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Cahn-Hilliard-Navier-Stokes phase-field model

* CH-NS for incompressible immiscible two-phase flow:

th +V- (ng) = MA/L, D(v) := Vv + Vv’
P2 — P
1= A6+ (@), =B
,0(V75‘|‘(VV)V)—|—JvV:v(r,7]:)(V))_vp_¢v,u7 p::plg 2¢+ 12 2,
V-v=0, n:=771;772¢+"1;772,

* Implied conservation property: p:1+V-(pv)+V-J =0.
* Ginzburg-Landau double-well potential
1 5F
Flol =) [ (5190P + 50)) n

=55
7(6) = 32 (0 = D% m(0) = () = 5(6° - ).
* Together with proper boundary/initial conditions (GNBC)



Application of CH-NS: affect of
wettability to two-phase flow
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Application of CH-NS: aftect of

surface roughness to two-phase flow




Significance of partial miscibility

« Partial miscibility as a key phenomenon

 Itis a common phenomenon in petroleum engineering, and it affects many
important properties including: density, compressibility, viscosity, surface
tension, wettability, relative permeability, and capillary pressure.

* An important example: CO2 enhanced oil recovery
* Injected as gas or liquid-like carbon dioxide superfluids.
* CO2 can be partially or completely miscible within the o1l phase.

 Major mechanisms:

Swelling of the o1l phase due to dissolved CO2;

Reduction in the viscosity of the o1l due to dissolved CO2;

Oil components dissolved in the CO2 phase, which is easy to flow;

Possible reduction in surface tension with the reservoir rock.



DI model for compositional multiphase flow

Momentum equation (N-S) of the diffuse interface (DI) model:
2

I(pv) +V - (pv® V) =pg +V ((5— gn)V-v —p)

+ V- (n(Vv+ VVT)) -V (Z AkiVpE @ VPj) ;
k.j

Mass conservation of the DI model:

Oipr + V - (V,Ok) +V -Jr=0, Jp= —ZMk,jV,uj

J

Equation of state:
f="rfelpr,-,pn,T)+ fo(Vpr, -+, Vpn),
2 ::u?(plf” HONﬁT)_'_'uJ'V’
p=ps(p1, - ,pn,T) + py.

Together with proper boundary/initial conditions.



A Few Special Cases of Interest
in Petroleum Reservoirs



Cahn-Hilliard-like model for fluid mixture

If we assume velocity vanish everywhere, the momentum equation
reduces to the equation below, which we do not need:

O0=pg—-—Vp—-V. (Z Ak, i Vpr ® V,oj) :

k.j

Mass conservation reduces to:

Orpr +V - Jp =0, Jp=—> M ;Vp;.

J

Equation of state remains:

f:fb(pla"' 7/0N7T)+fV(Vpla"' 7va>7
12 :M2<P1> 7/0N7T)‘|‘,LLJV,
p=nps(p1, s pn,T) + pv.

Together with proper boundary/initial conditions.



Allen-Cahn-like model for fluid mixture

e Again, we assume velocity vanish everywhere, we then do not
need the momentum equation.

* Furthermore, we approximate the Maxwell-Stefan diffusion
by the Allen-Chan equation with enforced global conservation:

Orpr = — Y My (pj — 1) -
J
* Equation of state remains:

f="relpr,-pn,T)+ fv(Vpr, -+, Vpn),
i = 5o, v, T) + 1)
p=ps(p1, - pn,T) + Py

* Together with proper boundary/initial conditions.



Equilibrium model for fluid mixture

* At equilibrium, the fluid velocity (at the continuum scale)
vanishes everywhere; we do not need the momentum equation.

e Furthermore, both the Cahn-Hilliard-like and the Allen-Cahn-

like equations reduce to
o
Hj = [y

* Equation of state remains:
f=tolpr,---pn,T)+ f(Vp1,--, Vpn),
i = ul(p1, oo, T) + 1y
p=po(pr, - on,T) +pv.

* Together with proper boundary conditions and given total mass
of each species in the fixed domain.



NVT Flash Calculation
for Bulk Phases Only



Classical NPT flash calculation

¢ Problem statement

¢ Input data:
* Number of species and ID of each species
* Temperature
* Pressure
* The amount of each species (in moles)

* Output variables:
¢ Number of phases (assumed to be 2 for two-phase flash)
¢ The amount of species 1 in phase j

» Composition (mole fraction of each species) in each phase

Mole fraction of each phase in the mixture

Molar density of each phase

Total compressibility of the mixture

Partial molar volume for each species



Classical NVT flash calculation

* Problem statement

* Input data:
* Number of species and ID of each species
* Temperature
* Volume (instead of pressure)
* The amount of each species (in moles)

* Output variables:
* Number of phases (assumed to be 2 for two-phase flash)

e Pressure

The amount of species i in phase j; Composition in each phase

Mole fraction of each phase in the mixture; Molar density of each phase

Total compressibility of the mixture

Partial molar Volume fOI' each species



NVT tlash versus NPT flash

* Conventionally, NVT flash is computed through a nested optimization
approach. In an outer loop we iterate for pressure, which is used in the
PT-flash in the inner loop to find a pressure for which the volume
constraint 1s satisfied. This method has three drawbacks:

* Badly computationally expensive as it needs many iterations of PT-
flashes before the true pressure 1s obtained.

e For speciﬁed pressure, temperature, and overall molar fractions, the
equilibrium state of the system might not be uniquely determined.

* In compositional simulation the pressure 1s not known a-priori and
this makes the complication of constructing the pressure evolutional
equation. No balance equation describes the evolution of the
pressure field.



Mathematical model for liquid-gas phase equilibrium

* We consider the gas-liquid phase equilibria of the mixture of M(M > 1)
components with given overall volume, given temperature T and given
overall mole numbers. Superscript L. and G denote liquid and gas phase,
respectively.

* The NVT flash problem can be formulated as
(N¢ V¢ NL VIl = argmin F(ﬁG,ﬁL, Ve ‘A/L),
NG NL .G PL
subject to : NC¢ + NL = N* VG v = 748
N*>0,V*>0, (i=1,2,---,M, a=G,L).

* Here the total Helmholtz free energy is the sum of the contribution from
each phase:

G 1,G ~iL 1/L G\1/G nn o N€ , N*-

F(N ,V ,N ,V ):fb(n )V —|—fb(n )V , 1l :W’ n :W

* The Helmholtz free energy density function can be modeled via EOS.



Helmholtz free energy density modeled via EoS

* In Van der Waals’ equation of state, the Helmholtz free energy density of a
homogeneous fluid 1s given by

fb (n) 1deal( )_|_ feXCGSS( )

jdeal () = RT Z n; (Inn; — 1),
i=1
oxcess(n) = ff + f& = —nRTIn (1 — bn) — an®.

* In the Peng-Robinson equation of state, the Helmholtz free energy density of
a homogeneous fluid 1s given by

fb (1’1) . 1dea1( )_|_ fexceSS( )

ideal () = RT Z n; (Inn; — 1),

a(T)n N (1 —+/2)bn
2v/2b 14+ (1++v2)bn |

P (n) = —nRT In(1 — bn) +



Solving NVT Flash by using Allen-Cahn-like equation

* Instead of solve the optimization problem, one can convert it to a
differential equation system.

* One way to define iteration is to convert the time-independent
differential equation to a transient problem first, followed by a
robust time marching scheme.

 Allen-Cahn-like modeling equation approach is one of the
simplest methods to convert the time-independent differential
equation to a transient problem.

 If we have an unconditionally stable time march scheme for Allen-
Cahn-like equation with P-R EOS, then we can have a robust
iterative scheme for NVT flash calculation.

For detail, see: J. Kou, S. Sun and X. Wang, “An energy stable evolutional method for simulating two-phase equilibria of multi-component fluids at constant moles, volume
and temperature”, Computational Geosciences, Volume 20, Issue 1, pp. 283-295, February 2016.



NVT Flash Calculation for
Bulk Phases and
INTERFACES



Various methods to model the interface between phases

e Three common methods for modeling the phase interface:

* Molecular dynamics or molecular Monte Carlo simulation, with a
certain intermolecular potential function (e.g., Lennard-Jones
potential) being assumed.

e Sharp interface modeling uses a zero thickness two dimensional
entity to model the interface, where the molar density experiences a
jump across the interface, 1.e., level-set method, the volume-of-fluid
method, and /or the front tracking method. They commonly
encounter difficulty handling topological changes, such as riches,
splits and merging.

 Diftuse interface theory (or gradient theory, or phase field theory)
described the interface as a continuum three-dimensional entity
separating the two bulk single-phase fluid regions. Molar or mass
density changes continuously within the interface.



The gradient theory for multi-component mixtures

* For a mixture composed of M components, the Helmholtz energy of
an inhomogeneous fluid can be modeled by:

1
F(n) = /Q fb(n) + 5 Z cijVni ¥ an dx.
2]

e The above model contains the density gradient contribution of the

Helmholtz energy.
It was first proposed by Van der Waals.
* It1s commonly used in phase-field and diffuse-interface models.

 In chemical literature (especially in papers discussing the prediction
of interfacial tension, it is also known as the gradient theory.



Existing methods

* The gradient theory of fluid interfaces has been successfully
utilized in chemical and reservoir engineering applications,
but usually without the rigorous mathematical fundamental.

e Only the standard finite difference method 1s applied.

e We will give some mathematical analysis for the gradient
theory to calculate the surface tension.

* The adaptive finite element method will be developed and
analyzed 1n theory.



Minimum energy principal

* Suppose that  is open, bounded and connected, and has a sutficiently
smooth boundary. Let V = (H! (Q))N , assoclate with the norm

M
||V||%/ = ||V||(2L2(Q))N + Z ||VVi||?L2(Q))d'

1=1
* Minimize Helmholtz energy to find a minimizer n € V satistying

F(n) = minF(n
(n) = minF(n),

/ndx=nt,
Q

* where n® = (n},...,n%) is the fixed amount of given substance.

* subject to



Calculation of surface tension

* The surface tension o is defined by

o = ﬁmelxr/l(F(fl) — Fp(np)),

* Let n be the minimizer of F(n). With the definitions of Fand Fg , we
find

_/Q<f0( — fo(np) + Z cwvnz vnj> dx
/( n) -+ P — Z,ulnl—l— Z czjvnz vnj>d

7,]1

/( )+ P + Z czjvnz vnj> dx
Q

* where ®(n) = fo(n) — Y17, piny.



A finite element method for surface tension prediction

* The Euler-Lagrange equation is:

M

ZcijAnj:,u?—,uf, iIlQ, ’iZl,-°°,M,
J=1

n—=ng, on Of).

* We propose the following finite element method.

The scheme is : to find a ny € V}, satistying
M
D (i Vnn, Vo) = (uf —pbo), @€Wn, i=1-- M.
j=1

e The discrete surface tension 1s computed by

Y1
o :/Q <fb(nh) — fo(np) + Z o Cii Vi V"’bh,j) dx

i,g=1



Error estimates on the finite element method

Error estimate on the calculated molar densities:

[ =1 1)y < CmHnH(HsH(Q))N

where v = min(r, s).

Error estimate on the calculated interfacial tension:

0<o,—0<Ch”,

A posteriori error estimation for mesh adaption with the goal in reducing
the error of our calculated interfacial tension.

Details see:

J. Kou and S. Sun, “An adaptive finite element method for simulating surface tension with the gradient theory of fluid

interfaces,” Journal of Computational and Applied Mathematics, 255: 593604, 2014.

* J.Kou, S. Sun, and X. Wang, “Efficient numerical methods for simulating surface tension of multi-component mixtures with
the gradient theory of fluid interfaces,” Computer Methods in Applied Mechanics and Engineering, Volume 292, Pages 92-106, 2015.



Adaptive strategy

* Adaptive finite element methods have been widely
used 1n scientific and engineering applications.

* For surface tension computation, the adaptive
technique 1s capable of effectively capturing the
location of interface between two phases.

* We develop a physical-based error estimator that 1s
a computable quantity and depends on the discrete
solutions only:.



Newton's method

e The discrete equations arising from finite element
approximation 1s a nonlinear system because of p; being
nonlinear function with respect to .

e Newton’s method 1s used to solve the discrete equations,
and however, the convergence of Newton's method
strongly depends on the choice of initial approximations.

* We project ng onto the refined mesh ¢, as the initial
approximation of n;, . This choice can ensure the
convergence of Newton’s iterations since

O'H—O'hSC'f[y



Numerical example: Binary mixtures

* The tested mixture i1s methane/decane (CH4/nC10) at the
temperature 31 1 K.

* The surface tension 1s decreasing as the pressure 1s increasing as
expected.

Surface tension (mN/m)
o0
B

2 1 L
50 100 150 200
Pressure (bar)

Figure: Surface tension of CH4 and nC10 mixture at 320K



Numerical solution of molar density profiles

 The following figures illustrate the mixture molar density profiles.

* We note that the proﬁle for the light component 1s not monotone.
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Figure: CH4 and nC10 molar density profiles at 320K and different pressures: 50bar
(left), 100bar (center), 200bar (right)



Convex Splitting Semi-Implicit
Treatment of PR-EOS



Helmholtz free energy of single-component PR fluid

* For generalized NVT flash in two or three spatial dimensions, an
energy-stable (energy-decaying) algorithm is essential.

* Energy-stable algorithms can be also useful for 0D and 1D NVT
flash.

* The Helmholtz free energy density is the sum of its 1deal gas
contribution and the excess Helmholtz free energy density.

* The excess Helmholtz free energy density has two contributions: one
from the repulsion or volume exclusion effect, and the other from
the molecular pairwise attraction.

 Shortly, we will see that we need treat the 1deal gas contribution
and the repulsion or volume exclusion effect implicitly; and we need
treat the molecular pairwise attraction explicitly.



Convex splitting treatment of single-component PR fluid

* Property 1 (Ideal gas contribution): Helmholtz free energy
density of homogeneous ideal gas is a convex function of molar

density.

* Property 2 (Repulsion contribution): The repulsion
contribution of excess Helmholtz free energy density of
homogeneous Peng-Robinson fluid 1s a convex function of
molar density.

* Property 3 (Attraction contribution): The attraction
contribution of excess Helmholtz free energy density of
homogeneous Peng-Robinson fluid 1s a concave function of
molar density.

For detail, see: Z. Qiao and S. Sun, “Two-phase fluid simulation using a diffuse interface model with Peng-Robinson equation of state”, SIAM Journal on Scientific
Computing, 36(4), B708-B728 (21 pages), 2014.



Numerical example without gravity

A single-component system with the species of isobutane (nCH4);
* At the temperature of 350 K; No gravity;

* The volume is specified by a two-dimensional domain =(0, L)x(0, L),
where L = 2 x 10N (-8)meters.

* Initial condition: 16 percent of the total volume 1s saturated liquid in the

region of (0.3L, 0.7L)x(0.3L, 0.7L), while the rest (84%) 1s saturated gas.

* Boundary condition: complete gas wetting condition on the entire

boundary of the domain.

* Spatial discretization: the uniform 200 x 200 rectangular mesh.



2D flash without gravity
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Figure: Molar density profiles after 10, 20, 30, 77 iterations.



2D flash without gravity

Figure: Homogeneous part of chemical potential profiles after 10, 20, 30, 77 iterations.



2D flash without gravity
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2D flash without gravity
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2D flash without gravity
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Numerical example with gravity

A single-component system with the species of isobutane (nCH4);
* At the temperature of 350 K; No gravity;

* The volume is specified by a two-dimensional domain =(0, L)x(0, L),
where L = 2 x 10N (-8)meters.

* Initial condition: 16 percent of the total volume 1s saturated liquid in the

region of (0.3L, 0.7L)x(0.3L, 0.7L), while the rest (84%) 1s saturated gas.

* Boundary condition: complete gas wetting condition on the entire

boundary of the domain.

* Spatial discretization: the uniform 200 x 200 rectangular mesh.



2D tlash with gravity
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Figure: Molar density profiles after various iterations.




2D tlash with gravity
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Figure: Pressure (left) and interface tension density (right) after convergence.




2D tlash with gravity
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Convex splitting treatment of multi-component PR fluid

* Bad news: the Hessian matrix arising from the second-order
derivative of homogeneous contribution of total Helmholtz free
energy is indefinite, and there is no an obvious convex splitting.

* One approach is to apply component-wise convex splitting strategy
for numerical simulation of multicomponent two-phase fluid
mixtures.

* We developed a component-wise convex splitting scheme by
introducing a physics-preserving correction term, which 1s
analogous to the attractive term in the Van der Waals EoS.

* An efhcient numerical algorithm is provided to compute the
coefficient in the correction term.



The transient version of chemical equilibrium equations

Add a time-derivative term into the right-hand side of
M
=1

then we can get

ani - c b .
8t —ZcijAnj:,ui —,LLi, 221,“- ,M

j=1
/ n;dx = N;.
Q

We adopt the Neumann boundary condition for no mass exchange
condition. The initial condition 1s provided to give the total mass

with mass constraint

amount of each species 1n the closed system
Vn; - vgo = 0,

ni=mn; ", t=0.



The component-wise convex splitting of Helmholtz free energy

e [ et
1

- . | R ~
fo = F ) + fYm) + fo(n) + S Kan® — J Kan?,

* where Iy
3! (n) = RT Y m; (Inn; — 1),

1=1

f(l)’(n) = —nRTIn(1 - bn),

w/ N G 14+ (1 —+/2)b . M __n;ny

e and K is a constant to be determined.



The component-wise convex splitting of Helmholtz free energy

* It can be seen adding this term to the PR-EOS is physics-preserved and
does not change the Helmholtz free energy density.

e More importantly, @ij) vy = (v aiaj) MxM 18 positive semidefinite,
* and a; = a;; > 0, which plays an essential role in our numerical algorithms.
e Rearrange fo(n)by

fo(n) = ( 2 (n) + fo(n) + %K&nQ) + ( fo(n) — —Kan2) .

conv __

* If the constant K i1s non-negative, then fg*"" = Jdeal(n) + fé(n) + L Kan? is

component-wise convex with the molar density n; .



An energy-stable component-wise convex splitting scheme

* For the PR model, with the newly-defined fo , we can derive

M

on; idea ~
ot > cijAng = pi(t) — | pgs™ () + pb, () + KDY agn,
=1 =

M
- MO ’I/ E G/Z]n] ’ Q.

« We define @; as row vector (@;);. The component-wise convex splitting

procedure is shown below:

k+ 77 k+ 7

n, ;tnz o szAnf—Fﬁ _ ,U/,L ({Mldeal 4+ Ng,z} (nk—i—ﬁ) + Ka, nk:—I—M)
JFi



The mixed finite element approximation for prediction

* We propose the RT0 mixed finite element approximation.

The scheme is : to find an; € W and u; € V such that

(8m ) = (u;, Vw;) — Z (; - vag,wi)or + (1i(t) — poi(n), w;), Yw; € W,

Eer,

M
(ui,vi) = (Z CijMyj, V- V¢> , Vv; €V,

J=1

/ nidx = ]\/vZ
Q

(ng,w;) = (ni-nit,wi) ,t=0, Yw; € W.

7



Numerical example for multicomponent system

The mixture consists of methane (C1) and n-decane (nC10);

At the temperature of 450 K; No gravity;

e The simulation 1s carried out on a disk domain with
diameter L = 10" (-8)meters.

* The boundary condition is the Neumann type and the

computational domain 1s divided into triangular meshes.



2D flash for multicomponent system
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Figure 6: Initial condition (molar density distribution): (a) methane; (b) n-decane.



2D flash for multicomponent system

(a) (b) (c)

Figure 7: Molar density of methane: (a) 5th time step; (b) 10th time step; (c) 20th time step.
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Figu re 8: molar density of n-decane: (a) 5th time step; (b)110th time step: (c) 20th time step.



2D flash for multicomponent system
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Figure 11: Convergence of total Helmholtz free energy: (a) the component-wise total
Helmholtz free energy during the whole simulation; (b) zoom in of 5th-10th time steps.



Simulation result vs. experiment

e The surface tension 1s computed through the formula

F(H) . FO (ninit)
A

 where the interface tension is assumed to be constant in the interface.

0O —

* The simulation results fit well with the measured data to some extent
in range of model, measurement and machine errors.
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Figure 12: Comparison of surface tension between simulations and experimental data: (a) at
temperature T = 280°F; (b) at pressure Py = 2800 psia.



Compositional Grading by
Convex Splitting Methods



Gravity effect on fluid composition

* The effect of gravity i1s usually neglected in mixture theories.

* A (single-phase) solution of chemicals is assumed to homogeneous in all
spatial directions;

* This homogeneity assumption is very accurate for single-phase fluid at a
lab scale.

* Gravity 1s also sometimes negligible in a field scale.
* Particularly if the thickness of the reservoir is small.

* Gravity can cause (pronounced) compositional variation in hydrocarbon
reservoirs.

* Particularly if the thickness of the gas/oil reservoir is large.

* This i1s knowns as compositional grading.



New formulation of compositional grading

* As a consequence of the second law of thermodynamics, the total Helmholtz
energy for a NVT system achieve its minimum at equilibrium.

* The total Helmholtz energy of an inhomogeneous fluid can be modeled by

F() = [ () + fy(mx0)dx, fy(n,%) = Mangh

* We have ignored the gradient contribution, as the contribution is very small
at the reservoir scale.

* We add a time derivative term to convert the Euler-Lagrange equation to a
transient problem.

* This dynamic model describes the evolutionary process of isothermal
compositional grading and meanwhile satisfies the minimum energy
principle.



Equilibrium equation with gravity
* Now we consider the problem of minimizing the total energy

min F'(n)

under mass constraints

/ n;dx = N;, n; > 0.
Q

By applying variational calculus, the minimization problem can be
reduced to the following equilibrium condition

,uz-(n)—l—Mw,igh—ci:O,i:1,2,...,M,

where M, ; 1s the molecular weight of component 7.



The transient version of equilibrium equations

A time-derivative term is added to the left-hand side of the gravity/chemical
equilibrium equation
67%

A@t

+ pi(n) + My, igh —¢; =0
where 1s a coefficient to enforce unit consistency.

It can be proved the time dependent of chemical equilibrium equation has the

energy- decaying property.

The total Helmholtz free energy satisty

[y (%

2
) dx <0

Details see:

* Y Li, J Kou, S Sun, “Numerical modeling of isothermal compositional grading by convex splitting methods”, Journal of Natural Gas
Science and Engineering, in print, 2017.



Convex-splitting for compositional grading

* Our algorithm based on convex-splitting of PR EOS:

nk—l—l nk - ) .
A t;ﬁ-l — tkz _|_’uzqonvex(n + )+Mgoncave<n )+ Mw,igh . C,L-+ —0.

e The convex and concave part of chemical potential has the following form

convex af convex( ) nbk:
I, (n) = B = RT Inny — RT (ln(l —bn) — T )
luconcave(n) 8fconcave( ) _ 2&kb - CLbk’I’L In 1 + (1 T \/i)bn +
' ony, 2v/2b%n 1+ (1+v2)bn

a(Mn [ (1=v2)b,  (1+V2)b
2v2b \ 14+ (1—=vV2)bn 1+ (1++/2)bn

e where N
ar = Y njlara;)' /(1 - ki)

J=1



Convex-splitting for compositional grading

* Our algorithm based on convex-splitting of PR-EOS:

nkH n’“

\ L 4+ M;:onvex( k—I—l) + M;:onca,ve( k) + Mw zgh . CI§+1 — 0.
tk—l—l _ tk: ) 7

e Under certain condition, we can show

fh( k:—l—l Z onvex k:—l—l ic—i—l . nf:) +

concave k+ 1 k
E i — Ny )

e Asa consequence, our algorlthm 1s unconditional stable; that 1S, for time
step of any size, we have:

F(n*t) < F(n")



Comparison with fully explicit scheme and fully implicit scheme

* For fully explicit scheme,

* time step must be small enough. In binary mixture of methane(Cl) and n-
pentane(nCb) ay ambient temperature, the tilmestep size 1s no greater than
0,1.

* The increase of molecular weight difference can lead to failure of
convergence for a binary mixture of Cl and nCI10 at the same condition, even
with At = 10712,

* For fully implicit scheme,

* the time step cannot be arbitrarily large.

e The maximum time step for the synthetic oil case 1s 0.1



Compositional grading example 1: Aaid gas

 This example is used to verify our model by comparing our numerical results
with molecular dynamics(IMD) results calculated by Galliero and Montel
(Galliero et al., 2009).

* We will see shortly that our numerical results match the MD data very
well, especially for Cl1 and CO2.

* The acid gas mixture consists of methane(C1), carbon dioxide (COZ2) and
hydrogen sulfide(H2S) whose average mole fraction is 0.28, 0.71 and 0.01,

respectively.

* The thickness of the vertical gas column 1s 1600 m, and the pressure and

temperature at the reference depth 1s 40 MPa and 443.15 Kelvin.



Compositional grading example 1: Aaid gas

Mole fraction
distribution: (a)
Cl, (b) CO2
and (c) H2S
along depth at
443.15 Kelvin
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Compositional grading example 2: Real reservoir fluid

* To verify the applicability of the semi-implicit convex splitting method further, we use a
test case proposed by Montel et al. (1985). In this case, the reservoir fluid consists of a
condensate gas and a light oil.

* No GOC 1s found between the vapor and liquid phase.
* Table below presents gas composition with physical properties at reference depth:

Table 2: Gas composition with physical properties at reference depth

Component | Mole Fraction | My, (g/mol) | T. (K) | P. (MPa) w
Cy 0.6314 16.04 190.60 4.600 0.0115
Cy” 0.0962 30.07 305.40 4.884 0.0908
Cg" 0.0592 44.10 369.80 4.246 0.1454
Cy 0.0286 58.12 421.09 3.769 0.1886
Cs 0.0167 72.06 467.85 3.424 0.2257
Ce 0.0201 84.43 521.99 3.466 0.2564
Cy 0.0199 97.58 557.09 3.262 0.2854
Cg 0.0166 111.39 585.98 2.889 0.3216
Co 0.0095 125.94 608.03 2.599 0.3792
Cio 0.0064 141.58 620.67 2.306 0.4101

Crit 0.0613 242.75 693.15 1.700 0.7000
COy” 0.0287 44.01 304.20 7.376 0.2250
Ny 0.0064 28.01 126.20 3.394 0.0400

*
Pure component.



Compositional grading example 2: Real reservoir fluid

* To verify the applicability of the semi-implicit convex splitting method further, we use a
test case proposed by Montel et al. (1985). In this case, the reservoir fluid consists of a
condensate gas and a light oil.

* No GOC 1s found between the vapor and liquid phase.

 Table 1 presents composition variation along depth (field data).
Table 1: Composition grading with depth

Constituent | 3179:5m" 3204.5 m 3241 m
Experimental | Experimental | Calculated | Experimental | Calculated
Cq 63.14 57.20 61.43 53.06 58.27
Cq 9.62 9.53 9.48 9.84 9.13
Cs 5.92 6.33 5.86 6.65 5.68
Cy 2.86 3.24 2.86 3.49 2.80
Cs 1.67 2.01 1.67 2.25 1.65
Ce 2.01 2.51 2.09 2.88 2.18
Cr 1.99 2.50 2.11 2.93 2.26
Cs 1.56 1.98 1.68 2.31 1.82
Co 0.95 1.61 1.02 1.39 1.12
Cio 0.64 0.78 0.68 0.95 0.76
Cii+ 6.13 9.02 7.62 11.00 10.83
COq 2.87 2.75 2.89 2.75 2.91
N» 0.64 0.54 0.62 0.51 0.59

*
Reference.



Compositional grading example 2: Real reservoir fluid

* Figure shows the mole
fraction distributions of
all thirteen components

with depth.

* It can be seen a phase
change occurs at the
lower part of the
system and there is no
apparent interface
between two phases.
This matches with the
fact that no gas-oil
contact is found
between the
condensate gas and

the light o1l.

* By comparing our
numerical results
with the experimental
data, our methods
shows good accuracy.
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Compositional grading example 3: simplified natural gas

* This example 1s used to show compositional
variation within single gas phase.

* The fluid mixture 1s composed of methane(Cl),
ethane(C2), propane(C3), carbon dioxide (CO2)
and nitrogen(N2). The mole fraction of each
component 1s 0.95, 0.032, 0.002, 0.006 and 0.01,

respectively.

* The molar density of fluid mixture 1s assumed to be

2000 mol/m3.



Compositional grading example 3: simplified natural gas

Mole fraction distribution
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Compositional grading example 4: synthetic o1l

* This example 1s used to show the capability of our method
to simulate the isothermal compositional grading of two
phases with gas-oil contact.

* The fluid mixture i1s composed of methane(C1),
ethane(C2), propane(C3), n-pentane(nC5)), n-
heptane(nC7) and n-decane(nC10). We call it synthetic oil,
although 1ts composition 1s far from the real o1l
composition.

 Initially ,we assume the fluid mixture is in vapor phase. The
system temperature 1s 378.15 K and the molar density of
each component 1s 500 mol/m3.



Compositional grading example 4: Synthetic o1l
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Compositional grading example 4: Synthetic o1l

* Figure: Relative energy 1 OO
change from non-equilibrium
state to equilibrium state at

378.15 K.
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decreases with time steps.

* At the first few steps, no
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Conclusions and future work

* Conclusions

» A framework is established for diffuse interface modeling of two-phase systems

with PR-EOS;

» A semi-implicit time scheme is proposed to treat the volume exclusion effect of
EOS implicitly while the pairwise attraction effect of EOS is calculated explicitly;

* Adaptive FEM is developed for surface tension calculation;
* A new modeling framework is established for compositional grading.
e Future work

* Work in progress: The effects of wettability and geometry on the behaviors of fluid

systems;

* Near future work: To Couple pore-network models with compositional two-phase
flow in a single channel;

* Future work: Moving contact line problems of compositional flow.
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