result 

 

 

 

 

• Numerical result 

After discretization, the resulting matrix is circulant.  

Eigenvectors of circulant matrices are discretized einx 

 

Let’s check the eigenvalues numerically. 



Numerical eigenvalues of K-R 

• Eigenvalues of K-R and errors 

 

 

 

 

 

 

 

 

 

Left figure: blue means negative eigenvalues. 

High-frequency eigenvalues lost accuracy! 

 



Numerical eigenvalues of Alpert quadrature 

• Numerically computed eigenvalues and errors 

 

 

 

 

 

 

 

 

 

Left figure: blue means negative eigenvalues. 

High-frequency eigenvalues lost accuracy! 

 

 



The numerical troubles 

• Let’s consider the original continuous PDE in the 

frequency domain (truncated) 

 

 

 

 

 

• Equation for each frequency 

 

 



Semi-discrete system  

• The spatially discrete temporally continuous system 

for each eigenvector becomes 

 

 

 

• Note that when λn  becomes negative, then the 

corresponding frequency becomes unstable!!! 

 

• Reminder: analytical λn 

 



The Semi-discrete system is unstable! 

• Unfortunately, there are negative O(10) eigenvalues 

after spatial discretization… 

 

 

 

 

 

 

 

 

 

K-R quadrature errors. 

 

 



 

 

 

• Analytical Eigenvalue 

 λn = π/|n| 

 

• Numerical Eigenvalue 

      some λn’s are negative, and can be as large as -10. 

 

 In dynamic simulation, the corresponding 

 frequency error grows as 10-15 10k after  

 marching k steps. 

 

 



Lesson learned 

• K-R and Alpert quadratures are great (and state-of-the-

art) tools for static problems. 

 

• K-R and Alpert quadratures produces large high-

frequency errors, making them unfit for dynamic 

simulations if applied directly … 

 

 

• How to modify these numerical quadrature rules? 



• Half of the eigenvalues can be trusted. 

 

 



A simple solution: Filtering the high-

frequency modes 

• A straight-forward scheme is to filter out the high-frequency 

modes completely! 

 

 

 

 

 

 

 

 

Results using filtered Alpert’s quadrature scheme for dynamic 

simulations.  

 

 



Applications 

• We can use the tool to study problems with dynamic 

boundary conditions, and answer questions like: 

 

 

How does the solution depend on local curvature? 



Integral Equation Method  

Can we derive better boundary integral formulations? 

 

• E.g., using double layer potential? 

• Using quadruple layer potential? 

• Using linear combinations of different layer potential? 

 

 



How about moving interfaces? 

• Analytical properties of moving layer potentials. This 

seems to be a field not so intensively studied. 



Variable and nonlinear terms? 

• What if there are variable or nonlinear terms in the 

equation? 

 

• How to couple potential theory with existing 

FEM/FDM? 

 

• How to use integral operators to produce formulations 

with better condition numbers? 

 

• …… 



The energy form, PDE form, and potential 

theory? 

• How can ideas from one field be applied to a different 

field 

 

E.g., can ideas from fast algorithms (FMM) based on 

interactions (Green’s function) be applied to energy 

minimization problems (most existing methods using 

iterative line search methods)? 

 

E.g., energy stable schemes for the boundary integral 

equation formulations? 



Interactions(potential theory)? 

Energy(variational formulation)? And PDEs? 

“The basic mechanisms for many PDEs are different 
interactions between particles (e.g., the Coulomb 
interactions in Poisson equations, the equations of 
states in Navier-Stokes equations, and the assumptions 
for different diffusions). The nature of the interactions 
often gives rise to (nonlocal) integral form models.  
Many pure PDE forms (e.g., diffusion and transport 
equations) can be viewed as approximation/truncations 
of the nonlocal interactions, and are the results of 
averaging and limiting.”     
     
     – Professor Chun Liu 

 



Take home message 

• Although not commonly used - it is possible to apply 

potential theory to interface problems. 

 

• Theoretical and numerical properties of existing tools 

based on potential theory to interface (dynamic) 

problems still need to be studied. 

 

• Understanding the relations between different 

formulations may provide new powerful tools for 

important applications. 



Summary 

We presented a boundary integral equation based 

numerical scheme for solving PDEs with dynamic 

boundary conditions. 

 

• Interface problems with dynamics boundary condition  

can be solved using potential theory. 

 

• K-R and Alpert quadratures are great tools for static 

problems, but they need to be modified for dynamic 

simulations. 

 

• With proper filtering, we developed tool that can 

provide accurate and stable numerical results. 



 


