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Multiscale problem

Many practical problems have multiple-scale feature.

 Composite materials

 Porous media

Methods for Homogenization of RHMs

(a) Macroscopic 
domain

(b) Composites at 
the microscale

(c) Porous media at 
the microscale
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Multiscale problem

BVP with random rapidly oscillating coefficients

      

   

, ,

,

da x u x f x D

u x g x D

 



 



    


 

in

on

Methods for Homogenization of RHMs 5



Multiscale problem
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 Macroscopic behavior of the heterogeneous material may 

be approximated by that of a fictitious homogeneous one.



Multiscale problem

Typical multiscale methods for the BVP

 Asymptotic homogenization method (Lions 1978)

 Variational multiscale method (Hughes 1995)
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 Multiscale finite element method (Hou & Efendiev 1997)

 Heterogeneous multiscale method (E & Engquist 2003)



Multiscale problem

Homogenized BVP
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Homogenization
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Homogenization

Auxiliary problem in volume element

 Dirichlet boundary condition (DBC)
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 Dirichlet boundary condition (DBC)

 Neumann boundary condition (NBC)
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Homogenization

Determine effective coefficients 

Create microstructure

Solve boundary value problems

Compute relevant volume averages

Methods for Homogenization of RHMs

Figure: The main procedure of multiscale method for random 
heterogeneous materials
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Homogenization

Simulations in  the 
macro-scale

Localization

Determine effective coefficients 
in microstructures of different 

sizes
Calculate effective coefficients

Repeat above procedure in different 
realizations, get ensemble average
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Motivation
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Motivation

 Sufficiently large volume elements are always needed, 

which is time-consuming and high-demanding for computer 

memory.
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Method

Dirichlet boundary condition

It satisfies
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Approximate effective coefficients are calculated by
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Method

Neumann boundary condition

It satisfies
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Approximate effective coefficients are calculated by
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Method

Theorem (Wu, Nie, Yang 2014)
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Method

Assume the first-order convergence rates of DBC and NBC 
approximations are satisfied, then we have

Since

,

1 1
, 1whereBC La a C O

L L


 
    

 
�

Methods for Homogenization of RHMs

We get Richardson extrapolation sequence
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Method

Determine effective coefficients 

Create microstructure

Solve boundary value problems

Compute relevant volume averages

Richardson extrapolation 

Methods for Homogenization of RHMs

Figure:   The main procedure of multiscale method combined with 
Richardson extrapolation technique
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Homogenization

Simulations in  the 
macro-scale

Localization

Determine effective coefficients 
in microstructures of different 

sizes
Calculate effective coefficients

Repeat above procedure in different 
realizations, get ensemble average



Numerics

Microstructure
 (RMDF) random morphology description function, 

proposed by Vel et al. in 2010.
 Closely resemble actual micrographs manufactured by 

techniques including plasma spraying and powder 
processing.

Methods for Homogenization of RHMs 20

processing.

(a) Microstructures generated by computer with different volume 
fractions of Al

(b) Actual Al/Al2O3

micrographs



Numerics

Example
We predict effective thermal conductivity of actual Al/Al2O3

with different volume fractions of Al.
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Figure:  Microstructures with different sizes



Numerics

Material Al Al2O3

k (W/mK) 233.0 30.0

Table: Properties of constituent materials
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VAl (%) 10 30 50 70 90

DBC 1.08 0.93 0.95 0.99 1.04

NBC 1.02 0.99 0.82 0.95 0.98

Table: Convergence rates of approximate effective coefficients



Numerics
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Figure: Comparison of approximate effective coefficients by homogenization
and extrapolation with increasing volume element size

(a) VAl=30 %                    (b) VAl=70 %



Numerics
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Figure: Comparison of Homogenization, Extrapolation and Variational bounds
(Voigt-Reuss bounds and Hashin-Shtrikman bounds)



Numerics
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Figure: Comparison of Homogenization, Extrapolation and Variational bounds 
(Voigt-Reuss bounds and Hashin-Shtrikman bounds)



Numerics
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Figure: Comparison of Homogenization, Extrapolation and Variational bounds 
(Voigt-Reuss bounds and Hashin-Shtrikman bounds)



Numerics
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Figure: Comparison of Homogenization, Extrapolation and Variational bounds
(Voigt-Reuss bounds and Hashin-Shtrikman bounds)



Numerics
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Figure: Comparison of Homogenization, Extrapolation and Variational bounds
(Voigt-Reuss bounds and Hashin-Shtrikman bounds)



Numerics

Example

We predict effective mechanical properties of actual Al/Al2O3

with different volume fractions of Al.

The contrast ratio between the elastic modulus of Al2O3 and Al 
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is 5.6.

Table: Properties of constituent materials

Material Al Al2O3

E (GPa) 70 393

0.30 0.22



Numerics
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Figure: Comparison of Homogenization, Extrapolation and Variational bounds
(Voigt-Reuss bounds and Hashin-Shtrikman bounds)



Numerics
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Figure: Comparison of Homogenization, Extrapolation and Variational bounds 
(Voigt-Reuss bounds and Hashin-Shtrikman bounds)



Numerics

Example

We predict effective mechanical properties of actual stainless 

steel/epoxy with different volume fractions of stainless steel.

The contrast ratio between the elastic modulus of stainless 

steel and epoxy is high (more than 100).
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steel and epoxy is high (more than 100).

Table:  Properties of constituent materials

Material Stainless Steel (SS) Resin

E (GPa) 193.8 1.31

0.29 0.40



Numerics
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Figure: Comparison of Homogenization, Extrapolation and Variational bounds
(Voigt-Reuss bounds and Hashin-Shtrikman bounds)



Numerics
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Figure: Comparison of Homogenization, Extrapolation and Variational bounds 
(Voigt-Reuss bonds and Hashin-Shtrikman bounds)
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Motivation

 Many random heterogeneous materials have a high 

contrast of constituent properties.

a. Composite materials (e.g., CNT-reinforced polymers)

b. Porous media

Methods for Homogenization of RHMs

b. Porous media

 The high contrast leads to very broad Dirichlet-Neumann 

upper and lower bounds.
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Motivation

Mixed Dirichlet-Neumann boundary condition (DNBC) 

approximations lie within the Dirichlet-Neumann bounds. (Yue

2007)
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Method
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Continuous properties

Figure: Volume elements with different sizes



Method

Robin boundary condition (RBC)
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Theorem (Convergence)



Method

Determine effective coefficients 

Create microstructure

Solve boundary value problems

Compute relevant volume averages

Robin boundary condition

Methods for Homogenization of RHMs

Figure: The main procedure of multiscale method combined with Robin 
boundary condition
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Homogenization

Simulations in  the 
macro-scale

Localization

Determine effective coefficients 
in microstructures of different 

sizes
Calculate effective coefficients

Repeat above procedure in different 
realizations, get ensemble average



Numerics

Example

We consider effective coefficients of random checker-board 

microstructures. Each unit cell is occupied by matrix material 

or reinforcement material with probability p and 1-p,(0<p<1). 

Here we set p=0.5.
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Here we set p=0.5.

Figure: Random checker-board microstructures with different sizes

(a) L=8          (b) L=16                          (c) L=24



Numerics

For two-phase random heterogeneous materials,

has a high contrast, i.e.,

Methods for Homogenization of RHMs

Here,  I is the identity matrix.
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has a high contrast, i.e.,



Numerics
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(a) r = 10      (b) r = 100



Numerics
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Figure: Effect of adjusting factor in RBC on the accuracy of 
approximate effective coefficients



Numerics
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Figure: Approximate effective coefficients with 
different adjusting factor in RBC

(a) r = 10              (b) r = 100



More Discussion

 High contrast leads to large condition number of stiffness 

matrix, which may reduce the numerical accuracy of 

approximate effective coefficients.

 We discuss the effect of condition number on the accuracy 
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of approximate effective coefficients.

Auxiliary problem with DBC
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More Discussion
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Figure: Effect of contrast ratio and mesh size on the condition number of stiffness
matrix (constituent with high property in the center)



More Discussion
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Figure: Effect of contrast ratio and mesh size on the condition number of stiffness

matrix (constituent with low property in the center)



More Discussion
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 Largest condition number is no more that 106, while 
double-precision floating-point system guarantees more 
than 15 significant digits of freedom.

 Condition number has little effect on the accuracy of 
approximate effective coefficients.
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Conclusion

Richardson extrapolation is an effective technique for 

predicting effective coefficients of random heterogeneous 

materials.
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 Since smaller volume elements are used, a lot of 

computation time and computer memory could be saved.
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Conclusion

Robin boundary condition is proposed for predicting effective 

coefficients of random heterogeneous materials.

 It provides much better approximate effective coefficients 

than other boundary conditions.
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than other boundary conditions.

 It is more flexible than other boundary conditions because 

of the adjusting factor.

 It is more suitable for random heterogeneous materials 

with high contrast.
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