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Introduction and motivation

Allen-Cahn equation

(Local) Allen-Cahn equation:
u—e*Au+ud —u=0. (LAC)

As an L? gradient flow w.r.t. the free energy functional

2
Bocalt) = [ (2 = 1+ S Vu@P) v

@ energy stability:
Ejocal(u(t2)) < Ejocar(u(t1)), Vo>t >0. )

As a second order reaction-diffusion equation,

@ maximum principle:

lu(-,0)||re <1 = |u(,t)||ge <1, Ve>0. (3)
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Allen-Cahn equation (continued)

Energy stable schemes:

o Stabilized semi-implicit (SSI) scheme [Shen-Yang, 2010]:
find «*+! such that

n+1 n

u . 8ZAth+1 + (un)3 o un + S(un—H o Mn) -0. (4)

—u
T

@ Exponential time differencing (ETD) scheme [Ju et al., 2015]:
find ™! = w(7) with w(t) subject to

d
dit” + (S —Ap)w + (") —u" = Su" =0, 1€ (0,7, 5)
w(0) =u".

Both schemes are easy to implement and conditionally energy stable.
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Allen-Cahn equation (continued)

F(u) = %( 212, fu):=F(u)=u’—u

What is the condition for energy stability?

1
S = Sl (w)llze=- (6)

However,
f'(u) =3u®> — 1, unbounded in L>!



Introduction and motivation

Allen-Cahn equation (continued)

F(u) = %(u2 — 12, fu):=F(u)=u’—u

What is the condition for energy stability?

1
S = Sl (w)llze=- (6)

However,
f'(u) =3u®> — 1, unbounded in L>!

If we have that « is bounded in L>°, then so does f*(u).

Discrete maximum principle (DMP) insures the L>° boundness of u.
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Allen-Cahn equation (continued)

Maximum principle preserving schemes:

@ first order semi-implicit scheme [Tang-Yang, 2016]:

un—l—l —u"
— A+ (") —d" ST W) =0 (7)

T

1
condition for DMP: — + § > 2.
T
@ Crank-Nicolson scheme [Hou-Tang-Yang, 2017]:

n+1l _ .n n+1 n n+1\3 n\3 n+1 n
u u_EzAhu +u +(u )+ @)’ u"t +u _0
T 2 2 2

1
condition for DMP: 7 < 3 min{e?, h*}.

@ ETD scheme (in space-continuous version) [Du-Zhu, 2005].
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Nonlocal diffusion operator

Nonlocal diffusion operator (x € RY):

1
Coulx) = 2/ ps([s|) (ux +5) + ux — ) — 2u(x)) ds. ()
B5(0)
Kernel p; : [0, 9] — R is nonnegative and
1
3 | sPoaslyas —a. (10)
B5(0)

Consistency of L5 with Ly := A via [Du et al., 2012]
max | Lsu(x) — Lou(x)| < C&*||ul|cs. (11)
X

In particular, in 1-D case,

4 u\x S ux —§)— 2ulx
Cout) = 5 [ bpsls) - “EFIEEEED =2 s 1)
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Nonlocal Allen-Cahn equation

Nonlocal Allen-Cahn (NAC) equation:
u — 2 Lsu+u’ —u=0. (NAC)

As an L? gradient flow w.r.t. the free energy functional

2
E(u) = / (G — 1 = Su@Lout) de,  13)

@ energy stability:
E(u(tz)) < E(u(ty)), VYta>1t; >0. (14)

Similar to the case of local Allen-Cahn equation, we can prove

@ maximum principle:

|lu(-,0)||pe <1 = |u(-,0)||le <1, Vi>0. (15)
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Nonlocal Allen-Cahn equation (continued)

Consider the initial-boundary-value problem of the NAC equation

w— 2 Lsu+u’ —u=0, xeQ, te(0,7T],
u(-, 1) is Q-periodic, € [0,T],
u(x,0) = up(x), x¢€Q,

where 2 = (0, X)¢ is a hypercube domain in RY.

Purpose:

@ establish the 1st and 2nd order ETD schemes for (NAC).
Main theoretical results:

@ discrete maximum principle;

@ maximum-norm error estimates;

o discrete energy stability.
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Quadrature-based finite difference discretization

Setting
@ h = X/N: uniform mesh size (N is a given positive integer);
@ x; = hi: nodes in the mesh (i € Z¢ is a multi-index).
At any node x; = hi, we have
1 u(x; +) +u(x; —s) — 2u(x;) |s|?
TP . Vil £ pilsl as
Bs(0) 5| Is|1
(16)

Lsu(x;) =

where
@ |- |;: the vector 1-norm in RY;

@ | - |: the standard Euclidean norm.
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Quadrature-based finite difference discretization (continued)

At any node x; = hi:

1 ulx; +8) +ulx; —s) — 2u(x; s|?
Coulo) = 5 [ MRS 9 2 2 L) .
2 /s 0) 5| Is]1

a7
Define the discrete version of Ls by [Du-Tao-Tian-Yang, 2018]

. L _ . 2

Coptar) = 5 [ (MR AH ) SR ) 8 ) s,
2 JBs(0) s

(18)

Ish
For a function v(s), the interpolation Z,v(s) is piecewise linear w.r..
each component of s and

Tiv(s) = > v(sp)u(s),

where 1)) is the piecewise d-multi-linear standard basis function.
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Quadrature-based finite difference discretization (continued)

Finite difference discretization of Ls reads

i +8j i —8j) — 2u(x;
Lspu(x;) = Z i +sj)+u\(§|2 %) u(x>fsj|156(sj)a
0+£s;€B5(0) J
(19)
where
/ Ui(s) pausn (20)

We have that L5, is self-adjoint and negative semi-definite.

Lemma (Uniform consistency of Lsj [Du-Tao-Tian-Yang, 2018])

max | Lo (i) — Lsu(x;)| < CH*{|ul|cs, (21)

i

where C > 0 is a constant independent of 0 and h.
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Quadrature-based finite difference discretization (continued)

We

o order the nodes lexicographically,

@ denote by D), € RIN*AN the matrix associated with Lsp.
The space-discrete scheme: find U : [0, T] — R4 such that

aw X

DU+ U-U3, re(0,T],

ar o oh (0,7] (22)
U(0) = U,

We know Dy, is
@ symmetric and negative semi-definite;

o weakly diagonally dominant with all negative diagonal entries.
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Quadrature-based finite difference discretization (continued)

Introduce a stabilizing parameter S > 0 and define
Ly :=—e’Dp+SI,  f(U):=SU+U-U>. (23)

Then, we reach

¥ LU = (), (24)

whose solution satisfies
-
Ut+1)=e M7U(1) + / e MUt +9)ds. (29)
0

We know L, is
@ symmetric and positive definite;

o strictly diagonally dominant with all positive diagonal entries.
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ETD methods for the temporal integration

Setting

e 7 = T/N;: uniform time step (N, is a given positive integer);
@ 1, = n7: nodes in the time interval [0, 7.
At the time level ¢ = t,,, we have

Ultar1) = e 07U (1) + / L= (U (1, + 5)) ds. (26)

0
By

e approximating f(U(t, + s)) by f(U(t,)) in s € [0, 7],
o calculating the integral exactly,
we have the first order ETD scheme of (NAC):

UI1+1 — e—LhTUn + /T e_Lh(T—S)f(Uil) ds
0

(ETD1)
=e LTun 4 L N1 — el (Um).
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ETD methods for the temporal integration (continued)

At the time level t = ¢,,:

Ultysr) =e 50 + [ b0l +5) s @D
0

By

@ approximating f(U(t, + s)) by a linear interpolation based on
F(U(t)) and f (U (tns1)),
we have the second order ETD Runge-Kutta scheme of (NAC):

ﬁn+l — e Litgm + /T eth(Tfs)f(Un) ds,
0

UrH—l — e—LhTUl’l +/ e—Lh(T—S) |:<1 o E)f(Un) + i](‘(ﬁn-i-l) ds.
0 T T
(ETDRK2)
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Discrete maximum principle (DMP)

For both (ETD1) and (ETDRK?2), we prove the DMP by induction:
o Ul < ol < 1
e assume ||U¥||o < 1, prove ||[UF ]| < 1.

For the ETD1 scheme, we have
-
10 oo < Jle™7 [[aollU* |0 + /0 le™ T [log ds - I (UY)l|oo-

We can prove

o |[eli||oo < e 5 forany S > 0 and 7 > 0;
o ||f(U")||oo < S whenS > 2.
Then,
1 —e=57
U o <e™5T 1+ ——— -S=1.
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Discrete maximum principle (continued)

o |le |0 < e 5 forany S > 0and 7 > 0. |

Proof. We know L, is strictly diagonally dominant with all positive
diagonal entries, that is, L, = (¢;;) has ¢; > 0, Vi and

il = > 1yl +S, Vi
J

do
For any 6(0) = 6, the solutions to %= —L,0 satisfy [Lazer, 1971]
16(22) oo < e 0(11)l|oc, V2 211 2 0.
In particular, noting that 6(r) = e %6, we have

le™ Golloc = 10(7) e < e lflollcc, T > 0.
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Discrete maximum principle (continued)

o |[f(U")||oo < S when S > 2. )

fluy=su+uU-U?
Proof. Obviously,
f(=1)==8, f(1)=s.
For any £ € [—1, 1], we have
fE)=85+1-32>5-2>0.
Therefore,

(max F(&)] =S.
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Discrete maximum principle (continued)

For the ETDRK?2 scheme, we have
U oo < le™ 7 [loo[1U¥[loo

[Pl (1= Sty + 2| o

Note that U**! is exactly the solution to ETD1 scheme, so
Frk4-1 Frk4-1
U e <1 = AU <.

For s € [0, 7],

| (1= 2 )r@d+2r @Y < (1=2) IO oot ZWATH oo < 5.

Then,
1 — —ST
UM oo < e™57 -1+ % S=1
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Error estimates

Error estimates of ETD1 scheme
For a fixed § > 0, if ||up||z~ < 1 and S > 2, then we have

(U™ — u(ty)||oo < Ce™(R2 +7), 1, <T, (28)

where C > 0 depends on the C'(]0, T]; Cgcr(ﬁ)) norm of u.

Error estimates of ETDRK2 scheme
For a fixed 6 > 0, if ||uo||~ < 1 and S > 2, then we have

|U" — u(ty)|oo < Ce™(H* +72), 1, <T, (29)

where C > 0 depends on the C*(|0, T]; Cger(ﬁ)) norm of u.
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Error estimates (continued)

Sketch of the proof for the ETDI scheme:
Ut — e~Limyn 4 / e L TF(UM) ds. (ETDI)
0
For given U", the solution U"*! is actually given by U"*! = W;(r)

with the function W; : [0, 7] — R4 determined by

dwi(s)
ds
W (0) = U".

= —SWi(s) + 2D, W, (s) +£(U"), se€(0,7], (30)

For given u(x, t,), the solution u(x, ,,+ 1) is determined by
u(x,t,+1) = w(x, 7) with the Q-periodic function w(x, s) satisfying

aa‘/: = —SW+52£(5W +f(W), X € ?7 RS (077—]7 (31)

w(x,0) = u(x,,), x e
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Error estimates (continued)

Let e;(s) = Wi(s) — w(s). Then,
d€1

S = —Lier +£(U") — flult) + R (s), 5 € (0,7],

e1(0) =U" —u(t,) =: ",
with

(32

IR (5)]lo < C(H> +7), Vs € (0,7],

where C depends on ¢, S, and u. Then,

el(r) = e_Lh’el(O)—l—/Ot e_Lh(’_s)[f(U")—f(u(tn))+R,(llT) (s)]ds, re€]0,7].

Setting t = 7, we have
1= e—ST )
e[S+ Dleflloe + €O + 7)]

< (14+7)|€ oo + CT(h* + 7).

e loo < &= efllos +

An application of the Gronwall’s inequality leads to the result.
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Asymptotic compatibility

(nonlocal) (local)
. §—0
(discrete) ufl > ug
h—0 6= O0N2— 0 h—0
. 0—0
(continuous) ;¢ > 0

® max |Lsnu(xi) — Lou(x;)| < Ch*|lul| ¢4, C independent of §;
x;€

o max | Lsu(x) — Lou(x)| < C8?||ul|ca.
x€)

Then,
max | L u(x;) — Lou(xi)| < C(0% + 1?)||ul| s (33)

Xi€ -
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Asymptotic compatibility (continued)

Lete(s) = Wi(s) — o(s), where ¢(x, s) denotes the exact solution to
the local Allen-Cahn equation. Then,

(34

where
IR+ (s)lloo < C(6* + 12 +7), Vs € (0,7],
where C > 0 depends on ¢, S, and ¢, but independent of J, 4 and 7.
Asymptotic compatibility of ETD1 scheme
If | pollze < 1 and S > 2, then we have
|U" = p(tn)||oo < Ce™(6* +H* +7), 1, <T, (35)

where C > 0 depends on the C'(]0, T]; Cger(ﬁ)) norm of .
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Discrete energy stability

We define the discretized energy Ej:
dN 2

En(U) = lZF(U,-) — %UTD;,U, F(s) = %(s2 — 1% (36)
i=1

Discrete energy stability of the ETD1 scheme
Under the condition S > 2, for any 7 > 0, we have

E (U™ < E(UM).

The proof includes two steps.
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Discrete energy stability (continued)

Step 1. We have

F(U™') — F(U") = F (U™~ U") + (U™~ U,

where ||F” (€)oo = [|136% — 1|00 < 2 since [|€]|oo < 1 due to DMP.
Then, we obtain

Eh(UnJrl) _ Eh(Un) < (Un+1 _ Un)T(LhUnJrl —f(Un)). (37)
Step 2. Solve f(U") from (ETDI) to get
FU") = (1 —e )T LUt - U + LU,

and then,
LU = f(U") = B(U = U™

with By = L, — (I — e 7))~ symmetric and negative definite. So,

Eh(Un"rl) _Eh<Un) S (UI’H‘I _ Un)TBl(Un+l _ Un) S 0



Numerical schemes and numerical
[efe] ]

Discrete energy stability (continued)

Discrete energy stability of the ETDRK2 scheme
Under the condition S > 2,

@ forany 4 > 0 and 7 < 1, we have
En(U™) < Ey(U") + Ch™3 (K + )%,

where C is independent of / and 7;
e if # < 1 and 7 = A\/h for some constant A > 0, we have

Ex(U) < Ey(U°) + C,

where C is independent of / and 7, i.e., the discrete energy is
uniformly bounded.
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Numerical experiments

Fractional power kernel

We consider the 2-D case in all the experiments.

Fractional power kernel:

_ 2(4-aq)
p(s(r)_Wv r>07 016[0,4), (38)
which satisfies
1
3 | IsPastishas —a =2 (39)
B5(0)

e «a € [0,2): integrable, ps(|s|) € L' (Bs(0)), Ls is bounded;
@ « € [2,4): non-integrable.
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Convergence tests

Setting
e = (0,27) x (0,27), T =0.5,£ =0.1;
@ smooth initial data ug(x,y) = 0.5sinxsiny;

@ kernel: o = 1 (integrable) and o = 3 (non-integrable).

‘We consider
@ temporal convergence rate, i.e., 7 — 0;
© spatial convergence rate, i.e., h — 0;

@ convergence to the local limit, i.e., § — O.
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Convergence tests (continued)

1. Temporal convergence rate.
Setting
@ § = 0.2 and § = 2, respectively;
e N = 256;
o 7=0.05x2%withk=0,1,...,7;
@ benchmark: ETDRK?2 scheme with 7 = 107°.

integrable kernel

non-integrable kernel
10" 10t
10?
10°
10%
10°
s —— =02 ETDL 6 ——) =02 ETDL
10 —6—5=02: ETORK2 10 —6— =02 ETORK2
-0~ 5=2ETDL -0- §=2ETD1
o —# §5=2 ETDRK2 . ~# §=2 ETDRK2
B = = first order 10 ~ = first order
=== second order === second order
10° 10°®
10% 10° 107 10! 10 10° 102 10

The computed errors are almost independent of choices of § and a.
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Convergence tests (continued)

2. Spatial convergence rate.
Setting

e )=2and T =T;
o N =2Fwithk =4,5,...,10;
@ benchmark: N = 4096.

integrable kernel non-integrable kernel
0 0
10 10
10° s
102 Pid
Jiad
10 L
10
10°
10°
10
=6~ computed error mputed error
= = second order - -ond order
107 10®
10° 10? 10 10° 10° 10? 10 10°

The O(h?) convergence rate is observed as i — 0.
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Numerical experiments

3. Convergence to the local limit.

Setting

o N=40%and 7 =T;
@ local solution: ETDRK?2 scheme for LAC equation.

5—02 a=1 a=73
error rate error rate
) 1.076e-5 * 5.371e-6 *
5/2 2.703e-6 | 1.9927 | 1.344e-6 | 1.9991
0/4 6.250e-7 | 2.1124 | 3.153e-7 | 2.0912
5/8 1.580e-7 | 1.9835 | 6.373e-8 | 2.3068

The O(8?) convergence rate is observed as § — 0.
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Stability tests

For the case ps(|s|) € L'(B5(0)), i.e., « € [0,2), denote

4(4 — o)
Cs = / ps(ls]) ds = ———.
B5(0) (2 —a)s?
Theorem [Du-Yang, 2016]
The steady state solution u* to (NAC) is continuous if e2Cs > 1. J

Setting
e Q= (0,2m) x (0,2m),e =0.1;
e N=512,7=0.01;
e random initial data ranging from —0.9 to 0.9 uniformly;
@ integrable kernel: o = 1 (now £2Cs > 1 leads to § < 2v/3¢);
0 0=0,0=3¢,6 =4e.
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Stability tests (continued)

From top to bottom: § = 0, 3¢, 4¢.
From left to right: r = 6, 14,50, 180.
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Stability tests (continued)

From left to right: § = 0, 3¢, 4¢.
Top: maximum norms; bottom: energies.

c c <
8 8 8
So 3 El
2 2, 2
3, 3 3
° ° o
<o S, s
5, s 5
5 Eor 5
Q05 =) =]
g g g
g° oo E
g g g
E° E £
Bo 3’ 8
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o o
S T S S O T VA TR Y T I Y
time time
"
;s u
2
o u
. » 0 10

energy
energy
energy

0 13 2 o 10 = w o«

0 20 4« e @ 100 20 10 0 10 20 0 s 100 10 20 20 a0 w0 40 0 s 100 150 200 20 w0 w0 400 40 00

time time time
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Discontinuity in the steady state solution

For the case ps(|s|) € L'(B5(0)), i.e., a € [0,2), denote

B 44 -a)
= /35(0) polls) s =5 e

Theorem [Du-Yang, 2016]

Under certain assumptions, if 2Cs < 1, the locally increasing u* has
a discontinuity at x, with the jump

1] (x.) = 24/1 — €2Cs. (40)

Setting
e Q= (0,2m) x (0,27),e =0.1;
e N =2048, 7 = 0.01;
@ smooth initial data;

o integrable kernel: o = 1.
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Discontinuity in the steady state solution (continued)

1 1
s
08 08
5 08 06
04 04
4
02 — 02
0
= 5
N § g
0z T 02
2 04 04
06 06
1
a8 08
0 4 1
o 1 2 3 4 5 6 3
x

0.12
theoretical jump = 24/ 1 — 57 d > 99 = V0.12 =~ 0.3464.
0=02] 6=08 | 6=16 | 6 =32
theoretical jumps 0 1.802776 | 1.952562 | 1.988247
numerical jumps 0 1.804496 | 1.952713 | 1.988242
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Discontinuity in the steady state solution (continued)

SRR
LI

(a) § = 0.2: solutions at t = 1, 40, 55, cross-sections with y =

(b) 6 = 0.8: solutions at r = 1, 3, 20, cross-sections with y = 7

o :V
- I 4
o A

(c) = 3.2: solutions at t = 1, 3, 20, cross-sections with y =
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Conclusion

For the NAC equation
u— > Lou+ud —u=0, (NAC)

we present the first and second order ETD schemes by using

@ quadrature-based difference method for spatial discretization,

o exponential time differencing methods for temporal integration,
and obtain

@ discrete maximum principle,

@ error estimates and asymptotic compatibility,

o discrete energy stability.
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Conclusion (continued)

Something to consider further:
@ high-order and other schemes preserving the maximum principle;
e not DMP, but L*° stable schemes for high-order PDE;

@ asymptotic compatibility for nonlocal C-H equation or others.

Thanks for your attention!



	Introduction and motivation
	Numerical schemes and numerical analysis
	Exponential time differencing (ETD) schemes
	Discrete maximum principle
	Error estimates and asymptotic compatibility
	Discrete energy stability

	Numerical experiments

