Modeling and Simulation for Solid-State Dewetting Problems

Weizhu Bao

NUS

National University

of Singapore

Department of Mathematics National University of Singapore Email: <u>matbaowz@nus.edu.sg</u> URL: <u>http://www.math.nus.edu.sg/~bao</u>

Collaborators: Wei Jiang (Wuhan), David J. Srolovitz (U. Penn); Carl V. Thompson (MIT); Yan Wang (postdoc, CSRC); Quan Zhao (RA, NUS)

Outline

Motivation

- Thermodynamic variation & equilibrium
 Sharp Interface models (SIMs)
 - Isotropic/weak anisotropic surface energy Numerical methods & results in 2D Extension to strong/cusped surface energy, to curved substrate & to 3D
 - Phase field/Diffuse interface model
 - Mathematical model
 Numerical methods & results in 3D
- Conclusion & future works

Patterned Ni(110) square patche

Interfaces are ubiquitous in nature and our daily life

Wetting / Dewetting in Fluid Mechanics

Wetting— spread of a liquid on a substrate

Dewetting — the rupture of a thin liquid film on a substrate

Solid-State Dewetting of Thin Films

Most thin films are metastable in as-deposited state & dewet to form particles

This occurs when the temperature is high enough for surface self diffusion, which can be well below the film's melting temperature

Vapor

nin Film

 γ_{FV}

 $\mathbf{Substrate}$

$$\gamma_{VS} = \gamma_{FS} + \gamma_{FV} \cos(\theta)$$
 -- Young, 1805

 γ_{VS} : substrate free surface energy

 γ_{FV} : film free surface energy

 γ_{FS} : film-substracte interface energy

Dewetting on a flat substrate

[1] E. Jiran & C. V. Thompson, Journal of Electronic Materials, 19 (1990), pp. 1153-1160.
 [2] E. Jiran & C. V. Thompson, Thin Solid Films, 208 (1991), pp. 23-28.

Solid-State Dewetting Problems

Solid-state dewetting

- Is driven by capillarity effects
- Occurs through surface diffusion controlled mass transport
- Belongs to capillarity-controlled interface/surface evolution problems
- Surface diffusion + contact line migration

Applications of dewetting of thin films

- Play an improtant role in micorelectronics processing
- A common method to produce nanoparticles
- Catalyst for the growth of carbon nanotubes & semiconductor nanowires
- Recent experiments -- [1]
 - Geometric complexity, capillarity-driven instabilities, faceting
 - Crystalline anisotropy, corner-induced instabilities, pinch-off,
- Wetting/dewetting in fluids: TZ Qian, XP Wang&P Sheng; W. Ren&W E, ...

Effect of Size & Orientation of Pattern

Small square

Large square

[1] J. Ye & C.V. Thompson, Adv. Mater., 23 (2011), 1567.

Dewetting of Patterned Single-Crystal Films

Complex pattern formation

- Corner instability
- Mass shedding instability
- Rayleigh-like instability

Equilibria of a Droplet (or Anisotropic Particle)

A droplet (or solid particle--crystal)

Equilibrium shape $\min_{\Omega} W = \int_{\Gamma} \gamma(\theta) d\Gamma \quad \text{with} \quad |\Omega| = \text{const}$ $\gamma := \gamma(\theta) \text{ (or } \gamma(\vec{n})\text{): surface energy density}$

Equilibria of a Droplet (or Anisotropic Particle)

Wulff construction – G. Wulff, 1901

 $\gamma(\theta) = 1 + 0.3\cos(4\theta)$

Justified by geometric measure theory– J.E. Taylor, 74';I. Fonseca &S. Muller, 91'

$$\begin{cases} x(\theta) = -\gamma(\theta) \sin \theta - \gamma'(\theta) \cos \theta, \\ y(\theta) = \gamma(\theta) \cos \theta - \gamma'(\theta) \sin \theta, \end{cases} \quad 0 \le \theta \le 2\pi$$

Equilibria of a Particle (Droplet) on Substrate

Models and Methods for Dynamical Evolution

Sharp interface model

- Isotropic case
 - Model & power law --- Srolovitz & Safran JAP 86'
 - Marker particle method ---- Wong, Voorheers & Miksis 00'; Du etc JCP 10';
- Anisotropic (weakly and strongly) case
 - Model via thermodynamical variation Wang etc PRB 15'; Jiang etc 16', ...
 - Parametric finite element method (PFEM) -- Bao, Jiang, Wang & Zhao, 16'
- Kinetic Monte Carlo method Dufay & Pierre-Lious PRL 11'; Pierre-Louis etc, EPL&PRL 09
- Discrete surface chemical potential method -Dornel etc. PRB 06'; Klinger etc 12
- Phase field model --- Jiang, Bao Thompson & Srolovitz, Acta Mater. 12'

Crystalline formulation method – Cahn & Taylor 94'; Cater etc 95'; Kim etc 13'; Zucker etc 13'; Roosen etc 94'&98';

Thermodynamic Variation

 \mathbf{T} : $\vec{X}(s) = (x(s), y(s))^T$ s -- arclength $\gamma_{FV} = \gamma(\theta)$ Vapor Total interfacial free energy Γ_{FV} Ω $W = \left[\gamma_{FV}(\theta) d\Gamma + (\gamma_{FS} - \gamma_{VS})(x_c^r - x_c^l) \right]$ Film Substrate Isotropic/anisotropic surface energy $\gamma_{FV} = \gamma(\theta) = 1 + \beta \cos(m\theta),$ m = 2, 3, 4, 6 $\psi(s)$ is arbitrary & $\int \varphi(s) ds = 0$ Thermo-dynamical variation: $\Gamma^{\epsilon} = \Gamma + \epsilon \varphi(s) \mathbf{n} + \epsilon \psi(s) \boldsymbol{\tau}$ Γ^{ε} : $(x^{\varepsilon}(s), y^{\varepsilon}(s))$ Vapor $=(x(s) + \varepsilon u(s), y(s) + \varepsilon v(s))$ $u(s) = x_s(s)\psi(s) - y_s(s)\varphi(s)$ Film $v(s) = x_s(s)\varphi(s) + y_s(s)\psi(s)$ v(0) = v(L) = 0 & $|A(\Gamma^{\varepsilon}) - A(\Gamma)| \le C_0 \varepsilon^2$ x'_c Substrate

Thermodynamic Variation

Calculate first variation of the energy functional $W = \int \gamma_{FV}(\theta) d\Gamma + (\gamma_{FS} - \gamma_{VS})(x_c^r - x_c^l)$ $W^{\varepsilon} = \int_{\Omega} \gamma_{FV}(\theta^{\varepsilon}) d\Gamma^{\varepsilon} + (\gamma_{FS} - \gamma_{VS})[(x_c^r + \varepsilon u(L, t)) - (x_c^l + \varepsilon u(0, t))]$ $\frac{dW^{\varepsilon}}{d\varepsilon}\bigg|_{\varepsilon \to 0} = \lim_{\varepsilon \to 0} \frac{W^{\varepsilon} - W}{\varepsilon} = \int_{0}^{L} \left(\gamma(\theta) + \gamma''(\theta)\right) \kappa \varphi ds + f(\theta_{c}^{r})u(L) - f(\theta_{c}^{l})u(0)$ $\mu := \frac{\delta W}{\delta \Gamma} = (\gamma(\theta) + \gamma''(\theta))\kappa, \quad \frac{\delta W}{\delta x^r} = f(\theta) \Big|_{\theta = \theta_c^r}, \quad \frac{\delta W}{\delta x^l} = -f(\theta) \Big|_{\theta = \theta_c^l}$ $f(\theta) := \gamma(\theta) \cos \theta - \gamma'(\theta) \sin \theta - \gamma_0 \cos \theta_i, \quad \cos \theta_i = \sigma := \frac{\gamma_{VS} - \gamma_{FS}}{\gamma_{VS} - \gamma_{FS}}$

[1] Wang, Jiang, Bao & Srolovitz, Phys. Rev. B, 15'; Bao, Jiang, Srolovitz & Wang, SIAP, 17'

Equilibrium in 2D

Sequilibrium shape

$$\mu(s) := \widetilde{\gamma}(\theta)\kappa(s) = [\gamma(\theta) + \gamma''(\theta)]\kappa(s) \equiv C, \quad a.e. \ s \in [0, L],$$

$$f(\theta; \sigma) = \gamma(\theta)\cos\theta - \gamma'(\theta)\sin\theta - \sigma = 0, \quad \theta = \theta_a^l, \theta_a^r,$$

Calculate second variation

$$\left. \delta^2 W(\Gamma; \varphi, \psi) \coloneqq \frac{d^2 W^{\varepsilon}}{d\varepsilon^2} \right|_{\varepsilon=0} = \int_0^L (\gamma(\theta) + \gamma''(\theta)) (\varphi_s - \kappa \psi)^2 ds$$

Stable equilibrium shape

$$\tilde{\gamma}(\theta) \coloneqq \gamma(\theta) + \gamma''(\theta) \ge 0$$

[1] Bao, Jiang, Srolovitz & Wang, SIAP, 2017.

Generalized Winterbottom Construction

(Bao, Jiang, Srolovitz & Wang, SIAP, 17')

Sharp Interface Model

(Isotropic/Weakly Anisotropic Surface Energy)

 $\vec{X}(s,t) = (x(s,t), y(s,t))^T$ s -- arclength $\gamma_{FV} = \gamma(\theta)$ Vapor Γ_{FV} The Model (Wang, Jiang, Bao, Srolovitz, PRB 15') Ω $\frac{\partial \bar{X}(s,t)}{\partial t} = V_n \vec{n}, \quad \text{with} \quad V_n = B \frac{\partial^2 \mu}{\partial s^2}$ Film γ_{FS} Substrate $\mu(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa$ θ_{c}^{r} – – Dynamical contact angle θ_i ----Isotropic Young contace angle Boundary conditions - Contact point condition (BC1): $y(x_c^r, t) = 0$ Relaxed contact angle condition (BC2)[1]: $\frac{dx_c^r(t)}{dt} = -\eta \frac{\delta W}{\delta x^r} = -\eta f(\theta_c^r),$ - Zero-mass flux condition (BC3): $\partial_{s} \mu(x_{c}^{r}, t) = 0$ Anisotropic Young equation $\eta \rightarrow \infty$ $\gamma(\theta) \equiv \gamma_0$ $\gamma(\theta)\cos\theta - \gamma'(\theta)\sin\theta - \gamma_0\cos\theta_i = 0 \implies \cos\theta = \cos\theta_i$

[1] Ren, E, Phys. Fluid, 2007&2011; Ren, Hu & E, Phys Fluid, 2010.

Dynamical Properties

Area (Mass) conservation $A(t) = \int_{0}^{L(t)} y \partial_s x \, ds$ n $\gamma_{\scriptscriptstyle VS}$ $\Rightarrow A(t) \equiv A(0)$ x_{c}^{ι} Energy dissipation L(t) $V(t) = \left(\gamma_{FV}(\theta) ds + (\gamma_{FS} - \gamma_{VS})(x_c^r - x_c^l) \right)$

Parametric Finite Element Method (PFEM)

$$\frac{\partial \vec{X}(s,t)}{\partial t} = V_n \vec{n}, \quad \text{with} \quad V_n = B \frac{\partial^2 \mu}{\partial s^2}$$

Weakly anisotropic case $\mu(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa$

Mathematical model and variational form

- $$\begin{split} &(\partial_t \vec{X}(s,t)) \bullet \vec{n} = B \partial_{ss} \mu & \int_C (\partial_t \vec{X}(s,t)) \bullet \vec{n} \ \phi dp + \int_C B \partial_s \mu \ \partial_s \phi dp = 0, \quad \phi \in H_0^1 \\ &\mu(\theta) = (\gamma(\theta) + \gamma''(\theta)) \kappa \Leftrightarrow & \int \big[\mu(\theta) (\gamma(\theta) + \gamma''(\theta)) \kappa \big] \phi dp = 0, \quad \phi \in H^1 \end{split}$$
- $\vec{\kappa}\vec{n} = -\partial_{ss}\vec{X}(s,t) \qquad \qquad \int_{\Omega} \kappa\vec{n}\cdot\vec{\eta}dp + \int_{\Omega}\partial_{s}\vec{X}(s,t)\cdot\partial_{s}\vec{\eta}dp = 0, \qquad \vec{\eta}\in(H_{0}^{1})^{2}$
 - Boundary conditions $y(x_c^r, t) = 0$, $\frac{dx_c^r(t)}{dt} = -\eta f(\theta_c^r)$ - Finite element discretization via piecewise polynomials **Ref:** [1] J.W. Barratt, H. Garcke & R. Nurnberg, J. Comput. Phys., 2007; SISC (2007); 2012. [2] W. Bao, W. Jiang Y. Wang & Q. Zhao, JCP, 2017.

 $L = 5, \beta = 0, \sigma = \cos(3\pi/4)$

Isotropic surface energy and short

$L = 5, m = 4, \beta = 0.06, \sigma = \cos(3\pi/4)$

Weakly anisotropic surface energy & short

$$L = 60, m = 4, \beta = 0.06, \sigma = \cos(5\pi/6)$$

Weakly anisotropic surface energy & long for pinch-off

///

Extension to Strongly Anisotropic Case

$$\tilde{\gamma}(\theta) \coloneqq \gamma(\theta) + \gamma''(\theta) < 0 \qquad \Gamma : \quad \bar{X}(s) = (x(s), y(s))^T \qquad s - \text{ arclength}$$

$$\tilde{Y}(\theta) \coloneqq \gamma(\theta) + \gamma''(\theta) < 0 \qquad \Gamma : \quad \bar{X}(s) = (x(s), y(s))^T \qquad s - \text{ arclength}$$

$$\tilde{Y}(\theta) \coloneqq \gamma(\theta) d\Gamma + (\gamma_{FS} - \gamma_{VS})(x_c^r - x_c^l) + \frac{\varepsilon^2}{2} \int_{\Gamma} \kappa^2 d\Gamma$$

$$\tilde{Y}(\theta) d\Gamma + (\gamma_{FS} - \gamma_{VS})(x_c^r - x_c^l) + \frac{\varepsilon^2}{2} \int_{\Gamma} \kappa^2 d\Gamma$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

$$\tilde{Y}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \left[\partial_{ss}\kappa + \frac{\kappa^3}{2}\right],$$

[2] Jiang, Wang, Zhao, Srolovitz & Bao, Script. Mater., 16'; Bao, Jiang, Srolovitz & Wang, SIAP,17'

Sharp Interface Model

(for Strongly Anisotropic Surface Energy)

 $\vec{X}(s,t) = (x(s,t), y(s,t))^T$ s -- arclength $\gamma_{FV} = \gamma(\theta)$ Vapor The Model (Jiang, Wang, Zhao, Srolovitz, Bao, 16') Film $\frac{\partial \bar{X}(s,t)}{\partial t} = V_n \ \vec{n}, \quad \text{with} \quad V_n = B \frac{\partial^2 \mu_{\varepsilon}}{\partial s^2} \qquad \underbrace{\gamma_{vs}}_{x_{\varepsilon}^{T}}$ γ_{FS} Substrate $\mu_{\varepsilon}(\theta) = (\gamma(\theta) + \gamma''(\theta))\kappa - \varepsilon^2 \begin{bmatrix} \partial_{ss}\kappa + \frac{\kappa^3}{2} \end{bmatrix} \quad \begin{array}{l} \theta_c^r - -\text{Dynamical contact angle} \\ \theta_i - --\text{Isotropic Young contace angle} \end{bmatrix}$ Boundary conditions - Contact point condition (BC1): $y(x_c^r, t) = 0$ - Relaxed contact angle condition (BC2): $\frac{dx_c^r(t)}{dt} = -\eta \frac{\delta W}{\delta x^r} = -\eta f_{\varepsilon}(\theta_c^r),$ - Zero-curvature condition (BC3): $\kappa(x_c^r, t) = 0$ Zero-mass flux condition (BC4): $\partial_{s} \mu(x_{c}^{r}, t) = 0$

 $L = 5, m = 4, \beta = 0.2, \sigma = \cos(3\pi/4)$

Extension to Cusped Surface Energy

Cusped surface energy (or not smooth)

 $\gamma(\theta) \notin C^2 \Longrightarrow \gamma_{\delta}(\theta) \in \mathbb{C}^2$

- A typical example

$$\gamma(\theta) = |\cos \theta| + |\sin \theta| \Rightarrow$$

 $(0 < \delta \ll 1)$

$$\gamma_{\delta}(\theta) = \sqrt{\delta^2 + (1 - \delta^2)\cos^2\theta} + \sqrt{\delta^2 + (1 - \delta^2)\sin^2\theta}$$

Example 7 Example 7 Constant and Series and Serie

Extension to Curved Substrate

a1) a2 (a3) (a4)

Experiment (Ye, et. Al, PRB, 10')

Simulation

Extension to Curved Substrate

 $L = 5, \beta = 0, \sigma = \cos(\pi/3)$

Extension to Curved Substrate --Small Particle Migration (Jiang, Wang, Srolovitz & Bao, 18')

$L=5, \beta=0, \sigma=\cos(\pi/3)$

 $y = 4\sin(x/4)$

A variation approach via Onsager's principle-Jiang, Wang, Qian, Srolovitz, Bao, 18'

Extension to Three Dimension (3D)

Extension to 3D

(Bao, Jiang & Zhao, 18')

S:
$$\vec{X}(u,v,t) = (x(u,v,t), y(u,v,t), z(u,v,t))^T$$

Main ideas -- thermodynamic variation, shape derivatives & Cahn-Hoffman \xi-vector

The sharp interface model

$$\partial_t \mathbf{X} = \Delta_s \mu \mathbf{n}, \qquad t > 0,$$

$$u = \nabla_{s} \cdot \boldsymbol{\xi}, \qquad \boldsymbol{\xi} = \nabla \hat{\gamma}(\mathbf{n}),$$

Cahn-Hoffmann \xi-vector

$$\begin{split} \gamma(\mathbf{n}) : S^2 \to \mathbb{R} \qquad \hat{\gamma}(\mathbf{p}) = |\mathbf{p}| \gamma(\frac{\mathbf{p}}{|\mathbf{p}|}), \quad \forall \mathbf{p} \in \mathbb{R}^3 \setminus \{\mathbf{0}\} \\ \hline \mathbf{\xi}(\mathbf{n}) = \nabla \hat{\gamma}(\mathbf{n}) \end{split}$$

Extension to 3D

(Bao, Jiang & Zhao, 18')

- $\mathbf{c}_{\Gamma}^{\gamma} = (\boldsymbol{\xi} \cdot \mathbf{n})\mathbf{c}_{\Gamma} (\boldsymbol{\xi} \cdot \mathbf{c}_{\Gamma})\mathbf{n}, \ \mathbf{n}_{\Gamma} = \frac{1}{\sqrt{n_1^2 + n_2^2}}(n_1, n_2, 0), \ \sigma = \frac{\gamma_{VS} \gamma_{FS}}{\gamma_0},$ - Boundary conditions
 - Contact line condition $\Gamma \subset S_{sub}$
 - Relaxed contact angle condition

$$\partial_t \mathbf{X}_{\scriptscriptstyle \Gamma} = -\eta \Big[\mathbf{c}_{\scriptscriptstyle \Gamma}^{\gamma} \cdot \mathbf{n}_{\scriptscriptstyle \Gamma} - \sigma \Big] \mathbf{n}_{\scriptscriptstyle \Gamma}$$

• Zero-flux condition $(\mathbf{c}_{\Gamma} \cdot \nabla_{S} \mu)\Big|_{\Gamma} = 0$, • For isotropic case, $\mu = H$ -- mean curvature • Volume conservation & energy dissipation • Parameter finite element (PFEM) method

[1] J. Ye & C.V. Thompson, Acta Mater. 23 (2011), 1567; 59 (2011), 582; Appl. Phys. Lett. 97 (2010), 071904

7.

吶

[1] J. Ye & C.V. Thompson, Acta Mater. 23 (2011), 1567; 59 (2011), 582; Appl. Phys. Lett. 97 (2010), 071904

N

Dewetting Patterned Films

Patterned Ni(110) square patches

[1] J. Ye & C.V. Thompson, Phys. Rev. B, 82 (2010), 193408.

Solid-state dewetting in 3D via SIM

3D Results – Comparison with Experiment

Computational Results

0.15

Experimental Results

Phase Field/Diffuse Interface Model

Phase field models --- S. Allen & J.W. Cahn (1975—79), J.W. Cahn & J. E. Hilliard (1958);
 G.J. Fix (1983), J.S. Langer (1986), L.Q. Chen (2002); C.M. Elliott, X.F. Chen, J. Shen, Q. Du, J. Lowengrub, A. Voigt, Q. Wang, G. Forest, XB Feng, PW Zhang, A.A. Lee A. Munch & E. Suli, ...

- Introduce a phase function& write down the energy
 - By variation Allen-Cahn or Cahn-Hilliard equations
 - Applications in materials simulation: solidification; viscous fingering; fracture; solid-state nucleation; dislocation dynamics,

Advantages

- Interface/surface capturing method Eulerian coordinates
- Easy extension from 2D to 3D
- Naturally capture complex topological changes

Figure: A schematical illustration of the problem set-up.

Phase Field Model

 $\phi \coloneqq \phi^{\varepsilon}(\vec{x}, t) \in [-1, 1]$ Introduce the phase function $\approx 1 \& \in (0,1]$ thin film phase $\approx -1 \& \in [-1,0)$ vapor phase ε – –interface width = 0interface/surface $\tanh\left(\frac{d_s(\bar{x},\Gamma)}{\varepsilon}\right)$ Total free energy-- isotropic surface energy $W_{FV}^{arepsilon}$ $W^{\varepsilon} =$ $+ W_W^{\circ}$ Film-vapor phase energy Wall energy $f_{FV} = d\Omega + \int_{\Gamma_W} f_W$ $d\Gamma_{W}$ Ω Film-vapor energy density Wall energy density Energy minimization problem: min W^{ε} subject to BCs

Phase Field Model

😻 Film/vapor phase energy — Ginzburg-Landau free energy

 $f_{FV}(\phi, \nabla \phi) = \underbrace{\lambda}_{\text{mixing constant}} \left[\frac{\varepsilon}{2} \underbrace{|\nabla \phi|^2}_{\text{film/vapor energy}} + \frac{1}{\varepsilon} \underbrace{F(\phi)}_{\text{interface energy}} \right], \qquad F(\phi) = (\phi^2 - 1)^2$

- CONVERGENCE – L. Modica & S. Mortola, Boll. Un. Mat. Ital. A, 14 (1977), 526. If $\lambda = \frac{3\sqrt{2}}{4} \gamma_{FV} \implies W_{FV}^{\varepsilon} \rightarrow \gamma_{FV} | \Sigma_{FV} |$

Wall energy must satisfy

- At homogeneous vapor phase $\phi = -1 \Rightarrow f_W(\phi) = \gamma_{VS} \& f_W(\phi) = 0$ - At homogeneous film phase $\phi = 1 \Rightarrow f_W(\phi) = \gamma_{FS} \& f_W(\phi) = 0$

$$=\frac{\gamma_{VS}+\gamma_{FS}}{2}-\frac{\phi(3-\phi^2)}{4}(\gamma_{VS}-\gamma_{FS})$$

Phase Field Model

Cahn-Hilliard equation with function-dependent mobility $\begin{cases}
\frac{\partial \phi}{\partial t} = \nabla \cdot (M \nabla \mu) & \text{in } \Omega \quad \text{with} \quad M = (1 - \phi^2)^2 \\
\mu = \phi^3 - \phi - \varepsilon^2 \Delta \phi
\end{cases}$

With BCS(Jiang, Bao, Thompson & Srolovitz, Acta Mater., 12')

- On wall boundary $\Gamma_W \qquad \varepsilon \frac{\partial \phi}{\partial \vec{n}} + \frac{f_W(\phi)}{\lambda} = 0 \quad \& \quad \cos \theta_s = \frac{\gamma_{VS} - \gamma_{FS}}{\gamma_{FV}}$ $\varepsilon \frac{\partial \phi}{\partial \vec{n}} + \frac{\sqrt{2}}{2} (\phi^2 - 1) \cos \theta_s = 0 \quad \& \quad \frac{\partial \mu}{\partial \vec{n}} = 0$

- On other boundaries $\Gamma_0 \cup \Gamma_1 = \partial \Omega \setminus \Gamma_W \frac{\partial \phi}{\partial \vec{n}} = 0$ & $\frac{\partial \mu}{\partial \vec{n}} = 0$ Recent debate on proper mobility for surface diffusion – A.A. Lee, A. Munch & E Suli, APL 15' & 16'; A. Voigt, APL 16',

Numerical Method

Stabilized semi-implicit method $-\phi^{n} = A\varepsilon^{2}\Delta^{2}(\phi^{n} - \phi^{n+1}) + S\Delta(\phi^{n+1} - \phi^{n}) + \nabla \bullet (M^{n}\nabla\mu^{n})$ $\mu^n = (\phi^n)^3 - \phi^n - \varepsilon^2 \Delta \phi^n,$ $M^{n} = 1 - (\phi^{n})^{2}$ A and S are two stabilizing constants *x*-direction by cosine pseudospectral method y-direction by finite difference/finite element 1st order in time & can be upgraded to 2nd Can be solved efficiently at every step & Extension to 3D is easy [1] W. Jiang, W. Bao, C.V. Thompson & D. J. Srolovitz, Acta Mater. 60(2012), 5578. [2] J.Z. Zhu, L.Q. Chen, J Shen & V. Tikare, Phys. Rev. E, 60 (1999), 3564. [2] J. Shen & X.F. Yang, SIAM J. Sci. Comput., 32 (2010), 1159.

3D Results I -- Square $\theta_s = 5\pi/6$

3D Results II – Pinch-off $\theta_s = 5\pi/6$

3D Results III – Large-Thin Square

3D Results – Comparison with Experiment

Computational Results

0.15

Experimental Results

Conclusion & Future Works

& Conclusion

- Propose sharp interface model (SIM) for anisotropic surface energy
- Propose phase field model Cahn-Hilliard Eq. with function-dependent mobility
- Design stable, efficient & accurate numerical methods
- Test parameters regimes & simulate 2D & 3D results
- Compare qualitatively with experimental / asymptotic results

Future works

- Phase field model with anisotropic surface energy
- Investigate role of different surface energy anisotropy & regularization
- Develop adaptive & parallel numerical method
- Mathematical analysis of the models
- Compare with experiments quantitatively & guide new experiments