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Background

Solid-state dewetting

@ Thin films are generally metastable in the as-deposited state and will
dewet or agglomerate to form arrays of islands when heated.

@ This process occurs well below the melting temperature of the solid
material.
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Figure: A schematic view of solid-state dewetting. Thin films dewet to form
isolated islands when it remains in the solid state (M. Naffouti et al., 2017).
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Application

Suppress dewetting

Thin films are basic components in many microelectronic and optoelectronic
devices, and for these devices to function properly, the structural integrity
of the thin films must be maintained. Dewetting destabilizes a thin film
structure and limits the device reliability.

Induce dewetting

Ordered arrays of metal nanoparticles has a wide range of potential appli-
cations in plasmonics, magnetic memories, DNA detection and catalysis for
nanowire and nanotube growth. Dewetting (template-assisted dewetting,
dewetting of single crystal thin film) provides a easy way to produce ordered
arrays of nanoparticles of controlled size and geometry.
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Experimental results

Dewetting on a flat substrate generally leads to disordered arrays of islands,
the irregularities of dewetting morphologies have limited the application for
fabrication of ordered structures.
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Figure: Dewetting of 30-nm-thick gold films on a flat substrate. (E. Jiran and C.V.
Thompson, 1990).
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Experimental results

Dewetting on a flat substrate generally leads to disordered arrays of islands,
the irregularities of dewetting morphologies have limited the application for
fabrication of ordered structures.

Figure: Dewetting of a single-crystal Si film on oxidized Si on a flat substrate. (R.
Nuryadi et. al., 1990).
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Experimental results

Template-assisted dewetting, i.e., dewetting on a pre-patterned (curved)
substrate can lead to formation of ordered structures.
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Figure: Template-assisted solid-state dewetting of gold films on oxidized silicon surfaces
patterned with arrays of inverted pyramid shaped pits. (A.L. Giermann and C.V.

Thompson, 2005).
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Experimental results

Template-assisted dewetting, i.e., dewetting on a pre-patterned (curved)
substrate can lead to formation of ordered structures.

Increasing annealing time
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Figure: Dewetting of Ni(100) (J. Ye and C.V. Thompson, 2011).
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Schematic illustration

Yev="(0)

Vapor

c Substrate Te

o x!,x! are the contact points

® 7.,V are vapor/substrate and film/substrate interfacial energy
densities (usually treated as constants)

® 7., = 7(0) is the film/vapor interfacial energy density, where 6 is the
normal angle of the film/vapor interface
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Film /vapor interfacial energy densities

The smooth case: (0) € C*([-, 7])

@ Isotropic case: () is a constant.
@ Weakly anisotropic case: 7(0) :=v(68) +~"(0) >0, V0 ¢€ [—7,7].
@ Strongly anisotropic case: ¥(6) < 0 for some 6 € [, 7].

The cusped case:

o 7(0) is piecewise smooth (C2) and not differentiable at finite points.

Figure: Different energy densities.
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Equilibrium problem

e Energy minimization problem (J. Gibbs, 1878; G. Wulff, 1901; J.
Taylor, 1974; |. Fonseca and S. Miiller, 1991; R. Kaischew, 1950; W.
Winterbottom, 1967; W. Bao et al., 2017)

mQ'n W = evdlhey —i—/ (’yFs — 'yvs)drps s.t.  |Q] = const.
Mes

- J

Substrate Energy

Frv

7rv=7(0) Vapor

c Substrate c

Wang Yan (CSRC) Solid-State Dewetting 10 / 50



Dynamic problem

solid-state dewetting‘_

m ~

e Surface diffusion (mass transport) (W. Mullins, 1957; J. Cahn and
D. Hoffman, 1974)

w
Chemical potential: W= Qod—,
or
Dsv
Mass flux: =— shh,
ass flux J ke TeV o
DsvQ2
Normal velocity: Vi, =—-QoVs-J= ﬂvﬁu.
kg Te
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Dynamic problem

e Surface diffusion (mass transport)

e Moving contact line
At the equilibrium state, the following (isotropic) Young equation
should be satisfied (T. Young, 1805):

Yvs = Yes + 70 cos b;.

Vapor

Yvs Vrs Substrate
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Existing models/methods

@ Sharp interface model/methods:

o D. Srolovitz and S. Safran (1986): Isotropic, cylindrically symmetric
case;

e H. Wong et al. (2000): Isotropic, semi-infinite step in 2D, and a
“marker-particle” method

o P. Du et al. (2010): Isotropic, cylindrical wire

o Wang et al. (2015); Jiang et al., (2016); Bao et al., (2017):
Anisotropic case in 2D, and a parametric finite element method

@ Phase field model:
o Isotropic case (W. Jiang et al., 2012; M. Naffouti et al., 2017);
e Weakly anisotropic case (M. Dziwnik et al., 2017)
© Others (e.g. E. Dornel et al., 2006; L. Klinger and E. Rabkin, 2011; R.V.
Zucker et al., 2013; O. Pierre-Louis et al., 2009; T. Lee et al., 2015)
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Mathematical modeling

> Rigorously derive the sharp interface model;
> Include the interfacial anisotropy;
> Consider both flat and curved substrates.

Numerical simulation

> Equilibrium;
> Morphological evolution;
> Template-assisted dewetting;

Wang Yan (CSRC) Solid-State Dewetting

13 / 50



Outline

9 Mathematical models
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utline

9 Mathematical models
o Flat substrate
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Thermodynamic variation: Perturbation

‘=T +ep(s)n+ep(s)T

T, Substrate Le

@ Derive the model via thermodynamic variation;
@ Perturb I in both normal and tangent directions;
@ (s) is an arbitrary function, and ¢(s) satisfies

/Och(s)ds 0.
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Thermodynamic variation: Perturbation

‘=T +ep(s)n+ep(s)T

T, Substrate Le

We express = (x(s), y(s)),

re = (xX(s), y*(s)) = (x(s) + cu(s), y(s) + ev(s)).
Then the increments along the y—axis at the two contact points must be
zero, i.e.,

v(0) = v(L) =0.
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Thermodynamic variation 1

The total interfacial energy before perturbation is:
W= [A8)dr + (s = 20s) O )
r
L
= [ o0)ds + (s = )2 =D
The total free energy W€ of the new curve ' as follows:
wWe — / Y(0) dT + (Yes — Yvs) |:(X£ + eu(L)) — (XZ. + eu(O))}

L
= / fy(arctan(ys + EVS)) \/(xs + €us)? + (ys + €vs)? ds
0

Xs + €Us

+(’YF5 — 'yvs) |:(Xcr + eu(L)) - (Xé + GU(O))]
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Thermodynamic variation 2

dwe
de

L
0 /0 (’V "(0) + 7(9))% ¢ ds
+ [7(99) cos6, — /(6 sin 6, + (ves — 7\/5)] u(0)

_ {7(99) cos Oy — ' (05)sin 05 + (Vs — ’sz)] u(L).

@ Chemical potential:

AW y
1= 05 = (1(0)+ ")),
@ Surface normal velocity:
V. DSVQO@
" kB Te 852 '
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Thermodynamic variation 2

dwe
de

L
= / (7’/(0) + 7(9))/{ pds
0
+ [7(8h) cos 0l — 7' (8h) sin 0l + (s — vs) | u(0)

— [(65) cos 0 — 4(85)sin 0 + (ves — s) | (L),

e=0

@ Assuming that the moving process of the contact point can be taken
as an energy gradient flow:

dx.(t) sw

= g = ) costly = (0 sin b+ (s — )]
dx’(t ow )

<(t) =—n— = -7 [7(99) cos 0, — ~'(05) sin 0 + ('yFS — ’sz)}-

dt oxt
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Governing equation

According to the thermodynamic principle, we have the following

dimensionless sharp-interface model for weakly anisotropic solid-state
dewetting problems:

oX 0?1
Bt "= 52"

u=(16)+7"(9))~,

where kK = 0ssx0sy — 0sx0ssy is the curvature.
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Boundary conditions

@ Contact Point Condition (BC1)
y(xLt) =0, y(x[,t)=0.
@ Relaxed Contact Angle Condition (BC2)

dx! / dx{
= — pf(o < — _nf (0]

where

f(0) :==y(0) cos® —y'(0)sin0 — o, with o := %
0

@ Zero-Mass Flux Condition (BC3)

ou o, r
g(xé,t)zo, %(Xc,t)zo.
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Regularization

X (5 ++"®)x] m, J

@ Well-posed in the isotropic and weakly anisotropic cases, i.e.,
7(0) == ~v(0) +~"(0) > 0 for all § € [0, 27];

o lll-posed in the strongly anisotropic case where 7(6) may become
negative for some 6.

@ In order to regularize the equation, a high order regularization term
can be added to the free energy (M.E. Gurtin and M.E. Jabbour,
2002; S. Torabi et al., 2009):
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Governing equation (strong anisotropy)

By calculating the variation of the regularized interfacial energy W + W4,
we can form the dimensionless model for the strongly anisotropic case as:

oxX
E = V,,n

= (7(9) + 'y”(9))f<t—€2 (f”»ss + ﬁ;)

82
= —M n’
0s2

where kK = 0ssx0sy — 0sx0ssy is the curvature.
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Boundary conditions (strong anisotropy)

@ Contact Point Condition (BC1)
y(Xz{“vt):Ov y(x¢,t) =0.
@ Relaxed Contact Angle Condition (BC2)

dx! / dx!
—S=nf0y),  —< = -nf(6)).
dt 77(d) dr 77(d)

where  £(0) := y(#) cosh — ~'(0)sin0 — 0—52%(9) sin .

S

@ Zero-Mass Flux Condition (BC3)

O Koo
65(Xé,t):0, —S(xc,t):o.

@ Zero-curvature Condition (BC4)

r(xL, t) =0, k(x,, t) = 0.

C?
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9 Mathematical models

@ Curved substrate
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Schematic illustration on a curved substrate

n i
|

T

Figure: A schematic illustration of a film island in two dimension. Interfacial
energy densities: v, = 7¥(0), 7 and v,s are contants.

@ The interfacial energy:

W = / dr+ 7F5 ’)’vs)(Cr - C/)7

Substrate Energy

Wang Yan (CSRC) Solid-State Dewetting



Thermodynamic variation

Similarly, we can perturb the film/vapor interface
and calculate the thermodynamic variation
of the total interfacial energy as

%
== = (1O +1"0)x.
W .
se. Y(0L) cos O, — " (6L,) sin 0f, + (Ves — Yus),
r
ow .
S = L) costl (0L sin Bl + (s —s)|.
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Thermodynamic variation

Similarly, we can perturb the film/vapor interface
and calculate the thermodynamic variation
of the total interfacial energy as

ow

== = (10 +1"0),

SW e

5e, Y(0ix) cos 0, — v'(0c) sin 0], + (s — vs),
ow .

5o = k) costl — v (0L)sin bl + (s — s)].
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Model formulation

The two-dimensional solid-state dewetting of a thin film on a rigid curved
solid substrate can be described in the following dimensionless form by the
sharp interface model (isotropic/weakly anisotropic case):

X _ o
ot " 9s?
u=(16)+7"(9))x,

where kK = 0ssx0sy — 0sx0ssy is the curvature.
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Boundary conditions for the weakly anisotropic

@ Contact point condition (BC1)

X(0,t) = Xsun(cr), X(L, t) = Xeun(cr)-
@ Relaxed contact angle condition (BC2)

dC/ .

dc,
ac I gl acr _
i nf (0., 0;

ex?’ i/’ dt

where the binary function f is defined as

(05, 05),

ex’ in

f(Oex, Oin) = Y(ox ) cos by, — v/ (0ex ) sin by, — 0,

with the dimensionless coefficient o := (vys — Ves) /Y0 = cos b);.
@ Zero-mass flux condition (BC3)

o o

( O,t):(), 85(

=1L,t)=0,
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© Numerical results
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Isotropic, short island

L=53=0,0=cos(31/4)
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Weakly anisotropic, short island

L=5m=4,06=0.06,0 = cos(3r/4)
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Strongly anisotropic, short island

L=5m=4,8=0.2,0 = cos(37/4)
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Weakly anisotropic, long island

L=60,m=4,3=0.06,0 = cos(57/6)
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Weakly anisotropic, semi-infinite island

m=4,0=0.06,0 = cos(57/6)

@ Power-law for the retraction distance: | ~ t94 (H. Wong et al., 2000)
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Power law

) B =0.06
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Hole: Dewetting — |

B =0.06, m=4, o= cos(n/2).
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Hole: Wetting — Il

B =0.06, m=4, o = cos(m/2).

(b) d4d=0.4
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B
-1.5 0

1.5
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Hole: Void — Il

f =0.06, m=4, o= cos(7/2).

(c) d=20.1

I
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Equilibria on a sawtooth substrate

Figure: (al-a2): Two equilibrium shapes of thin films on a sawtooth substate with
initial area A =2.
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Asymmetric equlibrium

-_
"Somm "Camm

Figure: Evolution of thin films on a circular substrate (R = 20). (a) isotropic
case, (b) weakly anisotropic case with m =4, = 0.06. 0 = —0.5 in both cases.
The intrinsic (contact) angles in (b4) are (left) 2.025 and (right) -2.319.
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Pinch-off

Figure: Evolution of a large island with isotropic surface energy on a spherical
substrate of radius R = 30. Film length L =82, 0 = —\/§/2.
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Pinch-off

Assuming isotropic surface energy, for given R and 6;, we suggest that the
critical pinch-off length can be predicted according to the following relation

 —320.2/R +89.9

sn(6i2) (=10 (1)

Here, the radius is restricted to be larger than 10 since pinch-off won't
occur for small R.
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Movement on a sinusoidal substrate

L=5,83=0,0=cos(n/3) |,
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Templated solid-state dewetting

e Consider sinusoidal substates y = H sin(wx).

@ Consider enough long films.

Figure: Dewetting of thin films with different length on a pre-patterned sinusoidal
substrate. The lengths of the films are L = 100, 150 and 200.
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Templated solid-state dewetting
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Figure: Phase diagram of the four observed categories of solid-state dewetting of
thin films on pre-patterned sinusoidal substrates y = H sin(wx)
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Templated solid-state dewetting
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@ Summary and future works
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Summary and future works

» Proposed sharp interface models for solid-state dewetting problems in
2D for both flat and curved substrates.

» Presented a series of numerical results to show the influence of
anisotropy and curved substrates in solid-state dewetting.

@ Analysis for the physical laws that we observed or summarized from
numerical studies.

@ 3D simulations.
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