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Model problem
We consider 2D elliptic interface problem on a rectangular domain Ω,

−∇ · β+(x, y)∇u(x, y) = f (x, y) (x, y) ∈ Ω+, (1)
−∇ · β−(x, y)∇u(x, y) = f (x, y) (x, y) ∈ Ω−, (2)

where the interface Γ ∈ C 2 is a curve immersed in Ω, Ω+ and Ω− are
sub-domains of Ω such that Ω+ ∩ Ω− = ∅ and Ω+ ∪ Ω− = Ω. Along the
interface, jump conditions for the solution and the flux are prescribed,

[u]Γ = w, (3)[
β
∂u
∂n

]
Γ

= Q, (4)

The boundary condition is given as

u(x, y) = g(x, y), (x, y) ∈ ∂Ω. (5)
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Our idea is using extension function to make interface problem with
non-homogeneous jump conditions become one with homogeneous jump
conditions. Those advantages are not only to use the usual finite element
basis functions in trial space for different jump conditions, but also the
scheme is simple and robust for the interface problem, and this method can
be easily extended to solving other complex interface problems. we define

û(x, y) = H (ϕ(x, y))uρ(x, y) =
{

0 if ϕ(x, y) < 0,
uρ(x, y) if ϕ(x, y) ≥ 0,

(6)

where H (·) is the Heaviside function. û(x, y) has the same
non-homogeneous jumps conditions across the interface as u(x, y)
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For an arbitrary interface Γ, there are three types of dual elements, as
shown in Fig. 1.

Γ Γ

Vi,jVi,j Vi,j

Type 1 Type 2 Type 3

(xi, yj) (xi, yj) (xi, yj)

Figure: Three types of dual elements.
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The immersed finite volume element formulation

We integrate Equation of q = u − û on Vi,j and have,

−
∫

Vi,j
∇ · β∇qdxdy =

∫
Vi,j

fdxdy +
∫

Vi,j
H (ϕ(x, y))∇ · β∇uρdxdy. (7)
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If Vi,j ∈ Ω+ or ∈ Ω−, then Vi,j is Type 1 or Type 3, i.e. Vi,j ∩ Γ = ∅. So
we directly employ the Green’s formula to obtain,

−
∫
∂Vi,j

β
∂q
∂nds =

∫
Vi,j

fdxdy +
∫

Vi,j
H (ϕ(x, y))∇ · β∇uρdxdy, (8)

where n is the unit outward normal vector of ∂Vi,j .
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If Vi,j is Type 2, i.e. Vi,j ∩ Γ 6= ∅, we need to apply the Green’s formula
piecewisely for the left hand side of (7),

−
∫

Vi,j
∇ · β∇qdxdy = −

∫
V +

i,j

∇ · β∇qdxdy −
∫

V−i,j
∇ · β∇qdxdy (9)

= −
∫
∂Vi,j

β
∂q
∂nds −

∫
Vi,j∩Γ

[
β
∂q
∂n

]
Γ

ds.

By the second jump condition
[
β(x, y) ∂q

∂n

]
Γ

= 0, we get the same scheme
as (8).
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The numerical scheme

We rewrite (7) in terms of u = q + û to obtain,

−
∫
∂Vi,j

β
∂u
∂nds =

∫
Vi,j

f (x, y)dxdy +
∫

Vi,j
H (ϕ(x, y))∇ · β∇uρdxdy (10)

−
∫
∂Vi,j

β
∂û
∂nds.

If Vi,j ∈ Ω−, H (ϕ(x, y)) = 0, û = 0.
If Vi,j ∈ Ω+, by applying Green’s formula, we have∫

Vi,j
H (ϕ(x, y))∇ · β∇uρdxdy −

∫
∂Vi,j

β
∂û
∂nds = 0. (11)
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Then, the numerical scheme is as follows:
If Vi,j is Type 1 or Type 3, we have

−
∫
∂Vi,j

β

(
∂uh
∂x dy − ∂uh

∂y dx
)

=
∫

Vi,j
f (x, y)dxdy. (12)

If Vi,j is Type 2, we have

−
∫
∂Vi,j

β

(
∂uh
∂x dy − ∂uh

∂y dx
)

=
∫

Vi,j
f (x, y)dxdy (13)

+
∫

Vi,j
H (ϕ(x, y))∇ · β∇uρdxdy −

∫
∂Vi,j

β

(
∂û
∂x dy − ∂û

∂y dx
)
,
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However, if we treat Type 3 as above, the scheme is wrong. In the cell IV,
uh 6= ui,jφi,j + ui+1,jφi+1,j + ui+1,j+1φi+1,j+1, since these nodal basis
functions only satisfy the homogeneous jump conditions as stated in the
above definitions. We reconsider the schemes for the Type 3. If Vi,j ∈ Ω−,
then H (ϕ(x, y)) = 0, thus from (8), we have

−
∫
∂Vi,j

β

(
∂uh
∂x dy − ∂uh

∂y dx
)

=
∫

Vi,j
f (x, y)dxdy (14)

+
∑

(xi ,yj)∈Ri,j

H (ϕ(xi , yj))Ai,juρ(xi , yj),

where Ai,j = −
∫
∂Vi,j

β

(
∂φi,j
∂x dy − ∂φi,j

∂y dx
)
.
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If Vi,j ∈ Ω+, then H (ϕ(x, y)) = 1. We get the scheme by using
uh = qh + û,

−
∫
∂Vi,j

β

(
∂uh
∂x dy − ∂uh

∂y dx
)

=
∫

Vi,j
f (x, y)dxdy(15)

+
∫

Vi,j
H (ϕ(x, y))∇ · β∇uρdxdy +

∑
(xi ,yj)∈Ri,j

H (ϕ(xi , yj))Ai,juρ(xi , yj).
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Theorem
Assume that Th is regular and q and qh are the real solutions and
numerical solution for the considered problem, respectively, and
q ∈ H̃ 2(Ω), f̃ ∈ L2(Ω), and βs(x, y) ∈W 2,∞(Ωs) (s = ±), then there
exists C > 0 for h ∈ (0, h0] such that

‖q − qh‖1,h ≤ Ch(‖q‖2 + ‖f̃ ‖). (16)
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Example

An example with an complicated interface and nonhomogeneous jump
conditions.

The position of the interface is given in parametric form

X(θ) = r(θ) cos(θ) + x0,

Y (θ) = r(θ) sin(θ) + y0,

with r(θ) = r0 + r1 sin(ωθ), 0 ≤ θ ≤ 2π, where the parameters are set to
r0 = 0.5, r1 = 0.1, ω = 5, and x0 = y0 = 0.2/

√
20.

The coefficients β± and the solution u± are given as: (a) β+ = 1000,
β− = 1, (b) β+ = 1, β− = 1000,

u+ = r4 + C0 log(2r)
β+ , u− = r2

β−
,

where r =
√

(x − x0)2 + (y − y0)2 and C0 = −0.1.
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Table: Convergence results for the solution u in the L2, L∞ and H 1 norm for
Example 1.

Cases Grids e∞ order1 e0 order2 e1 order3
case(a) 64 3.88e-1 4.70e-2 1.28e+0
β+ = 103 128 1.15e-1 1.75 1.06e-2 2.14 4.69e-1 1.45
β− = 1 256 2.42e-2 2.25 1.57e-3 2.76 1.62e-1 1.53

512 8.09e-3 1.58 5.12e-4 1.61 8.22e-2 0.98
1024 1.84e-3 2.14 8.99e-5 2.51 2.79e-2 1.56

case(b) 64 1.43e-2 1.18e-3 1.32e-1
β+ = 1 128 2.16e-3 2.72 1.02e-4 3.54 4.01e-2 1.72
β− = 103 256 3.49e-4 2.63 1.90e-5 2.42 1.38e-2 1.54

512 1.51e-4 1.21 5.46e-6 1.80 6.81e-3 1.02
1024 2.13e-5 2.83 9.70e-7 2.49 2.29e-3 1.57
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Figure: The figure of Example 1 with 160× 160 grid-points: (a) is the numerical
solution and (b) is the absolute error |u − uh| with β+/β− = 1000, respectively.
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Figure: The figure of Example 1 with 160× 160 grid-points: (a) is the numerical
solution and (b) is the absolute error |u− uh| with β+/β− = 1/1000, respectively.
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Example

An interface problem with homogeneous jump conditions.

The level-set function ϕ, the coefficients β±, and the solution u± are
given as follows: ϕ = x2 + y2− 0.25, (a) β+ = 1000, β− = 1, (b) β+ = 1,
β− = 1000,

u(x, y) =


u+ = rα

β+ +
( 1
β−
− 1
β+

)
rα0 , if r ≥ r0,

u− = rα

β−
, otherwise,

with α = 5, r =
√

x2 + y2, r0 = 0.5.
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Table: Convergence results for the solution u in the L2, L∞ and H 1 norm for
Example 2.

Cases Grids e∞ order1 e0 order2 e1 order3
case(a) 64 2.97e-4 6.84e-5 6.79e-3
β+ = 103 128 6.73e-5 2.14 1.52e-5 2.17 3.46e-3 0.97
β−=1 256 2.70e-5 1.32 4.21e-6 1.86 1.75e-3 0.98

512 7.27e-6 1.89 1.34e-6 1.66 8.79e-4 0.99
1024 2.34e-6 1.63 3.36e-7 1.99 4.40e-4 1.00

case(b) 64 9.40e-4 9.56e-4 1.99e-1
β+ = 1 128 2.13e-4 2.15 2.34e-4 2.03 1.06e-1 0.91
β− = 103 256 5.98e-5 1.83 5.95e-5 1.98 5.48e-2 0.95

512 1.40e-5 2.10 1.42e-5 2.06 2.78e-2 0.98
1024 3.59e-6 1.96 3.61e-6 1.98 1.40e-2 0.99
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Figure: The figure of Example 2 with 160× 160 grid-points: (a) is the numerical
solution and (b) is the absolute error |u − uh| with β+/β− = 1000, respectively.
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Figure: The figure of Example 2 with 160× 160 grid-points: (a) is the numerical
solution and (b) is the absolute error |u− uh| with β+/β− = 1/1000, respectively.
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A stabilized immersed finite volume element (SIFVE) schemes for interface
problem: Find uh ∈ Ŝh(Ω) such that

ãh(uh , I ∗h vh) = (f , I ∗h vh), ∀vh ∈ Ŝh(Ω), (17)

where

ãh(uh , I ∗h vh) = −
∑
Vi

I ∗h vh

∫
∂Vi

β∇uh · nds +
∑
e∈E i

h

∫
e

σ

h [uh ][vh ]ds.
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Table: Errors of classic IFVE when β− = 1 and β+ = 1000.

h L∞ error r L2 error r H 1 error r
1/32 2.9948E-04 - 7.2651E-05 - 9.2961E-03 -
1/64 6.8083E-05 2.14 1.6338E-05 2.15 5.0791E-03 0.87
1/128 2.6917E-05 1.34 4.5134E-06 1.86 2.6386E-03 0.94
1/256 7.2802E-06 1.89 1.4366E-06 1.65 1.3448E-03 0.97
1/512 2.3432E-06 1.64 3.6131E-07 1.99 6.7922E-04 0.99
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Table: Errors of SIFVE when β− = 1 and β+ = 1000.

h L∞ error r L2 error r H 1 error r
1/32 2.3694E-04 - 8.8773E-05 - 9.4078E-03 -
1/64 6.9202E-05 1.78 1.8250E-05 2.28 5.0933E-03 0.89
1/128 2.1526E-05 1.68 5.1709E-06 1.82 2.6449E-03 0.95
1/256 5.7431E-06 1.91 1.5637E-06 1.73 1.3462E-03 0.97
1/512 1.7438E-06 1.72 3.9675E-07 1.98 6.7960E-04 0.99
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Figure: The L∞ error under uniform refinement of the mesh for
β−/β+ = 1/1000 (left) and β−/β+ = 1/10 (right).
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The problem description

Consider the stochastic elliptic interface problem: Find a random function,
u : Ω×D → R, such that P-almost everywhere in probability Ω, or in
other words, almost surely, the following equation holds:

−∇ · (β(ω, ·)∇u(ω, ·)) = f (ω, ·) in D+ ∪D−, (18)

[u(ω, ·)]Γ = 0
[
β(ω, ·)∂u(ω, ·)

∂n

]
Γ

= 0 on Γ, (19)

u = 0 on ∂D. (20)

The coefficient β(ω,x) : Ω×D → R is a piecewise random function, that
is,

β(ω,x) =
{
β−(ω,x) x ∈ D−,
β+(ω,x) x ∈ D+.

(21)
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In addition, we shall make the following assumptions of the data:
1 The coefficient β(ω, ·) is uniformly bounded and coercive, i.e., there

exist βmin , βmax ∈ (0, ∞) such that
P {ω ∈ Ω : β(ω,x) ∈ [βmin , βmax ], ∀x ∈ D} = 1;

2 For any ω ∈ Ω, the function f (ω, ·) belongs to the space L2(D) and
is square integrable with respect to P in the sense of∫

Ω
‖f (ω, ·)‖2L2(D)dP(ω) <∞.
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The weak form of the problem (18)-(20): Find u ∈ L2
P(Ω)⊗H 1

0 (D) such
that∫

D
E[β∇u · ∇v]dx =

∫
D
E[fv]dx for all v ∈ L2

P(Ω)⊗H 1
0 (D). (22)

where E[·] stands for the expectation. Moreover, we have the following
regularity result for the problem with respect to x [J. H. Bramble and J.
T. King, 1996]. The solution to (22) has realizations in the space H̃ 2(D),
i.e., for any ω ∈ Ω, u(ω, ·) ∈ H̃ 2(D) and

‖u(ω, ·)‖H̃2(D) ≤ C‖f (ω, ·)‖L2(D)

.
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Finite-dimensional noise assumption
Let the mean and the covariance of β±(ω,x) be defined as

β±0 (x) =
∫

Ω
β±(ω,x)dP, ∀x ∈ D± (23)

and

Covβ±(x,x1) =
∫

Ω

(
β±(ω,x)− β±0 (x)

) (
β±(ω,x1)− β±0 (x1)

)
dP, (24)

respectively. Then the Karhunen-Loève (KL) expansion of β±(ω,x) is

β±(ω,x) = β±0 (x) +
∞∑

n=1

√
λ±n β

±
n (x)y±n (ω), (25)

where β±n are the orthogonal and normalized eigenfunctions and λ±n are
the corresponding eigenvalues of the following eigenvalue problem∫

D±
Covβ±(x,x1)β±n (x1)dx1 = λ±n β

±
n (x). (26)
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It is shown in [R. G. Ghanem and P. D. Spanos, 1991] that the
Karhunen-Loève expansion is optimal among all possible representations of
random processes in the sense of the mean-square error. The truncated
Karhunen-Loève expansion reads

β±N±(ω,x) = β±0 (x) +
N±∑
n=1

√
λ±n β

±
n (x)y±n (ω). (27)
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Theorem
(Finite-dimensional noise) The coefficients in the original equation have
the form

β±(ω,x) = β±
(
y±1 (ω), y±2 (ω), · · · , y±N±(ω),x

)
= β±0 (x)+

N±∑
n=1

√
λ±n β

±
n (x)y±n (ω) in Ω×D±,

where N± are positive integers, {y±n }N
±

n=1 are real-valued and independent
random variables with mean value zero and unit variance. The function f
has a similar form f (ω,x) = f (yf

1(ω), · · · , yf
N f (ω),x). Define

y = (y1, · · · , yN ) = (y+
1 , · · · , y

+
N+ , y−1 , · · · , y

−
N− , y

f
1, · · · , y

f
N f ) with

N = N + + N− + N f , we can rewrite β±(ω,x) = β±(y,x) and
f (ω,x) = f (y,x).
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Under the finite-dimensional assumption, the stochastic problem (18)-(20)
now becomes a deterministic elliptic interface problem with N -dimensional
parameter, i.e., find u(y,x) : Θ×D → R, for all y ∈ Θ, the following
holds 

−∇ · (β(y,x)∇u(y,x)) = f (y,x) x ∈ D+ ∪D−,

[u(y,x)]Γ = 0
[
β
∂u(y,x)
∂n

]
Γ

= 0 x ∈ Γ,

u(y,x) = 0 x ∈ ∂D.

(28)

The stochastic variational formulation (22) has a deterministic equivalent:
Find u(y,x) ∈ L2

ρ(Θ)⊗H 1
0 (D) such that∫

Θ×D
ρ(y)β(y,x)∇u(y,x)·∇v(y,x)dydx =

∫
Θ×D

ρ(y)f (y,x)v(y,x)dydx, ∀v ∈ L2
ρ(Θ)⊗H 1

0 (D).

(29)
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In the stochastic collocation method, we first evaluate approximation
functions uh(yk , ·) ∈ Sh(D) to the solution of (28) on a suitable set of
points yk ∈ Θ using the immersed finite element method. Then the fully
discrete solution uh,p ∈ C 0(Θ; Sh(D)) is a polynomial interpolation in the
random space, i.e.,

uh,p(y,x) =
∑

k
uh(yk ,x)lp

k (y), (30)

where, for instance, the functions lp
k can be taken as the Lagrange

polynomials. Then the approximation of the expected value of u to the
stochastic equation (18)-(20) can be evaluated as

E[u] ≈ E[uh,p] =
∑

k
uh(yk ,x)

∫
Θ
ρ(y)lp

k (y)dy. (31)
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First we assume N = 1, and let {yi
1, · · · , yi

mi} ⊂ Θ be a sequence of
abscissas for Lagrange interpolation. Here the integer i means the level of
approximation and mi is the number of interpolation points used at level
i. Then, the one-dimensional Lagrange interpolation is

U i(u) =
mi∑

k=1
u(yi

k)l i
k , (32)

where l i
k ∈ Pmi−1(Θ) are the Lagrange polynomials of degree mi − 1, i.e.,

l i
k(y) =

∏mi
k=1,k 6=j

(y−yi
k)

(yi
j−yi

k) . In the multi-dimensional case, i.e., N > 1, the
Lagrange interpolation based on the full tensor product is defined by

IN
i (u)(y) = (U i1⊗· · ·⊗U iN )(u)(y) =

mi1∑
j1=1
· · ·

miN∑
jN =1

u(yi1
j1 , · · · , y

iN
jN )(l i1

j1⊗· · ·⊗l iN
jN ).

(33)

Zhiyue Zhang (NJNU) PDEs with Interface IMS,2018 43 / 130



Now we briefly describe the isotropic Smolyak formulation which is a linear
combination of low order tensor product formula (33). The Smolyak
formula is then given by

A(w,N ) =
∑

w+1≤|i|≤w+N
(−1)w+N−|i|

(
N − 1

w + N − |i|

)
(U i1 ⊗ · · · ⊗ U iN ),

(34)
where i ∈ NN

+ and |i| = i1 + · · ·+ iN . The set of the sparse grids needed
to compute A(w,N )(u) is

H(w,N ) =
∑

w+1≤|i|≤w+N
(ϑi1 × · · · × ϑiN ), (35)

where ϑi = {yi
1, · · · , yi

mi} is the set of abscissas used by U i .
We choose to use Clenshaw-Curtis abscissas which are the extreme of
Chebyshev polynomials, that is, for any choice of mi > 1,

yi
j = −cosπ(j − 1)

mi − 1 , j = 1, · · · ,mi . (36)

In addition, we define yi
1 = 0 if mi = 1, and choose m1 = 1 and

mi = 2i−1 + 1 for i > 1.
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Fig.1: Two-dimensional (N =2) interpolation nodes based on the extreme of
Chebyshev polynomials (36). Left: sparse grids H(w,N ) with w = 5. Total
number of points is 145. Right: the tensor product grids based on the same
one-dimensional nodes. Total number of nodes is 1089.
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E
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S

B

ΓF

C

T−

T+

t

n

Fig.2: A typical interface element and a neighboring element.

We take a typical interface element 4ABC whose geometric configuration
is given in Figure 8 as a demonstration. The line segment SE divides T
into two parts T+ and T−. Let n and t be the unit normal and tangential
directions of the line segment SE , respectively. We construct the following
piecewise linear function on this element,

φ(x) =

 φ+ = a+ + b+x1 + c+x2, x = (x1, x2) ∈ T+,

φ− = a− + b−x1 + c−x2, x = (x1, x2) ∈ T−.
(37)
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The coefficients are chosen such that

φ(A) = V1, φ(B) = V2, φ(C ) = V3, (38)

φ+(S) = φ−(S), φ+(E) = φ−(E), β+∂φ
+

∂n = β−
∂φ−

∂n , (39)

where Vi , i = 1, 2, 3 are the nodal variables. Intuitively, there are six
unknowns in (70) and six restrictions in (71)-(72). The piecewise linear
function is uniquely determined by Vi , i = 1, 2, 3.

Definition
(IFE space) The IFE space V J

h (Ω) is defined as the set of all piecewise
linear functions that satisfy

φ|T is the linear function if T is the non-interface element
φ|T is the piecewise linear function defined in (70)-(72) if T is the
interface element
φ is continuous at all nodal points,
φ(xb) = 0 if xb is a nodal point on ∂Ω.
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For any y ∈ Θ, the immersed finite element approximation of (28) reads:
Find uh(y, ·) ∈ Sh(D) such that

ah(uh(y,x), v(x)) =
∫

D
f (y,x)v(x)dx, ∀v(x) ∈ Sh(D), (40)

where the bilinear form ah(·, ·) is defined by

ah(w, v) =
∑

T∈Th

∫
T
β∇w · ∇vdx, ∀w, v ∈ Sh(D). (41)

It has been proven that the immersed finite element method has the
optimal convergence order in L2-norm, that is,

‖u(y, ·)− uh(y, ·)‖L2(D) ≤ Ch2‖u(y, ·)‖H̃2(D), ∀y ∈ Θ. (42)
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We recall that u is the solution of the original stochastic problem
(18)-(20), uh is the semidiscrete approximation obtained by the IFEM and
A(w,N )uh is the fully discrete numerical solution. The error to be
considered can be split as

‖u−A(w,N )uh‖L2
ρ(Θ)⊗L2(D) ≤ ‖u−uh‖L2

ρ(Θ)⊗L2(D)+‖uh−A(w,N )uh‖L2
ρ(Θ)⊗L2(D).

(43)
The first term is nothing but the approximation error in physical spaces,
i.e., the error of the IFEM. By [S. Chou, D. Y. Kwak, and K. T. Wee,
2010], we have

‖u − uh‖L2
ρ(Θ)⊗L2(D) =

(∫
Θ

∫
D
ρ|u(y,x)− uh(y,x)|2dxdy

)1/2

≤ Ch2‖u‖L2
ρ(Θ)⊗H̃2(D).

(44)

The second term is the Smolyak approximation error. To estimate the
approximation error, we first give the following lemma [F. Nobile, A.
Clement, F. Moës, 2008. Theorem 3.10].
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Lemma

Let Θ∗ =
∏N

j=1,j 6=n Θj and y∗n be an arbitrary element of Θ∗. For each
yn ∈ Θn , assume that there exists τn such that u(yn , y∗n ,x) as a function
of yn admits an analytic extension u(z, y∗n ,x), z ∈ C, in the region of the
complex plane

σ(Θn ; τn) = {z ∈ C, dist(z,Θn) ≤ τn}. (45)

Also define the parameter

σ = 1
2 min

n=1,··· ,N
log

(
2τn
|Θn |

+
√

1 + 4τ2
n

|Θn |2

)
. (46)

Then the isotropic Smolyak formula (34) based on Clenshaw-Curtis
abscissas satisfies

‖u −A(w,N )(u)‖L∞(ΘN ;Wh(D)) ≤ C (σ,N )η−µ1 with µ1 = σ

1 + log(2N ) ,

(47)
where η = |H(w,N )| is the number of collocation points.
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However uh is required to satisfy the regularity assumption made in the
above lemma. It has been proved in [I. Babuška, F. Nobile and R.
Tempone, 2010. Lemma 3.2] that the problem satisfies the regularity
assumption with 0 < τn < 1/(2/γn) if the following holds:∥∥∥∥∥∂k

ynβ(y, ·)
β(y, ·)

∥∥∥∥∥
L∞(D)

≤ γk
nk!

‖∂k
yn f (y, ·)‖L2(D)

1 + ‖f (y, ·)‖L2(D)
≤ γk

nk!. (48)

Under the assumption 4, we have

∂k
ynβ

+(y,x)
β(y,x) ≤

{√
λnβ

+
n (x)/βmin if k = 1

0 if k > 1 or n > N + (49)

and similar results for β− and f . Thus (48) is satisfied if we take
γn =

√
λn‖β+

n ‖L∞(D+)/βmin for n = 1, · · · ,N +. For the case of n > N +,
the constant γn can be chosen similarly. Note that the regularity results
are valid also for the semidiscrete solution uh .
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Using Lemma 6, the second term now can be estimated, we have

Theorem
Under the assumption 4, it holds that

‖u−A(w,N )uh‖L2
ρ(Θ)⊗L2(D) ≤ Ch2‖u‖L2

ρ(Θ)⊗H̃2(D)+C (σ,N )η−σ/(1+log(N)),

(50)
where σ is defined in (46) and the constants C and C (σ,N ) are
independent of h and η.

Using the theorem, the error in the expected value of u is easily estimated,
i.e.,

‖E[u]− E[A(w,N )uh ]‖L2(D) ≤ ‖u −A(w,N )uh‖L2
ρ(Θ)⊗L2(D)

≤ Ch2‖u‖L2
ρ(Θ)⊗H̃2(D) + C (σ,N )η−σ/(1+log(N)).

(51)
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For simplicity, the problems are defined in the rectangular domain
D = [−1, 1]× [−1, 1] which is partitioned into 2N 2

h right triangles with
mesh size h. We consider a deterministic right-hand function f and
construct the random coefficient as

β(y,x) =


β−(y,x) = β−0 (x)(1 + 0.5 ∗

M∑
n=1

1
n2 yn), x ∈ D−,

β+(y,x) = β+
0 (x)(1 + 0.5 ∗

2M∑
n=M+1

1
n2 yn), x ∈ D+,

(52)

with N = 2M the dimension of random space, and yn ∈ [−1, 1],
n = 1, · · · ,N , are independent uniformly distributed random variables.
In all examples, we compute the L2(D) error to the expected value, i.e.,

Error = ‖E[u]− E[A(w,N )uh ]‖L2(D), (53)

where the expected value of exact solution is approximated as
E[u] ≈ E[A(w̃,N )uh ] with a larger w̃.
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The interface Γ is a circle centered at the origin with radius r0 = 0.5, as
shown in Figure 9. The true solution is

u =


r3

β−
in D−,

r3

β+ + ( 1
β−
− 1
β+ )r3

0 in D+.

(54)

where r =
√

x2
1 + x2

2 . In this example, we choose β+
0 = 100 and β−0 = 1

in (52).
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Fig.4: A comparison between the sparse grid stochastic collocation (SGSC)
method based on the IFEM and the standard linear FEM for solving Example 1
with N =6.
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Fig.5: A comparison between the sparse grid stochastic collocation method and
the Monte Carlo approach for solving Example 1 with N =10 and Nh = 512.
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Fig.6: The exact expectation of Example 1 with N=10.
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Fig.7: The error distribution of the expected value of Example 1 with N =10 and
w=1, 2, 3, 4.
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The interface is the zero level set of the function is
ϕ(x1, x2) = −x2

2 + ((x1 − 1)tanθ)2x1, where θ is a parameter. The
interface has a corner of angle 2θ at (1, 0) as shown in Figure 14.
The exact solution is chosen as u = ϕ(x1, x2)/β. It is easy to verify that
the solution indeed satisfies the PDE and the jump conditions using the
fact of n = ∇ϕ/|∇ϕ|. In this case, we choose β−0 = 1 and β+

0 = 10 in
(52). The dimension of random space is set to be N = 10.
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Fig.8: The domain and the interface of Example 2. The interface has a corner of
angle 2θ at (1, 0).
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Fig.9: A comparison between the SGSC-IFEM and the MC-IFEM for solving
Example 2 with N =10.
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Fig.10: The expected value of Example 2 with N =10.
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Fig.11: The error distribution of the expected value of Example 2 with N =10 and
w=1, 2, 3, 4.
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We consider the case where β+
0 and β−0 in (52) is not a piecewise constant,{

β+
0 = 1 in D+,

β−0 = 10 + 5(x2
1 − x1x2 + x2

2 ) in D−.
(55)

The interface is the zero level set of
ϕ(x1, x2) = x2

1/(0.52) + x2
2/(0.25)2 − 1. The exact solution is chosen as

u = ϕ(x1, x2)/β. And we set N = 8.
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Fig.12: A comparison between the SGSC-IFEM and the MC-IFEM for solving
Example 3 with N =8.
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Fig.13: The expected value of Example 3 with N =8.
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Fig.14: The error distribution of the expected value of Example 3 with N =8 and
w=1, 2, 3, 4.

Zhiyue Zhang (NJNU) PDEs with Interface IMS,2018 71 / 130



Conclusions

We have presented a stochastic collocation method for the numerical
solution of elliptic partial differential equations with both random inputs
and interfaces.
To relieve the curse of dimensionality, we use the sparse grid collocation
method based on the isotropic Smolyak construction instead of using the
full tensor product construction.
In the error analysis, we divide the error into two parts and provide the
error estimates respectively. Numerical examples have shown that the
sparse grid collocation method preserves a high level of accuracy and it is
a valid alternative to the more traditional Monte Carlo method.
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Model problem and optimality conditions

Consider the elliptic interface equation

−∇ · (β(x)∇y(x)) = u(x) in Ω\Γ, (56)

[y]Γ = 0, [β∂ny]Γ = 0, (57)

y = 0 on ∂Ω, (58)

[y]Γ: the jump of the function y(x) across the interface Γ;
Γ: the interface which separates the domain Ω into two sub-domains Ω+

and Ω−, and Ω− lies strictly in Ω;
n: the unit normal direction of Γ pointing to Ω+;
β(x): a positive and piecewise constant, that is,

β(x) = β+ if x ∈ Ω+, β(x) = β− if x ∈ Ω−. (59)
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The weak formulation of the state equation is

Find y ∈ H 1
0 (Ω) such that a(y, v) = (u, v)L2(Ω) ∀v ∈ H 1

0 (Ω), (60)

where
a(y, v) =

∑
s=±

∫
Ωs
βs∇y · ∇vdx

and
(u, v)L2(Ω) =

∫
Ω

uvdx.
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Problem
(P) Consider the optimal control problem of minimizing

J (y, u) = 1
2

∫
Ω

(y − yd)2dx + α

2

∫
Ω

u2dx (61)

over all (y, u) ∈ H 1
0 (Ω)× L2(Ω) subject to the elliptic interface equation

(56)-(58) and the control constraints

ua ≤ u ≤ ub. (62)

The regularization parameter α is a fixed positive number and the set of
admissible controls for (P) can be written as

Uad = {u ∈ L2(Ω) : ua ≤ u ≤ ub}.
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The problem (P) admits a unique optimal control u∗ ∈ L2(Ω), with an
associated state y∗ ∈ H 1

0 (Ω) and an adjoint state p∗ ∈ H 1
0 (Ω) that satisfy

the state equation

a(y∗, v) = (u∗, v)L2(Ω) ∀v ∈ H 1
0 (Ω), (63)

the adjoint equation

a(v, p∗) = (y∗ − yd , v)L2(Ω) ∀v ∈ H 1
0 (Ω), (64)

and the variational inequality

(αu∗ + p∗,w − u∗)L2(Ω) ≥ 0 ∀ w ∈ Uad . (65)

Moreover, the variational inequality is equivalent to

u∗ = P[ua ,ub](−
1
α

p∗), (66)

where P[ua ,ub](v) denotes the projection of v ∈ R onto the interval [ua, ub].
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The adjoint equation

a(v, p∗) = (y∗ − yd , v)L2(Ω) ∀v ∈ H 1
0 (Ω), (67)

is the weak form of the following interface problem

−∇ · (β∇p) = y − yd in Ω,
p = 0 on ∂Ω,
[p]Γ = 0, [β∂np]Γ = 0.

(68)
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Lemma
If the function u ∈ L2(Ω) and the interface Γ ∈ C 2, then the problem
(56)-(58) has a unique solution y ∈ H̃ 2(Ω) ∩H 1

0 (Ω) which satisfies for
some constant C > 0

‖y‖H̃2(Ω) ≤ C‖u‖L2(Ω), (69)

where
H̃ 2(Ω) :=

{
y ∈ H 1(Ω) : y ∈ H̃ 2(Ωs), s = +, −

}
equipped with the norm ‖y‖2

H̃2(Ω)
:= ‖y‖2H2(Ω+) + ‖y‖2H2(Ω−).

Theorem
Let (u∗, y∗, p∗) be the solutions of the problem (P). Then we have

(u∗, y∗, p∗) ∈ L2(Ω)× H̃ 2(Ω)× H̃ 2(Ω).
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The immersed finite element method

Fig.1: A typical interface element.

We construct the following piecewise linear function

φ(x) =

 φ+ = a+ + b+x1 + c+x2, x = (x1, x2) ∈ T+,

φ− = a− + b−x1 + c−x2, x = (x1, x2) ∈ T−,
(70)

where the coefficients are chosen such that
φ(A) = V1, φ(B) = V2, φ(C ) = V3, (71)

φ+(D) = φ−(D), φ+(E) = φ−(E), β+∂nφ
+ = β−∂nφ

−. (72)
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Definition
(IFE space) The IFE space V J

h (Ω) is defined as the set of all piecewise
linear functions that satisfy

φ|T is the linear function if T is the non-interface element
φ|T is the piecewise linear function defined in (70)-(72) if T is the
interface element
φ is continuous at all nodal points,
φ(xb) = 0 if xb is a nodal point on ∂Ω.

Problem
(IFE approximation) For any u ∈ L2(Ω), find yh ∈ V J

h (Ω) such that

ah(yh , vh) = (u, vh)L2(Ω) ∀vh ∈ V J
h (Ω), (73)

where
ah(u, v) :=

∑
T∈Th

∫
T
β∇u · ∇vdx ∀u, v ∈ Hh(Ω).
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Lemma

(Discrete Poincaré inequality) There exists a constant C independent of h
and the interface Γ such that

‖φ‖L2(Ω) ≤ Cah(φ, φ) ∀φ ∈ V J
h (Ω). (74)

Theorem
(Error estimates) Let y ∈ H̃ 2(Ω) ∩H 1

0 (Ω) and yh ∈ V J
h (Ω) be the

solutions of (56)-(58) and (73) respectively. Then there exists a constant
C > 0 such that

‖y − yh‖1,h ≤ Ch‖y‖H̃2(Ω), (75)

‖y − yh‖L2(Ω) ≤ Ch2‖y‖H̃2(Ω). (76)
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Discretization of the optimal control problem

Problem
(Ph) Consider the problem of minimizing

Jh(yh , u) = 1
2

∫
Ω

(yh − yd)2dx + α

2

∫
Ω

u2dx (77)

over all (yh , u) ∈ V J
h (Ω)× L2(Ω) subject to

ah(yh , vh) = (u, vh)L2(Ω) ∀vh ∈ V J
h (Ω) (78)

and the control constraints

ua ≤ u ≤ ub. (79)
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The problem (Ph) has a unique solution u∗h ∈ L2(Ω) with associated state
y∗h ∈ V J

h (Ω) and adjoint state p∗h ∈ V J
h (Ω) that satisfy the state equation

ah(y∗h , vh) = (u∗h , vh)L2(Ω) ∀vh ∈ V J
h (Ω), (80)

the adjoint equation

ah(vh , p∗h) = (vh , y∗h − yd)L2(Ω) ∀vh ∈ V J
h (Ω), (81)

and the projection equation

u∗h = P[ua ,ub](−
1
α

p∗h). (82)

The projection equation is equivalent to the variational inequality

(αu∗h + p∗h ,w − u∗h)L2(Ω) ≥ 0 ∀w ∈ Uad . (83)
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Error estimates

To get error estimates between (P) and (Ph), we introduce the auxiliary
functions yh ∈ V J

h (Ω) and ph ∈ V J
h (Ω) which are solutions of the

following problems

ah(yh , vh) = (u∗, vh)L2(Ω) ∀vh ∈ V J
h (Ω), (84)

ah(vh , ph) = (vh , y∗ − yd)L2(Ω) ∀vh ∈ V J
h (Ω). (85)

There exists a constant C > 0, independent of h, such that

‖y∗ − yh‖L2(Ω) ≤ Ch2, ‖y∗ − yh‖1,h ≤ Ch, (86)

‖p∗ − ph‖L2(Ω) ≤ Ch2, ‖p∗ − ph‖1,h ≤ Ch. (87)
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Theorem

Let (u∗, y∗, p∗) and (u∗h , y∗h , p∗h) be the solutions of the problems (P) and
(Ph) respectively. Then there exists a constant C > 0, independent of h,
such that

α‖u∗ − u∗h‖2L2(Ω) + ‖y∗ − y∗h‖2L2(Ω) ≤
1
α
‖p∗ − ph‖2L2(Ω) + ‖y∗ − yh‖2L2(Ω),

(88)

|y∗ − y∗h |21,h ≤ C
(
‖y∗ − yh‖21,h + ‖u∗ − u∗h‖2L2(Ω)

)
, (89)

‖p∗ − p∗h‖2L2(Ω) ≤ C
(
‖p∗ − ph‖2L2(Ω) + ‖y∗ − y∗h‖2L2(Ω)

)
, (90)

|p∗ − p∗h |21,h ≤ C
(
‖p∗ − ph‖21,h + ‖y∗ − y∗h‖2L2(Ω)

)
. (91)
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Theorem
Let (u∗, y∗, p∗) and (u∗h , y∗h , p∗h) be the solutions of the optimal control
problem (P) and (Ph) respectively. Then there exists a generic constant
C , independent of the mesh size h, such that

‖u∗ − u∗h‖L2(Ω) ≤ Ch2, ‖y∗ − y∗h‖L2(Ω) ≤ Ch2, |y∗ − y∗h |1,h ≤ Ch,
(92)

‖p∗ − p∗h‖L2(Ω) ≤ Ch2, |p∗ − p∗h |1,h ≤ Ch. (93)

Remark: In the case of Uad = L2(Ω) (unconstrained problem), the
projection equations become u∗ = − 1

αp∗ and u∗h = − 1
αp∗h , respectively.

Using the properties of p∗ and p∗h , we then have the regularity of the
control u∗ ∈ H̃ 2(Ω) and the following H 1 error estimate

|u∗ − u∗h |1,h ≤ Ch.

Zhiyue Zhang (NJNU) PDEs with Interface IMS,2018 93 / 130



Outline1 Model problem1
The immersed finite volume element formulation
The numerical scheme
An error estimate for the IFVE method
Numerical experiments

2 Model problem2
Stochastic collocation methods
Smolyak approximation
The immersed finite element method
Error analysis
Numerical examples
Example 1
Example 2.
Example 3

3 Model problem and optimality conditions
Discretization and error estimates
The immersed finite element method
Discretization of the optimal control problem
Error estimates
Implementation details
Unconstrained problem
Control-constrained problem

4 Numerical experiments
An example without control constraints
An example with control constraints
Some application orientated examples



Implementation details
We consider in the sequel a general problem where the state equation of
the problem (P) is replaced by

−∇ · (β∇y) = f + u in Ω\Γ,
y = g on ∂Ω,
[y]Γ = 0, [β∂ny]Γ = 0.

(94)

In order to find the solution of the problem (Ph), we then have to solve
the coupled problem

ah(y∗h , vh) = (f + u∗h , vh)L2(Ω) ∀vh ∈ V J
h (Ω), (95)

ah(vh , p∗h) = (vh , y∗h − yd)L2(Ω) ∀vh ∈ V J
h (Ω), (96)

u∗h = P[ua ,ub]

(
− 1
α

p∗h
)
. (97)
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Note that the function y∗h ∈ V J
h,g(Ω) satisfies the discrete boundary

condition. Let {φ1, · · · , φm} be basis functions of V J
h (Ω).

For the boundary condition to be satisfied, we also define functions
φm+1, · · · , φm+l so that

∑m+l
j=m+1 g(xj)φj interpolates the boundary data.

The function y∗h then can be written as

y∗h =
m∑

j=1
Y (j)φj +

m+l∑
j=m+1

g(xj)φj . (98)
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We get the matrix-vector form of the state equation

AY = F1 + MU , (99)

where

A(i, j) = ah(φj , φi), Y (j) = y∗h(xj), M (i, j) = (φj , φi)L2(Ω),U (j) = u∗h(xj),

F1(i) = (f , φi)L2(Ω) −
m+l∑

j=m+1
g(xj)ah(φj , φi), i, j = 1, · · · ,m.

(100)

Similarly, we obtain the matrix-vector form of the adjoint equation,

AP = MY + F2, (101)

where

P(j) = p∗h(xj), F2(i) = −(yd , φi)L2(Ω), i, j = 1, · · · ,m. (102)
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Unconstrained problem
In the case of Uad = L2(Ω), the projection equation u∗h = P[ua ,ub]

(
− 1
αp∗h

)
becomes

u∗h = − 1
α

p∗h . (103)

The vector form is U = − 1
αP. Therefore we have the following large linear

system of equations (saddle point problem) −αM 0 −M
0 −M A
−M A 0


 U

Y
P

 =

 0
F2
F1

 . (104)

The system of equations is symmetric but indefinite, so we solve it using
the MINRES method.
In order to get a satisfactory convergence, a block diagonally
preconditioner is applied, that is, αM 0 0

0 M 0
0 0 AM−1A

 . (105)
Zhiyue Zhang (NJNU) PDEs with Interface IMS,2018 99 / 130



Outline1 Model problem1
The immersed finite volume element formulation
The numerical scheme
An error estimate for the IFVE method
Numerical experiments

2 Model problem2
Stochastic collocation methods
Smolyak approximation
The immersed finite element method
Error analysis
Numerical examples
Example 1
Example 2.
Example 3

3 Model problem and optimality conditions
Discretization and error estimates
The immersed finite element method
Discretization of the optimal control problem
Error estimates
Implementation details
Unconstrained problem
Control-constrained problem

4 Numerical experiments
An example without control constraints
An example with control constraints
Some application orientated examples



Control-constrained problem
In the case of Uad = {u ∈ L2(Ω) : ua ≤ u ≤ ub}, (Ph) leads to a single
equation for the optimal control u∗h ,

G(u) := u − P[ua ,ub]

(
− 1
α

ph(u)
)

= 0, (106)

A fix-point iteration algorithm is used to solve the nonlinear and
non-smooth equation.
Algorithm
1. Give an initial function u0 ∈ L2(Ω).
2. Get yh ∈ V J

h (Ω) by solving ah(yh , vh) = (f + u0, vh)L2(Ω) ∀vh ∈ V J
h (Ω).

3. Get ph ∈ V J
h (Ω) by solving

ah(vh , ph) = (vh , yh − yd)L2(Ω) ∀vh ∈ V J
h (Ω).

4. Get u1 by the equation u1 = P[ua ,ub]
(
− 1
αph

)
, where

P[a,b](v(x)) := max{a,min{v(x), b}}.
5. If |u0 − u1| ≤ 1.0× 10−6, then we set u∗h = u1, else we set u0 = u1 and
goto step 2.
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An example without control constraints
Example 1. We set Uad = L2(Ω). The interface is a circle centered at
the origin with radius r0 = 0.5. Let

u∗(x) =


(x2

1 + x2
2 − r2

0 )(x1 − 1)(x1 + 1)(x2 − 1)(x2 + 1)
β−

in Ω−,

(x2
1 + x2

2 − r2
0 )(x1 − 1)(x1 + 1)(x2 − 1)(x2 + 1)

β+ in Ω+,

(107)
Then we have p∗ = −αu∗. It is easy to verify that p∗ satisfies the
interface jump conditions and the homogeneous Dirichlet boundary
condition in (68). We choose

y∗(x) =



(x2
1 + x2

2 )3/2

β−
in Ω−,

(x2
1 + x2

2 )3/2

β+ +
( 1
β−
− 1
β+

)
r3
0 in Ω+.

(108)
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Fig.2: The geometry of the domain and the interface. A triangulation with N=5
is plotted.
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Table.1: Grid refinement analysis for Example 1 with β− = 1, β+ = 1000.
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Table.2: Grid refinement analysis for Example 1 with β− = 1000, β+ = 1.
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Table.3: Grid refinement analysis for Example 1 with β− = 1, β+ = 5.
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Fig.3: Errors of control, state, and adjoint state plotted against mesh size h for
Example 1 with different β− and β+. Left: L2-errors. Right: H 1-errors. The
IFEM achieves optimal convergence, but the standard linear FEM does not.

Zhiyue Zhang (NJNU) PDEs with Interface IMS,2018 109 / 130



Outline1 Model problem1
The immersed finite volume element formulation
The numerical scheme
An error estimate for the IFVE method
Numerical experiments

2 Model problem2
Stochastic collocation methods
Smolyak approximation
The immersed finite element method
Error analysis
Numerical examples
Example 1
Example 2.
Example 3

3 Model problem and optimality conditions
Discretization and error estimates
The immersed finite element method
Discretization of the optimal control problem
Error estimates
Implementation details
Unconstrained problem
Control-constrained problem

4 Numerical experiments
An example without control constraints
An example with control constraints
Some application orientated examples



An example with control constraints
Example 2. The interface is also a circle centered at the origin with
radius r0 = 0.5. The space Uad = {u ∈ L2(Ω) : ua ≤ u ≤ ub}. In this
example, we choose ua = −1, ub = 1 and α = 1. In order to construct
exact solutions, we first give a function which satisfies the interface
conditions and the homogeneous boundary condition,

ϕ(x) =


5(x2

1 + x2
2 − r2

0 )(x1 − 1)(x1 + 1)(x2 − 1)(x2 + 1)
β−

in Ω−,

5(x2
1 + x2

2 − r2
0 )(x1 − 1)(x1 + 1)(x2 − 1)(x2 + 1)

β+ in Ω+.

Then we set the optimal control and the associated state by

u∗(x) = P[−1,1] (ϕ(x)) = min {1,max{−1, ϕ(x)}} ,

p∗(x) = −αϕ(x).
(109)
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We also take the optimal state as

y∗(x) =



(x2
1 + x2

2 )3/2

β−
in Ω−,

(x2
1 + x2

2 )3/2

β+ +
( 1
β−
− 1
β+

)
r3
0 in Ω+.

Then we can determine the functions f , g and yd accordingly.
We fix β− = 1 so that the active set D is not empty, where
D := {x ∈ Ω : u∗(x) = ua or u∗(x) = ub}.

Zhiyue Zhang (NJNU) PDEs with Interface IMS,2018 112 / 130



Fig.4: The geometry of Example 2 with β+ = 5. The black, red and green curves
depict the interface, the exact border of the active set D, the discrete border
obtained by the IFEM (left) and the standard linear FEM (right) with N=16,
respectively.
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Table.4: Grid refinement analysis for Example 2 with β− = 1, β+ = 5.
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Table.5: Grid refinement analysis for Example 2 with β− = 1, β+ = 1000.
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Fig.5: Errors of control, state, and adjoint state plotted against mesh size h for
Example 2 with β+ = 5 and β+ = 1000. Left: L2-errors. Right: H 1-errors. The
IFEM achieves optimal convergence, but the standard linear FEM does not.
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Fig.6: The exact control and the discrete control obtained by the IFEM with
N=32 for Example 2 with β+ = 5.

Zhiyue Zhang (NJNU) PDEs with Interface IMS,2018 117 / 130



Fig.7: The exact control and the discrete control obtained by the IFEM with
N=32 for Example 2 with β+ = 1000.
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Example 3: In this example, we use a more complicated interface, a
5-star interface, which is the zero level set of the function

ϕ(x) = r − (0.5 + 0.2 sin(5θ)),

where (r , θ) is the polar coordinate representation of x. We set f (x) = 0,
g = 0 , yd(x) = 1 and the regularization parameter α = 1.0× 10−4.

Fig.8: A plot of the 5-star interface.
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This model problem can be interpreted as optimization of a stationary
heating process in composite media.
β: the thermal conductivity of the different media and the function,
f (x): an external heat source.
The optimal control problem is to find the proper heat source (control u)
to control the temperature of the composite media to maintain the same
everywhere (desired state yd = 1).
We test three cases: β+/β− = 10/1, β+/β− = 1/1 and β+/β− = 1/10.

Fig.9: The computed controls for Example 3 with different coefficients.
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Fig.10: The computed states for Example 3 with different coefficients.
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Example 4: As the previous example, we also use the 5-star as the
interface, while the corresponding data are changed:
yd(x) = (1− x2

1 )(1− x2
2 ), g = 0, and

f (x) =
{
∇ · (β+∇yd(x)) if x ∈ Ω+,
∇ · (β−∇yd(x)) if x ∈ Ω−. (110)

Note that if β+ = β−, then it is easy to verify that the optimal control
u∗ = 0, the state y∗ = yd (the interface conditions (57) hold) and the
objective function J (y∗, u∗) = 0. However, if β+ 6= β−, then it is hard to
get the optimal control intuitively even if (55) holds. The aim of this
example is to investigate the shape of the optimal control and the
corresponding state when β+ 6= β−. Without loss of generality, we set
β+ = 10 and β− = 1.
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Fig.11: The computed controls for Example 4 with the regularization parameter
α = 1.0× 10−4, 1.0× 10−5 and 1.0× 10−6.
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Fig.12: The desired state yd and the computed states for Example 4 with the
regularization parameter α = 1.0× 10−4, 1.0× 10−5 and 1.0× 10−6.
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Example 5. We change the Example 4 to a constrained one. The control
is restricted by box constraints ua ≤ u ≤ ub with ua = −5 and ub = 5.

Fig.13: The computed controls for Example 5 with the regularization parameter
α = 1.0 and 2.0× 10−3.
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Fig.14: The desired state yd and the computed states for Example 5 with the
regularization parameter α = 1 and 2.0× 10−3.
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Conclusions

1. An unfitted mesh independent of the shape and location of the
interface is used.
2. On interface elements the basis functions are modified to satisfy the
interface conditions.
3. The accuracy of our method remains the same as that of standard
methods.
4. Optimal error estimates are derived and numerical examples are
provided.
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Thank you!
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