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Modeling Porous Media Flow/Transport at 
Various Scales 
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Darcy scale
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Matter



Cahn–Hilliard-Navier-Stokes phase-field model

• CH-NS for incompressible immiscible two-phase flow: 

• Implied conservation property:

• Ginzburg-Landau double-well potential

• Together with proper boundary/initial conditions (GNBC)
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Application of CH-NS: affect of 
wettability to two-phase flow



Application of CH-NS: affect of 
surface roughness to two-phase flow



Significance of partial miscibility
• Partial miscibility as a key phenomenon 

• It is a common phenomenon in petroleum engineering, and it affects many 
important properties including: density, compressibility, viscosity, surface 
tension, wettability, relative permeability, and capillary pressure.

• An important example: CO2 enhanced oil recovery 

• Injected as gas or liquid-like carbon dioxide superfluids. 

• CO2 can be partially or completely miscible within the oil phase. 

• Major mechanisms: 

• Swelling of the oil phase due to dissolved CO2; 

• Reduction in the viscosity of the oil due to dissolved CO2; 

• Oil components dissolved in the CO2 phase, which is easy to flow; 

• Possible reduction in surface tension with the reservoir rock.



DI model for compositional multiphase flow

• Momentum equation (N-S) of the diffuse interface (DI) model:

• Mass conservation of the DI model: 

• Equation of state: 

• Together with proper boundary/initial conditions.
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A Few Special Cases of Interest 
in Petroleum Reservoirs 



Cahn-Hilliard-like model for fluid mixture

• If we assume velocity vanish everywhere, the momentum equation 
reduces to the equation below, which we do not need:

• Mass conservation reduces to: 

• Equation of state remains: 

• Together with proper boundary/initial conditions.
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Allen-Cahn-like model for fluid mixture

• Again, we assume velocity vanish everywhere, we then do not 
need the momentum equation. 

• Furthermore, we approximate the Maxwell–Stefan diffusion 
by the Allen-Chan equation with enforced global conservation: 

• Equation of state remains: 

• Together with proper boundary/initial conditions.
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Equilibrium model for fluid mixture
• At equilibrium, the fluid velocity (at the continuum scale) 

vanishes everywhere; we do not need the momentum equation. 

• Furthermore, both the Cahn-Hilliard-like and the Allen-Cahn-
like equations reduce to

• Equation of state remains: 

• Together with proper boundary conditions and given total mass 
of each species in the fixed domain.
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NVT Flash Calculation 
for Bulk Phases Only 



Classical NPT flash calculation
• Problem statement 

• Input data:

• Number of species and ID of each species 

• Temperature

• Pressure 

• The amount of each species (in moles)

• Output variables:

• Number of phases (assumed to be 2 for two-phase flash) 

• The amount of species i in phase j

• Composition (mole fraction of each species) in each phase

• Mole fraction of each phase in the mixture

• Molar density of each phase 

• Total compressibility of the mixture

• Partial molar volume for each species



Classical NVT flash calculation
• Problem statement 

• Input data:

• Number of species and ID of each species 

• Temperature

• Volume (instead of pressure)  

• The amount of each species (in moles)

• Output variables:

• Number of phases (assumed to be 2 for two-phase flash) 

• Pressure 

• The amount of species i in phase j; Composition in each phase

• Mole fraction of each phase in the mixture; Molar density of each phase 

• Total compressibility of the mixture

• Partial molar volume for each species



NVT flash versus NPT flash
• Conventionally, NVT flash is computed through a nested optimization 

approach. In an outer loop we iterate for pressure, which is used in the 
PT-flash in the inner loop to find a pressure for which the volume 
constraint is satisfied. This method has three drawbacks: 

• Badly computationally expensive as it needs many iterations of PT-
flashes before the true pressure is obtained.

• For specified pressure, temperature, and overall molar fractions, the 
equilibrium state of the system might not be uniquely determined. 

• In compositional simulation the pressure is not known a-priori and 
this makes the complication of constructing the pressure evolutional 
equation. No balance equation describes the evolution of the 
pressure field.



Mathematical model for liquid-gas phase equilibrium

• We consider the gas-liquid phase equilibria of the mixture of M(M ≥ 1) 
components with given overall volume, given temperature T and given 
overall mole numbers. Superscript L and G denote liquid and gas phase, 
respectively. 

• The NVT flash problem can be formulated as

• Here the total Helmholtz free energy is the sum of the contribution from 
each phase:

• The Helmholtz free energy density function can be modeled via EOS. 
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Helmholtz free energy density modeled via EoS

• In Van der Waals’ equation of state, the Helmholtz free energy density of a 
homogeneous fluid is given by 

• In the Peng-Robinson equation of state, the Helmholtz free energy density of 
a homogeneous fluid is given by    
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Solving NVT Flash by using Allen-Cahn-like equation

• Instead of solve the optimization problem, one can convert it to a 
differential equation system. 

• One way to define iteration is to convert the time-independent 
differential equation to a transient problem first, followed by a 
robust time marching scheme. 

• Allen-Cahn-like modeling equation approach is one of the 
simplest methods to convert the time-independent differential 
equation to a transient problem.

• If we have an unconditionally stable time march scheme for Allen-
Cahn-like equation with P-R EOS, then we can have a robust 
iterative scheme for NVT flash calculation.

For detail, see: J. Kou, S. Sun and X. Wang, “An energy stable evolutional method for simulating two-phase equilibria of multi-component fluids at constant moles, volume 
and temperature”, Computational Geosciences, Volume 20, Issue 1, pp. 283-295, February 2016. 



NVT Flash Calculation for 
Bulk Phases and 
INTERFACES



• Three common methods for modeling the phase interface:

• Molecular dynamics or molecular Monte Carlo simulation, with a 
certain intermolecular potential function (e.g., Lennard-Jones 
potential) being assumed.

• Sharp interface modeling uses a zero thickness two dimensional 
entity to model the interface, where the molar density experiences a 
jump across the interface, i.e., level-set method, the volume-of-fluid 
method, and /or the front tracking method. They commonly 
encounter difficulty handling topological changes, such as riches, 
splits and merging.

• Diffuse interface theory (or gradient theory, or phase field theory) 
described the interface as a continuum three-dimensional entity 
separating the two bulk single-phase fluid regions. Molar or mass 
density changes continuously within the interface.

Various methods to model the interface between phases



The gradient theory for multi-component mixtures

• For a mixture composed of M components, the Helmholtz energy of 
an inhomogeneous fluid can be modeled by:

• The above model contains the density gradient contribution of the 
Helmholtz energy. 

• It was first proposed by Van der Waals.  

• It is commonly used in phase-field and diffuse-interface models.  

• In chemical literature (especially in papers discussing the prediction 
of interfacial tension, it is also known as the gradient theory. 
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Existing methods

• The gradient theory of fluid interfaces has been successfully 
utilized in chemical and reservoir engineering applications, 
but usually without the rigorous mathematical fundamental.

• Only the standard finite difference method is applied.

• We will give some mathematical analysis for the gradient 
theory to calculate the surface tension.

• The adaptive finite element method will be developed and 
analyzed in theory.



Minimum energy principal
• Suppose that    is open, bounded and connected, and has a sufficiently 

smooth boundary. Let                        , associate with the norm

• Minimize Helmholtz energy to find a minimizer           satisfying
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Calculation of surface tension
• The surface tension    is defined by 

• Let    be the minimizer of         . With the definitions of    and      , we 
find

• where                                             .
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A finite element method for surface tension prediction 

• The Euler–Lagrange equation is: 

• We propose the following finite element method. 

• The discrete surface tension is computed by
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Error estimates on the finite element method

• Error estimate on the calculated molar densities: 

• where                        . 

• Error estimate on the calculated interfacial tension: 

• A posteriori error estimation for mesh adaption with the goal in reducing 
the error of our calculated interfacial tension.

• Details see:

• J. Kou and S. Sun, “An adaptive finite element method for simulating surface tension with the gradient theory of fluid 
interfaces,” Journal of Computational and Applied Mathematics, 255: 593–604, 2014.

• J. Kou, S. Sun, and X. Wang, “Efficient numerical methods for simulating surface tension of multi-component mixtures with 
the gradient theory of fluid interfaces,” Computer Methods in Applied Mechanics and Engineering, Volume 292, Pages 92–106, 2015.   
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Adaptive strategy

• Adaptive finite element methods have been widely 
used in scientific and engineering applications. 

• For surface tension computation, the adaptive 
technique is capable of effectively capturing the 
location of interface between two phases.

• We develop a physical-based error estimator that is 
a computable quantity and depends on the discrete 
solutions only.



Newton’s method
• The discrete equations arising from finite element 

approximation is a nonlinear system because of     being 
nonlinear function with respect to .

• Newton’s method is used to solve the discrete equations, 
and however, the convergence of Newton’s method 
strongly depends on the choice of initial approximations.

• We project      onto the refined mesh     as the initial 
approximation of     . This choice can ensure the 
convergence of Newton’s iterations since 
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Numerical example: Binary mixtures 
• The tested mixture is methane/decane (CH4/nC10) at the 

temperature 311K. 

• The surface tension is decreasing as the pressure is increasing as 
expected. 



Numerical solution of molar density profiles
• The following figures illustrate the mixture molar density profiles. 

• We note that the profile for the light component is not monotone. 



Convex Splitting Semi-Implicit 
Treatment of PR-EOS



Helmholtz free energy of single-component PR fluid

• For generalized NVT flash in two or three spatial dimensions, an 
energy-stable (energy-decaying) algorithm is essential. 

• Energy-stable algorithms can be also useful for 0D and 1D NVT 
flash. 

• The Helmholtz free energy density is the sum of its ideal gas 
contribution and the excess Helmholtz free energy density. 

• The excess Helmholtz free energy density has two contributions: one 
from the repulsion or volume exclusion effect, and the other from 
the molecular pairwise attraction.

• Shortly, we will see that we need treat the ideal gas contribution  
and the repulsion or volume exclusion effect implicitly; and we need 
treat the molecular pairwise attraction explicitly. 



Convex splitting treatment of single-component PR fluid

• Property 1 (Ideal gas contribution): Helmholtz free energy 
density of homogeneous ideal gas is a convex function of molar 
density. 

• Property 2 (Repulsion contribution): The repulsion 
contribution of excess Helmholtz free energy density of 
homogeneous Peng-Robinson fluid is a convex function of 
molar density. 

• Property 3 (Attraction contribution): The attraction 
contribution of excess Helmholtz free energy density of 
homogeneous Peng-Robinson fluid is a concave function of 
molar density.

For detail, see:  Z. Qiao and S. Sun, “Two-phase fluid simulation using a diffuse interface model with Peng-Robinson equation of state”, SIAM Journal on Scientific 
Computing, 36(4), B708–B728 (21 pages), 2014. 



Numerical example without gravity

• A single-component system with the species of isobutane (nC4); 

• At the temperature of 350 K; No gravity; 

• The volume is specified by a two-dimensional domain =(0, L)x(0, L), 
where L = 2 × 10^(−8)meters. 

• Initial condition: 16 percent of the total volume is saturated liquid in the 
region of (0.3L, 0.7L)x(0.3L, 0.7L), while the rest (84%) is saturated gas. 

• Boundary condition: complete gas wetting condition on the entire 
boundary of the domain. 

• Spatial discretization: the uniform 200 × 200 rectangular mesh.



2D flash without gravity



2D flash without gravity



2D flash without gravity



2D flash without gravity



2D flash without gravity



Numerical example with gravity

• A single-component system with the species of isobutane (nC4); 

• At the temperature of 350 K; No gravity; 

• The volume is specified by a two-dimensional domain =(0, L)x(0, L), 
where L = 2 × 10^(−8)meters. 

• Initial condition: 16 percent of the total volume is saturated liquid in the 
region of (0.3L, 0.7L)x(0.3L, 0.7L), while the rest (84%) is saturated gas. 

• Boundary condition: complete gas wetting condition on the entire 
boundary of the domain. 

• Spatial discretization: the uniform 200 × 200 rectangular mesh.



2D flash with gravity



2D flash with gravity



2D flash with gravity



Convex splitting treatment of multi-component PR fluid

• Bad news: the Hessian matrix arising from the second-order 
derivative of homogeneous contribution of total Helmholtz free 
energy is indefinite, and there is no an obvious convex splitting. 

• One approach is to apply component-wise convex splitting strategy 
for numerical simulation of multicomponent two-phase fluid 
mixtures.  

• We developed a component-wise convex splitting scheme by 
introducing a physics-preserving correction term, which is 
analogous to the attractive term in the Van der Waals EoS.  

• An efficient numerical algorithm is provided to compute the 
coefficient in the correction term.  



The transient version of chemical equilibrium equations

• Add a time-derivative term into the right-hand side of

• then we can get

• with mass constraint

• We adopt the Neumann boundary condition for no mass exchange 
condition. The initial condition is provided to give the total mass 
amount of each species in the closed system
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The component-wise convex splitting of Helmholtz free energy

• Let

• where

• and K is a constant to be determined. 
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The component-wise convex splitting of Helmholtz free energy

• It can be seen adding this term to the PR-EOS is physics-preserved and 
does not change the Helmholtz free energy density. 

• More importantly,                                          is positive semidefinite,

• and                   , which plays an essential role in our numerical algorithms.

• Rearrange         by

• If the constant K is non-negative, then                                                      is 
component-wise convex with the molar density      .
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An energy-stable component-wise convex splitting scheme

• For the PR model, with the newly-defined     , we can derive

• We define     as row vector         . The component-wise convex splitting 
procedure is shown below:
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The mixed finite element approximation for prediction

• We propose the RT0 mixed finite element approximation. 

The scheme is : to find a ni 2 W and ui 2 V such that
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Numerical example for multicomponent system

• The mixture consists of methane (C1) and n-decane (nC10); 

• At the temperature of 450 K; No gravity; 

• The simulation is carried out on a disk domain with 
diameter L = 10^(−8)meters. 

• The boundary condition is the Neumann type and the 
computational domain is divided into triangular meshes.



2D flash for multicomponent system



2D flash for multicomponent system



2D flash for multicomponent system



Simulation result vs. experiment
• The surface tension is computed through the formula

• where the interface tension is assumed to be constant in the interface.

• The simulation results fit well with the measured data to some extent 
in range of model, measurement and machine errors.
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Compositional Grading by 
Convex Splitting Methods



Gravity effect on fluid composition
• The effect of gravity is usually neglected in mixture theories. 

• A (single-phase) solution of chemicals is assumed to homogeneous in all 
spatial directions;  

• This homogeneity assumption is very accurate for single-phase fluid at a 
lab scale.

• Gravity is also sometimes negligible in a field scale.

• Particularly if the thickness of the reservoir is small. 

• Gravity can cause (pronounced) compositional variation in hydrocarbon 
reservoirs. 

• Particularly if the thickness of the gas/oil reservoir is large. 

• This is knowns as compositional grading.



New formulation of compositional grading

• As a consequence of the second law of thermodynamics, the total Helmholtz 
energy for a NVT system achieve its minimum at equilibrium. 

• The total Helmholtz energy of an inhomogeneous fluid can be modeled by 

• We have ignored the gradient contribution, as the contribution is very small 
at the reservoir scale.

• We add a time derivative term to convert the Euler-Lagrange equation to a 
transient problem.  

• This dynamic model describes the evolutionary process of isothermal 
compositional grading and meanwhile satisfies the minimum energy 
principle.
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Equilibrium equation with gravity
• Now we consider the problem of minimizing the total energy 

• under mass constraints

• By applying variational calculus, the minimization problem can be 
reduced to the following equilibrium condition  

• where         is the molecular weight of component   . 
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The transient version of equilibrium equations

• A time-derivative term is added to the left-hand side of the gravity/chemical 
equilibrium equation

• where   is a coefficient to enforce unit consistency.

• It can be proved the time dependent of  chemical equilibrium equation has the 
energy-decaying property.

• The total Helmholtz free energy satisfy

• Details see: 

• Y Li, J Kou, S Sun, “Numerical modeling of isothermal compositional grading by convex splitting methods”, Journal of Natural Gas 
Science and Engineering, in print, 2017. 
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Convex-splitting for compositional grading

• Our algorithm based on convex-splitting of PR EOS:

• The convex and concave part of chemical potential has the following form

• where
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Convex-splitting for compositional grading

• Our algorithm based on convex-splitting of PR-EOS:

• Under certain condition, we can show

•  As a consequence, our algorithm is unconditional stable; that is, for time 
step of any size, we have: 



Comparison with fully explicit scheme and fully implicit scheme

• For fully explicit scheme,

• time step must be small enough. In binary mixture of methane(C1) and n-
pentane(nC5) ay ambient temperature, the tilmestep size is no greater than 
0,1.

• The increase of molecular weight difference can lead to failure of 
convergence for a binary mixture of C1 and nC10 at the same condition, even 
with                . 

• For fully implicit scheme, 

• the time step cannot be arbitrarily large. 

• The maximum time step for the synthetic oil case is 0.1

�t = 10�12



Compositional grading example 1: Acid gas

• This example is used to verify our model by comparing our numerical results 
with molecular dynamics(MD) results calculated by Galliero and Montel 
(Galliero et al., 2009). 

• We will see shortly that our numerical results match the MD data very 
well, especially for C1 and CO2.

• The acid gas mixture consists of methane(C1), carbon dioxide (CO2) and 
hydrogen sulfide(H2S) whose average mole fraction is 0.28, 0.71 and 0.01, 
respectively. 

• The thickness of the vertical gas column is 1600 m, and the pressure and 
temperature at the reference depth is 40 MPa and 443.15 Kelvin.



Compositional grading example 1: Acid gas

Mole fraction 
distribution: (a) 

C1, (b) CO2 
and (c) H2S 

along depth at 
443.15 Kelvin



Compositional grading example 2: Real reservoir fluid

• To verify the applicability of the semi-implicit convex splitting method further, we use a 
test case proposed by Montel et al. (1985). In this case, the reservoir fluid consists of a 
condensate gas and a light oil. 

• No GOC is found between the vapor and liquid phase.

• Table below presents gas composition with physical properties at reference depth:



Compositional grading example 2: Real reservoir fluid

• To verify the applicability of the semi-implicit convex splitting method further, we use a 
test case proposed by Montel et al. (1985). In this case, the reservoir fluid consists of a 
condensate gas and a light oil. 

• No GOC is found between the vapor and liquid phase.

• Table 1 presents composition variation along depth (field data).



• Figure shows the mole 
fraction distributions of 
all thirteen components 
with depth. 

• It can be seen a phase 
change occurs at the 
lower part of the 
system and there is no 
apparent interface 
between two phases. 
This matches with the 
fact that no gas-oil 
contact is found 
between the 
condensate gas and 
the light oil. 

• By comparing our 
numerical results 
with the experimental 
data, our methods 
shows good accuracy.

Compositional grading example 2: Real reservoir fluid



Compositional grading example 3: simplified natural gas

• This example is used to show compositional 
variation within single gas phase. 

• The fluid mixture is composed of methane(C1), 
ethane(C2), propane(C3), carbon dioxide(CO2) 
and nitrogen(N2). The mole fraction of each 
component is 0.95, 0.032, 0.002, 0.006 and 0.01, 
respectively. 

• The molar density of fluid mixture is assumed to be 
2000 mol/m3.



Compositional grading example 3: simplified natural gas

• Mole fraction distribution 
of C1, C2, C3, CO2, N2 
when total molar density is 
2000 mol/m3.



Compositional grading example 4: synthetic oil

• This example is used to show the capability of our method 
to simulate the isothermal compositional grading of two 
phases with gas-oil contact. 

• The fluid mixture is composed of methane(C1), 
ethane(C2), propane(C3), n-pentane(nC5), n-
heptane(nC7) and n-decane(nC10). We call it synthetic oil, 
although its composition is far from the real oil 
composition. 

• Initially ,we assume the fluid mixture is in vapor phase. The 
system temperature is 378.15 K and the molar density of 
each component is 500 mol/m3.



• Mole fraction 
distribution of C1, 
C2, C3, nC5, nC7 
and nC10 at 
378.15 K.

Compositional grading example 4: Synthetic oil



• Figure: Relative energy 
change from non-equilibrium 
state to equilibrium state at 
378.15 K.

• Observations: 

• It is clear the total energy 
decreases with time steps.

• At the first few steps, no 
phase splits so that energy 
decreases little. When two 
phases start to be 
generated, energy decays 
very quickly, resulting into 
high gradients in the 
middle, until it reaches the 
true equilibrium state.

Compositional grading example 4: Synthetic oil



Conclusions and future work
• Conclusions 

• A framework is established for diffuse interface modeling of two-phase systems 
with PR-EOS; 

• A semi-implicit time scheme is proposed to treat the volume exclusion effect of 
EOS implicitly while the pairwise attraction effect of EOS is calculated explicitly; 

• Adaptive FEM is developed for surface tension calculation; 

• A new modeling framework is established for compositional grading. 

• Future work

• Work in progress: The effects of wettability and geometry on the behaviors of fluid 
systems; 

• Near future work: To couple pore-network models with compositional two-phase 
flow in a single channel; 

• Future work: Moving contact line problems of compositional flow.
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