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Liquid-State Wetting/Dewetting

Figure: Water droplets in our daily life.
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Solid-State Dewetting

Most thin films are metastable in as-deposited state and dewet to
form particles (C.V. Thompson, Annu. Rev. Mater. Res., 2012).

The dewetting can occur well below the melting temperature of the
material, i.e., which is still in the solid-state.
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Physical Experiments

Dewetting Patterned Films: Ni(110) Square Patches1

1J. Ye & C.V. Thompson. PRB, 2010.
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Physical Experiments

Dewetting on SOI system:

Figure: Abbarchi et al., ACS Nano, 2014.
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Physical Experiments

Dewetting of Ultrathin Silicon Films: 2 3

2Naffouti et al., Science Advances, 2017.
3Jiang-Bao*-Thompson-Srolovitz, Acta Mater., 2012.
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Solid-State Dewetting of Thin Films

♠ Intrinsic Physics:

Is driven by capillarity effects.
Occurs through surface diffusion controlled mass transport.
There exist moving contact lines in the thin film - substrate - vapor
interface.
Surface diffusion+Moving Contact Line.

♠ Applications:

Play an important role in microelectronics processing.
A common method to produce nano-particles.
Catalyst for the growth of carbon nanotubes & semiconductor
nanowires.

♠ Phenomena Observed from Experiments4:

Pinch-off, Mass-shedding Instability, Geometric Complexity,
Corner-induced Instability, Rayleigh Instability...
Crystalline Anisotropy, Edge Faceting...

4C.V. Thompson. Annu. Rev. Mater. Res., 2012.
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Surface Diffusion – From Physics

I Surface Diffusion: is a general process involving the motion of
adatoms, molecules, and atomic clusters (adparticles) at solid
material surfaces. (From Wikipedia, the free encyclopedia).

I The original work by W.W. Mullins (J. Appl. Phys., 28:333, 1957).

� The free energy: W =
∫

Γ
γ0 dΓ, where Γ is a moving surface.

� Chemical potential: µ = δW
δN = Ω0

δW
δΓ = Ω0γ0H, where H is the

mean curvature of the surface.

� Constitutive relation: J = − Dsν
kBT
∇sµ.

� Kinematic relation: Vn = −Ω0(∇s · J)

I Surface Diffusion equation:

Vn = B∆s H, where B =
Dsνγ0Ω2

0

kBT
.
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Surface Diffusion – From Mathematics

Given a energy (shape) functional, e.g. W (Γ) =
∫

Γ dΓ, then we can define:

I Mean curvature flow (MCF): (L2-Gradient Flow)

Vn = −H,

I Surface diffusion flow (SDF): (H−1-Gradient Flow)

Vn = ∆s H.

I MCF and SDF both dissipate the energy functional, and SDF
conserves the total volume while MCF does not.

I Analogous to: Allen-Cahn and Cahn-Hilliard equations, but design
numerical schemes which can preserve the structure, dissipation and
properties seems much more difficult!
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Challenges for Modeling & Numerics

(1). Surface Diffusion Problem

Mean Curvature Flow: Vn = −H, e.g., Grain growth, Grain
boundary migration, Cellular Structure ...

Surface Diffusion: Vn = ∆sH, e.g., Solid-state dewetting, Sintering,
Self-organized quantum dots ...

(2). Moving Contact Line Problem

widely studied in fluids by many researchers

... but still rarely known for solids.

(3). Multi-Physics, Multi-Scale Problem

The substrate may be rough and heterogeneous.

It includes many other physical effects, e.g., grain boundary, elasticity,
alloy ...
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Modeling Techniques

(1). Sharp-Interface Approaches

Isotropic (Srolovitz-Safran, JAP, 1986)

Weakly anisotropic (Jiang et al., PRB, 2015)

Strongly anisotropic (Jiang et al., Scripta Mater.,2016)

(2). Phase-Field Approaches

Isotropic (Jiang et al., Acta Mater., 2012.)

Weakly anisotropic (Dziwnik-Munch-Wagner, Nonlinearity, 2017)

Strongly anisotropic ( still not ?)

(3). Kinetic Monte Carlo Approaches, e.g.,

Dufay-Pierre-Louis, Phys. Rev. Lett., 2011.

(4). Discrete Chemical Potential Approaches, e.g.,

Carter-Roosen-Cahn-Taylor, Acta Metall. Mater., 1995.
Klinger-Rabkin, Acta Mater., 2012.

(5). Other Approaches, e.g., level set, VOF, IBM ... ???
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Total Free Energy in 2D

♠ The total Interfacial Free Energy of the system:

(Bao-Jiang*-Srolovitz-Wang, SIAM J. Appl. Math., 2017)

W (Γ) =

∫
Γ

γ(n) dΓ + (γFS − γVS) · (x rc − x lc)︸ ︷︷ ︸
Wall Energy

γFV = γ(n) : The energy density of the film-vapor interface,

γVS : The energy density between the vapor-substrate,

γFS : The energy density between the film-substrate.
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Thermodynamic variation in 2D

Introduce a family of perturbed curves {Γε}, ρ ∈ I = [0, 1]

Γε = X(ρ, ε) : I × [0, ε0]→ R2,

Introduce a smooth deformation vector-field:

V(ρ, ε) =
∂X(ρ, ε)

∂ε
, ∀ε ∈ [0, ε0],

For the shape functional W (Γ), define its first variation with respect
to any smooth deformation vector-field V as

δW (Γ; V) = lim
ε→0

W (Γε)−W (Γ)

ε
.
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Thermodynamic variation in 2D

Theorem (First variation)

The first variation of the free energy functional defined above in solid-state
dewetting problems with respect to any smooth deformation vector-field V
is written as a:

δW (Γ; V) =

∫
Γ
[−(∂sξ)⊥ · n] (V0 · n) ds +

[
(ξ2 − σ) (V0 · e1)

]∣∣∣s=L

s=0
,

aJiang-Zhao, submitted, 2018

where ⊥ represents the clockwise rotation of a vector by 90 degrees,
ξ = (ξ1, ξ2) is the Cahn-Hoffman vector, σ = γ

VS
− γ

FS
, and e1 = (1, 0)

represents the unit vector along the x-coordinate (or the substrate line).
The deformation velocity is denoted as V0 = V(ρ, ε = 0), and V0 · n
represents the deformation velocity along the outer normal direction of the
interface.
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Cahn-Hoffman ξ-vector

♠ Cahn-Hoffman ξ-vector (D.W. Hoffman and J.W. Cahn, 1974;
J.E. Taylor, 1992).

ξ(n) = ∇γ̂(p)
∣∣∣
p=n

, γ̂(p) = |p|γ(
p

|p|
), ∀p ∈ R3\{0}.

� Mathematical construction of the equilibrium shape : ξ-plot.

� In the isotropic case (i.e., γ(n) ≡ γ0), ξ = γ0n.

� In 2D, it can be expressed as:

ξ(n) = γ(θ)n− γ′(θ)τ .

� In 3D, it can be expressed as:

ξ(n) = γ(θ, φ)n +
∂γ(θ, φ)

∂θ
τ θ +

1

sin θ

∂γ(θ, φ)

∂φ
τφ ,
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Sharp-interface model in 2D

♠ The variation with respect to Γ, x l
c and x r

c

δW

δΓ
= −(∂sξ)⊥ · n, δW

δx l
c

= −(ξ2|s=0 − σ),
δW

δx r
c

= ξ2|s=L − σ.

� Normal velocity for the curve: surface diffusion flow

Chemical potential: Gibbs-Thomson relation

µ = Ω0
δW

δΓ
,

Constitutive relation & Kinematic relation

J = − Dsν

kB T
∇sµ, Vn = −Ω0(∇s · J) =

DsνΩ2
0

kB T
∂ss
[δW
δΓ

]
.

� Relaxed contact angle condition: L2-gradient flow

dx l
c(t)

dt
= −η δW

δx l
c

,
dx r

c (t)

dt
= −η δW

δx r
c

.
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Sharp-interface model in 2D
∂tX = ∂ssµ n, 0 < s < L(t), t > 0,

µ = − (∂sξ)⊥ · n, ξ = ∇γ̂(p)
∣∣∣
p=n

;

subject to the boundary conditions:

(i) Contact point condition

y(0, t) = 0, y(L, t) = 0, t ≥ 0;

(ii) Relaxed contact angle condition

dx l
c

dt
= η(ξ2|s=0 − σ),

dx r
c

dt
= −η(ξ2|s=L − σ), t ≥ 0;

(iii) Zero-mass flux condition

∂sµ(0, t) = 0, ∂sµ(L, t) = 0, t ≥ 0.
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The sharp-interface model

♠ Mass conservation

A(t) ≡ A(0) =

∫
Γ(0)

y0(s)∂sx0(s) ds, t ≥ 0,

♠ Energy dissipation

d

dt
W (t) = −

∫
Γ(t)

(∂sµ)2 ds − 1

η

[(dx l
c

dt

)2
+
(dx r

c

dt

)2]
≤ 0.
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Solid-State Dewetting in 3D

Substrate

Film

Vapor
x

y
z

γFS

γV S

γFV = γ(n)

S

c
Γ

n
Γ

τ
Γ

n

ΓSsub

Figure: Solid-state dewetting in 3D

S : film-vapor interface,
Γ: moving contact line,

n: unit normal vector of S ,
nΓ: unit normal vector of Γ,

cΓ: unit co-normal vector,

γFV , γFS and γVS : surface energy
densities between film/vapor,
film/substrate and
vapor/substrate interfaces.

♠ The total interfacial energy in 3D5:

W = Wf + Wsub =

∫∫
S
γ(n) dS + (γFS − γVS)A(Γ).

5Bao-Jiang*-Zhao, in preparation, 2018
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Thermodynamic variation in 3D

♠ Basic Assumptions:
(1). γFS , γVS are two constants, γFV = γ(n);
(2). The perturbation velocity field V is smooth;
(3). The perturbation on the contact line must make the contact line move

on the substrate.

♠ First variation of the substrate energy:

δWsub(S ; V) = (γFS − γVS)

∫
Γ

V0 · nΓ dΓ.

♠ First variation of the film-vapor interface energy:

δWf(S ; V) =

∫∫
S

(∇S · ξ)(V0 · n) dS +

∫
Γ

V0 · cγΓ dΓ,

where ξ is the Cahn-Hoffman vector,
and cγΓ = (ξ · n)cΓ − (ξ · cΓ)n.
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Sharp-Interface Model in 3D

♠ The dimensionless sharp-interface model in 3D:
∂tX = (4Sµ) n, t > 0,

µ = ∇S · ξ, ξ = ∇γ̂(p)
∣∣∣
p=n

,

♠ subject to the following Boundary Conditions:
(1). Contact line condition:

XΓ ⊆ XOY Plane, t > 0,

(2). Relaxed contact angle condition:

∂tXΓ = −η(cγΓ · nΓ − σ)nΓ, t > 0,

where σ = γVS−γFS
γ0

;

(3). Zero-mass flux condition:

(∇Sµ · cΓ)
∣∣∣
Γ

= 0, t > 0.
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Numerical Challenges

High order and nonlinear geometric PDEs with complex boundary
conditions:

♠ “Marker-particle” method (explicit finite difference scheme) (Wong et
al. Acta Mater., 2000; JCP, 2009...)

1. First update the inner “marker” points by the explicit finite difference
scheme;

2. Then according to the boundary conditions, update the contact points;

3. Do polynomial interpolation and redistribute the “marker” points
uniformly with respect to arc length.

♠ Parametric finite element method for solving geometric PDEs
(E.Bansch et al., JCP, 2004; C.M. Elliott et al., Acta Numer., 2005;
J.W. Barrett et al., SISC, 2007...)
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Variational formulation

parameterize the curves as

Γ(t) = X(ρ, t) : I × [0,T ]→ R2,

where the time-independent spatial variable ρ ∈ I , and I denotes a
fixed reference spatial domain, say I := [0, 1].

L2 inner product〈
u, v
〉

Γ
:=

∫
Γ(t)

u(s)v(s) ds =

∫
I

u(s(ρ, t))v(s(ρ, t))|∂ρX| dρ.

Functional space

H1
a,b(I ) = {u ∈ H1(I ) : u(0) = a, u(1) = b}.
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Variational formulation

Re-formulate the PDEs 6:

∂tX = ∂ssµ n ⇒ ∂tX · n = ∂ssµ.

µ = −(∂sξ)⊥ · n ⇒ µ n = −(∂sξ)⊥.

Find X ∈ Ha,b(I )× H1
0 (I ), µ ∈ H1(I ) with a = x l

c(t) ≤ x r
c (t) = b,

〈
∂tX, ϕn

〉
Γ

+
〈
∂sµ, ∂sϕ

〉
Γ

= 0, ∀ ϕ ∈ H1(I ),

〈
µn, ω

〉
Γ
−
〈
ξ⊥, ∂sω

〉
Γ

= 0, ∀ ω ∈ H1
0 (I )× H1

0 (I ),

6Bao-Jiang*-Wang-Zhao, JCP, 2017
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Semi-implicit PFEM

Finite element spaces

V h := {u ∈ C(I ) : u |Ij∈ P1, ∀ j = 1, 2, . . . ,N} ⊆ H1(I ),

Vh
a,b := {u ∈ V h : u(0) = a, u(1) = b} ⊆ H1

a,b(I ).

Inner product〈
u, v

〉h
Γm

=
1

2

N∑
j=1

∣∣∣Xm(ρj)− Xm(ρj−1)
∣∣∣[(u · v)(ρ−j ) +

(
u · v

)
(ρ+

j−1)
]
.

Find Xm+1 ∈ Vh
a,b × Vh

0 , µm+1 ∈ V h such that

〈Xm+1 − Xm

tm+1 − tm
, ϕhnm〉h

Γm
+
〈
∂sµ

m+1, ∂sϕh

〉h
Γm

= 0, ∀ ϕh ∈ V h,

〈
µm+1nm, ωh

〉h
Γm
−
〈
[ξm+ 1

2 ]⊥, ∂sωh

〉h
Γm

= 0, ∀ ωh ∈ Vh
0 × Vh

0 ,

� Linearization of ξ

ξm+ 1
2 =

{
γ(θm)nm+1 − γ′(θm)τm+1, if γ = γ(θ),

γ(nm)nm+1 + (ξm · τm)τm+1, ifγ = γ(n).
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Isotropic, short island

L = 5,β = 0,σ = cos(3π/4)
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Weakly anisotropic, short island

L = 5,m = 4,β = 0.06,σ = cos(3π/4)
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Strongly anisotropic, short island

L = 5,m = 4,β = 0.2,σ = cos(3π/4)
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Weakly anisotropic, long island

L = 60,m = 4,β = 0.06,σ = cos(5π/6)
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Simulation Results, 3D Case
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Simulation Results, 3D Case
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Simulation Results, 3D Case
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Simulation Results, 3D Case

Wei Jiang (WHU) Solid-State Dewetting May 16th, 2018 38 / 53



Simulation Results, 3D – Rayleigh Instability
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Simulation Results, 3D – Rayleigh Instability
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Onsager’s variational Principle

� The Onsager’s principle was first proposed by Lars Onsager in his seminal work in
1931, on the reciprocal relations in irreversible processes.

� We consider an isothermal system, and let α = (α1, α2, . . . , αn) be a set of state
parameters which can be used to determine the non-equilibrium state of a system.
It satisfies:

dαi

dt
= −µij

∂W

∂αj
,

where W (α) is the total free energy of the system, µij is the kinetic coefficient.

� Onsager’s reciprocal relation:

µij = µji

� There exists ζij (friction coefficient), satisfying ζij = ζji and ζikµkj = δij . So we
have:

ζij
dαj

dt
= −∂W

∂αi
,

� The above equation can be obtained by minimizing the Rayleighian:

R(α, α̇) =
∂W

∂αi
α̇i +

1

2
ζij α̇i α̇j ,

with respect to the rates {α̇i}.
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Application to Interface Evolution Problems

� Let α(t) = (α1(t), α2(t), . . . , αn(t)) be a set of parameters which can be
used to determine the position of the boundaries.

R = Ẇ (α, α̇) + Φ(α̇, α̇),

R(α, α̇) =
∂W

∂αi
α̇i +

1

2
ζij α̇i α̇j ,

� The minimum condition of R with respect to the rates {α̇i} gives the
following kinetic equation:

−∂W

∂αi
= ζij α̇j ,

which describes a force balance between the reversible force −∂W∂αi
and

the dissipative force ∂Φ
∂α̇i

which is linear in the rates {α̇i}.
� Φ(α̇, α̇) is the energy dissipation function which is defined as half the

change rate of free energy dissipation, and the friction coefficients ζij
forming a symmetric and positive definite matrix.
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Why does a reduced-order variational model work?

The original surface diffusion equation can actually be derived from Onsager’s
variational principle

The rate of change of the free energy Ẇ :

Ẇ =

∫∫
S

γ0H vn dS

=

∫∫
S

γ0H [−Ω0∇s · (νV)] dS

=

∫∫
S

µ [−∇s · (νV)] dS

=

∫∫
S

(∇sµ) · (νV) dS ,

The dissipation function Φ is defined as:

Φ =
1

2

∫∫
S

kBT

Ds
|V|2ν dS ,

where kBT/Ds is the friction coefficient for diffusing atoms.

Defining a Rayleighian R = Ẇ + Φ and minimizing R with respect to the velocity
V, we obtain the constitutive equation for surface diffusion.
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A Simple Example: Solid-state dewetting of toroidals

Figure: (a) A schematic illustration of the solid-state dewetting of a toroidal
island on a flat, rigid substrate; (b) the cross-section profile (i.e., denoted as Γ) of
the toroidal solid island in a cylindrical coordinate system (r , z), with ri , ro
representing the inner and outer contact points, respectively.

� Axisymmetric geometry: S = (r(s, t) cosϕ, r(s, t) sinϕ, z(s, t)),
ϕ ∈ [0, 2π]. (arXiv:1806:08272, 2018)

� A full sharp-interface model has been proposed (arXiv:1711.02402, 2017).
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A Reduced Model by the Onsager’s Principle

Some assumptions:

� The cross-section profile of the island is always a circular arc.

� The contact line does not dissipate any free energy when it moves,
i.e., θi ∈ [0, π] is fixed.

θ

θ i

a(t)

z

migration

rR(t)

Figure: A cross-section profile of the toroid, where a := a(t) is the radius of the
circle, R := R(t) is the distance between the origin of the circle and the z-axis.
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A Reduced Model by the Onsager’s Principle

� The cross-section profile can be expressed as:{
r(θ, t) = R(t) + a(t) sin θ,

z(θ, t) = a(t)(cos θ − cos θi ),
θ ∈ [−θi , θi ].

� The volume is conserved, i.e., V0 = πRa2(2θi − sin 2θi ).

� Ẇ can be written as:

Ẇ = γ0

√
πV0(2θi − sin 2θi )R

− 1
2 Ṙ.

� The dissipation function Φ can be written as:

Φ =
kBT

DsνΩ2
0

πRa3Ṙ2[g(θi ) +O(δ2)],

where we assume δ = a
R

is a small parameter, and
g(θi ) = θi (2 + cos 2θi )− 3

2
sin 2θi .

� Minimization of the Rayleighian R = Ẇ + Φ with respect to the rate Ṙ yields the
kinetic equation:

v = −Ṙ(t) ≈ C(θi )
Bγ0

V0
,

where B =
Dsν Ω2

0
kBT

and C(θi ) = π(2θi−sin 2θi )
2

2 g(θi )
.
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Model Validation

t [L4
0/(Bγ
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Figure: Comparisons between the numerical results of R(t) by solving the full sharp-interface model and the predicted
formula of R(t) by the reduced model, where the symbols (“circles”, “rhombus” and “triangles” ) are the numerical results
obtained from the solving the full model and the solid lines are the predicted formula under different isotropic Young angles.
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Model Validation
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θi = 5π/6

Figure: Comparisons between the numerical migration speed obtained from solving the full sharp-interface model (shown by
circles, rhombuses or triangles) and the theoretical migration speed given by the reduced model (shown in solid line) as a
function of the initial volume V0 under different isotropic Young angles θi = π/6, π/2 and 5π/6.
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Model Validation

θi/π
0 0.2 0.4 0.6 0.8 1

C
(θ

i)

0

2

4

6

8

10

Formula: Eq. (4.19)

Numerical results

Figure: Comparisons between the fitting values of C(θi ) (shown in “circles”) obtained by numerically solving the full
sharp-interface model and the analytical values given by the reduced model (shown in red solid line).

Wei Jiang (WHU) Solid-State Dewetting May 16th, 2018 50 / 53



Outline

1 Introduction

2 What is surface diffusion? – Physics and Mathematics

3 How to model it? – Thermodynamic variation

4 How to numerically solve it? – PFEM

5 How to analyse it? – Onsager’s variational principle

6 Summary
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Summary and On-going Works

Summary:

I Propose thermodynamic variation for understanding the models.

I Propose a parametric FEM for solving sharp-interface models.

I Demonstrate that the Onsager’s principle is a powerful tool for
describing and approximating surface diffusion controlled problems.

On-going Works:

� Include more physical effects (e.g., elasticity and grain boundary) into
the models.

� Reduced Models by using Onsager principle & Mathematical analysis.

� Develop accurate and efficient numerical methods for solving 3D
solid-state dewetting problems.

� Compare with experiments & guide new experiments.
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Thank You for Your Attention!
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