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Contact Lines

Two immiscible fluids or two phases of one fluid in contact with
a solid surface:
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@ Free energy of the droplet:

E =~ + (v1 —2)[M4]

where ~, 71 and v are the interfacial tensions; | - | denotes
the length of the curve.
@ Minimizing the free energy with the volume constraint:

vk + [p] =0, (Young-Laplace equation)
vo — 1 = vyc0sfy, (Young’s relation)



Dynamics: The Contact Line Singularity

Huh/Scriven 1971
—niAu+Vp=0 in Q;
V.-u=0

No-slip boundary condition, u, =0
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Dussan/Davis 1974

With the no-slip boundary condition, the velocity field must be
multi-valued at the moving contact line.



—niAu+Vp=20 in Q;
V-u=0
No-slip bc, u, =0

Vacuum

Fluid

Plannar interface, stress condition Solid U

Theorem (Cui/Ren ’18)

The problem above admits no solution
ue C3(QNCHQUIE)NC(QUT4), p € CHQ)NC(QUI U 4).

Q: interior of fluid region; 'y and Iy, : fluid-vacuum and
fluid-wall interfaces with the CL excluded.



Empirical models

The introduction of different mechanisms to relieve the contact
line singularity:

@ Slip models

@ Thin film models with long-range interaction
@ Diffuse interface models

@ Interface break-up/formation models



Molecular dynamics simulation

Setup of molecular dynamics in Couette flow geometry:
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@ N particles with pairwise interaction: Lennard-Jones

el s

where rj is the distance between particles / and .
@ Solid boundary modeled by FCC lattices



Molecular dynamics

@ Solve the equations of motion (Newton’s second law):
miX; = — > VV(r;) + thermostat
j

@ Compute the statistic (e.g. slip velocity, forces, etc) near
the moving contact line.



The slip velocity

Physically, the no-slip boundary condition does not hold near
the moving contact line (Koplik, Qian/Wang/Sheng, Ren/E, ...):
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Figure: The slip velocity along the wall. The peak is at the CL.



Derivation of BCs based on “first principles”

@ Derive the form of the BCs based on thermodynamic
principles.

What is the simplest form of the boundary conditions that
is consistent with the 2nd law of thermodynamics?

@ Use molecular dynamics to compute the details of the
constitutive relations needed in the BCs.



A liquid droplet on a solid Substrate
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Total energy (assume the substrate is at rest):
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Dynamic equations

Conservation of mass and momentum for incompressible fluids
inQ;, i=1,2:

pi(Ou+u-Vu)= -Vp+ V- 14
V-u=0

with the linear constitutive relation for the viscous stress:
Td = Nj (VU + (VU)T)

where 7;(i = 1, 2) are the viscosity of the fluids.



The rate of energy dissipation

Z/ n,\VUIdeJrZ/PTd n)-usdo
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for any flow configuration, where
Vu]?2 = (Vu+ (Vu)") : (Vu + (Vu)7)
us = the slip velocity at the wall
= the normal velocity of the contact line



Interface and boundary conditions

@ The interface condition:
[ra — pI] - N = —ykn

@ Boundary conditions: relate the “generalized fluxes” (us
and u) to the “generalized forces”

P (7q-n) = f(us)
7 (cos g — cos Oy) = fy(u))
where u - f(u) <0, ufy(u)<O0.

f and f, have to be obtained from other means.



Typical profile of the friction force
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For simple fluids, the nonlinearity sets in at extremely large
contact line speed (10/7 ~ 158m/s).



Linear constitutive relations

@ Boundary condition for the slip velocity:
P (1q-n)=—pus (Navier BC)
@ Condition for the dynamic contact angle 64:
v(cos by — cosby) = -3y,

where * is the three-phase friction coefficient.

dimension of 3 = n/ls, where the slip length /s is of molecular
scale; 5* has dimension of viscosity.



Continuum model for the MCL (Ren/E 2007; Ren/Hu/E

2010)

@ Dynamic equations for the two fluids (i = 1, 2):

pi(0u+u-Vu) =—-Vp+nAu
V-u=0

@ Kinematic condition for the fluid interface: xr =u
@ The interface condition:

[Tg — pl] - n = —vkN
@ Boundary condition at the solid wall:
u-n=0, P(rg-n)=—Fiug
@ Condition for the dynamic contact angle:

v(cosby —cosby) = —p*uy



Different spreading regimes

dE > / 2 / %, 2
— = | Vul© dx — i|us|“do — urdl
- > /Q,-m | > rIﬂ:| s| /\ﬁ i

i=1,2 i=1,2
=Ep+Es+E
For a spreading drop:
Es/Eb ~ ls/hy <1, Ee/Eb ~ 023" /n

0, = the apparent contact angle

® When 0, < n/p*: viscous force dominates (hydrodynamic
regime); R(t) ~ t'/10
@ When 6, > n/3*: friction dominates; R(t) ~ t'/7



Comparison with experiments

Petrov et al. Langmuir 1992
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Circles: experimental data (PET/glycerol-water/air)
Dashed curve: fitting by the hydrodynamic theory

Dotted curve: fitting by the molecular kinetic theory (friction
regime)



MCLs with insoluble surfactants (Zhang/Xu/Ren 2014

@ Dynamics of the fluids:

pi(Odu+u-vu) =-Vp-+nAu
V.u =0, in

xr =u (kinematic condition)

[tg —pl] -n=—y(c)kn+ Vgy(c) on T
u-n=0, nodus=—0Gjus, on IT;
y(e)cos by + (v1 —72) = =B"u, at A

@ Dynamics of surfactants:

Dc
— +(Vs-u)c=DsV3¢c, on T

Dt
with the no-flux condition at the contact line: Vsc - ng = 0.



Thin films and lubrication approximation

h(x, t): height of the thin film;
a(t): the moving contact line.




Thin film equation

For the thin film, the contact line model reduces to

oh 0 (., #h
E*a?(h UHMW)_O’ 0<x<a(t)
da [0oh\?
h=0, BE_<5> -0y, atx=a(t)

conditions (e.g. symmetry) at x =0

What is the limiting behavior as the slip length A — 0?



Two time scales

The dynamics has two time scales: (1) fast relaxation, and (2)
slow contact line motion.




Distinguished limits

According to the two time scales, in the perturbation analysis
we distinguish the two regimes:

(1) A — 0, and t = t* fixed;
(2) A= 0andt— oo.

Earlier works (Voinov, Hocking, Cox, etc) considered the
second case.
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Scale of the intermediate region:

x~0(1)




Main results (Ren/Thinh/E 2017)

3da
* . 3 3 _
(1) A—)O, t=1t": Happ(t)—ey— EE

@ Opp is the angle of the outer solution to the leading order
problem;

@ The leading order outer problem is the equation with A =0
(no slip, fixed contact line);

@ The contact line slippage is a “regular” perturbative effect.

da

dr

@ The leading order outer problem is quasi-static; the
solution (a parabola) depends on the contact line position.

@ The contact line position a(7) can be found by solving the
angle-speed relation (an ODE).

(2) A—=0, t=|logAlr: 63plalr)]—65 =3



Verification by numerics

I I
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dots: asymptotic results;
curve: solution of the thin film equation.



Numerical methods (Ren/E 2011, Xu/Ren 2014))

@ The interface is tracked using the level set method; the
interface is represented by the zero level set of ¢; ¢ is
advected by the fluid velocity:

oip+u-Ve=0. (1)
@ Write the dynamical equations into a unified form:
p(#) (Ou+(u-V)u)) = -Vp+V. 714+ F, (2)
V-u=0, (3)
where
ra = () (Vu+(Vu)T).

_ _v. (Yo
F=—vkdé(¢p)Vo, =V <|V¢|> .



Numerical methods

@ The boundary condition at the wall (in 2d):
—B(P)us =t- 74 - N+ 1y, (4)
where
Ty =7 (n |gz| cos 0y> t- VH(9¢),
B(¢) = B1(1 — H(¢)) + B2H(¢) + B*|t- VHI.

and H(¢) is the Heaviside function.

Equations (1)-(4) are solved using a semi-implicit scheme and
the finite difference method.



MCL driven by surface tension gradient

@

low energy surface hiah eneray surface
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Detachment of a pendant drop under gravity

Density ratio py/p2 = 3, viscosity ratio n /n2 = 2.

Dynamics of (insoluble) surfactant: ¢ + (Vs - u)c = DsV2c
Langmuir equation of state: v(c) = v9 + RTcx log (1 — ¢/¢x)



Detachment of a pendant drop under gravity

Density ratio py/p2 = 15, viscosity ratio n; /no = 2.
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Sliding drop on an inclined plane under gravity
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Contact angle hysteresis

Motion of the rain drops down a window: advancing angle in the
front # receding angle in the rear.




MCL on a chemically patterned surface
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@ Two immiscible fluids confined in a channel
@ Imposed shear speed U
@ Chemically patterned solid surface

v€0sfy(x) = Ay + Fo(x)

where F.(x) is the force due to the periodic pattern.
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The dynamics of advancing and receding CLs

At small U, the advancing and receding CLs are pinned in
different regions:
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Red curve: the defect force F.(x)
Blue curves: the inverse (normal) CL speed.



Contact angle hysteresis (Ren/E 2011)

Effective contact angle: Time average of the contact angle
condition ycos by — (Ay + Fo(x)) = —8*u, =

V€08 Ot = Ao + (Fe) + B7U.
T

where (F.) = lT F-(x)dt.
0
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@ Modeling: Derived a mesoscopic sharp-interface model
for MCLs based on “first principle” thermodynamics and
molecular dynamics;

@ Analysis: Analyzed the distinguished limits of the contact
line dynamics as the slip length — 0.

@ Simulation: Developed level set methods for the CL
model, and studied interesting applications.
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