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Outline

A threshold dynamics method for (sharp) interface motion on solid
surface (with XM Xu, D. Wang, JCP 2017)

The contact line behavior and its dynamics (with D. Wang and XP Wang)

An efficient implementation of the threshold dynamics method using
boundary integral and NUFFT (with SD Jiang, D. Wang, JSC 2018)

An efficient threshold dynamics method for image segementation (with D.
Wang, H. Li and X. Wei, JCP 2017)
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Motion by mean curvature
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MBO Threshold Dynamics Method
Merriman, Bence, Osher (1992) introduced a threshold dynamics method for interface
motion by mean curvature. Consider the Allen-Chan equation{

φt −∆φ+ 1
ε2 f ′(φ) = 0, in Ω,

∂nφ = 0, on ∂Ω,
f (φ) =

(φ2 − φ)2

4

Operator splitting:

Step 1: Solve a heat equation for δt :
φt −∆φ = 0, in Ω,
φ(0) = χD.
∂nφ = 0, on ∂Ω,

Step 2: Solve the equation:

φt = −f ′(φ)/ε2, in Ω.

When ε→ 0, Step 2 turns into thresholding

φ(x) ≈
{

1, if φ(x) > 1/2,
0, if φ(x) < 1/2. ,

MBO converges to moton by mean curvature as δt → 0 (Barles-Georgelin, 95).
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Threshold Dynamics

Fix a time step size δt > 0 and generate a discrete in time approximation
{Dk}∞k=0 to the flow domain as follows:

MBO Algorithm:

Convolution Step:

u(x , t) = χDk ?Gδt where Gδt (x) =
1

(4πδt)n/2 e−
|x|2
4δt

Thresholding Step:

Dk+1 = {x ∈ Rn : u(x) >
1
2
}
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Threshold Dynamics

Benefits:
Unconditionally stable: Accuracy only concern in choosing time step size.
Fast implementation:
Complexity only O(N log N), where N is the total number of grid points.
Implicit representation of the front, allowing automatic topology changes.
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Threshold Dynamics Method

Ginzburg-Landau Type Models and Dynamics

Ginzburg-Landau free energy functional

Fε(u) =

∫
Ω

ε

2
|∇u|2 +

1
ε

W (u)dx , Ω ⊆ Rn

Consider the gradient flow

ut = −δFε(u)

δu
= ε∆u − 1

ε
W ′(u)

where

u : Ω ⊆ Rn → Rm, (n = 2,3,m = 1,2)

W : Rm → R+, multi-well potential

Asymptotic limit (ε→ 0) of structures and dynamics of defects or singularities
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Typical examples

(1) m = 1, i.e. u is a scalar valued

W (u) = (1− u2)2

(W (u) ≥ 0, = 0 iff u = 1,−1)

(2) n = 2,m = 2, i.e u : Ω ⊆ R2 → R2 ∼= C

W (u) = (1− |u|2)2

(W (u) ≥ 0, = 0 iff |u| = 1, i.e. u ∈ S1)

F. Lin (1998)
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Typical examples

(3) n = 3,m = 2, i.e. u : Ω ⊆ R3 → R2 ∼= C

W (u) = (1− |u|2)2

(W (u) = 0 iff u ∈ S1)

Ruuth, Merriman, Xin, Osher (2001)

(4) Multiphase (e.g. m = 3)

(W (u) = 0 iff u = ~a, ~b,~c)
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Wetting on rough surface
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Young’s equation

Young’s Equation: 

Contact angle θe < 90o,  the surface is hydrophilic (亲水）　 
Contact angle θe > 90o,  the surface is hydrophobic （疏水） 
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Minimizing the total interface energy
The equilibrium state of a liquid drop is determined by minimizing the total surface
energy with a given droplet volume.

I(φ) = γLV |Γ|+
∫
∂Ω+∩∂Ω

γSL(x)ds +

∫
∂Ω\∂Ω+

γSV (x)ds (1)

= γLV

(
|Γ| −

∫
∂Ω+∩∂Ω

cos θY (x)ds
)

+ C (2)

Here φ = χΩ+ ,
∫

Ω
φdx = V0.

� Energy minimizing problem: minφ∈BV (Ω) I(φ)
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A diffuse interface model

Total surface energy minimization

Iε(φε) =

∫
Ω

ε

2
|∇φε|2 +

1
ε

f (φε)dxdy +

∫
∂Ω

γ(φε)ds, (3)

where f (φ) = (φ2−φ)2

4 .
min∫

Ω
φε=V0

Iε(φε)

In the sharp interface limit Iε(φε)→ I(φ) (L. Modica, ARMA. 1987,1989)
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Threshold dynamics method for wetting problem

Can we use the method to solve Allen-Cahn equation with volume
conservation and wetting boundary condition?

φt − ε∆φ+ f ′(φ)/ε = λ, in Ω,

ε∂nφ+ ∂φγ(x, φ) = 0, on ∂Ω,∫
Ω
φ = V0.
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A direct generalization of MBO Method for wetting problem

-3 -2 -1 0 1 2 3

-3

-2

-1

0
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Ω = D1 ∪D2

Liquid(D
1
)

Vapor(D
2
)

Given two initial domain D1,D2 such that |D1| = V0.
Solve the heat equation for δt : φt − ε∆φ = 0, in Ω,

ε∂nφ+ ∂φγ(x, φ) = 0, on Γε,
φ(0) = χD1 .

The thresholding step (redefine D1): find a δ, such that
D1 = {x : φ(x) < 1/2 + δ} and |D1| = V0.

� Solving the heat equation is no longer efficient, especially when the boundary is
rough.
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The approximation of the interface energy
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Ω = D1 ∪D2

Liquid(D
1
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Vapor(D
2
)

The interface area |ΣLV | can be approximated by

|ΣLV | ≈
1√
δt

∫
χD1 Gδt ∗ χD2 dx.

where Gδt (x) = 1
(4πδt)n/2 exp(− |x|2

4δt ).

Alberti & Bellettini(1998) give a proof by Γ-convergence theory.
Esedoglu & Otto (2014) develop a threshold method for N-phase motion by mean
curvature flow
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Approximation of the wetting energy

The total energy

Eδt =
γLV√
δt

∫
χD1 Gδt ∗ χD2 +

γSL√
δt

∫
χD1 Gδt ∗ χD3 +

γSV√
δt

∫
χD2 Gδt ∗ χD3

The energy minimizing problem: Denote u1(x) = χD1 ,u2(x) = χD2 ,

B = {(u1, u2) ∈ BV (Ω) | ui (x) = 0, 1, u1(x) + u2(x) = 1,
∫

Ω

u1dx = V0}

min
(u1,u2)∈B

Eδt (u1,u2). (4)

This is a non-convex problem.
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Ω̃ = D1 ∪D2 ∪D3

Solid(D
3
)

Liquid(D
1
)

Vapor(D
2
)
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The approximation of the wetting energy

An equivalent optimization problem on convex set:
Denote

K = {(u1, u2) ∈ BV (Ω) | 0 ≤ ui ≤ 1, u1(x) + u2(x) = 1,
∫

Ω

u1dx = V0}

min
(u1,u2)∈K

Eδt (u1,u2). (5)

Lemma

For any given α, β ≥ 0 and any linear functional L(u1,u2), we have

min
(u1,u2)∈K

(αEδt (u1,u2) + βL(u1,u2)) = min
(u1,u2)∈B

(αEδt (u1,u2) + βL(u1,u2)).
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Derivation of the threshold dynamics method

We now solve (5) iteratively
For any given uk

1 ,u
k
2 , the energy functional Eδt (u1,u2) can be linearized

near the point (uk
1 ,u

k
2 ):

Eδt (u1, u2) ≈ Eδt (uk
1 , u

k
2 ) + L̂(u1 − uk

1 , u2 − uk
2 , u

k
1 , u

k
2 ) + h.o.t .

with

L̂(u1, u2, uk
1 , u

k
2 ) =

1√
δt

(∫
Ω̃

u1Gδt ∗ (γLV uk
2 + γSLχD3 ) +

∫
Ω̃

u2Gδt ∗ (γLV uk
1 + γSVχD3 )

)
.

Solve
min

(u1,u2)∈K
L̂(u1, u2, uk

1 , u
k
2 ) (6)

to get (uk+1
1 ,uk+1

2 )

The problem (6) can be solved easily by a thresholding step.
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Derivation of the threshold dynamics method

Lemma

Denote
φ1 =

1√
δt

Gδt ∗ (γLV uk
2 + γSLχD3 ),

φ2 =
1√
δt

Gδt ∗ (γLV uk
1 + γSVχD3 ).

Let
Dk+1

1 = {x ∈ Ω| φ1 < φ2 + δ} (7)

for some δ such that |Dk+1
1 | = V0. Let Dk+1

2 = Ω \ Dk+1
1 . Then

(uk+1
1 ,uk+1

2 ) = (χDk+1
1
, χDk+1

2
) is a solution of (6). That is

L̂(uk+1
1 ,uk+1

2 ,uk
1 ,u

k
2 ) ≤ L̂(u1,u2,uk

1 ,u
k
2 ), (8)

for all (u1,u2) ∈ B.
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The Algorithm

Step 0. Given initial D0
1 ,D

0
2 ⊂ Ω, such that D0

1 ∩ D0
2 = ∅, D0

1 ∪ D0
2 = Ω

and |D0
1 | = V0. Set a tolerance parameter ε > 0.

Step 1. For given set (Dk
1 ,D

k
2 ), we define two functions

φ1 =
1√
δt

Gδt ∗ (γLVχDk
2

+ γSLχD3 ),

φ2 =
1√
δt

Gδt ∗ (γLVχDk
1

+ γSVχD3 ).

Step 2. Find a δ so that the set

D̃δ
1 = {x ∈ Ω|φ1 < φ2 + δ.} (9)

satisfies |D̃δ
1 | = V0. Denote Dk+1

1 = D̃δ
1 and Dk+1

2 = Ω \ Dk+1
1 .

Step 3. If |Dk
1 − Dk+1

1 | ≤ ε, stop. Otherwise, go back to Step 1.
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Stability

Theorem
Let (Dk

1 ,D
k
2 ), k = 0,1,2, ... be the sets obtained by the above process. Denote

(uk
1 ,u

k
2 ) = (χDk

1
, χDk

2
), we have

Eδt (uk+1
1 ,uk+1

2 ) ≤ Eδt (uk
1 ,u

k
2 ), (10)

for all δt > 0.
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Behaviour near the contact point

Figure: 256 × 256 grid points

Figure: 512 × 512 grid points

Accuracy check: Left: without adaptivity in time, Right: with adpativity in timeXiao-Ping Wang (HKUST) Thereshold dynamics method and applications 23 / 47



Behaviour near the contact point

The total surface energy

E = γLV |ΣLV |+ γSL|ΣSL|+ γSV |ΣSV |, (11)

where |ΣSV |, |ΣSL| and |ΣLV | are the solid-vapor, solid-liquid and liquid-vapor
interface areas. (11) is now approximated by

Eh = Eh
LV + Eh

SV + Eh
SL (12)

where, as h→ 0,

Eh
LV = γLV

√
π√
h

∫
Ω̃

χD1Gh ∗ χD2 dx → γLV |ΣLV | (13)

Eh
SL = γSL

√
π√
h

∫
Ω̃

χD1Gh ∗ χD3 dx. → γSL|ΣSL| (14)

Eh
SV = γSV

√
π√
h

∫
Ω̃

χD2Gh ∗ χD3 dx, → γSV |ΣSV | (15)
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Behaviour near the contact point

As indicated by the two shaded regions, if the contact angle is less than 90o,
|ΣLV | and |ΣSL| are underestimated by Eh

LV and Eh
SL respectively,

|ΣSV | is overestimated by Eh
SV .

The effect is the opposite if the contact angle is greater than 90o.
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An improved threshold dynamics method

The total energy

E =
γLV√

h1

∫
χD1 Gh1 ∗ χD2 +

γSL√
h2

∫
χD1 Gh2 ∗ χD3 +

γSV√
h2

∫
χD2 Gh2 ∗ χD3

where h2 = λh1.

Xiao-Ping Wang (HKUST) Thereshold dynamics method and applications 26 / 47



An improved threshold dynamics method

φ(x1, x2) =
1√
h1

Gh1
∗ (χD2

− χD1
) −

cos θY√
h2

Gh2
∗ χD3

Asymptotic behavior of φ(0, x2) for ε =
√

h1 gives

φ(0, x2) =
1

ε

 π
2 − Θ

π
−

cos θY
√

h1

2
√

h2
−

ε

2
√
π

 x2/h1√
1 + (g′(0))2

−
g′′(0)

(1 + (g′(0))2)
3
2

 + o(ε)

 .

Thresholding at φ(0, x2) = δ and let x2 = v · h1, v is the contact point velocity, we have

λ = (
π cos θY

π − 2θY
)2
, θY ∈ (0, π)

so that the correct contact angle

Θ = θY

and the contact point velocity is given by

v =
1

sin Θ

(
κ − 2

√
πδ
)
.
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Figure: Comparison of the equilibrium states computed with h2 = h1 and

h2 =

(
π cos θY

π − 2θY

)2

h1 with θY =
π

3
.
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Figure: Comparison of the equilibrium states of a droplet computed with h2 = h1 and

h2 =

(
π cos θY

π − 2θY

)2

h1 with θY =
2π
3

.
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Summary

Contact line behavior is studied. Different scaling factors for the interface
energies are needed to obtain the correct microscopic contact angle
Contact line dynamics is derived
An improved threshold dynamics method is proposed for wetting on
rough surfaces
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An efficient implementation using boundary integral and NUFFT
(S.D. Jiang, D. Wang and XP. Wang)
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Approximation of Heat Kernel

It is well know that Gδt admits the following Fourier representation

Gδt (x, δt) =
1

(2π)2

∫∫
R2

e−‖k‖
2δt+ik·xdk.

Using the Poisson summation formula, we have

Theorem (Spectral Fourier Approximation of the Heat Kernel)

Suppose that ε < 1 is the prescribed accuracy. Let h = min
(
π
R ,

π

2
√

∆t| ln ε|

)
,

and M = 1
h

√
| ln ε|

∆t . Then for all ‖x− y‖ ≤ R,∣∣∣∣∣∣Gδt (x− y,∆t)− h2

(2π)2

M−1∑
m2=−M

M−1∑
m1=−M

e−‖m‖
2h2∆t+ihm·(x−y)

∣∣∣∣∣∣ ≤ 2ε
π∆t

. (16)
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Motion by Mean Curvature Under Volume Preserving

Figure: Double Biscuit Shaped Region Moving by Mean Curvature Motion under
Volume Preserving. We set dt = 0.002 and use 96× 96 points to descretize the
interface. The time for the whole process is 3163s on a Laptop.
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Image segmentation
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Piecewise constant Mumford-Shah model

Chan-Vese, 2001

ECV (Σ,C1,C2) = λPer(Σ; D) +

∫
Σ

(C1 − f )2dx + λ

∫
D/Σ

(C2 − f )2dx (17)

where Σ is the interior of a closed curve and Per(∆) denotes the perimeter.
C1 and C2 are averages of f within Σ and D/Σ respectively.

Methods for solving the optimization problem: Split-Bregman algorithm,
Augmented Lagrangian method, Primal-dual method, threshold dynamics
method, framelet
Chan, Chan, Esedoglu, Osher, Shen, Tai, Tsai,......
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Threshold dynamics method (Esedoglu and Tsai, 2006)

A diffuse interface approximation for (17) is given by

Eε
MS(u, c1, c2) =

∫
D
ε|Ou|2 +

1
ε

W (u) + λ{u2(c1 − f )2 + (1− u)2(c2 − f )2}dx (18)

Variation of (18) with respect to u yields the following gradient descent equation:

ut = 2ε∆u − 1
ε

W ′(u)− 2λ{u(c1 − f )2 + (u − 1)(c2 − f )2}

which can be solved by MBO method:

Step 1: Let v(x) = S(δt)uk (x), where S(δt) is the propagator (by δt) of the linear
heat equation

wt = ∆w − λ√
πδt

(w(c1 − f )2 + (w − 1)(c2 − f )2

Step 2: Set

uk+1(x) =

{
1 if v(x) ∈ (−∞, 1

2 ]
0 if v(x) ∈ ( 1

2 ,∞)
(19)
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Modified energy functional

The perimeter of ∂Ωi ∩ ∂Ωj can be approximated by

|∂Ωi ∩ ∂Ωj | ≈
√
π√
δt

∫
Ω

uiGδt ∗ ujdΩ (20)

Then, the multiphase energy can be approximated by:

Eδt (u1, · · · ,un) =
n∑

i=1

∫
Ω

λ n∑
j=1,j 6=i

√
π√
δt

uiGδt ∗ uj + ui fi

dΩ (21)

where fi (x) = (f (x)− Ci )
2 and Ci is average intensity of the region i . That

is,

Ci =

∫
Ωi

f (x)dΩi∫
Ωi

1dΩi
. (22)

(u1, · · · ,un) ∈ S ={
u = (u1, · · · ,un) ∈ BV (Ω) : ui (x) = 0,1,and

n∑
i=1

ui = 1
}
.

Again, this is a non-convex problem
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Relaxation to a convex problem

Define the convex hull of S as

K =

{
u = (u1, · · · ,un) ∈ BV (Ω) : 0 ≤ ui (x) ≤ 1,and

n∑
i=1

ui = 1

}
. (23)

We can prove:

Lemma
Let L be any linear functional defined on K and u = (u1, · · · ,un). Then:

min
u∈S

(Eδt (u) + L(u)) = min
u∈K

(Eδt (u) + L(u)) (24)
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Linearization of the energy

Suppose we solve the minimisation problem by an iterative method. In
the k step, we have an approximated solution (uk

1 , · · · ,uk
n ). The energy

functional Eδt (u1, · · · ,un) can be linearized near the point (uk
1 , · · · ,uk

n ) by

L(u1, · · · ,un,uk
1 , · · · ,uk

n ) =
n∑

i=1

∫
Ω

ui f k
i + 2λ

n∑
j=1,j 6=i

√
π√
δt

uiGδt ∗ uk
j

dΩ

(25)

where f k
i = (Ck

i − f )2 and

Ck
i =

∫
Ω

uk
i fdΩ∫

Ω
uk

i dΩ
.

Then, we minimize the linearised functional:

min
(u1,··· ,un)∈K

L(u1, · · · ,un,uk
1 , · · · ,uk

n ) (26)

and set the solution to be (uk+1
1 , · · · ,uk+1

n ).
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Algorithm:

Step 0. Given initial partition Ω0
1, · · · ,Ω0

n ⊂ Ω, to obtain partition
Ωk+1

1 , · · · ,Ωk+1
n at time step t = (k + 1)δt from the partition

Ωk
1, · · · ,Ωk

n at time t = kδt . Set a tolerance parameter
τ > 0.

Step 1. Compute the following convolutions for i = 1, · · · ,n:

φk
i : = f k

i +
2λ
√
π√

δt
(1−Gδt ∗ uk

i ) (27)

Step 2. Thresholding:

Ωk+1
i =

{
x : φk

i (x) < min
j 6=i

φk
j (x)

}
(28)

and let uk+1
i = χΩk+1

i
where χΩk+1

i
represents the

charecteristic function of region Ωk+1
i

Step 3. If
∫

Ω

n∑
i=1

(uk+1
i − uk

i )2dΩ ≤ τ , stop. Otherwise, go back to

step 1.
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Stability Analysis

The following theorem shows that the algorithm is stable. In other words,
the total energy Eδt always decrease in the algorithm for any δt > 0. We
have the following theorem.

Theorem
Let (uk

1 , · · · ,uk
n ), k = 0,1,2, · · · , obtained in the algorithm, we have

Eδt (uk+1
1 , · · · ,uk+1

n ) ≤ Eδt (uk
1 , · · · ,uk

n ) (29)
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Numerical Examples

Figure: Test with a real image of resolution 256×256. Left hand side figure has the
initial contour. Right hand side image shows the final contour. Only 17 iterations are
needed to achieve the finial steady with CPU time 0.1188 seconds on a MacBook Pro
laptop with Intel Core i7 CPUs @ 3.0GHz
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Numerical Examples

Figure: Energy curve for the iteration algorithm with δt = 0.03 and λ = 0.01.
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Numerical Examples

Figure: Test with a synthetic image with Gaussian noise of resolution 200×267. Left
hand side figure has the initial contour to be taken. Right hand side image shows the
final contour found. The experiment is carried out using the three-phase algorithm.
Only 17 iterations are needed with CPU time 0.23 seconds.
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Numerical Examples

Figure: Test with a real image of resolution 375×500×3. Left hand side figure has the
initial contour to be taken. Right hand side image shows the final contour found. The
experiment is carried out using the two-phase vectored algorithm. Only 20 iterations
are needed with CPU time 0.63 seconds.
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Numerical Examples

Figure: Test with a real image of resolution 375×500×3. Left hand side figure has the
initial contour to be taken. Right hand side image shows the final contour found. The
experiment is carried out using the four-phase vectored algorithm. Only 19 iterations
are needed with CPU time 1.097 seconds.
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Thank you!
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