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Allen-Cahn equation

(Local) Allen-Cahn equation:

ut − ε2∆u + u3 − u = 0. (LAC)

As an L2 gradient flow w.r.t. the free energy functional

Elocal(u) =

∫ (1
4

(u(x)2 − 1)2 +
ε2

2
|∇u(x)|2

)
dx, (1)

energy stability:

Elocal(u(t2)) ≤ Elocal(u(t1)), ∀ t2 ≥ t1 ≥ 0. (2)

As a second order reaction-diffusion equation,

maximum principle:

‖u(·, 0)‖L∞ ≤ 1 ⇒ ‖u(·, t)‖L∞ ≤ 1, ∀ t > 0. (3)
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Allen-Cahn equation (continued)

Energy stable schemes:

Stabilized semi-implicit (SSI) scheme [Shen-Yang, 2010]:
find un+1 such that

un+1 − un

τ
− ε2∆hun+1 + (un)3 − un + S(un+1 − un) = 0. (4)

Exponential time differencing (ETD) scheme [Ju et al., 2015]:
find un+1 = w(τ) with w(t) subject to

dw
dt

+ (S− ε2∆h)w + (un)3 − un − Sun = 0, t ∈ (0, τ ],

w(0) = un.
(5)

Both schemes are easy to implement and conditionally energy stable.
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Allen-Cahn equation (continued)

F(u) =
1
4

(u2 − 1)2, f (u) := F′(u) = u3 − u.

What is the condition for energy stability?

S ≥ 1
2
‖f ′(u)‖L∞ . (6)

However,
f ′(u) = 3u2 − 1, unbounded in L∞!

If we have that u is bounded in L∞, then so does f ′(u).

Discrete maximum principle (DMP) insures the L∞ boundness of u.
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Allen-Cahn equation (continued)

F(u) =
1
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‖f ′(u)‖L∞ . (6)

However,
f ′(u) = 3u2 − 1, unbounded in L∞!
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Discrete maximum principle (DMP) insures the L∞ boundness of u.
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Allen-Cahn equation (continued)

Maximum principle preserving schemes:

first order semi-implicit scheme [Tang-Yang, 2016]:

un+1 − un

τ
− ε2∆hun+1 + (un)3 − un + S(un+1 − un) = 0 (7)

condition for DMP:
1
τ

+ S ≥ 2.

Crank-Nicolson scheme [Hou-Tang-Yang, 2017]:

un+1 − un

τ
−ε2∆h

un+1 + un

2
+

(un+1)3 + (un)3

2
− un+1 + un

2
= 0
(8)

condition for DMP: τ ≤ 1
2

min{ε2, h2}.

ETD scheme (in space-continuous version) [Du-Zhu, 2005].
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Nonlocal diffusion operator

Nonlocal diffusion operator (x ∈ Rd):

Lδu(x) =
1
2

∫
Bδ(0)

ρδ(|s|)
(
u(x + s) + u(x− s)− 2u(x)

)
ds. (9)

Kernel ρδ : [0, δ]→ R is nonnegative and

1
2

∫
Bδ(0)

|s|2ρδ(|s|) ds = d. (10)

Consistency of Lδ with L0 := ∆ via [Du et al., 2012]

max
x
|Lδu(x)− L0u(x)| ≤ Cδ2‖u‖C4 . (11)

In particular, in 1-D case,

Lδu(x) =
1
2

∫ δ

−δ
|s|2ρδ(|s|) ·

u(x + s) + u(x− s)− 2u(x)

|s|2
ds. (12)
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Nonlocal Allen-Cahn equation

Nonlocal Allen-Cahn (NAC) equation:

ut − ε2Lδu + u3 − u = 0. (NAC)

As an L2 gradient flow w.r.t. the free energy functional

E(u) =

∫ (1
4

(u(x)2 − 1)2 − ε2

2
u(x)Lδu(x)

)
dx, (13)

energy stability:

E(u(t2)) ≤ E(u(t1)), ∀ t2 ≥ t1 ≥ 0. (14)

Similar to the case of local Allen-Cahn equation, we can prove

maximum principle:

‖u(·, 0)‖L∞ ≤ 1 ⇒ ‖u(·, t)‖L∞ ≤ 1, ∀ t > 0. (15)
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Nonlocal Allen-Cahn equation (continued)

Consider the initial-boundary-value problem of the NAC equation

ut − ε2Lδu + u3 − u = 0, x ∈ Ω, t ∈ (0,T],

u(·, t) is Ω-periodic, t ∈ [0,T],

u(x, 0) = u0(x), x ∈ Ω,

where Ω = (0,X)d is a hypercube domain in Rd.

Purpose:

establish the 1st and 2nd order ETD schemes for (NAC).

Main theoretical results:

discrete maximum principle;

maximum-norm error estimates;

discrete energy stability.
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Quadrature-based finite difference discretization

Setting

h = X/N: uniform mesh size (N is a given positive integer);

xi = hi: nodes in the mesh (i ∈ Zd is a multi-index).

At any node xi = hi, we have

Lδu(xi) =
1
2

∫
Bδ(0)

u(xi + s) + u(xi − s)− 2u(xi)

|s|2
|s|1 ·

|s|2

|s|1
ρδ(|s|) ds,

(16)
where

| · |1: the vector 1-norm in Rd;

| · |: the standard Euclidean norm.
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Quadrature-based finite difference discretization (continued)

At any node xi = hi:

Lδu(xi) =
1
2

∫
Bδ(0)

u(xi + s) + u(xi − s)− 2u(xi)

|s|2
|s|1 ·

|s|2

|s|1
ρδ(|s|) ds.

(17)
Define the discrete version of Lδ by [Du-Tao-Tian-Yang, 2018]

Lδ,hu(xi) =
1
2

∫
Bδ(0)

Ih

(
u(xi + s) + u(xi − s)− 2u(xi)

|s|2
|s|1
)
|s|2

|s|1
ρδ(|s|) ds.

(18)
For a function v(s), the interpolation Ihv(s) is piecewise linear w.r.t.
each component of s and

Ihv(s) =
∑

sj

v(sj)ψj(s),

where ψj is the piecewise d-multi-linear standard basis function.
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Quadrature-based finite difference discretization (continued)

Finite difference discretization of Lδ reads

Lδ,hu(xi) =
∑

06=sj∈Bδ(0)

u(xi + sj) + u(xi − sj)− 2u(xi)

|sj|2
|sj|1βδ(sj),

(19)
where

βδ(sj) =
1
2

∫
Bδ(0)

ψj(s)
|s|2

|s|1
ρδ(|s|) ds. (20)

We have that Lδ,h is self-adjoint and negative semi-definite.

Lemma (Uniform consistency of Lδ,h [Du-Tao-Tian-Yang, 2018])

max
xi∈Ω
|Lδ,hu(xi)− Lδu(xi)| ≤ Ch2‖u‖C4 , (21)

where C > 0 is a constant independent of δ and h.
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Quadrature-based finite difference discretization (continued)

We

order the nodes lexicographically,

denote by Dh ∈ RdN×dN the matrix associated with Lδ,h.

The space-discrete scheme: find U : [0,T]→ RdN such that
dU
dt

= ε2DhU + U − U.3, t ∈ (0,T],

U(0) = U0.
(22)

We know Dh is

symmetric and negative semi-definite;

weakly diagonally dominant with all negative diagonal entries.
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Quadrature-based finite difference discretization (continued)

Introduce a stabilizing parameter S > 0 and define

Lh := −ε2Dh + SI, f (U) := SU + U − U.3. (23)

Then, we reach
dU
dt

+ LhU = f (U), (24)

whose solution satisfies

U(t + τ) = e−LhτU(t) +

∫ τ

0
e−Lh(τ−s)f (U(t + s)) ds. (25)

We know Lh is

symmetric and positive definite;

strictly diagonally dominant with all positive diagonal entries.
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ETD methods for the temporal integration

Setting
τ = T/Nt: uniform time step (Nt is a given positive integer);
tn = nτ : nodes in the time interval [0,T].

At the time level t = tn, we have

U(tn+1) = e−LhτU(tn) +

∫ τ

0
e−Lh(τ−s)f (U(tn + s)) ds. (26)

By
approximating f (U(tn + s)) by f (U(tn)) in s ∈ [0, τ ],
calculating the integral exactly,

we have the first order ETD scheme of (NAC):

Un+1 = e−LhτUn +

∫ τ

0
e−Lh(τ−s)f (Un) ds

= e−LhτUn + L−1
h (I − e−Lhτ )f (Un).

(ETD1)
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ETD methods for the temporal integration (continued)

At the time level t = tn:

U(tn+1) = e−LhτU(tn) +

∫ τ

0
e−Lh(τ−s)f (U(tn + s)) ds. (27)

By

approximating f (U(tn + s)) by a linear interpolation based on
f (U(tn)) and f (U(tn+1)),

we have the second order ETD Runge-Kutta scheme of (NAC):
Ũn+1 = e−LhτUn +

∫ τ

0
e−Lh(τ−s)f (Un) ds,

Un+1 = e−LhτUn +

∫ τ

0
e−Lh(τ−s)

[(
1− s

τ

)
f (Un) +

s
τ

f (Ũn+1)
]

ds.

(ETDRK2)
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Discrete maximum principle (DMP)

For both (ETD1) and (ETDRK2), we prove the DMP by induction:
‖U0‖∞ ≤ ‖u0‖L∞ ≤ 1;
assume ‖Uk‖∞ ≤ 1, prove ‖Uk+1‖∞ ≤ 1.

For the ETD1 scheme, we have

‖Uk+1‖∞ ≤ ‖e−Lhτ‖∞‖Uk‖∞ +

∫ τ

0
‖e−Lh(τ−s)‖∞ ds · ‖f (Uk)‖∞.

We can prove

‖e−Lhτ‖∞ ≤ e−Sτ for any S > 0 and τ > 0;

‖f (Uk)‖∞ ≤ S when S ≥ 2.

Then,

‖Uk+1‖∞ ≤ e−Sτ · 1 +
1− e−Sτ

S
· S = 1.
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Discrete maximum principle (continued)

‖e−Lhτ‖∞ ≤ e−Sτ for any S > 0 and τ > 0.

Proof. We know Lh is strictly diagonally dominant with all positive
diagonal entries, that is, Lh = (`ij) has `ii > 0, ∀ i and

|`ii| ≥
∑

j

|`ij|+ S, ∀ i.

For any θ(0) = θ0, the solutions to
dθ
dt

= −Lhθ satisfy [Lazer, 1971]

‖θ(t2)‖∞ ≤ e−S(t2−t1)‖θ(t1)‖∞, ∀ t2 ≥ t1 ≥ 0.

In particular, noting that θ(t) = e−Lhtθ0, we have

‖e−Lhτθ0‖∞ = ‖θ(τ)‖∞ ≤ e−Sτ‖θ0‖∞, τ > 0.
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Discrete maximum principle (continued)

‖f (Uk)‖∞ ≤ S when S ≥ 2.

f (U) = SU + U − U.3

Proof. Obviously,

f (−1) = −S, f (1) = S.

For any ξ ∈ [−1, 1], we have

f ′(ξ) = S + 1− 3ξ2 ≥ S− 2 ≥ 0.

Therefore,
max

ξ∈[−1,1]
|f (ξ)| = S.
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Discrete maximum principle (continued)

For the ETDRK2 scheme, we have

‖Uk+1‖∞ ≤ ‖e−Lhτ‖∞‖Uk‖∞

+

∫ τ

0
‖e−Lh(τ−s)‖∞

∥∥∥(1− s
τ

)
f (Uk) +

s
τ

f (Ũk+1)
∥∥∥
∞

ds.

Note that Ũk+1 is exactly the solution to ETD1 scheme, so

‖Ũk+1‖∞ ≤ 1 ⇒ ‖f (Ũk+1)‖∞ ≤ S.

For s ∈ [0, τ ],∥∥∥(1− s
τ

)
f (Uk)+

s
τ

f (Ũk+1)
∥∥∥
∞
≤
(

1− s
τ

)
‖f (Uk)‖∞+

s
τ
‖f (Ũk+1)‖∞ ≤ S.

Then,

‖Uk+1‖∞ ≤ e−Sτ · 1 +
1− e−Sτ

S
· S = 1.
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Error estimates

Error estimates of ETD1 scheme
For a fixed δ > 0, if ‖u0‖L∞ ≤ 1 and S ≥ 2, then we have

‖Un − u(tn)‖∞ ≤ Cetn(h2 + τ), tn ≤ T, (28)

where C > 0 depends on the C1([0,T]; C4
per(Ω)) norm of u.

Error estimates of ETDRK2 scheme
For a fixed δ > 0, if ‖u0‖L∞ ≤ 1 and S ≥ 2, then we have

‖Un − u(tn)‖∞ ≤ Cetn(h2 + τ 2), tn ≤ T, (29)

where C > 0 depends on the C2([0,T]; C4
per(Ω)) norm of u.
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Error estimates (continued)

Sketch of the proof for the ETD1 scheme:

Un+1 = e−LhτUn +

∫ τ

0
e−Lh(τ−s)f (Un) ds. (ETD1)

For given Un, the solution Un+1 is actually given by Un+1 = W1(τ)
with the function W1 : [0, τ ]→ RdN determined by

dW1(s)
ds

= −SW1(s) + ε2DhW1(s) + f (Un), s ∈ (0, τ ],

W1(0) = Un.
(30)

For given u(x, tn), the solution u(x, tn+1) is determined by
u(x, tn+1) = w(x, τ) with the Ω-periodic function w(x, s) satisfying

∂w
∂s

= −Sw + ε2Lδw + f (w), x ∈ Ω, s ∈ (0, τ ],

w(x, 0) = u(x, tn), x ∈ Ω.
(31)
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Error estimates (continued)

Let e1(s) = W1(s)− w(s). Then,
de1

ds
= −Lhe1 + f (Un)− f (u(tn)) + R(1)

hτ (s), s ∈ (0, τ ],

e1(0) = Un − u(tn) =: en,
(32)

with
‖R(1)

hτ (s)‖∞ ≤ C(h2 + τ), ∀ s ∈ (0, τ ],

where C depends on ε, S, and u. Then,

e1(t) = e−Lhte1(0)+

∫ t

0
e−Lh(t−s)[f (Un)−f (u(tn))+R(1)

hτ (s)] ds, t ∈ [0, τ ].

Setting t = τ , we have

‖en+1
1 ‖∞ ≤ e−Sτ‖en

1‖∞ +
1− e−Sτ

S
[(S + 1)‖en

1‖∞ + C(h2 + τ)]

≤ (1 + τ)‖en
1‖∞ + Cτ(h2 + τ).

An application of the Gronwall’s inequality leads to the result.
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Asymptotic compatibility

uδh u0
h

uδ u0

(discrete)

(continuous)

(nonlocal) (local)
δ → 0

h → 0

δ → 0

h → 0δ → 0, h → 0

max
xi∈Ω
|Lδ,hu(xi)− Lδu(xi)| ≤ Ch2‖u‖C4 , C independent of δ;

max
x∈Ω
|Lδu(x)− L0u(x)| ≤ Cδ2‖u‖C4 .

Then,
max
xi∈Ω
|Lδ,hu(xi)− L0u(xi)| ≤ C(δ2 + h2)‖u‖C4 . (33)
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Asymptotic compatibility (continued)

Let ê(s) = W1(s)− ϕ(s), where ϕ(x, s) denotes the exact solution to
the local Allen-Cahn equation. Then,

dê
ds

= −Lhê + f (Un)− f (ϕ(tn)) + R̂δhτ (s), s ∈ (0, τ ],

ê(0) = Un − ϕ(tn) =: ên,
(34)

where
‖R̂δhτ (s)‖∞ ≤ C(δ2 + h2 + τ), ∀ s ∈ (0, τ ],

where C > 0 depends on ε, S, and ϕ, but independent of δ, h and τ .

Asymptotic compatibility of ETD1 scheme

If ‖ϕ0‖L∞ ≤ 1 and S ≥ 2, then we have

‖Un − ϕ(tn)‖∞ ≤ Cetn(δ2 + h2 + τ), tn ≤ T, (35)

where C > 0 depends on the C1([0,T]; C4
per(Ω)) norm of ϕ.
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Discrete energy stability

We define the discretized energy Eh:

Eh(U) =
1
4

dN∑
i=1

F(Ui)−
ε2

2
UTDhU, F(s) =

1
4

(s2 − 1)2. (36)

Discrete energy stability of the ETD1 scheme
Under the condition S ≥ 2, for any τ > 0, we have

Eh(Un+1) ≤ Eh(Un).

The proof includes two steps.
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Discrete energy stability (continued)

Step 1. We have

F(Un+1)− F(Un) = F′(Un)(Un+1 − Un) +
1
2

F′′(ξ)(Un+1 − Un)2,

where ‖F′′(ξ)‖∞ = ‖3ξ2 − 1‖∞ ≤ 2 since ‖ξ‖∞ ≤ 1 due to DMP.
Then, we obtain

Eh(Un+1)− Eh(Un) ≤ (Un+1 − Un)T(LhUn+1 − f (Un)). (37)

Step 2. Solve f (Un) from (ETD1) to get

f (Un) = (I − e−Lhτ )−1Lh(Un+1 − Un) + LhUn,

and then,
LhUn+1 − f (Un) = B1(Un+1 − Un)

with B1 = Lh − (I − e−Lhτ )−1Lh symmetric and negative definite. So,

Eh(Un+1)− Eh(Un) ≤ (Un+1 − Un)TB1(Un+1 − Un) ≤ 0.
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Discrete energy stability (continued)

Discrete energy stability of the ETDRK2 scheme
Under the condition S ≥ 2,

for any h > 0 and τ ≤ 1, we have

Eh(Un+1) ≤ Eh(Un) + C̃h−
1
2 (h2 + τ)2,

where C̃ is independent of h and τ ;

if h ≤ 1 and τ = λ
√

h for some constant λ > 0, we have

Eh(Un) ≤ Eh(U0) + Ĉ,

where Ĉ is independent of h and τ , i.e., the discrete energy is
uniformly bounded.
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Fractional power kernel

We consider the 2-D case in all the experiments.

Fractional power kernel:

ρδ(r) =
2(4− α)

πδ4−αrα
, r > 0, α ∈ [0, 4), (38)

which satisfies

1
2

∫
Bδ(0)

|s|2ρδ(|s|) ds = d = 2. (39)

α ∈ [0, 2): integrable, ρδ(|s|) ∈ L1(Bδ(0)), Lδ is bounded;

α ∈ [2, 4): non-integrable.
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Convergence tests

Setting

Ω = (0, 2π)× (0, 2π), T = 0.5, ε = 0.1;

smooth initial data u0(x, y) = 0.5 sin x sin y;

kernel: α = 1 (integrable) and α = 3 (non-integrable).

We consider
1 temporal convergence rate, i.e., τ → 0;
2 spatial convergence rate, i.e., h→ 0;
3 convergence to the local limit, i.e., δ → 0.
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Convergence tests (continued)

1. Temporal convergence rate.
Setting

δ = 0.2 and δ = 2, respectively;
N = 256;
τ = 0.05× 2−k with k = 0, 1, . . . , 7;
benchmark: ETDRK2 scheme with τ = 10−6.

10-4 10-3 10-2 10-1
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1
integrable kernel

 = 0.2: ETD1
 = 0.2: ETDRK2
 = 2: ETD1
 = 2: ETDRK2

first order
second order

10-4 10-3 10-2 10-1
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1
non-integrable kernel

 = 0.2: ETD1
 = 0.2: ETDRK2
 = 2: ETD1
 = 2: ETDRK2

first order
second order

The computed errors are almost independent of choices of δ and α.



Introduction and motivation Numerical schemes and numerical analysis Numerical experiments

Convergence tests (continued)

2. Spatial convergence rate.
Setting

δ = 2 and τ = T;
N = 2k with k = 4, 5, . . . , 10;
benchmark: N = 4096.

10-3 10-2 10-1 100
10-10

10-8

10-6

10-4

10-2

100
integrable kernel

computed error
second order

10-3 10-2 10-1 100
10-8

10-6

10-4

10-2

100
non-integrable kernel

computed error
second order

The O(h2) convergence rate is observed as h→ 0.
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Convergence tests (continued)

3. Convergence to the local limit.
Setting

N = 4096 and τ = T;

local solution: ETDRK2 scheme for LAC equation.

δ = 0.2
α = 1 α = 3

error rate error rate
δ 1.076e-5 ∗ 5.371e-6 ∗
δ/2 2.703e-6 1.9927 1.344e-6 1.9991
δ/4 6.250e-7 2.1124 3.153e-7 2.0912
δ/8 1.580e-7 1.9835 6.373e-8 2.3068

The O(δ2) convergence rate is observed as δ → 0.
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Stability tests

For the case ρδ(|s|) ∈ L1(Bδ(0)), i.e., α ∈ [0, 2), denote

Cδ =

∫
Bδ(0)

ρδ(|s|) ds =
4(4− α)

(2− α)δ2 .

Theorem [Du-Yang, 2016]

The steady state solution u∗ to (NAC) is continuous if ε2Cδ ≥ 1.

Setting

Ω = (0, 2π)× (0, 2π), ε = 0.1;

N = 512, τ = 0.01;

random initial data ranging from −0.9 to 0.9 uniformly;

integrable kernel: α = 1 (now ε2Cδ ≥ 1 leads to δ ≤ 2
√

3ε);

δ = 0, δ = 3ε, δ = 4ε.
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Stability tests (continued)

From top to bottom: δ = 0, 3ε, 4ε.
From left to right: t = 6, 14, 50, 180.
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Stability tests (continued)

From left to right: δ = 0, 3ε, 4ε.
Top: maximum norms; bottom: energies.
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Discontinuity in the steady state solution

For the case ρδ(|s|) ∈ L1(Bδ(0)), i.e., α ∈ [0, 2), denote

Cδ =

∫
Bδ(0)

ρδ(|s|) ds =
4(4− α)

(2− α)δ2 .

Theorem [Du-Yang, 2016]

Under certain assumptions, if ε2Cδ < 1, the locally increasing u∗ has
a discontinuity at x∗ with the jump

Ju∗K(x∗) = 2
√

1− ε2Cδ. (40)

Setting
Ω = (0, 2π)× (0, 2π), ε = 0.1;
N = 2048, τ = 0.01;
smooth initial data;
integrable kernel: α = 1.
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Discontinuity in the steady state solution (continued)
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√
1− 0.12

δ2 , δ > δ0 =
√

0.12 ≈ 0.3464.

δ = 0.2 δ = 0.8 δ = 1.6 δ = 3.2
theoretical jumps 0 1.802776 1.952562 1.988247
numerical jumps 0 1.804496 1.952713 1.988242
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Discontinuity in the steady state solution (continued)
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(a) δ = 0.2: solutions at t = 1, 40, 55, cross-sections with y = π

2.05 2.1 2.15 2.2 2.25
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) δ = 0.8: solutions at t = 1, 3, 20, cross-sections with y = π

2.05 2.1 2.15 2.2 2.25
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(c) δ = 3.2: solutions at t = 1, 3, 20, cross-sections with y = π
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Conclusion

For the NAC equation

ut − ε2Lδu + u3 − u = 0, (NAC)

we present the first and second order ETD schemes by using

quadrature-based difference method for spatial discretization,

exponential time differencing methods for temporal integration,

and obtain

discrete maximum principle,

error estimates and asymptotic compatibility,

discrete energy stability.
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Conclusion (continued)

Something to consider further:

high-order and other schemes preserving the maximum principle;

not DMP, but L∞ stable schemes for high-order PDE;

asymptotic compatibility for nonlocal C-H equation or others.

Thanks for your attention!
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