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Vesicle problem: Navier-Stokes + surface dynamics with
PDE constraint

◮ Vesicle can be visualized as a bubble of liquid within another
liquid with a closed lipid membrane suspended in aqueous
solution, size is about 10µm

◮ Lipid membrane consists of tightly packed lipid molecules with
hydrophilic heads facing the exterior and interior fluids and
hydrophobic tails hiding in the middle, thickness is about 6nm so
we treat the membrane as a surface (3d) or a curve (2d)

◮ Lipid membrane (or vesicle boundary) can deform but resist area
dilation, that is surface incompressible



Questions: How the vesicle behaves in fluid flows?

◮ To mimic some mechanical behavior of red blood cells (RBC),
drug carrying capsules in capillary

◮ In shear flow: Tank-treading (TT), Tumbling (TU), Trembling
(TR), depend on the viscosity contrast λ = µin/µout; Keller &
Skalak JFM, 1982 (theory), Deschamps et. al. PNAS, 2009
(experiment)

◮ Amoeboid motion (active vesicle swimmer) in confined geometry,
Wu et. al. Lai & Misbah, PRE-Rapid 2015, Soft Matter 2016

Figure: Red blood cells: flexible biconcave disks



Numerical simulation: single vesicle in a shear flow

Figure: Inclination angle and tank-treading in a simple shear flow



Tank-treading to tumbling transitions, Kim & Lai, PRE
2012

Different viscosity effect
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Figure: The inclination angle θ versus the viscosity contrast λ = µin

µout
. The

simulation results (solid lines) are compared with the Keller & Skallak
theory (dashed lines).



Immersed boundary (IB) and immersed interface (IIM)
methods for vesicle dynamics

◮ Simulating the dynamics of 2D inextensible vesicles by the
penalty immersed boundary method (Kim & Lai JCP 2010),
inertial effect (Kim & Lai PRE 2012), 2D 4-roll mill flows (Kim,
Lai & Seol PRE 2017)

◮ Nearly inextensible approach (3D axisymmetric case, Hu, Kim &
Lai JCP 2014, Full 3D case, Seol, Hu, Kim & Lai JCP 2016)

◮ IIM for inextensible interfaces in Navier-Stokes flow (Li & Lai,
EAJAM, 2011)

◮ A fractional step immersed boundary method for Stokes flow with
an inextensible interface enclosing a solid particle (SISC 2012)

◮ Unconditionally energy stable penalty IB method without
bending (Hu & Lai EAJAM 2013, Hsieh, Lai, Yang & You JSC
2015)

◮ Vesicle electrohydroynamics using IB and IIM (Hu, Lai, Seol &
Young, JCP 2016)

◮ Amoeboid swimming (Misbah and Lai et. PRE 2015, Soft matter
2016)



Mathematical modeling on vesicle problem

◮ Vesicle: A liquid drop within another liquid with a closed lipid
membrane

◮ Vesicle boundary Σ: represented by X, is able to deform, but
resist area dilation, i.e. Σ is surface incompressible (or
inextensible)

◮ The fluid-structure interaction is formulated by the stress balance
condition on Σ



Immersed Boundary (IB) formulation: treat the
vesicle boundary as a force generator

ρ

(
∂u

∂t
+ u · ∇u

)
+∇p = µ∆u+ f in Ω

∇ · u = 0 in Ω

∇s ·U = 0 on Σ
∂X

∂t
= U =

∫

Ω

u(x, t)δ(x −X)dx

where the immersed boundary force

f =

∫

Σ

F (X) δ(x−X) dX

F = F b + F σ on Σ

F b =
cb
2

(
∆sH + 2H(H2 −K)

)
n

F σ = ∇sσ − 2H σn



◮ H : mean curvature, K: Gaussian curvature,

∇s = ∇−
∂

∂n
n, ∆s = ∇s · ∇s

◮ cb: bending rigidity

◮ σ: unknown elastic tension to be introduced to enforce ∇s ·U = 0

◮ It can be shown that the tension doesn’t do extra work to the
fluid; i.e. < S(σ),u >Ω= − < σ,∇s ·U >Σ

◮ The pressure and elastic tension have the same roles as Lagrange
multipliers

Question: Where does the boundary force F come from?
Answer: Variational derivative of Helfrich energy

E =
cb
2

∫

Σ

H2 dS +

∫

Σ

σ dS

⇒ F = −
δE

δX
= F b + F σ



Basic surface geometry
For the vesicle surface X(r, s), the first fundamental forms

E = Xr ·Xr, F = Xr ·Xs, and G = Xs ·Xs,

then

◮ ∇sσ =
GXr − FXs

EG− F 2
σr +

EXs − FXr

EG− F 2
σs

◮ ∇s ·U =
GXr − FXs

EG− F 2
·Ur +

EXs − FXr

EG− F 2
·Us

◮ Using a× (b× c) = (a · c)b − (a · b)c,
we obtain two useful relations

Xs × n =
GXr − FXs

|Xr ×Xs|
, n×Xr =

EXs − FXr

|Xr ×Xs|

which give

◮ ∇sσ =
(Xs × n)σr + (n×Xr)σs

|Xr ×Xs|
and

◮ ∇s ·U =
(Xs × n) ·Ur + (n×Xr) ·Us

|Xr ×Xs|



More useful identities

◮

(Xs × n)σr + (n×Xr)σs = ∇sσ |Xr ×Xs|

◮

(Xs × n) ·Ur + (n×Xr) ·Us = ∇s ·U |Xr ×Xs|

◮

Xs × nr + ns ×Xr = −2Hn |Xr ×Xs|

◮

(Xs × n)r + (n×Xr)s = −2Hn |Xr ×Xs|

◮

(σ(Xs × n))r + (σ(n×Xr))s = (∇sσ − 2σHn) |Xr ×Xs|



Relations to Geometric PDEs

Motion by mean curvature

◮ Motion by mean curvature: dX
dt = − δEσ

δX = Fσ = −σ2Hn, σ is a
constant, L2 gradient flow, a convex surface shrinks

Willmore flow

◮ Willmore energy Eb(X) = cb
2

∫
ΣH

2dS, in physics terminology,
surface bending energy (membrane lipid bilayer exhibits a
bending resistance)

◮ In some literature, use 2H instead of H

◮ Willmore flow: dX
dt = − δEb

δX = Fb =
cb
2 (∆sH + 2H(H2 −K))n, L2

gradient flow



Why does ∇s ·U = 0 mean the surface incompressibility?

∂

∂t
|Xr ×Xs| =

Xr ×Xs

|Xr ×Xs|
· (Xrt ×Xs +Xr ×Xst)

= n · (Xrt ×Xs) + n · (Xr ×Xst)
(

since n = Xr×Xs

|Xr×Xs|

)

= (Xs × n) ·Xrt + (n×Xr) ·Xst (using (a × b) · c = (b × c) · a)

= (Xs × n) ·Ur + (n×Xr) ·Us (since Xt = U)

=
GXr − FXs

|Xr ×Xs|
·Ur +

EXs − FXr

|Xr ×Xs|
·Us (using the two relations)

= (∇s ·U)|Xr ×Xs| (by the definition of ∇s ·U)



Skew-adjoint operators, Lai & Seol, AML 2017

〈u,v〉Ω =
∫
Ω u(x) · v(x) dx,

〈f, g〉Σ =
∫
Σ
f(S) g(S) dS,

Define S(σ) =
∫
Σ(∇sσ − 2σHn)δ(x −X(r, s, t)) |Xr ×Xs| dr ds, then

〈S(σ),u〉Ω
=

∫
Ω

[∫
Σ(∇sσ − 2σHn) |Xr ×Xs| δ(x−X(r, s, t)) dr ds

]
· u(x) dx

=
∫
Σ
(∇sσ − 2σHn) ·U(r, s, t) |Xr ×Xs| dr ds

=
∫
Σ
(σ(Xs × n))r ·U+ (σ(n ×Xr))s ·U drds

= −
∫
Σ σ(Xs × n) ·Ur + σ(n×Xr) ·Us dr ds

= −
∫
Σ
σ(∇s ·U) |Xr ×Xs| dr ds = −〈σ,∇s ·U〉Σ

Remark: Tension does not do extra work to the fluid. Similar to the
pressure in incompressible fluid!



Numerical issues for 3D problem:

1. Coupled with fluid dynamics which vesicle boundary is moving
with fluid and whose shape is not known a priori

2. Both the volume and the surface area of the vesicle are
conserved. How to maintain fluid and vesicle boundary
incompressible simultaneously?

3. Need to find H , ∆sH , n, K on a moving surface Σ

4. In additional to the fluid incompressibility, we need extra
constraint (surface incompressibility) on the surface

5. The role of pressure p on fluid equations is the same as the role of
tension σ on ∇s ·U = 0. Both conditions are local!

6. How to solve the above governing equations efficiently?

7. Boundary integral method, Immersed boundary (Front-tracking),
Level-set, Phase field method, Parametric finite element method?



Nearly surface incompressibility approach

◮ ∇s ·U = 0 means that ∂
∂t |Xr ×Xs| = 0

◮ To avoid solving the extra unknown tension σ(r, s, t), we
alternatively use a spring-like elastic tension

σ = σ0
(
|Xr ×Xs| − |X0

r ×X0
s|
)

where σ0 ≫ 1 and |X0
r ×X0

s| is the initial surface dilating factor

◮ Similar idea has been used in level set framework by Maitre,
Misbah, Peyla & Raoult, Physica D 2012

◮ The modified elastic energy by

Eσ(X) =
σ0
2

∫∫ (
|Xr ×Xs| − |X0

r ×X0
s|
)2

drds



Derivation of modified elastic force by variational derivative

d

dε
Eσ(X+ εY)

∣

∣

∣

∣

ε=0

=

∫∫

σ0

(

|Xr ×Xs| − |X0

r ×X
0

s|
) Xr ×Xs

|Xr ×Xs|
· (Yr ×Xs +Xr ×Ys) drds

=

∫∫

σn · (Yr ×Xs +Xr ×Ys) drds
(

by n = Xr×Xs

|Xr×Xs|

)

=

∫∫

σ(Xs × n) ·Yr + σ(n ×Xr) ·Ys drds (by the scalar triple product formula)

= −

∫∫

(σXs × n)r ·Y + (σn ×Xr)s ·Y drds (by integration by parts)

= −

∫∫

[σrXs × n+ σsn×Xr + σ(Xs × n)r + σ(n ×Xr)s] ·Y drds

= −

∫∫

(σrXs × n+ σsn×Xr + σXs × nr + σns ×Xr) ·Y drds

= −

∫∫

(∇sσ − 2σHn) ·Y |Xr ×Xs| drds

= −

∫

Σ

(∇sσ − 2σHn) ·Y dS (since dS = |Xr ×Xs| drds)

= −

∫

Σ

Fσ ·Y dS Fσ are exactly identical !



Numerical algorithm: axis-symmetric case, Hu, Kim &
Lai, JCP 2014

1. Compute the vesicle boundary force

σn = σ0

(
Rn |Xs|

n
−R0 |Xs|

0
)
, Fn

σ = σn
s τ

n + σnτn
s −

Zn
s

Rn
σnnn,

Fn
b = cb(∆sH

n + 2Hn((Hn)2 −Kn)) |Xs|
n
nn,

Fn = Fn
σ + Fn

b

2. Solve the Navier-Stokes

(3u∗ − 4un + un−1)/(2∆t) +
(
2(un · ∇h)u

n − (un−1 · ∇h)u
n−1
)

= −∇hp
n + µ∆̃hu

∗ +
∑

s

Fn(s)δh(x−Xn(s))∆s

∆hφ = 3/(2∆t)∇h · u∗, ∂φ/∂n = 0 on ∂Ω

un+1 = u∗ −
2

3
∆t∇hφ, ∇hp

n+1 = ∇hφ+∇hp
n −

2

3
∆tµ∆̃h(∇hφ)

3. Update the new position

Xn+1
k = Xn

k +∆t
∑

x

un+1δh(x−Xn(s))h2



Axis-symmetric case, Hu, Kim & Lai, JCP 2014

T = 0 T = 0.5

T = 1 T = 2

Figure: Freely suspended vesicles with different penalty number σ0. Blue
solid line: σ0 = 2× 103; green marker “×”: σ0 = 2× 104; red marker “·”:
σ0 = 2× 105.
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Figure: The corresponding evolution of total energy. Blue solid line:
σ0 = 2× 103; green marker “×”: σ0 = 2× 104; red marker “·”: σ0 = 2× 105



σ0 ‖R |Xs| −R0 |Xs|
0
‖∞ |Ah −A0|/A0 |Vh − V0|/V0

2× 103 2.988E-04 2.431E-03 9.391E-04
2× 104 6.551E-05 2.060E-04 2.865E-04
2× 105 2.903E-05 2.105E-05 2.657E-04

Table: The errors of the area dilating factor, the total surface area, and the
volume.



Convergence test

◮ Initial shape X(s) = (0.5 cos s, 0.15 sin s) in quiescent flow

◮ Computational domain Ω is chosen as [0, 1]× [−0.5, 0.5]

◮ Take cb = 2× 10−2 and σ0 = 2× 104. T = 0.5, m = n = 512 as a
reference numerical solution

m = 64 m = 128 rate m = 256 rate

|Ah −A0|/A0 4.032E-04 2.024E-04 0.99 1.009E-04 1.00
|Vh − V0|/V0 6.434E-04 1.505E-04 2.10 3.170E-05 2.25
‖Xh −Xref‖∞ 1.689E-03 4.625E-04 1.87 9.937E-05 2.22
‖uh − uref‖∞ 2.363E-03 1.162E-03 1.02 5.321E-04 1.13

Table: The mesh refinement results for the perimeter of the surface area Ah,
the enclose volume Vh, the interface configuration Xh, and the velocity uh.



Numerical experiments

A freely suspended vesicle

◮ Computational domain Ω = [0, 0.5]× [−1, 1]

◮ Quiescent flow u = 0

◮ Bending coefficient cb = 5× 10−2

T = 0 T = 0.03125 T = 0.25

T = 0.75 T = 2 T = 5

Figure: Snapshots of a freely suspended vesicle in quicient flow.



Figure: The coressponding result in 3D view.
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Figure: The membrane energy evolution of the freely suspended vesicle.



Gravitational effect

◮ The additional interfacial force Fg is considered due to gravity g

is given by

Fg = (ρin − ρout)(g ·X) |Xs|n

◮ Computational domain Ωh is chosen as [0, 1]× [−2, 2]



Figure: Top: oblate shape ⇒ parachute-like; Bottom: prolate shape ⇒

pear-like shape. Consistent with experiments.



Full 3D case: Seol, Hu, Kim & Lai JCP 2016
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σ̃0 = 6 × 104

σ̃0 = 6 × 105

σ̃0 = 6 × 106

Figure: The comparison for three different stiffness parameters:
σ̃0 = 6× 104(△), 6× 105(�), and 6× 106(©). (a) the maximum relative
error of the local surface area; (b) the relative error of the global surface
area; (c) the relative error of the global volume; (d) the total energy.



Vesicle under shear flow
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Figure: The plot of the inclination angle (left) and the scaled mean angular
velocity (right) as functions of reduced volume ν for different dimensionless
shear rate χ.

◮ The frequency ω can be computed using ω = 1
Nv

∑Nv

i=1
|r×v|
|r|2 ,

where r and v are the position and velocity of the vertices
projected on the xz-plane, respectively.



Viscoelastic effects on vesicle dynamics, Seol, Tseng,
Kim, & Lai 2018

◮ Motivation: vesicles mimic the red blood cells (RBCs), and the
blood containing RBCs and plasma exhibits non-Newtonian
properties [S. Chien 1970, G.B. Thurston 1973,1979]

◮ Newtonian vs. non-Newtonian fluid: the relation between the
shear stress and shear rate is linear (Newtonian); otherwise, it is
non-Newtonian

◮ Viscoelasticity: non-Newtonian fluid exhibits both viscous and
elastic characteristics when is undergoing deformation

◮ Non-Newtonian fluid examples: ketchup, toothpaste, paint,
blood, and shampoo etc.

◮ Oldroyd-B model is used in the present work



Newtonian vesicle in non-Newtonian fluid (N/O)

Figure: The vesicle is filled with a Newtonian fluid while the suspended
fluid is an Oldryod-B fluid (a mixture of polymer and Newtonian solvent),
denoted by N/O fluid.

For a vesicle under shear flow, two types of motion have been well
investigated

◮ tank-treading (TT) motion

◮ tumbling (TB) motion



Governing equations of fluid vesicle system

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+∇·[((1−H)µn +Hµs)D(u) +Hσ]+f in Ω,

∇ · u = 0 in Ω,

f(x, t) =

∫

Σ

(Fγ + Fb)(α, t) δ(x −X(α, t))|Xα| dα in Ω,

∂X

∂t
(α, t) = U(α, t) =

∫

Ω

u(x, t) δ(x −X(α, t))∆x on Σ,

γ(α, t) = γ0

(
|Xα(α, t)|

|Xα(α, 0)|
− 1

)
on Σ,

Fγ(α, t) =
1

|Xα|

∂(γτ)

∂α
, Fb(α, t) = cb

(
κss +

κ3

2

)
n on Σ,



Governing equations of polymer stress (Oldroyd-B model)
For a symmetric polymer stress defined by

σ =

[
σa σb

σb σc

]
,

its governing equation is

ξ
▽

σ + σ = µp D(u) in Ω,

where
▽

σ =
∂σ

∂t
+ u · ∇σ −

(
∇uσ + σ(∇u)T

)
,

D(u) = ∇u+ (∇u)T .

ξ is the polymer relaxation time,
▽

σ is the upper convected time
derivative of σ, and D(u) is the rate of deformation tensor.
For the Eulerian grid point x = (x, y), H is the indicator (or
Heaviside step) function defined by,

H(x) =

{
1 if x is in Oldroyd-B fluid
0 if x is in Newtonian fluid.



Governing equations in dimensionless form

Re

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+∇·[((1−H)λ+H)D(u) +Hσ]+f in Ω,

∇ · u = 0 in Ω,

f(x, t) =

∫

Σ

(Fγ + Fb) (α, t) δ(x −X(α, t))|Xα| dα in Ω,

∂X

∂t
(α, t) = U(α, t) =

∫

Ω

u(x, t) δ(x −X(α, t)) dx on Σ,

γ(α, t) = γ0

(
|Xα(α, t)|

|Xα(α, 0)|
− 1

)
on Σ,

Fγ(α, t) =
1

|Xα|

∂(γτ)

∂α
, Fb(α, t) =

1

Ca

(
κss +

κ3

2

)
n on Σ,

Wi
▽

σ + σ = β Du in Ω,

where

Re =
ρR2

µstc
, Ca =

µsR
3

cbtc
, Wi =

ξ

tc
, λ =

µn

µs
, β =

µp

µs
.



For the 1D vesicle boundary X(α, t) = (X(α, t), Y (α, t)), the
operators are

◮ ∇sσ =
τ

|Xα|

∂σ

∂α

◮ ∇s ·U =
τ

|Xα|
·
∂U

∂α

◮ κss =
1

|Xα|

∂

∂α

(
1

|Xα|

∂κ

∂α

)
=

−Xα ·Xαα

|Xα|4
∂κ

∂α
+

1

|Xα|2
∂2κ

∂α2

◮ The unit tangent vector τ = (τ1, τ2) = Xα/|Xα|

◮ The unit normal vector n = (τ2,−τ1)

◮ The signed curvature κ =
XαYαα − YαXαα

(X2
α + Y 2

α )
3/2



Discretization of Eulerian and Lagrangian variables

Figure: Fluid variables on a staggered MAC grid in 2D. Chrispell et. al.
2011

◮ For a periodic interface X, we use a Fourier representation to
discretize it as

X(α, t) =

N/2−1∑

k=−N/2

X̂(k, t)eikα.



Numerical algorithm

We march the Lagrangian markers Xn = X(n∆t) from time level n to
obtain Xn+1 = X(n∆t+∆t) at time level n+ 1 with ∆t the time
step size. The polymer stress σn, the fluid velocity un, the pressure
pn, and the Lagrangian markers Xn are all given in advance, and
from these variables we update σn+1, un+1, pn+1, and Xn+1.

1. Compute the vesicle boundary forces.

At the Lagrangian markers Xn
ℓ ,

we calculate the spring-like tension γ(Xn
ℓ ) = γ0

(
|(Xα)

n
ℓ |

|(Xα)0ℓ |
− 1

)
,

and then incorporate those to compute the interfacial forces

Fγ(X
n
ℓ ) =

1

|(Xα)nℓ |

(
∂γτ

∂α

)n

ℓ

,

Fb(X
n
ℓ ) =

1

Ca

(
−
(Xα)

n
ℓ · (Xαα)

n
ℓ (κα)

n
ℓ

|(Xα)nℓ |
4

+
(καα)

n
ℓ

|(Xα)nℓ |
2
+

(κnℓ )
3

2

)
nn
ℓ .



2. Distribute the tension and bending forces acting on Lagrangian
markers into the Eulerian grid by using the smoothed Dirac delta
function δh as

fn(x) =
N−1∑

ℓ=0

(Fγ(X
n
ℓ ) + Fb(X

n
ℓ ))δh(x−Xn

ℓ ) ds(X
n
ℓ ),

where the curve length element is obtained by ds(Xn
ℓ ) = |(Xα)

n
ℓ |∆α.

For δh(x) =
1

h2
φ
(x
h

)
φ
( y
h

)
,

we employ 6-point supported C3 function φ

developed in [Bao et.al, JCP’16].



3. Solve the Navier-Stokes

Re

(
3u∗ − 4un + un−1

2∆t
+ 2 (un · ∇h)u

n −
(
un−1 · ∇h

)
un−1

)

=−∇hp
n + λ∆hu

∗ +∇h ·
[
(1− λ)H

(
∇hu

n + (∇hu
n)T
)]

+∇h · (Hσn) + fn,

∆hp
⋆ =

3Re

2∆t
∇h · u∗,

∂p⋆

∂n
= 0 on ∂Ω, u∗ = un+1 on ∂Ω,

un+1 = u∗ −
2∆t

3Re
∇hp

⋆,∇hp
n+1 = ∇hp

⋆ +∇hp
n −

2λ∆t

3Re
∆h(∇hp

⋆).

4. Update the new position

Xn+1
k = Xn

k +∆t
∑

x

un+1(x)δh(x−Xn
k )h

2



5. Solve the polymer stress equation

∂σ

∂t
= F(σ,u),

where

F(σ,u) = −u · ∇σ +
(
∇uσ + σ(∇u)T

)
−

σ

Wi
+

β

Wi

(
∇u+ (∇u)T

)
.

To find σn+1, we use the second-order Runge-Kutta (RK2) method

with zero-Neumann boundary condition at Dirichlet boundary of

fluid velocity. Two intermediate variables σ1 and σ2 are defined by

σ1 = σn +∆tF(σn,un),

σ2 = σ1 +∆tF(σ1,u
n+1),

the updated extra stress is obtained from

σn+1 = (σn + σ2)/2.



Numerical accuracy test for Oldroyd-B solver
We test a single-phase Oldroyd-B fluid in a computational domain
[0, 2π]× [π/2, 5π/2].

Re

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+∆u+∇ · σ in Ω,

∇ · u = 0 in Ω,

Wi
▽

σ + σ = β Du+ φ in Ω,

where

φ = Wiβ

[
φa φb

φb φc

]
,

φa = −2G
′

sinx sin y − 2G2 cos2 x sin2 y + 2G2 sin2 x cos2 y
−4G2 sin2 x sin2 y,

φb = −4G2 sinx cosx sin y cos y,

φc = 2G
′

sinx sin y + 2G2 cos2 x sin2 y − 2G2 sin2 x cos2 y
−4G2 sin2 x sin2 y,

G(t) = e−2(1+β)t/Re.



The exact analytical solution of the above equations is

ue = (G cos x sin y,−G sinx cos y),

pe = −
Re

4
(cos 2x+ cos 2y)G2,

σe = β Du = β

[
−2G sinx sin y 0

0 2G sinx sin y

]
.

◮ Re = Wi = β = 1 and ∆t = h/8, where the h is the Eulerian
meshwidth defined by h = 2π/M with grid size M .

◮ Convergence rate is obtained by

Rate = log2(‖uM − ue‖∞/‖u2M − ue‖∞),



M ‖uM − ue‖∞ Rate ‖vM − ve‖∞ Rate ‖pM − pe‖∞ Rate
(t = 0.6)

64 1.287E-02 - 1.173E-02 - 4.270E-02 -
128 6.291E-03 1.03 5.735E-03 1.03 2.181E-02 0.96
256 3.108E-03 1.01 2.833E-03 1.01 1.100E-02 0.98
512 1.544E-03 1.00 1.408E-03 1.00 5.522E-03 0.99

(t = 1.2)
64 9.512E-03 - 8.290E-03 - 3.775E-02 -
128 4.697E-03 1.01 4.091E-03 1.01 1.935E-02 0.96
256 2.334E-03 1.00 2.033E-03 1.00 9.780E-03 0.98
512 1.163E-03 1.00 1.013E-03 1.00 4.914E-03 0.99

M ‖σa
M

− σa
e ‖∞ Rate ‖σb

M
− σb

e‖∞ Rate ‖σc
M

− σc
e‖∞ Rate

(t = 0.6)
64 8.391E-02 - 1.035E-02 - 8.508E-02 -
128 4.697E-02 0.99 5.286E-03 0.96 4.234E-02 1.00
256 2.099E-02 1.00 2.661E-03 0.99 2.108E-02 1.00
512 1.049E-02 1.00 1.334E-03 0.99 1.052E-02 1.00

(t = 1.2)
64 4.583E-02 - 1.765E-02 - 4.660E-02 -
128 2.329E-02 0.97 8.937E-03 0.98 2.351E-02 0.98
256 1.173E-02 0.98 4.486E-03 0.99 1.179E-02 0.99
512 5.887E-03 0.99 2.247E-03 0.99 5.903E-03 0.99



Figure: Two particles sedimentation. Left (Newtonian); right (Oldroyd-B);
Kim, Lai, Seol, J. Non-Newtonian Fluid Mech., 2018
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Figure: Six particles sedimentation. Top (Newtonian); bottom (Oldroyd-B);
Kim, Lai, Seol, J. Non-Newtonian Fluid Mech., 2018



Numerical results

Goal

◮ Exploring the effects of viscoelasticity on vesicle dynamics under
shear flow, mainly on the Newtonian vesicle suspended in
Oldroyd-B fluid, denoted by N/O

◮ Parameter study
◮ Weissenberg number Wi
◮ viscosity contrast β between polymer and Newtonian solvent
◮ Reynolds number Re
◮ viscosity contrast λ between inner and outer fluids
◮ reduced area ν = 4πA/L2: the area ratio between the vesicle and

the circle with same perimeter

Numerical parameters
Unless otherwise stated, we use

◮ Re = 10−3, β = 1, Ca = 1, A = π, ∆t = h2/4

◮ γ0 = 5× 103, meshwidth h = 16/512, [−8, 8]2 with grid size 5122

◮ Number of Lagrangian markers N = 1024, simulation up to
t = 50



Comparison of N/N and N/O fluids
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Figure: For various ν and fixed Ca = 1, the inclination angle θ/π in (a,b);
The average TT frequency ω in (c,d).



Weissenberg number effect
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Figure: For various Wi and fixed Ca = 1, (a) the inclination angle θ/π and
(b) the average TT frequency ω both in terms of ν.

ω(t) = 2π

/∫

Σ(t)

|Xα|

|U · τ |
dα,



Viscosity ratio between polymer and Newtonian solvent
effect
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Figure: For various β and fixed Ca = 1, (a) the inclination angle θ/π and
(b) the average TT frequency ω both in terms of ν.



Reynolds number effect
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Figure: For various Re and fixed Ca = 1, the inclination angle θ/π in (a,b);
The average TT frequency ω in (c,d).



Viscosity contrast between inner and outer fluids
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Figure: For various Wi and fixed Ca = 1, the inclination angle θ/π in terms
of the viscosity contrast λ.
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Figure: For various Wi and fixed Ca = 1, the critical viscosity contrast λc

in terms of the reduced area ν.
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Figure: Snapshots of TT vesicles with ν = 0.5, λ = 20 (red solid line) and
ν = 0.95, λ = 19 (blue dashed line) suspended in N/O fluid with fixed
Re = 10−3,Ca = 1, and Wi = 1.



Figure: In N/O fluid with fixed Re = 10−3,Ca = 1, and Wi = 1, streamlines
and stress-ellipses at time t = 50 for vesicles with ν = 0.5, λ = 20 in (a) and
ν = 0.95, λ = 19 in (b).



Different Reynolds number in unmatched viscosity fluid
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Figure: In unmatched viscosity N/O fluid with fixed Ca = 1 and Wi = 1,
the time evolution of inclination angle for a vesicle with ν = 0.5, λ = 20 in
(a) and ν = 0.95, λ = 19 in (b).



Conclusion

• In matched viscosity N/O fluid, the vesicle inclination angle in TT
regime decreases with increasing Weissenberg number

• In unmatched viscosity case, the angle decreases even more as the
viscosity contrast increases.

Most surprisingly, the negative inclination angle was found in TT
regime, indicating that the viscoelasticity of suspending fluid tends to
lag the TU motion.

• A vesicle tank-treads at negative inclination angle at small
Reynolds number, then abruptly tumbles at slightly higher Reynolds
number, and returns back to tank-tread at positive inclination angle
at even higher Reynolds number. We attribute this behavior to the
interplay between the viscoelasticity and the inertia.
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