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Introduction

In this work we consider two phase field models: the
Cahn-Hilliard (CH) equation and the molecular beam epitaxy
equation (MBE) with slope selection. The Cahn-Hilliard
equation was originally developed to describe phase separation
in a two-component system (such as metal alloy). It typically
takes the form∂tu = ∆(−ν∆u+ f(u)), (x, t) ∈ Ω× (0,∞),

u
∣∣∣
t=0

= u0,
(1)

where u = u(x, t) is a real-valued function which represents the
difference between two concentrations.



In (1) the spatial domain Ω is taken to be the usual 2π-periodic
torus T2 = R2/2πZ2. The free energy term f(u) is given by

f(u) = F ′(u) = u3 − u, F (u) =
1

4
(u2 − 1)2. (2)

The parameter ν > 0 is often called diffusion coefficient.
Usually one is interested in the physical regime 0 < ν � 1.
The energy functional associated with (1) is

E(u) =

∫
Ω

(
1

2
ν|∇u|2 + F (u)

)
dx. (3)

As is well known, Eq. (1) can be regarded as a gradient flow of
E(u) in H−1.



For smooth solutions to (1), the total mass is conserved:

d

dt
M(t) ≡ 0, M(t) =

∫
Ω
u(x, t)dx. (4)

In particular M(t) ≡ 0 if M(0) = 0. Throughout this work we
will only consider initial data u0 with mean zero. On the
Fourier side this implies the zeroth mode û(0) = 0.

One can then define fractional Laplacian |∇|su for s < 0, e.g.,
|∇|s = (−∆)s/2.



The basic energy identity takes the form

d

dt
E(u(t)) + ‖|∇|−1∂tu‖22 = 0. (5)

Note that ∂tu has mean zero and |∇|−1∂tu is well-defined.
Alternatively to avoid using |∇|−1, one can rewrite (5) as

d

dt
E(u(t)) +

∫
Ω
|∇(−ν∆u+ f(u))|2dx = 0. (6)

It follows from the energy identity that

E(u(t)) ≤ E(u(s)), ∀ t ≥ s. (7)

This gives a priori control of H1-norm of the solution.
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Semi-implicit scheme

A first order in time semi-implicit scheme of Eq. (1) is as
follows:

un+1 − un

τ
= −ν∆2un+1 + ∆ΠN (f(un)), n ≥ 0,

u0 = ΠNu0.
(8)

where τ > 0 is the time step.

The semi-implicit scheme can generate large truncation errors.
As a result smaller time steps are usually required to guarantee
accuracy and energy stability.



A stabilized first-order scheme for the CH model

To resolve this issue, a class of large time-stepping methods
were proposed and analyzed. For example, Bertozzi, Ju and Lu
2011, He, Liu and Tang 2007, Shen and Yang 2010, Zhu, Chen,
Shen and Tikare 1999.

The basic idea is to add an O(τ) stabilizing term to the
numerical scheme to alleviate the time step constraint whilst
keeping energy stability.

A stabilized first-order scheme for the CH model is given below:
un+1 − un

τ
= −ν∆2un+1 +A∆(un+1 − un) + ∆ΠN (f(un)), n ≥ 0,

u0 = ΠNu0,

(9)

where τ > 0 is the time step, and A > 0 is the coefficient for the
O(τ) regularization term.



In He, Liu and Tang 2007, it is proved that under a condition
on A of the form:

A ≥ max
x∈Ω

{1

2
|un(x)|2 +

1

4
|un+1(x) + un(x)|2

}
− 1

2
, (10)

one can obtain energy stability

E(un+1) ≤ E(un).

Note that the condition (10) depends nonlinearly on the
numerical solution. In other words, it implicitly uses the
L∞-bound assumption on un in order to make A a controllable
constant.



In Shen and Yang 2010, energy stability is proved with
truncated nonlinear term. More precisely it is assumed that

max
u∈R
|f̃ ′(u)| ≤ L (11)

which is what we referred to as the Lipschitz assumption on the
nonlinearity. Here f̃(u) is a suitable ”modification” of the
original function f(u).

Roughly speaking, all prior analytical developments are
conditional in the sense that either one makes a Lipschitz
assumption on the nonlinearity, or one assumes certain a priori
L∞ bounds on the numerical solution. It is very desirable to
remove these technical restrictions and establish a more
reasonable stability theory.



Unconditional Energy Stability

D. Li, Z. Qiao and T. Tang, SIAM J. Numer. Anal., 2016.

Theorem 1. [Unconditional energy stability for CH]
Consider (9) with ν > 0 and assume u0 ∈ H2(Ω) with mean
zero. Denote E0 = E(u0) the initial energy. There exists a
constant βc > 0 depending only on E0 such that if

A ≥ β · (‖u0‖2H2 + ν−1| log ν|2 + 1), β ≥ βc, (12)

then

E(un+1) ≤ E(un), ∀n ≥ 0,

where E is defined by (3).



A stabilized first-order scheme of MBE model with
slope selection

∂u

∂t
= −ν∆2u−∇ · [(1− |∇u|2)∇u], (x, t) ∈ Ω× (0, T ]

A first order stabilized energy-stable scheme:

un+1 − un

τ
+ ν∆2un+1 −A∆un+1 = −∇ · [(1− |∇un|2 +A)∇un]

(13)
i.e. an O(τ) term is added, where A > 0 is a constant.
Property: If the constant A is sufficiently large, then

E(un+1) ≤ E(un).

How large is A?

A ≥ max
x∈Ω
{1

2
|∇un|2 − 1

2
+

1

4
|∇un+1 +∇un|2}. (14)



Theorem 2.[Unconditional energy stability for MBE]
Consider (13). Assume the initial value u0 ∈ H3(Ω) with mean
zero. There exists a constant βc > 0 depending only on E0 such
that if

A ≥ β · (‖u0‖2H3 + ν−1| log ν|2 + 1), β ≥ βc, (15)

then

E(un+1) ≤ E(un), ∀n ≥ 0.

Here E is defined by

E(u) =
ν

2
‖∆u‖22 +

∫
Ω
G(∇u)dx, (16)

where G(z) = 1
4(|z|2 − 1)2 for z ∈ R2.
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We use the following interpolation inequality on T2: for s > 1
and any f ∈ Hs(T2) with mean zero, we have

‖f‖L∞(T2) ≤ 1 + Cs‖f‖Ḣ1(T2) log(3 + ‖f‖Hs(T2)), (17)

where Cs > 0 is a constant depending only on s.



Rewrite (9) as

un+1 =
1−Aτ∆

1 + ντ∆2 −Aτ∆
un +

τ∆ΠN

1 + ντ∆2 −Aτ∆
f(un). (18)

Lemma 1 There is an absolute constant c1 > 0 such that for
any n ≥ 0,

‖un+1‖
H

3
2 (T2)

≤ c1 ·
(A+ 1

ν
+

1

Aτ

)
· (En + 1), (19)

‖un+1‖Ḣ1(T2) ≤
(

1 +
1

A
+

3

A
‖un‖2∞

)
· ‖un‖Ḣ1(T2), (20)

where En = E(un).



Proof:

First note that on the Fourier side, we have for each 0 6= k ∈ Zd,

(1 +Aτ |k|2)|k|
3
2

1 + ντ |k|4 +Aτ |k|2
.

1

Aτ
+
A

ν
,

τ |k|2 · |k|
3
2

1 + ντ |k|4 +Aτ |k|2
.

1

ν
|k|−

1
2 .

Thus

‖un+1‖
H

3
2
.
(A
ν

+
1

Aτ

)
‖un‖2 +

1

ν
‖〈∇〉−

1
2
(
f(un)

)
‖2

.
(A
ν

+
1

Aτ

)
‖un‖2 +

1

ν
‖(un)3 − un‖ 4

3

.
(A+ 1

ν
+

1

Aτ

)
(En + 1).



In the second inequality above we have used the Sobolev
imbedding ‖〈∇〉−1/2h‖L2(T2) . ‖h‖L4/3(T2).

For ‖un+1‖Ḣ1 , we have

‖un+1‖Ḣ1 ≤ ‖un‖Ḣ1 +
1

A
‖(un)3 − un‖Ḣ1

≤ (1 +
1

A
+

3

A
‖un‖2∞) · ‖un‖Ḣ1 .

This completes the proof of Lemma 1.



Lemma 2
For any n ≥ 0,

En+1 − En +

(
A+

1

2
+

√
2ν

τ

)
‖un+1 − un‖22

≤ ‖un+1 − un‖22 ·
(
‖un‖2∞ +

1

2
‖un+1‖2∞

)
. (21)

Proof: In this proof we denote by (·, ·) the usual L2 inner
product. Recall

un+1 − un

τ
= −ν∆2un+1 +A∆(un+1 − un) + ∆ΠNf(un).

Taking the L2 inner product with (−∆)−1(un+1 − un) on both
sides, we get

1

τ
‖|∇|−1(un+1 − un)‖22 +

ν

2
(‖∇un+1‖22 − ‖∇un‖22 + ‖∇(un+1 − un)‖22)

+A‖un+1 − un‖22 = (∆ΠNf(un), (−∆)−1(un+1 − un)).
(22)



Since all un have Fourier modes supported in |k|∞ ≤ N , we have

(∆ΠNf(un), (−∆)−1(un+1 − un)) = −(f(un), un+1 − un). (23)

By the Fundamental Theorem of Calculus, we have (recall
f = F ′)

F (un+1)− F (un)

= f(un)(un+1 − un) +

∫ un+1

un

f ′(s)(un+1 − s)ds

= f(un)(un+1 − un) +

∫ un+1

un

(3s2 − 1)(un+1 − s)ds

= f(un)(un+1 − un) +
(un+1 − un)2

4

(
3(un)2 + (un+1)2 + 2unun+1 − 2

)
.



Thus

1

τ
‖|∇|−1(un+1 − un)‖22 + En+1 − En +

ν

2
‖∇(un+1 − un)‖22 + (A+

1

2
)‖un+1 − un‖22

=
1

4
((un+1 − un)2, 3(un)2 + (un+1)2 + 2unun+1)

≤ ‖un+1 − un‖22 ·
1

4

(
3‖un‖2∞ + ‖un+1‖2∞ + 2‖un‖∞‖un+1‖∞

)
≤ ‖un+1 − un‖22 ·

(
‖un‖2∞ +

1

2
‖un+1‖2∞

)
. (24)

Finally observe

1

τ
‖|∇|−1(un+1 − un)‖22 +

ν

2
‖∇(un+1 − un)‖22

≥
√

2ν

τ
‖|∇|−1(un+1 − un)‖2‖∇(un+1 − un)‖2 ≥

√
2ν

τ
‖un+1 − un‖22.

The desired inequality then follows easily.



Proof of Theorem 1

We inductively prove for all n ≥ 1,

En ≤ E0, (25)

‖un‖
H

3
2
≤ c1 ·

(A+ 1

ν
+

1

Aτ

)
· (E0 + 1), (26)

where c1 > 0 is the same absolute constant in Lemma 1.
We proceed in two steps.

In Step 1 below, we first verify that if the statement holds for
some n ≥ 1, then it holds for n+ 1.

In Step 2, we check the “base” case, namely for n = 1 the
statement holds.



Step 1: the induction step n⇒ n+ 1. Assume the induction
holds for some n ≥ 1. We now verify the statement for n+ 1.
By Lemma 1, we have

‖un+1‖
H

3
2
≤ c1 ·

(A+ 1

ν
+

1

Aτ

)
· (En + 1) ≤ c1 ·

(A+ 1

ν
+

1

Aτ

)
· (E0 + 1).

Thus we only need to check En+1 ≤ E0. In fact we shall show
En+1 ≤ En.
By Lemma 2, we only need to show the inequality

A+
1

2
+

√
2ν

τ
≥ ‖un‖2∞ +

1

2
‖un+1‖2∞. (27)



We shall use the log-interpolation inequality (see (17) and
choose s = 3

2) for any f with mean zero:

‖f‖L∞(T2) ≤ 1 + d1 · ‖f‖Ḣ1(T2) · log
(
‖f‖

H
3
2 (T2)

+ 3
)
, (28)

where d1 > 0 is an absolute constant.
In the rest of this proof, to ease the notation we shall use
X .E0 Y to denote X ≤ CE0Y where CE0 is a constant
depending only on E0. Clearly

‖un‖∞ ≤ 1 + d1‖un‖Ḣ1 log
(
‖un‖

H
3
2

+ 3
)

≤ 1 + d1 ·
√

2E0

ν
· log

(
3 + c1 ·

(
A+ 1

ν
+

1

Aτ

)
· (E0 + 1)

)
.E0 ν

− 1
2 (1 + logA+ | log ν|)︸ ︷︷ ︸

=:m0

+ν−
1
2 | log(2 +

1

τ
)|+ 1. (29)



Now

‖un‖2∞ .E0 m
2
0 + ν−1| log τ |2 + 1.

By (28) and Lemma 1, we have (below in the third inequality
we drop 1/A since A ≥ 1)

‖un+1‖∞ . 1 + ‖un+1‖Ḣ1 log
(
‖un+1‖

H
3
2

+ 3
)

. 1 + (1 +
1

A
+
‖un‖2∞
A

)‖un‖Ḣ1 log
(
‖un+1‖

H
3
2

+ 3
)

. 1 + (1 +
‖un‖2∞
A

)‖un‖Ḣ1 log
(
‖un+1‖

H
3
2

+ 3
)

.E0 1 + (1 +
m2

0 + ν−1| log τ |2

A
) ·
(
m0 + ν−

1
2 | log τ |

)
.E0 1 +m0 + ν−

1
2 | log τ |+ m3

0 + ν−
3
2 | log τ |3

A

.E0 m0 +
m3

0

A
+ 1 + ν−

3
2 | log τ |3. (30)



Therefore

‖un‖2∞ + ‖un+1‖2∞ .E0

(
m0 +

m3
0

A

)2

+ 1 + ν−3| log τ |6.

Therefore to show the inequality (27), it suffices to prove

A+

√
ν

τ
≥ CE0 ·

((
m0 +

m3
0

A

)2
+ 1 + ν−3| log τ |6

)
, (31)

where

m0 = ν−
1
2 (1 + logA+ | log ν|).



Now we discuss two cases.
Case 1:

√
ν
τ ≥ CE0ν

−3| log τ |6. In this case we choose A such
that

A�E0 m
2
0 = ν−1(1 + logA+ | log ν|)2.

Clearly for ν & 1, we just need to choose A�E0 1. On the
other hand, for 0 < ν � 1, it suffices to take

A = β · ν−1| log ν|2,

with β sufficiently large depending only on E0. Thus in both
cases if we take

A = β ·max{ν−1| log ν|2, 1},

with β �E0 1, then (31) holds.



Case 2:
√

ν
τ ≤ CE0ν

−3| log τ |6. In this case we have

| log τ | .E0 1 + | log ν|.

In this case we will not prove (31) but prove (27) directly. We
first go back to the bound on ‖un‖∞. Easy to check that

‖un‖∞ .E0 m0,

‖un+1‖∞ .E0

(
1 +

m2
0

A

)
m0.

The needed inequality on A then takes the form

A ≥ CE0 ·
(

1 +m0 +
m3

0

A

)2

.

Again we only need to choose A such that A�E0 m
2
0. The

same choice of A as in Case 1 (with β larger if necessary) works.
Concluding from both cases, we have proved the inequality (27)
holds. This completes the induction step for n⇒ n+ 1.



Step 2: verification of the base step n = 1. By Lemma 1 we
have

‖u1‖
H

3
2
≤ c1 ·

(A+ 1

ν
+

1

Aτ

)
· (E0 + 1).

Therefore we only need to check E1 ≤ E0. This amounts to
checking the inequality

A+
1

2
+

√
2ν

τ
≥ ‖ΠNu0‖2∞ +

1

2
‖u1‖2∞.

By Lemma 1,

‖u1‖Ḣ1 ≤ (1 +
1

A
+

3

A
‖ΠNu0‖2∞) · ‖u0‖Ḣ1

≤ (1 +
1

A
+

3

A
‖ΠNu0‖2∞) ·

√
2E0

ν
.



Therefore

‖u1‖∞ . 1 + ‖u1‖Ḣ1 log(‖u1‖
H

3
2

+ 3)

. 1 + (1 +
1

A
+

3

A
‖ΠNu0‖2∞) ·

√
2E0

ν
· log

(
3 + c1(

A+ 1

ν
+

1

Aτ
)(E0 + 1)

)
.E0 1 + (1 +

1

A
+

3

A
‖ΠNu0‖2∞) · ν−

1
2 · (1 + logA+ | log ν|+ | log τ |).

Thus we need to choose A such that

A+
1

2
+

√
2ν

τ
≥ ‖ΠNu0‖2∞ + 1

+ C̃E0 · (1 +
1

A
+

3

A
‖ΠNu0‖2∞)2 · ν−1 · (1 + logA+ | log ν|+ | log τ |)2,

where C̃E0 is a constant depending only on E0.



By Sobolev embedding, we have

‖ΠNu0‖L∞(T2) . ‖ΠNu0‖H2(T2) . ‖u0‖H2(T2).

Thus it suffices to take A such that

A�E0 ‖u0‖2H2 + ν−1| log ν|2 + 1.

This completes the proof of Theorem 1.



Remarks

In this work we considered stabilized semi-implicit schemes for
the phase field models such as the Cahn-Hilliard equation and
the thin film equation with fourth order dissipation.

We analyzed the representative case (see (9) and (13)) which is
first order in time and Fourier-spectral in space, with a
stabilization O(∆t) term of the form

A∆(un+1 − un).

For A sufficiently large (A ≥ O(ν−1| log ν|2)), we proved
unconditional energy stability independent of the time step.



Further remarks

I Similar results hold for MBE (settles the open problems in
Xu-Tang ’06)

I 3D Cahn-Hilliard case settled recently (Li-Qiao ’17, CMS)

I Difficulty in 3D: H1-supercritical



3D CH: Li-Qiao ’17, CMS

Thm: [Unconditional energy stability for 3D CH] Consider
stabilized semi-implicit with ν > 0. Assume u0 ∈ H2(Ω) with
mean zero. Denote E0 = E(u0) the initial energy. There exists
a constant βc > 0 depending only on E0 such that if

A ≥ β · (‖u0‖2H2 + ν−3 + 1), β ≥ βc,

then

E(un+1) ≤ E(un), ∀n ≥ 0,

where

E(u) =

∫
Ω

(
1

2
ν|∇u|2 +

1

4
(u2 − 1)2

)
dx.
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Higher order time-stepping methods

The situation with higher order in time methods are far more
complex since it is known that energy is only approximately
preserved over moderately long time intervals. This brings the
question of how to design robust stabilized high order in time
methods with good energy conservation. A further problem is
to investigate the issue of conditional or unconditional energy
stability, characterize the stabilization parameter and identify
the stability region in various situations.



Second order: Xu-Tang ’06
Assumes a priori L∞ bounds on the numerical solution.

3un+1 − 4un + un−1

2τ
+ ν∆2un+1 −A∆(un+1 − 2un + un−1) =

∆ΠN (f(2un − un−1)), n ≥ 1.

Xu and Tang proved

Ẽn+1 ≤ Ẽn +O(∆t2),

and

E(hn) ≤ E(h1) +O(1)∆t,

where the O(1) term is given by

O(1) =

∥∥∥∥h1 − h0

∆t

∥∥∥∥2

2

+
A

2
∆t

∥∥∥∥∇(h1 − h0)

∆t

∥∥∥∥2

2

+

n−1∑
i=0

∆t

∥∥∥∥∇(hi − hi−1)

∆t

∥∥∥∥2

2

.



Li-Qiao ’17, JSC
Thm: For any θ0 > 0 the following holds: Let ν > 0, τ > 0
satisfy √

2ν

τ
≥ 1

2
+ θ0.

Let u0 ∈ H6(T2) with mean zero. There exists a constant
βc > 0 depending only (θ0, E(u0), ‖u0‖H6) such that if

A ≥ β · (1 + ν−4(1 + ν)6| log ν|2), β ≥ βc,

then

E(un+1) +
1

4τ
‖|∇|−1(un+1 − un)‖22 +

A+ 1

2
‖un+1 − un‖22

≤ E(un) +
1

4τ
‖|∇|−1(un − un−1)‖22 +

A+ 1

2
‖un − un−1‖22, ∀n ≥ 1.

I Rem: roughly τ < 8ν suffices for stability!



Case A = 0

thm[Case A = 0] Set A = 0. Let u0 ∈ H6(T2) with mean zero.
There exist constants C1 > 0, C2 > 0 depending only on
(E(u0), ‖u0‖H6) such that if

τ ≤


C1

ν9

1 + | log ν|4
, when 0 < ν ≤ 1,

C2
ν−3

1 + | log ν|4
, when ν > 1,

then for all n ≥ 1,

E(un+1) +
1

4τ
‖|∇|−1(un+1 − un)‖22 +

1

2
‖un+1 − un‖22

≤ E(un) +
1

4τ
‖|∇|−1(un − un−1)‖22 +

1

2
‖un − un−1‖22.



Further remarks

I Recently Song-Shu’ 18 JSC, made a remarkable extension
to a second-order in time IMEX Local discontinuous
Galerkin method and proved unconditional energy stability
with

A ≥ O(ε−36| log ε|8).

I ...



Thank You!
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