Maximum principle preserving ETD schemes for the nonlocal Allen-Cahn equation

Xiao Li

Beijing Computational Science Research Center

Joint work with

Qiang Du (COLUMBIA), Lili Ju (USC), Zhonghua Qiao (HKPU)

Workshop on Modeling and Simulation of Interface-related Problems, National University of Singapore, Singapore, 30 April – 3 May, 2018

1 Introduction and motivation

2 Numerical schemes and numerical analysis

- Exponential time differencing (ETD) schemes
- Discrete maximum principle
- Error estimates and asymptotic compatibility
- Discrete energy stability

Outline

1) Introduction and motivation

2 Numerical schemes and numerical analysis

- Exponential time differencing (ETD) schemes
- Discrete maximum principle
- Error estimates and asymptotic compatibility
- Discrete energy stability

Allen-Cahn equation

(Local) Allen-Cahn equation:

$$u_t - \varepsilon^2 \Delta u + u^3 - u = 0.$$
 (LAC)

As an L^2 gradient flow w.r.t. the free energy functional

$$E_{\text{local}}(u) = \int \left(\frac{1}{4}(u(\boldsymbol{x})^2 - 1)^2 + \frac{\varepsilon^2}{2}|\nabla u(\boldsymbol{x})|^2\right) d\boldsymbol{x}, \qquad (1)$$

• energy stability:

$$E_{\text{local}}(u(t_2)) \le E_{\text{local}}(u(t_1)), \quad \forall t_2 \ge t_1 \ge 0.$$
(2)

As a second order reaction-diffusion equation,

• maximum principle:

 $\|u(\cdot,0)\|_{L^{\infty}} \le 1 \quad \Rightarrow \quad \|u(\cdot,t)\|_{L^{\infty}} \le 1, \quad \forall t > 0.$ (3)

Allen-Cahn equation (continued)

Energy stable schemes:

• *Stabilized semi-implicit (SSI) scheme* [Shen-Yang, 2010]: find u^{n+1} such that

$$\frac{u^{n+1}-u^n}{\tau} - \varepsilon^2 \Delta_h u^{n+1} + (u^n)^3 - u^n + S(u^{n+1}-u^n) = 0.$$
 (4)

 Exponential time differencing (ETD) scheme [Ju et al., 2015]: find uⁿ⁺¹ = w(τ) with w(t) subject to

$$\begin{cases} \frac{\mathrm{d}w}{\mathrm{d}t} + (S - \varepsilon^2 \Delta_h)w + (u^n)^3 - u^n - Su^n = 0, \ t \in (0, \tau], \\ w(0) = u^n. \end{cases}$$
(5)

Both schemes are easy to implement and conditionally energy stable.

Numerical experiments

Allen-Cahn equation (continued)

$$F(u) = \frac{1}{4}(u^2 - 1)^2, \quad f(u) := F'(u) = u^3 - u.$$

What is the condition for energy stability?

$$S \ge \frac{1}{2} \|f'(u)\|_{L^{\infty}}.$$
 (6)

However,

$$f'(u) = 3u^2 - 1$$
, unbounded in L^{∞} !

Numerical experiments

Allen-Cahn equation (continued)

$$F(u) = \frac{1}{4}(u^2 - 1)^2, \quad f(u) := F'(u) = u^3 - u.$$

What is the condition for energy stability?

$$S \ge \frac{1}{2} \|f'(u)\|_{L^{\infty}}.$$
 (6)

However,

$$f'(u) = 3u^2 - 1$$
, unbounded in L^{∞} !

If we have that *u* is bounded in L^{∞} , then so does f'(u).

Discrete maximum principle (DMP) insures the L^{∞} boundness of *u*.

Allen-Cahn equation (continued)

Maximum principle preserving schemes:

• first order semi-implicit scheme [Tang-Yang, 2016]:

$$\frac{u^{n+1} - u^n}{\tau} - \varepsilon^2 \Delta_h u^{n+1} + (u^n)^3 - u^n + S(u^{n+1} - u^n) = 0 \quad (7)$$

condition for DMP: $\frac{1}{\tau} + S \ge 2$.

• Crank-Nicolson scheme [Hou-Tang-Yang, 2017]:

$$\frac{u^{n+1}-u^n}{\tau} - \varepsilon^2 \Delta_h \frac{u^{n+1}+u^n}{2} + \frac{(u^{n+1})^3 + (u^n)^3}{2} - \frac{u^{n+1}+u^n}{2} = 0$$
(8)

condition for DMP: $\tau \leq \frac{1}{2} \min\{\varepsilon^2, h^2\}.$

• ETD scheme (in space-continuous version) [Du-Zhu, 2005].

Numerical experiments

Nonlocal diffusion operator

Nonlocal diffusion operator ($x \in \mathbb{R}^d$):

$$\mathcal{L}_{\delta}u(\mathbf{x}) = \frac{1}{2} \int_{B_{\delta}(\mathbf{0})} \rho_{\delta}(|\mathbf{s}|) \left(u(\mathbf{x} + \mathbf{s}) + u(\mathbf{x} - \mathbf{s}) - 2u(\mathbf{x}) \right) \, \mathrm{d}\mathbf{s}.$$
(9)

Kernel $\rho_{\delta}: [0, \delta] \to \mathbb{R}$ is nonnegative and

$$\frac{1}{2} \int_{B_{\delta}(\mathbf{0})} |\mathbf{s}|^2 \rho_{\delta}(|\mathbf{s}|) \,\mathrm{d}\mathbf{s} = d. \tag{10}$$

Consistency of \mathcal{L}_{δ} with $\mathcal{L}_0 := \Delta$ via [Du et al., 2012]

$$\max_{\boldsymbol{x}} |\mathcal{L}_{\delta} u(\boldsymbol{x}) - \mathcal{L}_{0} u(\boldsymbol{x})| \le C \delta^{2} \|u\|_{C^{4}}.$$
 (11)

In particular, in 1-D case,

$$\mathcal{L}_{\delta}u(x) = \frac{1}{2} \int_{-\delta}^{\delta} |s|^2 \rho_{\delta}(|s|) \cdot \frac{u(x+s) + u(x-s) - 2u(x)}{|s|^2} \,\mathrm{d}s.$$
(12)

Numerical experiments

Nonlocal Allen-Cahn equation

Nonlocal Allen-Cahn (NAC) equation:

$$u_t - \varepsilon^2 \mathcal{L}_{\delta} u + u^3 - u = 0.$$
 (NAC)

As an L^2 gradient flow w.r.t. the free energy functional

$$E(u) = \int \left(\frac{1}{4}(u(\mathbf{x})^2 - 1)^2 - \frac{\varepsilon^2}{2}u(\mathbf{x})\mathcal{L}_{\delta}u(\mathbf{x})\right) d\mathbf{x}, \qquad (13)$$

• energy stability:

$$E(u(t_2)) \le E(u(t_1)), \quad \forall t_2 \ge t_1 \ge 0.$$
 (14)

Similar to the case of local Allen-Cahn equation, we can prove

• maximum principle:

$$\|u(\cdot,0)\|_{L^{\infty}} \le 1 \quad \Rightarrow \quad \|u(\cdot,t)\|_{L^{\infty}} \le 1, \quad \forall t > 0.$$
 (15)

Nonlocal Allen-Cahn equation (continued)

Consider the initial-boundary-value problem of the NAC equation

$$u_t - \varepsilon^2 \mathcal{L}_{\delta} u + u^3 - u = 0, \quad \mathbf{x} \in \Omega, \ t \in (0, T],$$

$$u(\cdot, t) \text{ is } \Omega \text{-periodic}, \quad t \in [0, T],$$

$$u(\mathbf{x}, 0) = u_0(\mathbf{x}), \quad \mathbf{x} \in \overline{\Omega},$$

where $\Omega = (0, X)^d$ is a hypercube domain in \mathbb{R}^d .

Purpose:

• establish the 1st and 2nd order ETD schemes for (NAC). Main theoretical results:

- discrete maximum principle;
- maximum-norm error estimates;
- discrete energy stability.

Introduction and motivation

2 Numerical schemes and numerical analysis

- Exponential time differencing (ETD) schemes
- Discrete maximum principle
- Error estimates and asymptotic compatibility
- Discrete energy stability

Quadrature-based finite difference discretization

Setting

- h = X/N: uniform mesh size (*N* is a given positive integer);
- $x_i = hi$: nodes in the mesh ($i \in \mathbb{Z}^d$ is a multi-index).

At any node $x_i = hi$, we have

$$\mathcal{L}_{\delta}u(\mathbf{x}_{i}) = \frac{1}{2} \int_{B_{\delta}(\mathbf{0})} \frac{u(\mathbf{x}_{i} + \mathbf{s}) + u(\mathbf{x}_{i} - \mathbf{s}) - 2u(\mathbf{x}_{i})}{|\mathbf{s}|^{2}} |\mathbf{s}|_{1} \cdot \frac{|\mathbf{s}|^{2}}{|\mathbf{s}|_{1}} \rho_{\delta}(|\mathbf{s}|) \, \mathrm{d}\mathbf{s},$$
(16)

where

- $|\cdot|_1$: the vector 1-norm in \mathbb{R}^d ;
- $|\cdot|$: the standard Euclidean norm.

At any node $x_i = hi$:

$$\mathcal{L}_{\delta}u(\mathbf{x}_{i}) = \frac{1}{2} \int_{B_{\delta}(\mathbf{0})} \frac{u(\mathbf{x}_{i} + \mathbf{s}) + u(\mathbf{x}_{i} - \mathbf{s}) - 2u(\mathbf{x}_{i})}{|\mathbf{s}|^{2}} |\mathbf{s}|_{1} \cdot \frac{|\mathbf{s}|^{2}}{|\mathbf{s}|_{1}} \rho_{\delta}(|\mathbf{s}|) \, \mathrm{d}\mathbf{s}.$$
(17)

Define the discrete version of \mathcal{L}_{δ} by [Du-Tao-Tian-Yang, 2018]

$$\mathcal{L}_{\delta,h}u(\mathbf{x}_{i}) = \frac{1}{2} \int_{B_{\delta}(\mathbf{0})} \mathcal{I}_{h}\left(\frac{u(\mathbf{x}_{i}+\mathbf{s}) + u(\mathbf{x}_{i}-\mathbf{s}) - 2u(\mathbf{x}_{i})}{|\mathbf{s}|^{2}} |\mathbf{s}|_{1}\right) \frac{|\mathbf{s}|^{2}}{|\mathbf{s}|_{1}} \rho_{\delta}(|\mathbf{s}|) \,\mathrm{d}\mathbf{s}.$$
(18)

For a function v(s), the interpolation $\mathcal{I}_h v(s)$ is *piecewise linear w.r.t. each component of* s and

$$\mathcal{I}_h v(s) = \sum_{s_j} v(s_j) \psi_j(s),$$

where ψ_i is the piecewise *d*-multi-linear standard basis function.

Finite difference discretization of \mathcal{L}_{δ} reads

$$\mathcal{L}_{\delta,h}u(\mathbf{x}_i) = \sum_{\mathbf{0}\neq s_j\in B_{\delta}(\mathbf{0})} \frac{u(\mathbf{x}_i+s_j) + u(\mathbf{x}_i-s_j) - 2u(\mathbf{x}_i)}{|\mathbf{s}_j|^2} |\mathbf{s}_j|_1 \beta_{\delta}(\mathbf{s}_j),$$
(19)

where

$$\beta_{\delta}(\boldsymbol{s}_{\boldsymbol{j}}) = \frac{1}{2} \int_{B_{\delta}(\boldsymbol{0})} \psi_{\boldsymbol{j}}(\boldsymbol{s}) \frac{|\boldsymbol{s}|^2}{|\boldsymbol{s}|_1} \rho_{\delta}(|\boldsymbol{s}|) \,\mathrm{d}\boldsymbol{s}.$$
(20)

We have that $\mathcal{L}_{\delta,h}$ is self-adjoint and negative semi-definite.

Lemma (Uniform consistency of $\mathcal{L}_{\delta,h}$ [Du-Tao-Tian-Yang, 2018]) $\max_{\mathbf{x}_i \in \Omega} |\mathcal{L}_{\delta,h} u(\mathbf{x}_i) - \mathcal{L}_{\delta} u(\mathbf{x}_i)| \le Ch^2 ||u||_{C^4},$ (21)

where C > 0 is a constant independent of δ and h.

We

- order the nodes lexicographically,
- denote by $D_h \in \mathbb{R}^{dN \times dN}$ the matrix associated with $\mathcal{L}_{\delta,h}$.

The space-discrete scheme: find $U: [0,T] \rightarrow \mathbb{R}^{dN}$ such that

$$\begin{cases} \frac{\mathrm{d}U}{\mathrm{d}t} = \varepsilon^2 D_h U + U - U^{.3}, & t \in (0, T], \\ U(0) = U_0. \end{cases}$$
(22)

We know D_h is

- symmetric and negative semi-definite;
- weakly diagonally dominant with all negative diagonal entries.

Introduce a stabilizing parameter S > 0 and define

$$L_h := -\varepsilon^2 D_h + SI, \qquad f(U) := SU + U - U^{.3}.$$
(23)

Then, we reach

$$\frac{\mathrm{d}U}{\mathrm{d}t} + L_h U = f(U), \qquad (24)$$

whose solution satisfies

$$U(t+\tau) = e^{-L_h \tau} U(t) + \int_0^\tau e^{-L_h(\tau-s)} f(U(t+s)) \, \mathrm{d}s.$$
 (25)

We know L_h is

- symmetric and positive definite;
- strictly diagonally dominant with all positive diagonal entries.

ETD methods for the temporal integration

Setting

- $\tau = T/N_t$: uniform time step (N_t is a given positive integer);
- $t_n = n\tau$: nodes in the time interval [0, T].

At the time level $t = t_n$, we have

$$U(t_{n+1}) = e^{-L_h \tau} U(t_n) + \int_0^{\tau} e^{-L_h(\tau - s)} f(U(t_n + s)) \, ds.$$
 (26)

By

- approximating $f(U(t_n + s))$ by $f(U(t_n))$ in $s \in [0, \tau]$,
- calculating the integral exactly,

we have the *first order ETD scheme* of (NAC):

$$U^{n+1} = e^{-L_h \tau} U^n + \int_0^{\tau} e^{-L_h (\tau - s)} f(U^n) ds$$

= $e^{-L_h \tau} U^n + L_h^{-1} (I - e^{-L_h \tau}) f(U^n).$ (ETD1)

ETD methods for the temporal integration (continued)

At the time level $t = t_n$:

$$U(t_{n+1}) = e^{-L_h \tau} U(t_n) + \int_0^\tau e^{-L_h(\tau - s)} f(U(t_n + s)) \, ds.$$
 (27)

By

• approximating $f(U(t_n + s))$ by a linear interpolation based on $f(U(t_n))$ and $f(U(t_{n+1}))$,

we have the second order ETD Runge-Kutta scheme of (NAC):

$$\begin{cases} \widetilde{U}^{n+1} = e^{-L_h \tau} U^n + \int_0^{\tau} e^{-L_h(\tau-s)} f(U^n) \, \mathrm{d}s, \\ U^{n+1} = e^{-L_h \tau} U^n + \int_0^{\tau} e^{-L_h(\tau-s)} \left[\left(1 - \frac{s}{\tau}\right) f(U^n) + \frac{s}{\tau} f(\widetilde{U}^{n+1}) \right] \, \mathrm{d}s. \end{cases}$$
(ETDRK2)

Discrete maximum principle (DMP)

For both (ETD1) and (ETDRK2), we prove the DMP by induction:

- $||U^0||_{\infty} \le ||u_0||_{L^{\infty}} \le 1;$
- assume $||U^k||_{\infty} \leq 1$, prove $||U^{k+1}||_{\infty} \leq 1$.

For the ETD1 scheme, we have

$$\|U^{k+1}\|_{\infty} \leq \|\mathbf{e}^{-L_{h}\tau}\|_{\infty} \|U^{k}\|_{\infty} + \int_{0}^{\tau} \|\mathbf{e}^{-L_{h}(\tau-s)}\|_{\infty} \,\mathrm{d}s \cdot \|f(U^{k})\|_{\infty}.$$

We can prove

||e^{-L_hτ}||_∞ ≤ e^{-Sτ} for any S > 0 and τ > 0;
 ||f(U^k)||_∞ ≤ S when S ≥ 2.

Then,

$$||U^{k+1}||_{\infty} \le e^{-S\tau} \cdot 1 + \frac{1 - e^{-S\tau}}{S} \cdot S = 1.$$

Discrete maximum principle (continued)

•
$$\|\mathbf{e}^{-L_h\tau}\|_{\infty} \leq \mathbf{e}^{-S\tau}$$
 for any $S > 0$ and $\tau > 0$.

Proof. We know L_h is strictly diagonally dominant with all positive diagonal entries, that is, $L_h = (\ell_{ij})$ has $\ell_{ii} > 0$, $\forall i$ and

$$|\ell_{ii}| \ge \sum_{j} |\ell_{ij}| + S, \quad \forall i.$$

For any $\theta(0) = \theta_0$, the solutions to $\frac{d\theta}{dt} = -L_h \theta$ satisfy [Lazer, 1971]

$$\|\theta(t_2)\|_{\infty} \leq e^{-S(t_2-t_1)} \|\theta(t_1)\|_{\infty}, \quad \forall t_2 \geq t_1 \geq 0.$$

In particular, noting that $\theta(t) = e^{-L_h t} \theta_0$, we have

$$\|\mathbf{e}^{-L_h\tau}\theta_0\|_{\infty} = \|\theta(\tau)\|_{\infty} \le \mathbf{e}^{-S\tau}\|\theta_0\|_{\infty}, \quad \tau > 0.$$

Discrete maximum principle (continued)

• $||f(U^k)||_{\infty} \leq S$ when $S \geq 2$.

$$f(U) = SU + U - U^{.3}$$

Proof. Obviously,

$$f(-1) = -S, \quad f(1) = S.$$

For any $\xi \in [-1, 1]$, we have

$$f'(\xi) = S + 1 - 3\xi^2 \ge S - 2 \ge 0.$$

Therefore,

$$\max_{\xi \in [-1,1]} |f(\xi)| = S.$$

Discrete maximum principle (continued)

For the ETDRK2 scheme, we have

$$\begin{split} \|U^{k+1}\|_{\infty} &\leq \|\mathbf{e}^{-L_{h}\tau}\|_{\infty} \|U^{k}\|_{\infty} \\ &+ \int_{0}^{\tau} \|\mathbf{e}^{-L_{h}(\tau-s)}\|_{\infty} \left\| \left(1-\frac{s}{\tau}\right) f(U^{k}) + \frac{s}{\tau} f(\widetilde{U}^{k+1}) \right\|_{\infty} \mathrm{d}s. \end{split}$$

Note that \tilde{U}^{k+1} is exactly the solution to ETD1 scheme, so

$$\|\widetilde{U}^{k+1}\|_{\infty} \leq 1 \quad \Rightarrow \quad \|f(\widetilde{U}^{k+1})\|_{\infty} \leq S.$$

For $s \in [0, \tau]$, $\left\| \left(1 - \frac{s}{\tau}\right) f(U^k) + \frac{s}{\tau} f(\widetilde{U}^{k+1}) \right\|_{\infty} \le \left(1 - \frac{s}{\tau}\right) \|f(U^k)\|_{\infty} + \frac{s}{\tau} \|f(\widetilde{U}^{k+1})\|_{\infty} \le S.$

Then,

$$||U^{k+1}||_{\infty} \le e^{-S\tau} \cdot 1 + \frac{1 - e^{-S\tau}}{S} \cdot S = 1.$$

Error estimates

Error estimates of ETD1 scheme

For a fixed $\delta > 0$, if $||u_0||_{L^{\infty}} \leq 1$ and $S \geq 2$, then we have

$$||U^n - u(t_n)||_{\infty} \le Ce^{t_n}(h^2 + \tau), \quad t_n \le T,$$
 (28)

where C > 0 depends on the $C^1([0,T]; C^4_{per}(\overline{\Omega}))$ norm of u.

Error estimates of ETDRK2 scheme

For a fixed $\delta > 0$, if $||u_0||_{L^{\infty}} \leq 1$ and $S \geq 2$, then we have

$$||U^n - u(t_n)||_{\infty} \le C e^{t_n} (h^2 + \tau^2), \quad t_n \le T,$$
 (29)

where C > 0 depends on the $C^2([0,T]; C^4_{per}(\overline{\Omega}))$ norm of u.

Error estimates (continued)

Sketch of the proof for the ETD1 scheme:

$$U^{n+1} = e^{-L_h \tau} U^n + \int_0^\tau e^{-L_h(\tau - s)} f(U^n) \, \mathrm{d}s.$$
 (ETD1)

For given U^n , the solution U^{n+1} is actually given by $U^{n+1} = W_1(\tau)$ with the function $W_1 : [0, \tau] \to \mathbb{R}^{dN}$ determined by

$$\begin{cases} \frac{\mathrm{d}W_1(s)}{\mathrm{d}s} = -SW_1(s) + \varepsilon^2 D_h W_1(s) + f(U^n), & s \in (0,\tau], \\ W_1(0) = U^n. \end{cases}$$
(30)

For given $u(\mathbf{x}, t_n)$, the solution $u(\mathbf{x}, t_{n+1})$ is determined by $u(\mathbf{x}, t_{n+1}) = w(\mathbf{x}, \tau)$ with the Ω -periodic function $w(\mathbf{x}, s)$ satisfying

$$\begin{cases} \frac{\partial w}{\partial s} = -Sw + \varepsilon^2 \mathcal{L}_{\delta} w + f(w), & \mathbf{x} \in \Omega, \ s \in (0, \tau], \\ w(\mathbf{x}, 0) = u(\mathbf{x}, t_n), & \mathbf{x} \in \overline{\Omega}. \end{cases}$$
(31)

Error estimates (continued)

Let
$$e_1(s) = W_1(s) - w(s)$$
. Then,

$$\begin{cases}
\frac{de_1}{ds} = -L_h e_1 + f(U^n) - f(u(t_n)) + R_{h\tau}^{(1)}(s), & s \in (0, \tau], \\
e_1(0) = U^n - u(t_n) =: e^n,
\end{cases}$$
(32)

with

$$\|R_{h\tau}^{(1)}(s)\|_{\infty} \leq C(h^2+\tau), \quad \forall s \in (0,\tau],$$

where C depends on ε , S, and u. Then,

$$e_1(t) = e^{-L_h t} e_1(0) + \int_0^t e^{-L_h(t-s)} [f(U^n) - f(u(t_n)) + R_{h\tau}^{(1)}(s)] \, \mathrm{d}s, \quad t \in [0,\tau].$$

Setting $t = \tau$, we have

$$\begin{aligned} \|e_1^{n+1}\|_{\infty} &\leq e^{-S\tau} \|e_1^n\|_{\infty} + \frac{1 - e^{-S\tau}}{S} [(S+1)\|e_1^n\|_{\infty} + C(h^2 + \tau)] \\ &\leq (1+\tau) \|e_1^n\|_{\infty} + C\tau(h^2 + \tau). \end{aligned}$$

An application of the Gronwall's inequality leads to the result.

Asymptotic compatibility

Then,

$$\max_{\mathbf{x}_i \in \Omega} |\mathcal{L}_{\delta,h} u(\mathbf{x}_i) - \mathcal{L}_0 u(\mathbf{x}_i)| \le C(\delta^2 + h^2) \|u\|_{C^4}.$$
 (33)

Asymptotic compatibility (continued)

Let $\hat{e}(s) = W_1(s) - \varphi(s)$, where $\varphi(\mathbf{x}, s)$ denotes the exact solution to the local Allen-Cahn equation. Then,

$$\begin{cases} \frac{\mathrm{d}\widehat{e}}{\mathrm{d}s} = -L_{h}\widehat{e} + f(U^{n}) - f(\varphi(t_{n})) + \widehat{R}_{h\tau}^{\delta}(s), & s \in (0,\tau],\\ \widehat{e}(0) = U^{n} - \varphi(t_{n}) =: \widehat{e}^{n}, \end{cases}$$
(34)

where

$$\|\widehat{R}^{\delta}_{h\tau}(s)\|_{\infty} \leq C(\delta^2 + h^2 + \tau), \quad \forall s \in (0,\tau],$$

where C > 0 depends on ε , S, and φ , but independent of δ , h and τ .

Asymptotic compatibility of ETD1 scheme

If $\|\varphi_0\|_{L^{\infty}} \leq 1$ and $S \geq 2$, then we have

$$\|U^n - \varphi(t_n)\|_{\infty} \le C e^{t_n} (\delta^2 + h^2 + \tau), \quad t_n \le T,$$
(35)

where C > 0 depends on the $C^1([0,T]; C^4_{per}(\overline{\Omega}))$ norm of φ .

Discrete energy stability

We define the discretized energy E_h :

$$E_h(U) = \frac{1}{4} \sum_{i=1}^{dN} F(U_i) - \frac{\varepsilon^2}{2} U^T D_h U, \quad F(s) = \frac{1}{4} (s^2 - 1)^2.$$
(36)

Discrete energy stability of the ETD1 scheme Under the condition $S \ge 2$, for any $\tau > 0$, we have

 $E_h(U^{n+1}) \le E_h(U^n).$

The proof includes two steps.

Discrete energy stability (continued)

Step 1. We have

$$F(U^{n+1}) - F(U^n) = F'(U^n)(U^{n+1} - U^n) + \frac{1}{2}F''(\xi)(U^{n+1} - U^n)^2,$$

where $||F''(\xi)||_{\infty} = ||3\xi^2 - 1||_{\infty} \le 2$ since $||\xi||_{\infty} \le 1$ due to DMP. Then, we obtain

$$E_h(U^{n+1}) - E_h(U^n) \le (U^{n+1} - U^n)^T (L_h U^{n+1} - f(U^n)).$$
(37)

Step 2. Solve $f(U^n)$ from (ETD1) to get

$$f(U^n) = (I - e^{-L_h \tau})^{-1} L_h (U^{n+1} - U^n) + L_h U^n,$$

and then,

$$L_h U^{n+1} - f(U^n) = B_1(U^{n+1} - U^n)$$

with $B_1 = L_h - (I - e^{-L_h \tau})^{-1} L_h$ symmetric and negative definite. So, $E_h(U^{n+1}) - E_h(U^n) \le (U^{n+1} - U^n)^T B_1(U^{n+1} - U^n) \le 0.$

Discrete energy stability (continued)

Discrete energy stability of the ETDRK2 scheme

- Under the condition $S \ge 2$,
 - for any h > 0 and $\tau \le 1$, we have

$$E_h(U^{n+1}) \le E_h(U^n) + \widetilde{C}h^{-\frac{1}{2}}(h^2 + \tau)^2,$$

where \widetilde{C} is independent of *h* and τ ;

• if $h \le 1$ and $\tau = \lambda \sqrt{h}$ for some constant $\lambda > 0$, we have

$$E_h(U^n) \leq E_h(U^0) + \widehat{C},$$

where \widehat{C} is independent of *h* and τ , i.e., the discrete energy is uniformly bounded.

Introduction and motivation

2 Numerical schemes and numerical analysis

- Exponential time differencing (ETD) schemes
- Discrete maximum principle
- Error estimates and asymptotic compatibility
- Discrete energy stability

Fractional power kernel

We consider the 2-D case in all the experiments.

Fractional power kernel:

$$\rho_{\delta}(\mathbf{r}) = \frac{2(4-\alpha)}{\pi \delta^{4-\alpha} \mathbf{r}^{\alpha}}, \quad \mathbf{r} > 0, \; \alpha \in [0,4), \tag{38}$$

which satisfies

$$\frac{1}{2} \int_{B_{\delta}(\mathbf{0})} |\mathbf{s}|^2 \rho_{\delta}(|\mathbf{s}|) \,\mathrm{d}\mathbf{s} = d = 2. \tag{39}$$

α ∈ [0, 2): integrable, ρ_δ(|s|) ∈ L¹(B_δ(0)), L_δ is bounded;
α ∈ [2, 4): non-integrable.

Convergence tests

Setting

- $\Omega = (0, 2\pi) \times (0, 2\pi), T = 0.5, \varepsilon = 0.1;$
- smooth initial data $u_0(x, y) = 0.5 \sin x \sin y$;
- kernel: $\alpha = 1$ (integrable) and $\alpha = 3$ (non-integrable).

We consider

- temporal convergence rate, i.e., $\tau \rightarrow 0$;
- 2 spatial convergence rate, i.e., $h \rightarrow 0$;
- So convergence to the local limit, i.e., $\delta \rightarrow 0$.

Convergence tests (continued)

1. Temporal convergence rate.

Setting

- $\delta = 0.2$ and $\delta = 2$, respectively;
- *N* = 256;
- $\tau = 0.05 \times 2^{-k}$ with $k = 0, 1, \dots, 7$;
- benchmark: ETDRK2 scheme with $\tau = 10^{-6}$.

The computed errors are almost independent of choices of δ and α .

Convergence tests (continued)

2. Spatial convergence rate. Setting

- $\delta = 2$ and $\tau = T$;
- $N = 2^k$ with k = 4, 5, ..., 10;
- benchmark: N = 4096.

The $\mathcal{O}(h^2)$ convergence rate is observed as $h \to 0$.

Convergence tests (continued)

3. Convergence to the local limit. Setting

- N = 4096 and $\tau = T$;
- local solution: ETDRK2 scheme for LAC equation.

$\delta = 0.2$	$\alpha = 1$		$\alpha = 3$	
	error	rate	error	rate
δ	1.076e-5	*	5.371e-6	*
$\delta/2$	2.703e-6	1.9927	1.344e-6	1.9991
$\delta/4$	6.250e-7	2.1124	3.153e-7	2.0912
$\delta/8$	1.580e-7	1.9835	6.373e-8	2.3068

The $\mathcal{O}(\delta^2)$ convergence rate is observed as $\delta \to 0$.

Numerical experiments

Stability tests

For the case $\rho_{\delta}(|\mathbf{s}|) \in L^1(B_{\delta}(\mathbf{0}))$, i.e., $\alpha \in [0, 2)$, denote

$$C_{\delta} = \int_{B_{\delta}(\mathbf{0})} \rho_{\delta}(|\mathbf{s}|) \, \mathrm{d}\mathbf{s} = \frac{4(4-\alpha)}{(2-\alpha)\delta^2}.$$

Theorem [Du-Yang, 2016]

The steady state solution u^* to (NAC) is continuous if $\varepsilon^2 C_{\delta} \ge 1$.

Setting

- $\Omega = (0, 2\pi) \times (0, 2\pi), \varepsilon = 0.1;$
- *N* = 512, *τ* = 0.01;
- random initial data ranging from -0.9 to 0.9 uniformly;
- integrable kernel: $\alpha = 1$ (now $\varepsilon^2 C_{\delta} \ge 1$ leads to $\delta \le 2\sqrt{3}\varepsilon$);

•
$$\delta = 0, \, \delta = 3\varepsilon, \, \delta = 4\varepsilon.$$

Numerical experiments

Stability tests (continued)

From top to bottom: $\delta = 0, 3\varepsilon, 4\varepsilon$. From left to right: t = 6, 14, 50, 180.

Numerical experiments

Stability tests (continued)

From left to right: $\delta = 0, 3\varepsilon, 4\varepsilon$. Top: maximum norms; bottom: energies.

Discontinuity in the steady state solution

For the case $\rho_{\delta}(|\mathbf{s}|) \in L^1(B_{\delta}(\mathbf{0}))$, i.e., $\alpha \in [0, 2)$, denote

$$C_{\delta} = \int_{B_{\delta}(\mathbf{0})} \rho_{\delta}(|\mathbf{s}|) \, \mathrm{d}\mathbf{s} = \frac{4(4-\alpha)}{(2-\alpha)\delta^2}.$$

Theorem [Du-Yang, 2016]

Under certain assumptions, if $\varepsilon^2 C_{\delta} < 1$, the locally increasing u^* has a discontinuity at x_* with the jump

$$\llbracket u^* \rrbracket(x_*) = 2\sqrt{1 - \varepsilon^2 C_\delta}.$$
(40)

Setting

- $\Omega = (0, 2\pi) \times (0, 2\pi), \varepsilon = 0.1;$
- $N = 2048, \tau = 0.01;$
- smooth initial data;
- integrable kernel: $\alpha = 1$.

Discontinuity in the steady state solution (continued)

theoretical jump =
$$2\sqrt{1-\frac{0.12}{\delta^2}}, \quad \delta > \delta_0 = \sqrt{0.12} \approx 0.3464.$$

	$\delta = 0.2$	$\delta = 0.8$	$\delta = 1.6$	$\delta = 3.2$
theoretical jumps	0	1.802776	1.952562	1.988247
numerical jumps	0	1.804496	1.952713	1.988242

Discontinuity in the steady state solution (continued)

(a) $\delta = 0.2$: solutions at t = 1, 40, 55, cross-sections with $y = \pi$

(b) $\delta = 0.8$: solutions at t = 1, 3, 20, cross-sections with $y = \pi$

(c) $\delta = 3.2$: solutions at t = 1, 3, 20, cross-sections with $y = \pi$

Conclusion

For the NAC equation

$$u_t - \varepsilon^2 \mathcal{L}_\delta u + u^3 - u = 0, \qquad (\text{NAC})$$

we present the first and second order ETD schemes by using

• quadrature-based difference method for spatial discretization,

• exponential time differencing methods for temporal integration, and obtain

- discrete maximum principle,
- error estimates and asymptotic compatibility,
- discrete energy stability.

Conclusion (continued)

Something to consider further:

- high-order and other schemes preserving the maximum principle;
- not DMP, but L^{∞} stable schemes for high-order PDE;
- asymptotic compatibility for nonlocal C-H equation or others.

Thanks for your attention!