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Fig. 1 Two-dimensional domains containing liquid in D:
a a rectangle, b a gentle-sloped region, and ¢ a region with
vertically-sloped ends [1]

these are thin-domain theories though each has its own peculiarities. Sometimes the thinness is geometric in that it
is known a priori and sometimes it is dynamically determined. It will be seen that the commonalities of the methods
allow one to understand how to proceed on new problems that arise in practice.

In what follows, the methods will be discussed in fluid mechanical contexts, but it is quite clear that they have
broad applications elsewhere.

2 Geometric thinness

2.1 A toy problem

In order to help define the means of approximation, it is convenient to consider a very simple problem discussed
by Young and Davis [1]. The domains D for solutions are shown in Fig, 1; in (a) the thin slot is rectangular, in (c)
it has vertical sides of various strengths and in (b) the top smoothly approaches zero height at the ends. These are
two-dimensional regions in which the x-axis is horizontal and the z-axis points upward, as shown.

The problem is to find ¢ (x, z) in D such that

Gy + ¢z =—k inD M
with
¢ =0 ondD. @

Subscripts denote partial differentiation and constant & > 0.
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In particular, we seek solutions ¢ such that variations in x and z scale on width / and height Ay, respectively.
Introduce scaled variables

, z:hi, and ®=-2_ 3)

X =
M Bk

—~ &

with H = h = O(1) as ¢ — 0, in which Ay is the maximum height of ~ and

€= @

The domain is deemed thin if
€ K 1. &)

The scaled system now has the form

E0yx +Pzz=—1 inD (6)
and
®=0 ondD. @)

One can take advantage of the thinness of the domain by writing the formal perturbation series:
O(X, Z) = B + > @1 + O(e), ®)

substituting into system (6, 7), and equating to zero coefficients of like powers of €2. At O(1)

®g,, =—1 in D )]
with
$g=0 ondD, (10)
so that

1
O = -2—Z(H — 7). an
At O(€%)
®y,, =—Pgy, inD (12)
®; =0 ondD, (13)
giving

1
Q) = EZ(H2 - ZHH", (14
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where primes denote differentiation and thus
1 1 2 ”
D~ E(H—Z)Z 1+€E (Z+ H)H" ;. (15)

This approximation is well controlled if the sidewalls of D were absent. As well, if the slopes of H are moderate,
e.g.if H(X) = 1 — X2, form (15) holds in the whole domain. Otherwise, the dropping of the term e>®xx ase — 0
in the first approximation represents a singular perturbation, given that the highest X-derivative is lost. The most
severe case is seen in Fig. 1a in which the sidewalls are vertical, and representation (15) loses validity near the ends.

In this singular case, there are boundary layers at X = -1 that require reinstating the X -derivatives. Near X = 1,
write

£= (16)
€

leading to

P + Czz = —1, (17)

returning the original equation, but now the domain is £ in the range 0 < £ < oo on which one must solve Eq. (17)
with @ = 0 on the boundaries. That solution will automatically match the core solution (15) at leading order [1].
Consider now case (c) of Fig. 1 with

H=(1-Xx%", (18)

where o > 0 determines the severity of the vertical slopes at X = £1. Near X = 1, write

1-X
= , (19
"= %@
where g is determined by the order of the non-uniformity in €2H H” in Eq. (15), and further write
H(X) ~ f(€)Ho(n), (20
and because H vanishes at X = 1, stretch Z as well
VA
{=—— @1)
Q)
resulting in
2
e f(e) )
Ver + ———W, = —f“(e), (22)
49 g ( E) m
where W represents @ in the new variables. To retain both derivative terms, take
1€ = gle). (23)
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Now write

¥~ )W (24)
so that _

oy, + Wo,, = 1, 25)
Yo=0 on¢ =0, (26)
Wo =0 on¢ = Hy(¢). (27)

Here f 2 (€)Wo must match o,

1 1
= 5(H = 2) ~ > @[ ¢ Ho - ¢*] (28)
so that

1
Wy ~ —z-[nHo - nZ] as £ — oo (29)

Now, if @ = 0, this reduces to case (a) of Fig. 1, Hp = 1, and there are O (¢) boundary layers at theends. If 0 < o < 1,
all derivatives are unbounded at the ends so that near X = 1, the boundary-layer thicknessis 1 — X = O(Gﬁ).
As a — 0, case (a) again emerges. As « increases from zero, the boundary layer shrinks and vanishes as ¢« — 1
and the core solution becomes uniformly valid.

These examples show that thin domains spawn asymptotic solutions in which the details of the domain shapes
determine the solution structures. In the sections to follow, mainly two-dimensional problems in fluid mechanics
will be discussed.

Lubrication scaling In these 2D fluids problems, the coordinates will be (x, z) with corresponding velocity
components (&, w), pressure p, and possibly a temperature 7. Define the lubrication scalings and scaled variables
as follows:

4

X

x=2 z=2=, 30
l hm (30

!

U=—, W=—01, @31)

and

p=2. (32)
Px

The x-velocity scale u, is chosen by the dominant physical force balance, and the pressure scale p;. is chosen so
that p, balances either the viscous forces or the inertial terms in the x-component of the Navier—Stokes equation.
For Re « 1,

Iyl
pr=Lt2 (33)
M
and Re > 1,
2
Py = pi, (34)
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Fig.2 Ahorizontal rectangular domain containing liquid sul;j'ect
to a temperature gradient that drives a steady buoyancy-driven 2D
steady flow [2] @

X

Fig.3 A sketch of the recirculation of the buoyancy-driven con-
vection near the right-hand end of the domain of Fig. 2121



I ——— - Imroduce ruprication

scalings, (30-32), in which u, =« / h and define p,, by (33), along With a scaled temperature 6

2(T — T
oI —-To) | (35)
AT
so that
—1<6<1 on—-1<X<l. (36)

Here « is the thermal diffusivity.
The scaled governing system is then

Pri(UUy + WUz) = —Px + Uzz + €2Uxx, (37
3SPri(UWx + WW3z) = —Pz + €2 [Wzz + €Wxx]1+ Ra 6, (38)
Ux+ Wz =0, (39
e(Ubx + Woz) = 072z + €20xx . (40)

with zero flux conditions, say, on top and bottom,
6z=0 onZ=0,1 (41)

and no slip on all boundaries,

UW=0 onZ=0,1, (42)
UW=0 onX==zl, (43)
as well as

6 =7x1 onX ==l, (44)
where Pr = v/« is the Prandtl number, v is the kinematic viscosity. Ra is the Rayleigh number, Ra =

agATh4 /(2Lkv), and « is the volume-expansion coefficient in a linear equation of state for density p. The core
solutions (valid away from X = =£1) can be represented as

U, W) = (Up, Wo) + €Uy, W)+ (45)
P=Py+eP+-- (46)
6=6)+¢€6+--- @7
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for fixed Pr and Ra. At leading order in €

— Py, + Unyy =0, 48)
~Py, +Ra by =0, (49)
Uoy + Wo, =0, 3 (50)
80,, = 0. 1)

Equation (51) allows a standing gradient in temperature end-to-end,
o = —X, (52)

which satisfies the end conditions without the need to introduce a thermal boundary layer. Equation (49) can be
integrated to yield

Py = —Ra XZ + TI(X), (53)

where the excess pressure IT is the ‘integration constant.” This is substituted into (48) yielding

Uoy; = —Ra Z + n'(x) (54)
so that

1 3 |
U0=—6Ra z —Z)+-2—1'I (zc—-2), (55)

which satisfies the boundary conditions (42) for Uy. Here I1 is, as yet, undetermined. A consequence of the presence
of the solid endwalls and the equation of continuity is that across any vertical cross-section, the flow rate Q must
be zero. At leading order

! 1 1,
Q()=‘[0 UOdZ:EZRa_EH =0

so that
, 1
mx) = ERa. (56)

It is this pressure gradient, generated by the presence of the endwalls, that is responsible of the turning of the flows.
Before examining the end layers, consider the O(¢) thermal field, generated by Eq. (40),

1 1
6]22 = U090x = Ra [6(23 _ Z) . Z(ZZ _ Z)],

which integrates to

1 1 1 1
O =—Ra|—2°— -2+ -2°
) 12Ra[102 7 +6Z] (57)

and satisfies 36, /0Z = 0 at Z = 0, 1. Form (57) shows that the horizontal temperature distribution, 8y = —X,
interacts with the leading-order shear to generate a vertical temperature distribution. The core velocity field (Ug, Wo)
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Fig. 4 An open rectangular box containing liquid with upper
free surface. A horizontal temperature gradient induces a steady
flow driven by the variation of surface tension with temperature

(4]

must be corrected at X = =1 by boundary layers having thicknesses O (¢) [2]. This gives rise to turning flows like
those sketched schematically in Fig. 3.

Cormack et al. [2] generate higher-order core and turning flows and discuss in detail the fluid mechanics of the
convection in a slot. The ‘thinness’ approximation has given rise to a quasi-parallel core flow plus boundary-layer
corrections as shown.

2.3 Steady thermocapillary convection in a slot
Consider the slot shown in Fig. 4 as considered by Sen and Davis [4] a flow similar to that in Sect. 2.2 except that

now gravity is absent and the upper boundary is a deformable interface between the liquid and a passive gas. On
the interface there is surface tension ¢ that depends linearly on temperature T,

o(T) = oo — y(T — To), ) (58)

where Ty is a constant and typically ¥ > 0 so a liquid flow is generated on the surface as shown, and due to viscous
drag generates a bulk flow. Again, the bulk equations are as in Sect. 2.2 but with g = 0. The boundary conditions
. on the sides and bottom are identical to the previous but now on the interface S, z = A(x), there is the kinematic
condition

w = uhy, (59
the Laplace relation

Sijninj = ok (60)
and the Marangoni balance tangent to S
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do aT
Sijnjti = % = Vs (61)

and, say, the zero thermal flux condition,

0
—T =0. (62)
on
Here the curvature X is
h
XX (63)

K=—2
T (1 + k22

s measures of arc length on S, n and t are unit normal; and tangential vectors on S; and S;; is the stress tensor for
a Newtonian liquid. Introduce lubrication scales (30-32) with u,. chosen by the Marangoni balance (61) and p, by
(33).

AT
Uy = e(y_) (64)

"
and define the Marangoni number M,

K K
and the Prandtl number Pr,
Pr=". (66)
K

In addition, 6 is defined by

- T
2T 67)

AT

The scaled governing system is then
eMPr Y (UUy + WUz) = —Px + Uzz + €*Uxx, (68)
EMPr (UWy + WWz) = —Pz + €2 (Wzz + €2 Wxx), (69)
Ux + Wz =0, (70)
eMUbx + Woz) = 0z7 + €20xx (71)
with conditions on solid boundaries
U=W=0, 6 =31 onX = =+1, (72)
U=W=0, 6=0 onZ=0. (73)

The governing interfacial conditions have the form

—P +2%(1 + €2H2)™! [(WZ — HxUz) + € Hx (=Wx + HXUX)] =C  Hyx (1 + 2HE) 1+ ¢7'CO),
(74)
(1 — €HR)(Uz + €Wx) + 262 Hx (Wz — Ux) = —(1 + € H{)2(0x + Hx82), (75)
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(1+€*H3)"V2(07 — €Hx0x) =0, (76)

where C is the capillary number, and C = pu./oy.
In addition, one needs to specify conditions at the contact line where the interface intersects the solid boundary.
For simplicity, here, take the meniscus to attach to the sharp corners of the slot

h(xl) = ho.

See {4] for more general cases. The dependent variables can now by expressed in power series of € with one
observation necessary. Letting ¢ — 0 in Eq. (74) with C = O(1) formally eliminates surface tension from the
problem. In order to retain surface tension it must be made large, viz.,

C=¢*C, C=0() ase—0. an

Given this assumption, write

WU, W) = Up, Wo) +€U1, W) + -+, (78)
60=6)+¢€6+.--, 79
H=1+€¢H +---. (80)
The governing system at O(1) is then

Uoz, ~ Poy =0, 81
Py, =0, (82)
Uoy + Wo, =0, (83)
6oz, =0 (84)
with the same homogenous conditions on Z = 0 as above but now with

—Py = C'_IH1XX

Uy, = —boy onZ =1. (85)
6o, =0

As in Sect. 2.2, the leading-order thermal field from (84) is
60 = X, . (86)
which satisfies the end conditions without the need of introducing thermal boundary layers. At O(e) there is again

an induced temperature field that has a vertical profile. From Eq. (82), Py = Po(X) only, and then Eq. (81) gives
Uo

Uo(Z) = Poy (%22 - z) +Z, (87)

which satisfies Up(0) = 0 and Up, (1) = 1. The pressure is determined by setting the horizontal flow rate to zero,

1 1
= ——P - =
Oo 3 0X+2 0 (83)
so that
3
P, ==, 89
Ox 2 ( )

@ Springer



which induces deformation of the interfaces as shown in Fig. 4; there is a depression near X = —1 and an elevation
near X = 1. To see this explicitly, consider the leading-order normal-stress balance from Eq. (74), viz

C'Hyyy=—Po= —EX (90)
with

Hi(£1) =0 1
yielding

H = %é[x - X% (92)

the deformation is shown in Fig. 4.

The O(e) end layers must then be computed and matched to the core giving the turning flows at each end [4],
reminiscent of that in Fig. 3.

Again, it is seen that by taking advantage of the thinness of the domain, analytical expressions can be obtained

leading to a quasi-parallel core and interface deformation. The boundary-layer corrections are similar in spirit to
those in Fig. 3.



2.4 Hele-Shaw approximations

Consider now the three-dimensional flow between two closely-spaced parallel planes as shown in Fig. 5. There is
an obstacle in the gap in the form of a circular cylinder normal to the planes and having a radius large compared to
the gap width.
These flows in three dimensions have coordinates (x, y, z) with corresponding velocity components (#, v, w).
The first step is to integrate the equation of continuity across the gap

h
/ (ux +Uy +wz)dz =0
0

yielding

a (" a [
———/ udz + — / vdz + w(h) — w(0) = 0. 93)
ax Jy ay Jo
Because of the zero-penetration conditions on the walls, the result has the form
Vi - vy =0, 94)

where Vy is the x—y gradient and the average horizontal velocity is
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1 h 1 h
vH=<uH,vH>=(E /0 wiz, /0 vdz), (95)

seemingly two dimensional. This is called Hele-Shaw [5] flow. Consider (inehialess) Stokes flow in the gap giving
1
(un, vy) = —(h — )zVu Py (96)
wh

Now note that the vorticity component, wg = dun/dy — dva/9x, of the flow field is zero, viz.
Vg x vy =0, 97

so that there exists a (average) velocity potential @ such that

Vg =0 (98)
with
Uy = q;x, UH = ¢_’y 99

and either at any fixed z, or for the vertically averaged version of Eq. (96), the streamlines about the obstacles
generated by this viscously-dominated flow describe those of (high Reynolds number) potential flow; see Fig. 5b [6].
Of course, the approximation fails in an O (¢) neighborhood of the obstacle, but the usefulness of the approximation
should not be underestimated. Again, thinness defines a good approximation.

There is a related set of approximate equations valid for flow through porous materials. It again relates average
velocities with pressure gradients. Here, one considers velocities averaged over many pore lengths and yields
Darcy’s law [7]

“o _
TVp=". (100)

where k is a proportionality constant called the permeability of the medium. The spirit of Darcy’s law is the same
as that of Hele-Shaw flow but in contrast it is applicable in three-dimensions and is not limited to thin domains.

(@) z
: Y
h
l_\ R Cx
0
)

@ —

X_ ___ i

< Ay

o ——

Fig. 5 Flow past a circular obstacle in a Hele-Shaw cell: a side
view, and b top view, [6]



2.5 Slender-body theory

Flow past a slender body is a situation present for a wide range of Reynolds numbers applying to flow over
spermatozoa, micro-organisms, long-chain polymers, torpedoes, submarines, and rockets. In all these cases, a
slender body induces a ‘thin’ flow near-by, but the far-field flow is not thin, and matched-asymptotic expansions is
required to link the two. This is analogous to the slot flows in Sects. 2.2 and 2.3 where the ‘thin’ core flows must
be linked with boundary layers at the ends which are not thin.

Consider first uniform potential flow past a slender body aligned with it as shown in Fig. 6. This exposition
largely follows Hinch [8] and in greater detail in Cole [9]. For simplicity, take the body to be axis-symmetric of
length / and radius r = F(z). The body is slender if

e=Fu/l <1, (10D)

where Fyy = max F(z) on — % <z < % Note that this is an external-flow problem. The flow is expressible in

terms of a velocity potential ¢ such that

(a) r = F(z)
W=¢r, w=g, U ., (o)
: _——
which satisfies - l *
1
Vg = —(r9); + 9 = 0 ®) r =\f (@) (103)
U, — s
with uniform flow at z — —o0, = ~— —
] ———
—> Uoz 104
Y ’ Fig. 6 Uniform flow past an axisymmetric obstacle: a where the (104)
. . ends are tapered, and b where the ends are bluff
and zero penetration of the flow into the body
on X @r—Fo, =0 onr=F(z). (105)
Introduce lubrication scalings in cylindrical coordinates appropriate to the near field as follows:
r z
R=—, Z=-, 106
Py l (106)
vel o=-2 ad p=-"L (107)
Uo Uo Fum U
The governing system is then
1
= (RPRr + dzz =0, (108)
®r—€2F'®7 =0 on R = F(Z) (109)
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and

O~Z asZ — —oo.

Represent @ as a formal expansion in €2,
D =Dy +e2Dy+---.

At O(1), the system (108-110) yields
®g = Ag(Z) + BpZIn R

with

®o, =0 on R =F(Z),

which gives By = 0, and hence
Qo(Z) = Ao(2).

At O(e?), system (108-110) yields
¢pp%%ﬁ+@mk+m
with

@1, = AgF on R =F(2),

which gives

) = —%Ang + A2(Z) + B;InR,
where

By(Z) = FF' Ay + %FA{).

In the outer region, R must be rescaled as

so that

1

';(p¢p)p + ¢z =0 onp=¢€F(2),
®p —p'¢p, =0 onp=eF(2).
Write an expansion in powers of €2,

¢~ do+eipr+.
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Clearly, ¢p = z and in the outer region the body shrinks to a line on p = 0.
A source at the origin is by definition

1 dz
_ 1 123
b= | = (123)

which is a solution of Laplace’s equation. In the outer region, the slender body is now a line on —% <z< %, and

the solution can be represented as a superposition of forms (123) as follows:

~ _l 2/1/2 f(f)d‘g: 124
¢(p’ Z) Z 26 —1/2 m' ( )

In order to match with the near-field solution, one needs the small-p asymptotics (for p — 0). A bit of subtlety
[8,9] is required to give

¢~z— ezf(z)l:ln % + 0(1)] as p — 0, (125)

which must be matched to Eqgs. (114, 117). Not surprisingly, at leading order

Ao(z) =z (126)
and
f@) = By(z) = FF'. (127)

It turns out that the formal expansion (111) is insufficient and needs to be augmented [8,9] by a logarithm term to
give

As = ByIne™ ) (128)

and now a uniform approximation may be obtained which allows one to calculate the forces exerted on the body
by the fluid.

The solution would be valid for the whole length of the body shown in Fig. 6a because the ends are ‘thin,’ but
fail near the ends of Fig. 6b where the body has blunt ends. A special local expansion would then be required in the
latter case to find valid representations near the ends.

In the opposite extreme Re — 0, one has (inertialess) Stokes flow. Now for this axisymmetric problem, one has
the biharmonic equation of the Stokes stream function ¥, V44 = 0 with conditions of no penetration on the body
as well as no slip; there is uniform flow as z — —oc. The same procedure as above is followed (see Cox [10] and
Batchelor [11]). The far field sees a line, and the solution is now represented by a superposition of Stokeslets (rather
than sources) and gives rise to a representation for the velocity as

1 I x — X)(x — X)
v(x) = &Wfo f(s){lx_X|+ p— }ds (129)

in terms of the Oseen tensor, and s is the arc length. The slenderness can be used to argue that f(s) ~ f(sg), a
constant, which can be removed from the integral allowing direct integration. Again, one can obtain the forces [11]
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on the body. In
flow is

Particular, the drag Dy

and

2wl
Dy ~ Uo.
" in ey

131



2.6 Fiber forming

Glass and polymer fibers are manufactured by placing molten material in a chamber, see Fig. 7, and forcing it
through an orifice, pulling the strand to a distant wheel, and winding the fiber at a given speed.

Like the flow described in Sect. 2.5, the geometry is slender but in contrast to that case, fibers forming is an
interior flow confined within a free surface.

In actual manufacturing, the molten liquid is at high temperature, and as it emerges through the orifice is subjected
by cooling jets of air that reduces the temperature to the laboratory ambient in a matter of one or two centimeters.
This rapid cooling causes the material properties to undergo massive changes in, for example, the viscosity which
can change by factors of 1020,

In the present discussion, the method of approximation is described on the simplest case of an isothermal,
Newtonian-viscous fluid with constant viscosity, initially with gravity g, surface tension o, and inertia being ignored.
Here the liquid emerges from the orifice of radius ; located at z = 0 and is wound at axial speed Wy at z = [.
In axisymmetric cylindrical coordinates (r, z), the velocity components are (u, w). The lubrication scalings are

@_ Springer
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Fig.7 A sketchof afiber-forming device in which liquid emerges
from an orifice and is wound by a wheel [ units away



introduced but now with the radial pressure gradient balancing the viscous forces. The scaled system has the form
(see Schultz and Davis [12]):

1
E(RU)R + Wz =0, (132)
1
eRe(UUg + WUz) = —Pg + [—E(RU)R:| +€2Uzz, (133)
R
1
0=—€2P; + E(RWR)R +e2Wyz. (134)

On the interface R = F(Z)

U=WFz (135)
and
e| P+ €2 FD) —2[Ur + £ FEWz — Fo(?Uz + W]} =0 (136)
and
262 Fz(Ug — Wz) + (1 — €2F2)(€*Uz + Wg) = 0. (137)

Further, all physical quantities are bounded on the axis,

[U|, |W|,|P|<oo onR=0. (138)
At the orifice, the liquid attacl?es to the inner corner and

U=UR), W=W(R), R=1 onZ=0. (139)
Finally, the fiber is woundup at Z = 1

U=0UwR), W=Wy(R). (140)

The slenderness approximation breaks down near a boundary layer at Z = 0 requiring a numerical solution of the
full equations with € = 1. This boundary layer will be not be pursued here. Instead, replace condition (139) by the
cross-sectional average of W(R), called Wy. Similarly, replace conditions (140) at the winder by an average value
of Wy called Wyy.

Define
o = In(Wy /Wp). (141)
and
e=1. (142)
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Express all dependent variables in powers of €2. At leading order,

1
E(RUO)R + Wo, =0, (143)
1
[—(RUO)R] — Pop =0, (144)
R R L
1
= (RWo)g =0 (145
with
Ug = WoFyz on R = Fy, (146)
Wor =0 on R = Fy, (147)
Py —2(Upy — Fo,Woz) =0 on R = Fy, (148)
[Uol, [Wol, [Pol<oo onR=0, (149)
1
2/ RWodR=1 onZ =0 (150)
0
and
2 (Fo
— RWydR =¢e%* onZ = 1. asn
Fy Jo

This leading-order system has simple solutions, viz.

Wo = Wa(2), (152)
where W is undetermined at this stage. Equation (143) then yields

Up = — % RW,(2)

and the normal-stress condition (148) gives

Py = —W)(2). (153)
The end condition then gives

F2Wo = 1. (154)
To determine W), one must examine the O (€2) equations. From Schultz and Davis [11],

Wy = —%RZW({ +Wh(2),

where W is arbitrary. If this is substituted into the O(€?) shear-stress condition Wy, = 2Fy,(Wp, — Up,) — Ug;,
one finds that

FoW{ + 2FWj = 0. (155)
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Equations (154, 155) give the leading-order fiber equations. Eliminating Fy between the two gives

WiWo = W(’)Z, (156)
subject to

Wo(0) =1 (157)
and

Wo(1) = e*. (158)

The solution for the speed is then

Wo(Z) = e** (159)
and the radius is

Fy(Z) = e72/2, (160)

Schultz and Davis [12] then derive the equations including the physical factors earlier ignored to obtain

1 IR
3OVEW ' — W) + §c~1w(3w0 2+ ReWoW)—G =0 (161)
with

Wo =1, (162)
W) =e®. (163)

Here the scaled capillary number C is

C= = 0(1) (164)

the scaled Reynolds number Re is

- —Tw,
Re = e_v"_’. = 0() (165)

and the gravitation parameter G is

-2..2
€ T
c=281

= 0(1). (166)

System (161-163) is identical to that of Matovich and Pearson [13] who assume one-dimensional flow at the outset
and use physical reasoning to obtain this result.



2.7 Shallow-water theory

Traditionally, when studying gravity-driven water waves, one assumes that the fluid is inviscid because typical
Reynolds numbers are very large and the viscous boundary layers on the free surface and bottom of the channel are
relatively passive. Further, if at time zero, the flow is irrotational, then vorticity remains zero forever. As shown in
Fig. 8, if hg is the mean depth of the water and / is a typical wave length of a wave, then the channel is considered
shallow if

h
€=TO<<1.

For two-dimensional waves, introduce the lubrication scalings into the potential flow equations with u, = /gho
and pressure py = pu? = pghy into the Euler equations yielding

Ur+UUx+ WUz = —Py, (167)
eWr+UWx +WWz) =—-Pz — 1, (168)
Ux+Wz=0 (169)

with the zero vorticity condition
Uz —e*Wx =0 (170)

and the boundary conditions are

Hr+UHx =W onZ=H, 171
P=0 onZ=H (172)
and

W=0 onZ=0. 173)

Here, the term —1 in Eq. (168) represents gravity in non-dimensional form. If one integrates the continuity equation
(169) over Z,

H H
a
/ Ux +Wz)dZ = 3—)?/ UdZ -UH)Hy +WH)—-W(O0) =0
0 0
uses W(0) = 0, and the kinematic equation (171), one obtains a global mass conservation equation

9 H
H _— UdZ = 0. 174
T+3Xf0 (174)
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THE PORE AT CALOTTTAL

Fig. 9 A period cartoon of solitary wave. http://cdn.grindtv.com/uploads/2014/09/Calcutta-tidal-bore_1880.jpg

One can now obtain leading-order approximate solutions. From (170), Up, = 0, so that Uy = Up(X, T). From
(174) then

Ho; + (UoHo)x = 0. (175)
Now, from Eq. (168) with condition (172), the pressure, which vanishes on the free surface, is purely hydrostatic,
Py=Hy—-Z (176)
and because U is independent of Z, Eq. (167) becomes

Upy + UpUpy = —Hpy . arn

Equations (175-177) are the classical shallow-water equations.

This system is strongly nonlinear and can be used to describe solitary waves and its generalizations can be used
to monitor the dynamics of the Earth’s atmosphere, which itself is a thin shell enclosing the Earth. See Fig. 9 for a
period cartoon of a solitary wave.

Many of the uses of shallow-water theory are in oceanographic or meteorological applications in which case one
may have to augment Eqs. (175-177) by the Earth’s rotation [14,15].
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2.8 Thin viscous films

Consider now a viscous film of mean thickness 4o on a substrate as shown in Fig. 8. Here the upper free surface at
z = h(x, t) is susceptible to various force fields. Gravity could be directed upward or downward, a heated substrate
could induce thermocapillary (Marangoni) stresses and the liquid could evaporate. If the film has thickness smaller
than 0.1 pm, van der Waals attractions can generate an instability that l€ads to the rupture of the film in a finite
time. All of the possibilities are discussed in great detail in Oron et al. [16]. Here the single case of van der Waals
(vdW) instability is discussed as first treated by Williams and Davis [17].

The vdW force can be represented as the gradient of an excess potential ¢ that induces a body force across the
layer, say

A
= — 178
=05+ (178)
where A is the Hamaker constant and ¢p is a constant. The forces are attractive, A > 0, if the liquid poorly wets
the substrate.
Typically, A is numerically very small so that ¢ is appreciable only for / very small. Introduce lubrication scales
appropriate to instabilities where unstable wave lengths A are much larger than the film thickness so define

€ = ——. (179)

The lubrication scalings give X = 2nx/A, Z = z/h,U = ufu,, W = (w/ux)e, and u, = v/h. The pressure
scale is given by pu, /eh. Define the scaled generalized Navier—Stokes equations augmented by the van der Waals
potential

€Re(Ur + UUx + WUz) = —(P + ®)x + Uzz + €*Uxx, (180)
E3Re(WT +UWx +WWz)=—Pz+e(Wzz + €2Wxx), (181)
Ux + Wz =0, (182)
z

with

U=W=0 onZ=0 (183)
and

W=Hyr+UHy onZ=H. 0 (184)

Fig. 8 A liquid film on a solid substrate having a wavy distur-

Atleading order in €, bance of the upper free surface

Py = Py(X,T)

and from Up,, = (Py + D)y,

1
Up = (Po+ D)y (522 - HZ),
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Fig. 10 Successive interfacial shapes of a van der Waals insta-
bility in a liquid layer and leading to rupture in a finite time



which satisfies Up, = 0on Z = H and Uy = 0on Z = 0. If Uy is substituted into the global conservation of mass,
Eq. (174), one obtains a nonlinear evolution equation for H, viz.

Hr + (H*Hyxx + H 'Hy)x = 0. (185)

This equation from Williams and Davis [16] contains surface tension effects via forward, higher-order diffusion and
vdW instability via backward diffusion, the ‘diffusivity’ H 1 increasing in depressions, accelerating as H — 0
locally. Figure 10 shows a sequence of interfacial shapes leading to rupture. In physical times, the rupture occurs
in milliseconds.

In all the thin-viscous-film applications, the advection/convection effects are absent in the leading order, and
hence strongly nonlinear evolution equations can be derived in 2D or 3D. These descriptions result from asymp-
totics that regard slopes as small but amplitudes as arbitrary. The same approach allows one to include buoyancy,
thermocapillarity, phase transformation, etc. and to monitor their interactions [16].



2.9 Viscous spreading of drops

Consider placing a liquid drop on a smooth substrate, shown in Fig. 11a. The drops will spread, Fig. 11b, due to
two mechanisms [18]. Firstly, if the meniscus h(X, 0) is not an equilibrium shape, viz an arc of a circle, capillary
pressure gradients will form that drives the drop toward equilibrium. Secondly, if the contact angle 6 is not an
admissible static angle, the edge of the drop will ‘pull’ outward until 6 — 6.4, the equilibrium angle. If 64 > 0, the
drops stop at some stage, but if 64 = 0, complete spreading drives the drop forever (really, until there is a mono-
molecular film). There is a conceptual complication at the contact line. Dussan and Davis [19] have shown that if
the no-slip condition is applied everywhere on the wetted area, it requires an infinite force for a Newtonian viscous
liquid to spread. Thus, slip must be allowed on the substrate near the contact line. The formulation for spreading
drops is identical to that of viscous films are discussed in Sect. 2.7 in that the Navier—Stokes and continuity hold in
the bulk. On the interface, the kinematic condition holds as well as zero shear stress and normal stress balancing
surface tension times curvature. On the wetted substrate, there is zero penetration, w = 0, but now the slip must be
allowed, say,onz =0, —a < x <4,

u = Pug, (186)
@, - hz,0) f -0
\ y \{
h 0
-— / ! _L I 'S
-a 0 a
(b) z
Oa
- -a 0 a o

Fig. 11 2D spreading of a liquid drop: a the drop at time t =0,
and b the drop at a later time



where 8 # 0 relieves the non-integrable singularity in the stress. The slip coefficient 8 is numerically small but
B —> 0 is a singular perturbation. Finally, one must apply conditions on the contact lines. Say at x = a(z), the
height of the drop is zero,
h(x,a(t))=0 (187)
and the contact angle is given,
hy(x, xa(t)) = Ftané,
where 6 may be the constant 84 or 8 = 8(UcL) where Ucy, is the speed of the contact line.

The concept of thinness here applies when tan 6 &~ § = € « 1. The first use of lubrication theory to the spreading

of a thin drop is due to Greenspan [20]. Using his ideas, but slightly changing his model, leads to the following
leading-order non-dimensional system:

cm Hr + [(H3+3H2)hxxx]X =0 (188)

here f is the scaled slip coefficient. With
hX,£A@) =0 (189)
with either
Hx(X,+A@®)) = F1 (190)
or using the microscopic angle 6 in
Ar = b3 (X, £A(1)) — 63. (191)
When 6 = 6(U), one finds asymptotically the form (191) for the microscopic angle (see Cox [21]). Here c;, is a
non-dimensional version of d8 /dUcr, at Ucy, = 0.

One can analyze system (188-191) to find that
AT)~T% asT —-

for6s = 0or A(T) - A® as T — oo for 64 > 0. A table of exponents « for theorw, and experiment is given in
Ehrhard and Davis [22].



3 Dynamic thinness

3.1 Steady boundary layer over a flat plate

In all previous cases, the thinness of the domain is known a priori. Consider now the case of uniform flow Up over
the leading edge of a plate aligned with the flow. The steady flow is measured by Reynolds number Re,

Re = Upl/v,

(a)

™y
"

——

Fig. 12 A boundary layer on a flat plate with sketched velocity
profiles: a for a plate with a bluff leading edge, and b for a plate

(192)
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)
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Fig, 13 Oscillatory flow in a circular tube with a Stokes layer on
the wall and oscillatory plug flow in the core

with a tapered leading edge

where | measures a ‘long’ length from the leading edge as shown in Fig. 12; the leading edge may be blunt as in
(13a) or tapered as in (13b).

Prandt] [23] recognized for Re >> 1 that the no-slip condition on the plate induces a thin viscous region near
the plate, whereas at a distance the flow is inviscid. See O’Malley [24] for a detailed history of the early years of
boundary-layer theory.

One introduces lubrication scales, (30-31), using pressure scale (34) where z ~ h, a length normal to the plate
giving € = /1, the special form taken here is

e =Re /2 asRe — o0, (193)
giving rise to at leading-order the boundary-layer equations

UUx + WUz =—-Px+Uzz, (194)
0=-—Pz, (195)
Ux+Wz=0 (196)
with the boundary conditions

UW=0 onZ=0, X>0

and the matching condition

U—-1 asZ-— o0, X>0. 197)

Clearly, the loss of the term Uxx in Eq. (194) is formally a singular perturbation but in this case a fortunate one
in the sense that a boundary condition for X — oo required for solving the Navier-Stokes equation, impossible
to pose systematically, is now not required. The system (194-196) is parabolic in X so only a profile at fixed X is
required for solutions valid for larger X to be obtained. Clearly, a neighborhood of X = 0, the blunt-nose leading
edge of Fig. 12a must be excluded as not having lubrication-like scaling. On the other hand, the tapered nose of
Fig. 12b requires no such excision.

The solution of system (194-196) leads to U-profiles sketched in Fig. 12 that are used to calculate the skin
friction of the plate.



3.2 Unsteady viscous flow in a channel

Consider now a channel of width 2/ shown in Fig. 13 in which a zero-mean oscillatory pressure gradient
Py = Agcoswt ) (198)

is applied. When the angular frequency w is large in the sense that boundary-layer thickness §,

8= Qv/w)'/? (199)
satisfies
5§ < h. (200)

In this sense, the boundary layers are thin. Outside the boundary layers, there is a potential flow that satisfies

uy = —Ag cos wt (201)
or
A
= —2%sin ot (202)
w

representing an oscillating plug flow. This cannot satisfy the no-slip conditions on z = A, so lubrication scales
are introduced near the walls. For z near £, write

Z=(1-2)/8 (203)

giving rise to the boundary-layer equations:

2Ur = Uzz — AjcosT (204)
with

W,U=0 onZ=0. (205)
Near Z = h/3,

U=Ae %cosT (206)

v

known as the Stokes layer [25]. Figure 13 shows how the approximate solution has an inviscid core, a plug flow
that oscillates with the pressure field, and boundary-layer corrections that bring the core flow to satisfy the no-slip
condition.

This example is simple in that the full Navier-Stokes problem is linear and can easily be solved without invoking
‘thinness.” However, if the boundaries were curved, the full problem would be nonlinear. For small amplitude A,
one would again have Stokes layers on the walls, but now at O (A2), there would be steady drift in a thin layer of
thickness O(8/A1), a second, thicker layer containing the Stokes layer [26].
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