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Contact Lines

Two immiscible fluids or two phases of one fluid in contact with

a solid surface:

U

Solid

θ

Fluid II
Fluid I

θ: the contact angle



Static case

γ

γ γ12 θY

Free energy of the droplet:

E = γ|Γ|+ (γ1 − γ2)|Γ1|

where γ, γ1 and γ2 are the interfacial tensions; | · | denotes

the length of the curve.

Minimizing the free energy with the volume constraint:

γκ+ [p] = 0, (Young-Laplace equation)

γ2 − γ1 = γ cos θY , (Young’s relation)



Dynamics: The Contact Line Singularity

Huh/Scriven 1971


























−ηi∆u +∇p = 0 in Ωi

∇ · u = 0

No-slip boundary condition, un = 0

Plannar interface

Fluid I

Fluid II

θ

USolid

ψ = r ((Cφ+ D) cosφ+ (Eφ+ F ) sin φ)

∇u ∼
1

r
,

∫

|∇u|2dV = +∞

Dussan/Davis 1974

With the no-slip boundary condition, the velocity field must be

multi-valued at the moving contact line.



Dynamics



























−ηi∆u +∇p = 0 in Ωi

∇ · u = 0

No-slip bc, un = 0

Plannar interface, stress condition

Vacuum

θ

USolid

Fluid

Theorem (Cui/Ren ’18)

The problem above admits no solution

u ∈ C2(Ω)∩C1(Ω∪Γff )∩C(Ω∪Γfw ), p ∈ C1(Ω)∩C(Ω∪Γff ∪Γfw ).

Ω: interior of fluid region; Γff and Γfw : fluid-vacuum and

fluid-wall interfaces with the CL excluded.



Empirical models

The introduction of different mechanisms to relieve the contact

line singularity:

Slip models

Thin film models with long-range interaction

Diffuse interface models

Interface break-up/formation models



Molecular dynamics simulation

Setup of molecular dynamics in Couette flow geometry:

N particles with pairwise interaction: Lennard-Jones

V (rij) = 4ε

(

(

σ

rij

)12

− ξ

(

σ

rij

)6
)

, ξ = ±1

where rij is the distance between particles i and j .

Solid boundary modeled by FCC lattices



Molecular dynamics

Solve the equations of motion (Newton’s second law):

mi ẍi = −
∑

j

∇V (rij) + thermostat

Compute the statistic (e.g. slip velocity, forces, etc) near

the moving contact line.



The slip velocity

Physically, the no-slip boundary condition does not hold near

the moving contact line (Koplik, Qian/Wang/Sheng, Ren/E, ...):
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Figure: The slip velocity along the wall. The peak is at the CL.



Derivation of BCs based on “first principles”

Derive the form of the BCs based on thermodynamic

principles.

What is the simplest form of the boundary conditions that

is consistent with the 2nd law of thermodynamics?

Use molecular dynamics to compute the details of the

constitutive relations needed in the BCs.



A liquid droplet on a solid Substrate

Γ

2Γ Γ1 Γ2

Θ

Ω1
Ω2

w

Total energy (assume the substrate is at rest):

E =
∑

i=1,2

∫

Ωi

1

2
ρi |u|

2 dx + (γ1 − γ2)|Γ1|+ γ|Γ|



Dynamic equations

Conservation of mass and momentum for incompressible fluids

in Ωi , i = 1,2:

ρi (∂tu + u · ∇u)= −∇p +∇ · τd

∇ · u = 0

with the linear constitutive relation for the viscous stress:

τd = ηi

(

∇u + (∇u)T
)

where ηi(i = 1,2) are the viscosity of the fluids.



The rate of energy dissipation

dE

dt
=−

∑

i=1,2

∫

Ωi

ηi |∇u|2 dx +
∑

i=1,2

∫

Γi

P(τd · n) · us dσ

+

∫

Γ

(

[τd − pI] · n + γκn
)

· udσ

+

∫

Λ

γ
(

cos θd − cos θY

)

ul dl ≤ 0

for any flow configuration, where

|∇u|2 = (∇u + (∇u)T ) : (∇u + (∇u)T )

us = the slip velocity at the wall

ul = the normal velocity of the contact line



Interface and boundary conditions

The interface condition:

[τd − pI] · n = −γκn

Boundary conditions: relate the “generalized fluxes” (us

and ul ) to the “generalized forces”

P (τd · n) = f (us)

γ (cos θd − cos θY ) = fℓ(ul)

where u · f (u) ≤ 0, ufℓ(u) ≤ 0.

f and fℓ have to be obtained from other means.



Typical profile of the friction force
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For simple fluids, the nonlinearity sets in at extremely large

contact line speed (1σ/τ ≈ 158m/s).



Linear constitutive relations

Boundary condition for the slip velocity:

P (τd · n) = −βus (Navier BC)

Condition for the dynamic contact angle θd :

γ(cos θd − cos θY ) = −β∗ul

where β∗ is the three-phase friction coefficient.

dimension of β = η/ls, where the slip length ls is of molecular

scale; β∗ has dimension of viscosity.



Continuum model for the MCL (Ren/E 2007; Ren/Hu/E

2010)

Dynamic equations for the two fluids (i = 1,2):

ρi (∂tu + u · ∇u) = −∇p + ηi∆u

∇ · u = 0

Kinematic condition for the fluid interface: ẋΓ = u

The interface condition:

[τd − pI] · n = −γκn

Boundary condition at the solid wall:

u · n = 0, P (τd · n) = −βius

Condition for the dynamic contact angle:

γ (cos θd − cos θY ) = −β∗ul



Different spreading regimes

dE

dt
= −

∑

i=1,2

∫

Ωi

ηi |∇u|2 dx −
∑

i=1,2

∫

Γi

βi |us|
2dσ −

∫

Λ

β∗u2
l dl

= Ėb + Ės + Ėℓ

For a spreading drop:

Ės/Ėb ∼ ls/h0 ≪ 1, Ėℓ/Ėb ∼ θaβ
∗/η

θa = the apparent contact angle

When θa < η/β∗: viscous force dominates (hydrodynamic

regime); R(t) ∼ t1/10

When θa > η/β∗: friction dominates; R(t) ∼ t1/7



Comparison with experiments

Petrov et al. Langmuir 1992

Circles: experimental data (PET/glycerol-water/air)

Dashed curve: fitting by the hydrodynamic theory

Dotted curve: fitting by the molecular kinetic theory (friction

regime)



MCLs with insoluble surfactants (Zhang/Xu/Ren 2014

Dynamics of the fluids:

{

ρi (∂tu + u · ∇u) = −∇p + ηi∆u

∇ · u = 0, in Ωi

ẋΓ = u (kinematic condition)

[τd − pI] · n = −γ(c)κn +∇sγ(c) on Γ

u · n = 0, ηi∂nus = −βius, on Γi

γ(c) cos θd + (γ1 − γ2) = −β∗ul , at Λ

Dynamics of surfactants:

Dc

Dt
+ (∇s · u)c = Ds∇

2
sc, on Γ

with the no-flux condition at the contact line: ∇sc · ns = 0.



Thin films and lubrication approximation

h(x , t): height of the thin film;

a(t): the moving contact line.

U

a(t)



Thin film equation

For the thin film, the contact line model reduces to

∂h

∂t
+

∂

∂x

(

h2 (h + λ)
∂3h

∂x3

)

= 0, 0 < x < a(t)

h = 0, β
da

dt
=

(

∂h

∂x

)2

− θ2
Y , at x = a(t)

conditions (e.g. symmetry) at x = 0

What is the limiting behavior as the slip length λ→ 0?



Two time scales

The dynamics has two time scales: (1) fast relaxation, and (2)

slow contact line motion.



Distinguished limits

According to the two time scales, in the perturbation analysis

we distinguish the two regimes:

(1) λ→ 0, and t = t∗ fixed;

(2) λ→ 0 and t → ∞.

Earlier works (Voinov, Hocking, Cox, etc) considered the

second case.



Matched asymptotics

Scale of the intermediate region: ε =
1

| logλ|

x ~ O(1)

Ο(ε)

Ο(λ)



Main results (Ren/Thinh/E 2017)

(1) λ→ 0, t = t∗ : θ3
app(t) − θ3

Y =
3

ε

da

dt

θapp is the angle of the outer solution to the leading order

problem;

The leading order outer problem is the equation with λ = 0

(no slip, fixed contact line);

The contact line slippage is a “regular” perturbative effect.

(2) λ→ 0, t = | logλ|τ : θ3
app[a(τ)]− θ3

Y = 3
da

dτ

The leading order outer problem is quasi-static; the

solution (a parabola) depends on the contact line position.

The contact line position a(τ) can be found by solving the

angle-speed relation (an ODE).



Verification by numerics
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dots: asymptotic results;

curve: solution of the thin film equation.



Numerical methods (Ren/E 2011, Xu/Ren 2014))

The interface is tracked using the level set method; the

interface is represented by the zero level set of φ; φ is

advected by the fluid velocity:

∂tφ+ u · ∇φ = 0. (1)

Write the dynamical equations into a unified form:

ρ(φ) (∂tu + (u · ∇)u)) = −∇p +∇ · τd + F , (2)

∇ · u = 0, (3)

where

τd = η(φ)
(

∇u + (∇u)T
)

,

F = −γκδ(φ)∇φ, κ = ∇ ·

(

∇φ

|∇φ|

)

.



Numerical methods

The boundary condition at the wall (in 2d):

−β(φ)us = t · τd · n + τY , (4)

where

τY = γ

(

n ·
∇φ

|∇φ|
− cos θY

)

t · ∇H(φ),

β(φ) = β1(1 − H(φ)) + β2H(φ) + β∗|t · ∇H|.

and H(φ) is the Heaviside function.

Equations (1)-(4) are solved using a semi-implicit scheme and

the finite difference method.



MCL driven by surface tension gradient



Detachment of a pendant drop under gravity

Density ratio ρ1/ρ2 = 3, viscosity ratio η1/η2 = 2.

Dynamics of (insoluble) surfactant: ċ + (∇s · u)c = Ds∇
2
sc

Langmuir equation of state: γ(c) = γ0 + RTc∞ log (1 − c/c∞)



Detachment of a pendant drop under gravity

Density ratio ρ1/ρ2 = 15, viscosity ratio η1/η2 = 2.



Sliding drop on an inclined plane under gravity



Contact angle hysteresis

Motion of the rain drops down a window: advancing angle in the

front 6= receding angle in the rear.



MCL on a chemically patterned surface

U
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Two immiscible fluids confined in a channel

Imposed shear speed U

Chemically patterned solid surface

γ cos θY (x) = ∆γ0 + Fε(x)

where Fε(x) is the force due to the periodic pattern.



Instantaneous flow fields

Period motion of the fluid interface and the contact lines:



The dynamics of advancing and receding CLs

At small U, the advancing and receding CLs are pinned in

different regions:
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Red curve: the defect force Fε(x)
Blue curves: the inverse (normal) CL speed.



Contact angle hysteresis (Ren/E 2011)

Effective contact angle: Time average of the contact angle

condition γ cos θd − (∆γ0 + Fε(x)) = −β∗ul ⇒

γ cos θeff = ∆γ0 + 〈Fε〉+ β∗U.

where 〈Fε〉 =
1

T

∫ T

0

Fε(x)dt .
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Summary

Modeling: Derived a mesoscopic sharp-interface model

for MCLs based on “first principle” thermodynamics and

molecular dynamics;

Analysis: Analyzed the distinguished limits of the contact

line dynamics as the slip length → 0.

Simulation: Developed level set methods for the CL

model, and studied interesting applications.
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