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Contact Lines (CL)

Two immiscible fluids

contact line: intersection of the
interface and the solid

Equilibrium, Young’s equation
(Young, 1805):
γ cos θY = γ2 − γ1

γ
θ

γ
Fluid 2

2γ

Fluid 1

1
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Non-integrable Singularity and Remedies

Non-integrable singularity at MCL for corner flows with no slip boundary
condition (Huh and Scriven, 71; Dussan and Davis, 74):

Fshear =

∫ R

r=0
t · τd(r) · ndr ∼

∫ R

r=0
η
U

r
dr = ∞

Remedies:

Introduce slip us :
∂us
∂n

= −βus , β > 0

Alter the equivalent slip length scale (Ruckenstein and Dunn, 77; Huh
and Mason, 77; Hocking and Rivers, 82; Zhou and Sheng, 90; ...)

Molecular dynamics (Koplik et al, 88; De Coninck and Blake, 08; ...)

Kinetic models (Blake and Haynes, 69; Blake, 93; ...)

Diffuse interface models (Jacqmin, 00; Qian, Wang and Sheng, 03;
Yue, Zhou, and Feng, 10; ...)

Sharp interface models with contact angle conditions (Eggers and
Stone, 04; Ren, Hu and E, 10; ...)

......
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Energy Dissipations for a Sharp Interface Model

Total free energy:

F =
∑

i=1,2

∫

Ωi

1

2
ρi |u|2 dx

+ (γ1 − γ2)|Γ1|+
∫

Γ(t)

e(c) dA
b

2Γ Γ2

Γ

1Γ
n

n

n

ln
Ω 1

Ω2

s

dF

dt
= −

∑

i=1,2

∫

Ωi

ηi |∇u|2 dx, (Bulk viscous dissipation)

+
∑

i=1,2

∫

Γi

P (τd · nb) · us dA, (Dissipation on solid surface)

+

∫

Γ(t)

u ·
{

[τd − pI] · n+ γ(c)κn−∇sγ(c)
}

dA, (Interfacial dissipation)

+

∫

Γ(t)

e
′′(c)∇sc · Jc dA, (Surfactant diffusion dissipation)

+

∫

Λ

uCL

{

γ(c) cos θd + (γ1 − γ2)
}

dl .(Dissipation on contact line)
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Constitutive Relations

Interface jump condition:

[τd − pI] · n = −γ(c)κn+ ∇sγ(c)
︸ ︷︷ ︸

Marangoni force

,

Boundary conditions:

P (τd · nb) = fi(us), on Γi , (v · fi(v) 6 0)

γ(c) cos θd + (γ1 − γ2) = fCL(uCL), on Λ, (vfCL(v) 6 0)

e′′(c)∇sc · Jc 6 0 ⇒ Fick’s law: Jc = −D∇sc

Linearization:

fi(us) = −βius ⇒ Navier slip BC

fCL(uCL) = −βCLuCL ⇒ Contact angle dynamics
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Dimensionless Equations

ρi (∂tu+ (u · ∇)u) = −∇p +
1

Re
∇ · τd , in Ωi ,

∇ · u = 0, in Ωi ,

We

[

1

Re
τd − pI

]

· n = −γκn, on Γ(t),

− βius = ηi ls∂nus , on Γi ,

u · nb = 0, on Γi ,

− βCLuCL =
1

Ca

(

γ cos θd + (γ1 − γ2)
)

, on Λ,

ẋ = u(x, t). (kinematic condition)
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Motivation and Related work

Experimental study:

Change the effective viscosity (Min et al, J. Colloid Interface Sci.,
2011)

Bring in fluid memory effect (Ramé et al, Phys. Rev. E, 2004, Wei et
al, J. Phys.: Condens. Matter, 2009)

Bergeron et al (Nature, 2000) observed slow retraction during drop
impact, energy dissipation by stretching of polymer near MCL

Smith and Bertola (PRL, 2010) attributed the retraction to the
deposition of polymer on the solid surface

...

Numerical study:

Spaid and Homsy (J. Non-Newtonian Fluid Mech., 1994), spin coating

Yue and Feng (J. Non-Newton. Fluid Mech., 2012), phase-field,
Oldroyd-B, viscous bending

...
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Models for Polymeric Fluids

Modify Navier-Stokes equation through stress tensor:

T = τd+τp

where τp is the stress tensor due to the interaction between the polymer
molecules and the fluids.
Some empirical constitutive relations for τp:

1 Generalized Newtonian models:

τp = η(D)D

2 Maxwell models (for visco-elastic fluids):

τp(x, t) =

∫ t

−∞

ηs
λ
e−

t−s
λ D(x, s)ds

where ηs
λ
e−

t−s
λ is the relaxation modulus representing the memory

effect.
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Macro-micro Models

Dumbbell model in the dilute limit of
polymer solutions

τp =
ηp
Wi

< F(Q)⊗Q >

=

∫

R3

F(Q)⊗Qψ(x,Q, t)dQ

∂Q

∂t
+ (u · ∇)Q

=∇u ·Q− 1

2Wi
F(Q) +

1√
Wi

Ẇ(t)

Hookean spring: F = HQ, Oldroyd-B model (Bird et al, “Dynamics of Polymeric
Fluids”, 1987);

FENE (Finitely Extensible Nonlinear Elastic) spring: F = HQ

1−(|Q|/Q0)2
, need closure

approximation:

FENE-P (Keunings, J. Non-Newton Fluid Mech., 1997)
FENE-L (Lielens et al, J. Non-Newton Fluid Mech., 1999)

FENE-S (Du et al, Multiscale Model. Simul., 2005), etc.

Zhang Zhen (SUSTech) MCL for two-phase complex fluids May 16, 2018 11 / 32



Oldroyd-B Model

∂τp
∂t

+ u · ∇τp − (∇u)τp − τp(∇u)⊤ +
1

Wi
ηp =

η

Wi
D

Singular structures for large Wi at the region with large deformation
(Thomases and Shelley, Phys. Fluids, 2007);

Bending effect of the two-phase interface near the contact line, (Yue
and Feng, J. Non-Newton. Fluid Mech., 2012).
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MCL coupled with FENE-P model

Immersed boundary formulation:

ρ (∂tu+ (u · ∇)u) = −∇p +
1

Re
(η∇2

u+∇ · τp)+
1

We
f,

∇ · u = 0,

f(x, t) =

∫

D

F(s, t)δ(x− X(s, t))ds

F(s, t) =
∂(γt(s, t))

∂s
= γκ(s, t)n(s, t)|∂sX(s, t)|

∂X(s, t)

∂t
= U(s, t) =

∫

Ω

u(x, t)δ(x− X(s, t))dx

with FENE-P model:

τp =
ηp
Wi

( 1

1− trA/Ed

A− 1

1− 2/Q2
0

I

)

,

∂A

∂t
+ u · ∇A− (∇u)A− A(∇u)⊤ =

1

Wi

( 1

1− 2/Q2
0

I− 1

1− trA/Q2
0

A

)

Wi : Weissenberg number, control relaxation time

ηp : polymer viscosity
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Numerical methods (Staggered Grid)

1 Interpolation of velocity: Un
k =

∑

x u
nδh(x− Xn

k)∆x∆y

2 Update markers: Xn+1
k = Xn

k +∆tUn
k ; contact line markers:

−βCL
X
n+1
k

−Xn
k

∆t
= 1

Ca

(
γ cos θnd + (γ1 − γ2)

)
with k = 0,M.

3 Equal-arclength redistribution of the interface markers;

4 Upper convective equation for An+1: forward Euler in time, 3rd order
WENO scheme in space (Jiang and Shu, J. Comput. Phys., 1996).

5 Spread the force: fn+1(x) =
∑M−1

k=1 F
n+1
k δh(x− X

n+1
k ) and

F
n+1
k = γ(tn+1

k+1 − t
n+1
k ), with discrete delta δh (Peskin, 2002)

6 Projection method (Guermond et al, 2006) for Navier-Stokes
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Two-phase Couette flow (static contact angle 90◦)

Fluid 1Fluid 2 Fluid 2

U

U

�1

1 

�2

Newtonian fluid interface (black), polymeric fluid (red) (Ca = 0.07,
Wi = 0.1, ηp = 0.5);
The polymer stress and force exert locally near the contact line.
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Capillary Force vs. Polymer Force

Ca ր, capillary force ց, polymer force ր

More evident for large ηp near critical Ca
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Apparent Contact Angle vs. Capillary Number
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Slip Model

No-slip model: 1
r
singularity in both p and τd , no convergent

numerical results (Moriarty and Schwartz, 1992)

Quisi-static (t → ∞) asymptotics, Hocking and Rivers 1982, Hocking
1983, Cox 1986, Sibley et al. 2015, ...

t = O(1), lubrication modell, effective macroscopic model as ls → 0,
numerically consistent with full slip model (Ren, Trinh and E, 15)

1 θ3a(t)− θ3Y ∼ 3ǫ−1 da
dt
,

when ǫ = 1/| ln ls | → 0,
t = O(1);

2 θ3a(a(t))− θ3Y ∼ 3ǫ−1 da
dt
,

when ǫ = 1/| ln ls | → 0,
t = O(ǫ−1).
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Polar representation of CL model with Stokes flow

Finite time: t = O(1), Ca = µAUbulk

γ
= O(1), η = µB/µA







∇4ψi = 0, ui = ∇⊥ψi =
1

r

∂ψi

∂φ
er −

∂ψi

∂r
eφ,

Caµi∇
⊥∇2ψi = ∇pi i = A,B

CL locates at x = −a(t), uCL = a′(t) is the contact line speed

O

e
x

e
y

φ
eφ

e
y e

r X
x

−a(t) O’ a(t)

y
y’

x

Fluid A

Fluid B

=xe
x
+ye

y

Γ: φ=θ(r)

φ=θ(r)

x’

e
x

=re
r
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Small Parameter Limit

Small slip length ls → 0

Small contact line speed a′(t) ∼ ǫ → 0

Relation: ǫ = 1
| log ls |

,as ls → 0, ǫ≫ ls

Asymptotic expansion:

a(t) = a0 + ǫa1(t) + ǫ2a2(t) + O(ǫ3)

ψi = ψi
0 + ǫψi

1 + O(ǫ2, ls)

pi = pi0 + ǫpi1 + O(ǫ2, ls)

θ = θ0 + ǫθ1 + O(ǫ2, ls)
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Outer Solutions

The correct order of behavior near CL:

κ0 ∼
∂θ0
∂r

∼ ln r , p0 ∼ ln r , ψ0 ∼ r2

Find the solution ψ0 in the form of separate variable r2Q(φ), leading
order solutions close to CL:

θ0(r , t) ∼ θa(t) + α0,1(t)r ln r .

First order solutions close to CL:

θ1(r , t) ∼ α1,0(t) ln r .

where α1,0(t) = a′1(t)CaF (θa, η), and

F (θ, η) =
2 sin θ[η2(θ2 − sin2 θ) + 2η(θ(π − θ) + sin2 θ) + ((π − θ)2 − sin2 θ)]

η(θ2 − sin2 θ)((π − θ) + sin θ cos θ) + ((π − θ)2 − sin2 θ)(θ − sin θ cos θ)
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Three-region Expansion and Matching

Two-term outer expansion:

θout =
(

θa + α0,1r ln r + O(r)
)

+ ǫ
(

a′1(t)CaF (θa, η) ln r + O(1)
)

+ O(ǫ2, ls), r → 0.

Inner variables: r̃ = r
ls
, two-term expansion far from CL (r̃ → ∞):

θin = θY + ǫ
(

a′1(t)CaF (θY , η) ln r̃ +O(1)
)

+O(ǫ2, ls), r̃ → ∞.

Intermediate variable: z = ǫ ln r̃ = ǫ ln r + 1, two-term expansion:

θint = G−1(K0 + a′1(t)Caz) + O(ǫ, ls)

where G (θ, η) =
∫ θ

0
dφ

F (φ,η)

G (θa(t))− G (θY ) ∼ ǫ−1a′(t)Ca
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Quasi-static State

t → ∞ and λ, ǫ→ 0

Time rescaling: t = O(1
ǫ
) and τ = ǫt = O(1)

Small quantities: a′(t) = ǫa′(τ) = ǫu1 + ǫ2u2 + O(ǫ3), u = O(ǫ)

Leading order is part of circle:

Matching: G (θa(a))− G (θY ) = u1Ca ∼ ǫ−1a′(t)Ca (Cox, J. Fluid
Mech., 1986), solving this ODE yields the quasi-static contact line
motion.
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Numerical Validation
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Figure: Left: Different curves correspond to different values of slip length:
ls = 10−2 (dotted), 10−3 (dashed), 10−4 (dash-dotted), 10−5 (solid). The inset
plot shows the re-scaled contact line speed a′(t)/ǫ versus time. Right: The
contact line speed computed using the slip model with ls = 10−5 (solid) is
compared with predictions by the angle-speed relation (dash-dotted) in the
finite-time regime and that (dotted) in the quasi-static regime.
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Thin-film Model

Symmetric spreading of a thin viscous droplet of height z = h(x , t)
with 0 6 x 6 a(t), brought-in Navier slip law (Ren et al, Phys.
Fluids, 2010), moving substrate with speed U:

∂h

∂t
+

∂

∂x

[∂3h

∂x3
h2(h + ls)

]

+ U
∂h

∂x
= 0

Boundary conditions at CL (x = a(t)):

h = 0,
da

dt
− U =

1

2β

[(∂h

∂x

)2
− θ2y (

x

ǫ
)
]

,

where θy = θy(
x
ǫ
) is the equilibrium angle depending on location

periodically with period ǫ ( θm < θM):
1 θy(z) =

θm+θM

2 + θM−θm

2 sin( z
2π );

2

θy (z) =

{

θm, 0 6 z < c ,

θM , c 6 z < 1.
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Quasi-static Asymptotics

Assume U ≪ 1, and t = τ/U with τ = O(1);

Leading order solution: h0(x , τ) = − 1
2aθ(τ)(x − a)2 + θ(τ)(a− x) is a

hyperbola where θ(τ) = −∂h0
∂x

|x=a is apparent CL;

Solubility condition on h0 arises in first order equation (plugging in
hyperbolic form):

dθ

dτ
=

2θ

a

(

−
da

dτ
+

3

4

)

Assume slow relaxation on the CL so that 1
β
= U

β̃
= O(U) ≪ 1,

leading order in CL condition:

da

dτ
− 1 =

1

2β̃

[

θ(τ)2 − θ2y(
a

ǫ
)
]
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Simplified ODEs and Averaging

Leading order approximations at original time scale:

dθ

dt
=

2θ

a

(

−
da

dt
+

3

4
U
)

da

dt
= U +

1

2β

[

θ2 − θ2y (
a

ǫ
)
]

Introduce fast variable b = a
ǫ
, fast dynamics:

db

dt
=

1

ǫ

{

U +
1

2β

[

θ2 − θ2y (b)
]}

=
1

ǫ
g(θ, a, b)

Averaging out fast dynamics by its invariant measure (Pavliotis &
Stuart, 2008), ρ∞(b; θ, a) =< g(θ, a, b)−1 >−1

b /g(θ, a, b), gives
effective dynamics:

dΘ

dt
=

2Θ

A

(

− < g(Θ,A, b)−1 >−1
b +

3

4
U
)

dA

dt
=< g(Θ,A, b)−1 >−1

b
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Contact Angle and CL Speed for Sine Structure
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Concluding Remarks

An immersed boundary method is developed on the staggered grid to
study the MCL model with FENE-P fluids;

Asymptotic analysis on zero-slip limit of slip model, in particular,
apparent contact angle vs. contact line speed;

Study the effective dynamics of thin film on heterogeneous surfaces.

Related work: extension to soluble surfactant

Thank you !
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