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Rare Events I

Rare events: events that occur very infrequently. Such as
chemical reactions, conformational changes of biomolecules,
nucleation events in phase transition, etc.

For instance, the following 1d stochastic differential equation
describes the 1d motion of a particle in a potential force field, with
thermal noise existing,

xt = −∇xV (x) +
√

2εWt , (1)

where V (x) has two minima x = 0, 1 and a saddle point at
x = 0.5.
The system mostly stays at x = 0 or x = 1, but has probability to
hop between these two steady states, by passing through the
saddle point x = 0.5(obviously for 1d system).



Rare Events II
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Figure 1 : Trajectory of a 1d particle whose dynamics obeys (1)
simulated by Monte Carlo method.

Figure 1 shows the difficulty of study of rare events, that is time
scale disparity.



Ways for Understanding Rare Events I

Based on Wentzell-Freidlin theorey, the transition from φa to φb
which follows {

φt = b(φ) +
√
εWt

φ(t = 0) = φa, φ(t = T ) = φb
(2)

has a most likely transient path φ∗(t) connecting φa and φb,
t ∈ [0,T ], which minimizes

ST [φ] =
1

2

∫ T

0
|φt − b(φ)|2 dt (3)



Minimizer of ST & numerical methods

1. For gradient flow, for example

φt = −∇φV +
√

2εWt (4)

φ∗ is called the minimum energy path(MEP), where

φ̇∗(t) =

{
∇φV , t ∈ [0,T ∗]

−∇φV , t ∈ [T ∗,T ]
(5)

where φ∗(t = T ∗) is the saddle point of V .
Numerical methods to search for φ∗ in gradient flow are
called as chain-of-states based methods, includes: nudged
elastic band(NEB, Jónsson et al. 1998), the string method( E
et al. 2003), etc.

2. For non-gradient flow, φ∗ should be obtained by directly
minimize the action functional ST defined by (3) with
Newton-type method.
Numerical methods such as minimum action method(MAM,
E et al. 2004) can by considered.
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Model: diffuse interface + fluctuating hydrodynamics I

Diffuse interface model is one of many effective tools for depicting
multi-phase flow, where noise could be introduced in via a random
flux tensor Π̃. Assuming the isothermal liquid-vapor system has
the Helmholtz free energy

F =

∫
Ω

[f (ρ) +
1

2
κ |∇ρ|2]dr (6)

where f (ρ) is a double well potential and κ is a constant. The
fluctuating hydrodynamics for liquid-vapor system reads

∂tρ+∇ · (ρv) = 0

∂t(ρv) +∇ · (ρvv) = ∇ · (T(ρ,∇ρ) + Π + Π̃)
(7)

where

1. ρ is the density of fluid, v is the velocity of fluid.



Model: diffuse interface + fluctuating hydrodynamics II

2. T is the capillary tensor which illustrates the interfacial effect.

T =
(
−p(ρ) + κρ∇2ρ+

κ

2
|∇ρ|2

)
I − κ∇ρ∇ρ, (8)

and p(ρ) = ρ2∂(f (ρ)/ρ)

∂ρ
is the thermal pressure.

3. Π is the viscous flux taking the form of

Π = η(ρ)(∇v +∇vT ).

where η(ρ) is the density dependent viscosity.

4. Π̃ is the random flux,〈
Π̃αβ(r1, t1)Π̃δγ(r2, t2)

〉
= 2kBTCαβδγδ(t1 − t2)δ(r1 − r2),

(9)
where Cαβδγ = η(ρ)(δαδδβγ + δαγδβδ).



Metastable states I
Suppose the domain is periodic in all dimensions, where no
external force and boundaries exist, the system (7) mostly stays at
two typical metastable states. Except for a homogeneous vapor
phase, which corresponds to one of the minima of f (ρ), the other
is a liquid-vapor coexist phase, as shown in Figure: 2
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Figure 2 : Liquid-vapor coexist phase



Path searching: MAM I
As discussed before, driven by the noise term Π̃, the system has
probability to hop between these two metastable states.
But how ?
Due to the truth that the system (7) is non-gradient, we can
minimize the action functional ST with respect to ρ and v by using
the minimum action method.
Precisely,

ST (λ; ρ, v) =
1

2

∫ T

0
‖ ∂t(ρv) +∇ · (ρvv)−∇ · (T + Π) ‖2

−1 dt

+
1

2λ

∫ T

0
‖ ∂tρ+∇ · (ρv) ‖2 dt

(10)

on condition that (ρ, v) |t=0 and (ρ, v) |t=T , where
‖ A ‖2

−1=
〈
A,−(∇ · (η(∇+∇T )))−1A

〉
and

−(∇ · (η(∇+∇T )))−1 is a bounded positive self-adjoint linear
operator on RD .



The procedure for minimization

To minimize ST (λ; ρ, v) defined in (10), we need to

1. Fix T and λ, discretize ST (λ; ρ, v) and minimize it with
MAM.

2. Decrease λ and do the minimization task iteratively till steady
value of ST is achieves.

3. Increase T and do the minimization following the first two
steps iteratively till a global minimizer of ST in the space of
(λ,T ) is achieved.



Smoothed particle hydrodynamics I

To avoid numerous computational work of minimizing ST , we
introduce the smoothed particle hydrodynamics with fluctuations
to approximate the original macroscopic fluctuating hydrodynamics
(7).
The main idea of the smoothed particle hydrodynamics is to use
smoothed particles with smoothing length on the order of O(σ) to
approximate the original field A(r) with its interpolation AI

AI (r) =
∑

ri∈N (r)

Aj
mj

ρj
W (|r − ri | , σ)

where

1. ri , mi and ρi are the position, mass and density of smoothed
particle i , and Aj is the value of A at particle j .

2. N (r) = {rj , |r − rj | ≤ 2σ} which indicates the topology of the
particle system.



Smoothed particle hydrodynamics II

3. W (r , σ) = c exp
(
− r2

σ2

)
, where c is a normalize parameter.

limσ→0 W (r , σ) = δ(x) and AI (r) is accurately A(r).

By using smoothed particle hydrodynamics, one only needs
to investigate the dynamics of N smoothed particles to
approximate the dynamics of the whole macroscopic system
via interpolation.



Gradient flow in particle system I
Via detailed calculation, we prove that

−∇riFh =
mi

ρi
(∇ · T)i , (11)

where Fh is the discretization of free energy (6)

Fh =
M∑
i=1

mi

(
f (ρi )

ρi
+

κ

2ρi
|∇ρ|2i

)
,

A gradient flow is then derived for smoothed particle system in the
form of following Langevin dynamics as well as smoothed
particle discretization of the continuous fluctuating
hydrodynamics

ṙi =
Pi

mi

Ṗi = −∇riFh −
∑

rj∈N (ri )

γ ij

Pj

mj
+

∑
rj∈N (ri )

Gij

(12)



Gradient flow in particle system II

where

1. mi is the mass of smoothed particle i , which is constant vs.
the dynamics by ignoring mass fluctuating flux between
particles.

2. Pi is the momentum of particle i , where
∑

i Pi =
∫

Ω ρv dr will
be a constant if periodic condition is used.

3. γ ij is the damping effect coefficient between particle i and j
due to discretization of ∇ ·Π on particle i .

4. Gij is the discretization of Π̃ illustrating the random force
between particle i and j .



MEP in Particle System
For gradient system (12), the MEP for the transition between the
interpolated metastable vapor phase and liquid-vapor coexisting
phase is determined by

ṙ =
P

m
,

Ṗ = −∇rFh + R
P

m
,

or d
dt X = −AT∇XH when T1 < t < T ∗,

(13)
and

ṙ =
P

m
,

Ṗ = −∇rFh − R
P

m
,

or d
dt X = A∇XH when T ∗ < t < T2,

(14)
r, P, m, R are matrix form of collection of ri , Pi , mi and γij , and

X =

(
r
P

)
. H = Fh +

∑
i

P2
i

2mi
is the Hamiltonian of the particle

system.



Numerical Method for Searching of MAP

Till now we are on the half way to obtain the MAP of liquid-vapor
transition, however one can not obtain its smoothed particle
configurations on the path by directly solving (13) and (14), since,

1 The potential Fh is determined by positions of all the
smoothed particles, it is non-smooth, thus the force for
evolving the path, i.e., ∇rFh will change abruptly and may not
lead to a convergence numerical result.

2 For problem 1, numerical method for problem with
non-smooth potentials, such as finite temperature string
method is unavailable, since it is impossible to determine the
configuration of given N particles for the two metastable
states, simultaneously.



The New Method I
By taking partial time derives of ρI , mI , which are the smoothed
particle interpolations of density and momentum fields, we derive
the MAP (ρ∗I ,m

∗
I ) satisfying

∂t

(
ρ∗I
m∗I

)
= M

dX ?

dt
, t ∈ [T1,T2], (15)

where X ? is the MEP in the particle system which is governed by
(13) and (14), and M is a matrix projecting the force exerted on
particles to the interpolation fields.
Substituting the MEP (13) and (14) in (15), the MAP reads

∂t

(
ρ∗I
m∗I

)
= −MAT∇X?H, t ∈ [0,T ∗],

∂t

(
ρ∗I
m∗I

)
= MA∇X?H, t ∈ [T ∗,T ].

(16)

where the particle system approaches the saddle point of the
Hamiltonian at t = T ∗.



The Algorithm I

Core idea to propose the algorithm.For a given (ρ, v), X1(r1)
and X2(r2) as two sets of smoothed particles can both be used to
interpolate (ρ, v), only different at accuracy. Thus the choice of
smoothed particlesat each time, which are used as interpolation
functions, is free and not required to be on the trajectory of the
initial selected particles.
Assume A = (ρv , vv ) and B = (ρl , vl) are two metastable states of
the fluctuating diffuse-interface liquid-vapor system, one can use
the following algorithm to search for the MAP between A and B.

1. Fix the position of N smoothed particles. Calculate mass,
density, and momentum of these particles by finite volume
integration of A and B on the adapted voronoi mesh. Obtain
the interpolation fields AI and BI and fix them as the initial
and final states of the path.



The Algorithm II
2. Initialize all the intermediate state {(ρI )i , (mI )i} of the ith

image on the path as well as the particle configurations with
respect to each of them by linear interpolation with two ends
fixed at initial and final states.

3. For each intermediate state on the path, calculate Mi , Ai and
∇Xi

H for the construction of total force MiA
T
i ∇Xi

H and
MiAi∇Xi

H for evolving the path.

4. Evolve the path by only using the normal component of the
force obtained at step 3.

5. Renew the mass and momentum of particles by using finite
volume integration with respect to the newly obtained
interpolation fields.

6. Calculate the residual normal force exerted on all the
smoothed particles and see if the iteration converges. If not,
return to the third step and start a new round of iteration,
where the position of particles are not changed as emphasized
at the first step.
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The MAP
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Figure 3 : Snapshots of states along the MAPs for the formation of a liquid ball,

where the transition proceeds from top left to the bottom right, The velocity field of

each state along the path is not zero and toward the liquid ball, but the transition

state c and the two metastable states are zero for the reason that they correspond to

the critical points of the total energy of the system.
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Figure 4 : Total energy H and the infinity norm of velocity of states
along the MAP. The states marked with star and denoted by alphabets
a, b, c , d , e in the left figure are coincident with the state given in Fig. 6.
c is the transition state with zero velocity field and the largest free energy.



The Extra Potential
To generate a shear flow, we add the following potential to the
periodic computational domain [0,X ]× [0, 2Y ]

Fext(r) = c
nx∑
i=1

exp

(
−(x − xi )

2

ε2
1

)
[exp

(
−(y − Y )2

ε2
2

)
H(x − xi )

+

(
exp

(
−y2

ε2
2

)
+ exp

(
−(y − 2Y )2

ε2
2

))
H(xi − x)], |ε2| � 1

(17)

to the original Hamiltonian of the system, where xi = (i + 0.5) X
nx

.
The parameter c has the unit of energy, which can be adjusted to
control the shear rate.
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The shear flow

To see whether Fext could generate correct shear flow, we simulate
the steady homogeneous vapor phase, which is a steady Couette
Flow if no slip boundary condition is imposed to velocity field.
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Figure 5 : Steady states when external force F ext(r) is imposed. Left :
steady vapor phase. Middle : the horizontal velocity versus y -coordinate
with respect to the velocity field on the left. Right : steady vapor-droplet
coexist phase.



MAP in shear flow

We show some typical intermediate states on the MAP from III to
IV .
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Figure 6 : Snapshots of intermediate states along the MAP from metastable state

(III ) to (IV ), where (c) is the transition state.
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Conclusion

In this work, we propose a new numerical method as an alternative
way to study the liquid-vapor transition. Our method doesn’t
require the user to minimize the full discretized action functional
directly. Moreover, it can be extended to cases with external
potential force exerted, which could be delicately given to
approximate some typical phenomenon in fluid flows, such as shear
flow and flow over patterned solid surface.

In the near future, we will use this method to study wetting
transition in a shear flow over patterned solid surface by using the
new proposed numerical method. By using smoothed particle
hydrodynamics, the solid phase could be absorbed in our model.



Thanks!
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