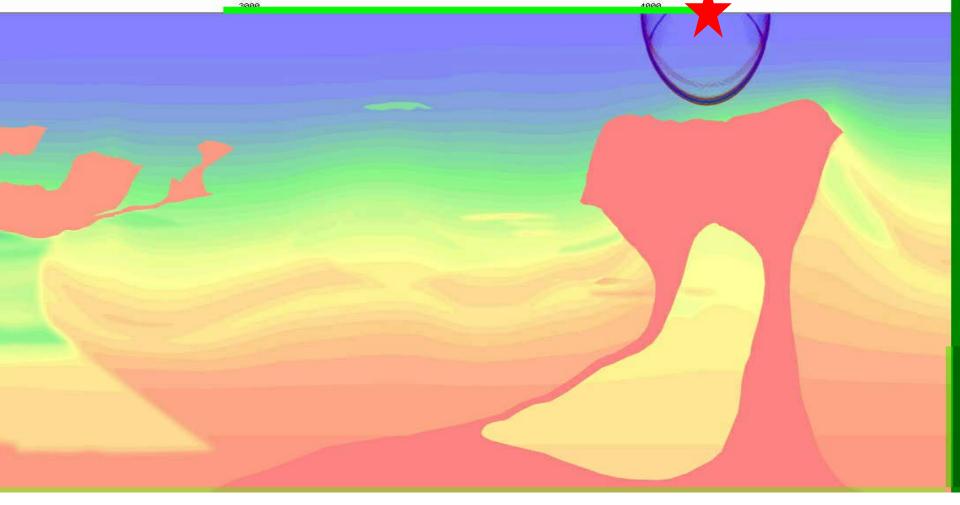
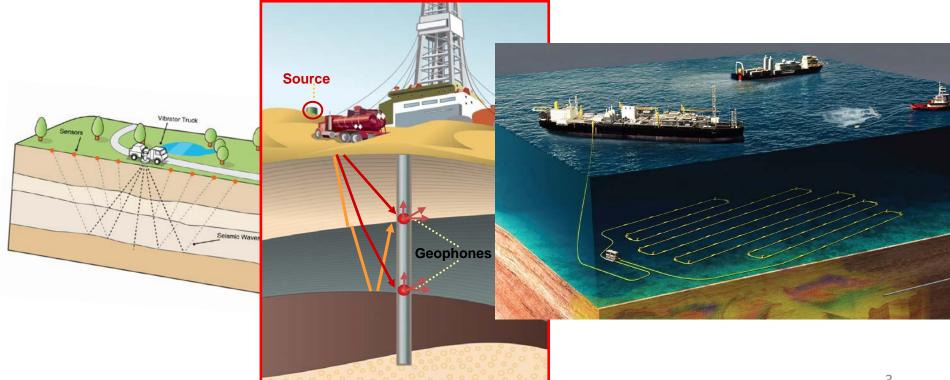
Multicomponent elastic imaging: new insights from the old equations

Yunyue Elita Li^{*}, Yue Du, Jizhong Yang, and Arthur Cheng Singapore Geophysics Project National University of Singapore

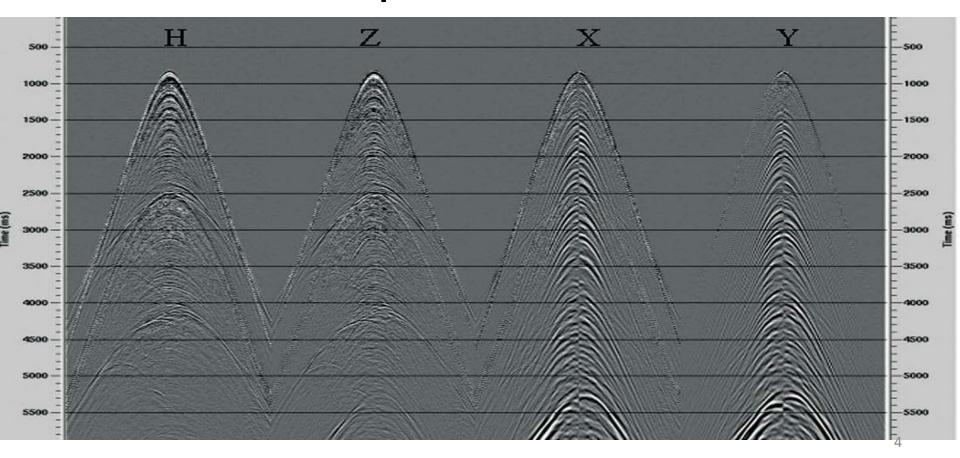


Simulation of a field scale seismic wave acquisition experiment

Multicomponent data acquisition



OBN acquisition: 4C data

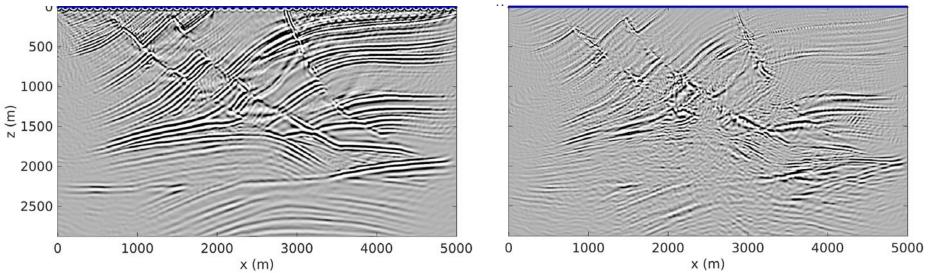


Elastic imaging is not widely applied

- Large computational cost compared with acoustic imaging
 - 5 times in runtime and memory in 2D
 - 9 times in runtime and memory in 3D
- Deteriorated image for converted waves
 - Polarity reversal at normal incidence
 - Complicated, cumbersome, and add hock

Industry standard imaging algorithm

PP reflection image

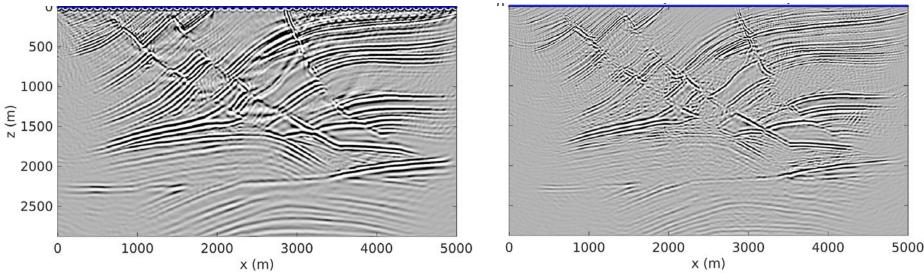


Converted wave imaging appears noisier, less coherent, and challenging for joint interpretation
 Images are obtained with 5 times the computation and memory cost of the acoustic images

PS reflection image

Proposed imaging algorithm

PP reflection image



Converted wave imaging shows consistent geological features with higher resolution

Imaging cost are reduced by 60% in computation and 80% in memory

PS reflection image

Outline

- Elastic wave equations
 - Revisit of the elastic wave equations
 - A new set of separated P- and S-wave equations
- The elastic imaging condition
 - PP and PS images from inverse problem formulation
- Discussions and conclusions

Seismology 101: elastodynamic system

• Linear, isotropic, elastic medium (Aki and Richards, 1980)

Newton's Law:

$$\rho \frac{\partial^2 u_i}{\partial t^2} = \partial_j \tau_{ij} + f_i$$

- u_i particle displacement
- au_{ij} element of the stress tensor

 f_i force

Hooke's Law:

 $\tau_{ij} = \lambda \delta_{ij} \partial_k u_k + \mu (\partial_i u_j + \partial_j u_i) \qquad \rho, \lambda, \mu \quad \text{density and Lame constants}$

Need to propagate (and store) 5 fields in 2D, and 9 fields in 3D
 Cannot interpret the P- and S-wave directly from the equations

Seismology 101: elastodynamic system

• The second-order system (Aki and Richards, 1980)

$$\rho \ddot{\mathbf{u}} = (\nabla \lambda) (\nabla \mathbf{u}) + \nabla \mu \cdot [\nabla \mathbf{u} \neq (\nabla \mathbf{u})^T] + (\lambda + 2\mu) \nabla \nabla \cdot \mathbf{u} - \mu \nabla \times \nabla \times \mathbf{u} + \mathbf{f}$$

 u_i particle displacement

 ho,λ,μ density and Lamé constants

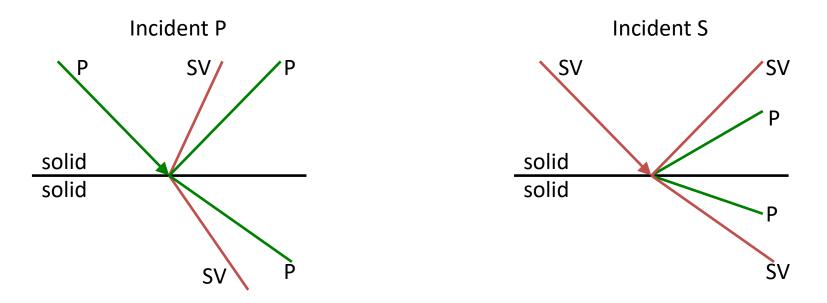
- Need to propagate (and store) 3 fields in 2D, and 3 fields in 3D
 Require more strict stability condition
- Cannot interpret the P- and S-wave directly from the equations

P- and S-wave separation in homogenous medium

• Assuming constant density and smooth Lame constants

Fully decoupled P- and S-wave propagations
 Cannot interpret the mode-conversion directly from the equations

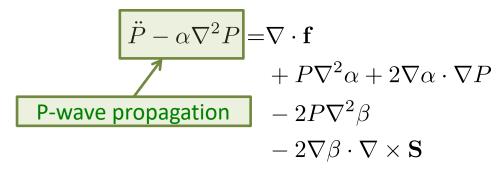
Seismology 101: mode conversion



♦ Are these mode conversion types unconditional?

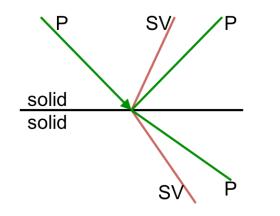
✓ New set of equations: clear mode conversion and its condition

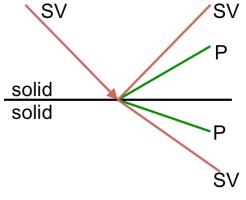
New set of separated P- and S-wave equations



← Source term

 $+ P\nabla^{2}\alpha + 2\nabla\alpha \cdot \nabla P \quad \leftarrow \text{P-wave interacts with } V_{p} \text{ boundary}$ $- 2P\nabla^{2}\beta \quad \leftarrow \text{P-wave interacts with } V_{s} \text{ boundary}$ $- 2\nabla\beta \cdot \nabla \times \mathbf{S} \quad \leftarrow \text{S-wave interacts with } V_{s} \text{ boundary}$

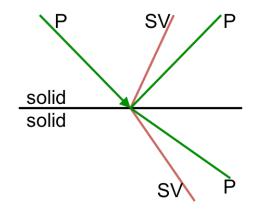


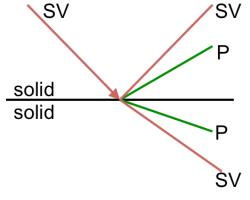


Li et. al., Geophysics, 2018

New set of separated P- and S-wave equations

$$\begin{split} \ddot{\mathbf{S}} &-\beta \nabla^2 \mathbf{S} = \nabla \times \mathbf{f} & \leftarrow \text{Source term} \\ &+ \nabla \beta \cdot \nabla \mathbf{S} - (\nabla \beta) \times (\nabla \times \mathbf{S}) & \leftarrow \text{S-wave interacts with} \\ &+ 2(\nabla \beta) \times (\nabla P) & \leftarrow \text{P-wave interacts with V_s boundary} \end{split}$$





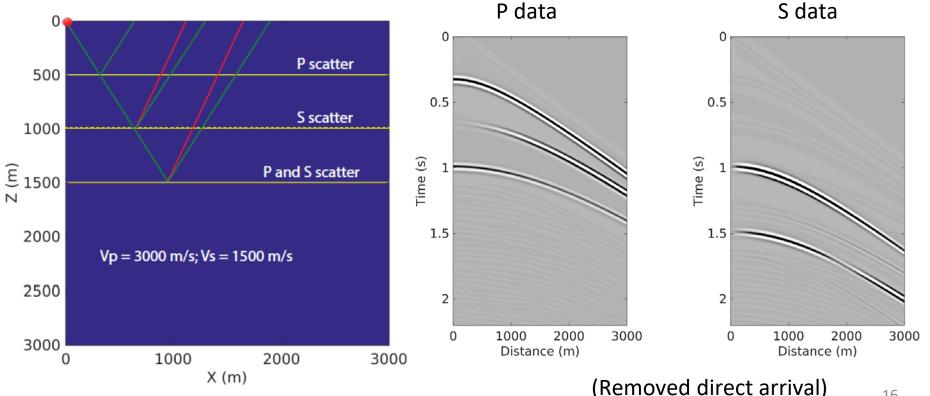
Li et. al., Geophysics, 2018

Insights from the equations

$$\ddot{P} - \alpha \nabla^2 P = P \nabla^2 \alpha + 2 \nabla \alpha \cdot \nabla P - 2P \nabla^2 \beta - 2 \nabla \beta \cdot \nabla \times \mathbf{S} + \nabla \cdot \mathbf{f}$$
$$\ddot{\mathbf{S}} - \beta \nabla^2 \mathbf{S} = \nabla \beta \cdot \nabla \mathbf{S} - (\nabla \beta) \times (\nabla \times \mathbf{S}) + 2(\nabla \beta) \times (\nabla P) + \nabla \times \mathbf{f}$$

- New set of equations: coupled but separated for P- and Spropagations in heterogeneous (Lamé) media (constant density)
- ✓ Wave-medium interactions can be directly interpreted
- ✓ Mode-conversion only happens at S-wave discontinuities!
- \checkmark Discontinuities only in V_p are transparent to S-wave

Elastic simulations in heterogeneous media



Outline

- Elastic wave equations
 - Revisit of the elastic wave equations
 - A new set of separated P- and S-wave equations
- The elastic imaging condition
 - PP and PS images from inverse problem formulation
- Discussions and conclusions

Imaging condition

image = source wavefield meets scattered wavefield

- ♦ Wavefields only recorded on the boundary
 - ♦ Source: source signature
 - ♦ Scattered: receiver recordings
- \diamond How does the wavefields meet?
 - \diamond P-wave: scalar
 - \diamond S-wave: vector

- Approximate wavefields by solving wave equations
 - ✓ Source: forward propagation
 - ✓ Scattered: backward propagation
- ✓ Formulate imaging problem as an inverse problem
 - ✓ P-wave: take a gradient
 - ✓ S-wave: take a curl

Imaging as an inverse problem

• Match the modeled P-wave data with the recorded P-wave data

$$J_p(\alpha,\beta) = \frac{1}{2} ||d_p - d_{p_0}||_2^2$$

• Conventional PP-image

$$\nabla_{\alpha} J_{p} = \left(\frac{\partial P}{\partial \alpha}\right)^{*} \Big|_{\alpha = \alpha_{0}, \beta = \beta_{0}} (d_{p} - d_{p_{0}})$$
$$= 4 \left(\nabla^{2} P_{0}\right)^{*} (\Pi_{p})^{-*} \delta d_{p}$$
$$= \int_{t} dt \quad \begin{array}{c} \text{Forward propagated} \\ \text{source P-wavefield} \end{array} \approx \quad \begin{array}{c} \text{Backward propagated} \\ \text{"scattered" P-wavefield} \\ \text{Li et. al., Geophysics, 2018} \end{array}$$

Imaging as an inverse problem

• Match the modeled S-wave data with the recorded S-wave data

$$J_s(\alpha,\beta) = \frac{1}{2} ||\mathbf{d_s} - \mathbf{d_{s_0}}||_2^2$$

• Converted PS-image

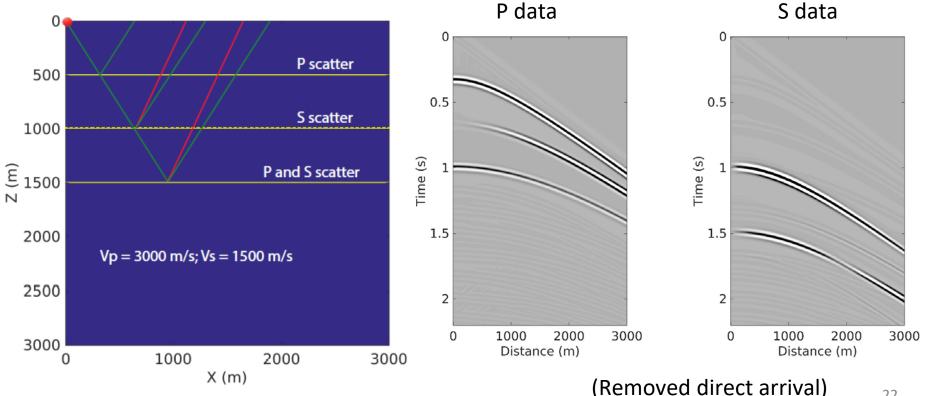
$$\begin{aligned} \nabla_{\beta} J_{s} &= \left(\frac{\partial \mathbf{S}}{\partial \beta}\right)^{*} \Big|_{\alpha = \alpha_{0}, \beta = \beta_{0}} (\mathbf{d_{s}} - \mathbf{d_{s_{0}}}) \\ &= -2(\nabla P_{0})^{*} \cdot \left(\nabla \times \Pi_{s}^{-*} \delta \mathbf{d_{s}}\right) \end{aligned} \\ I_{ps} &= \int_{t} dt \operatorname{grad} \left(\begin{array}{c} \operatorname{Forward \ propagated} \\ \operatorname{source \ P-wavefield} \end{array} \right) \underset{\text{Li et. al., Geophysics, 2018}}{\overset{\text{Korreg}}}{\overset{\text{Korreg}}{\overset{\text{Korreg}}}{\overset{\text{Korreg}}{\overset{\text{Korreg}}{\overset{\text{Korreg}}{\overset{\text{Korreg}}{\overset{\text{Korreg}}{\overset{\text{Korreg}}{\overset{\text{Korreg}}{\overset{\text{Korreg}}{\overset{\text{Korreg}}{\overset{\text{Korreg}}{\overset{\text{Korreg}}{\overset{\text{Korreg}}{\overset{\text{Korreg}}{\overset{\text{Korreg}}{\overset{\text{Korreg}}{\overset{\text{Korreg}}{\overset{\text{Korreg}}{\overset{\text{Korreg}}}{\overset{\overset{\text{Korreg}}}{\overset{\overset{\text{Korreg}}}{\overset{\overset{K}}{\overset{Korreg}}}{\overset{\overset{K}{\overset{Korreg}}}{\overset{Korreg}}{\overset{Korreg}}}{\overset{Korreg}}{\overset{Korreg}}{\overset{Korreg}}{\overset{Korreg}}}{\overset{Korreg}}{\overset{Korreg}}{\overset{Korr$$

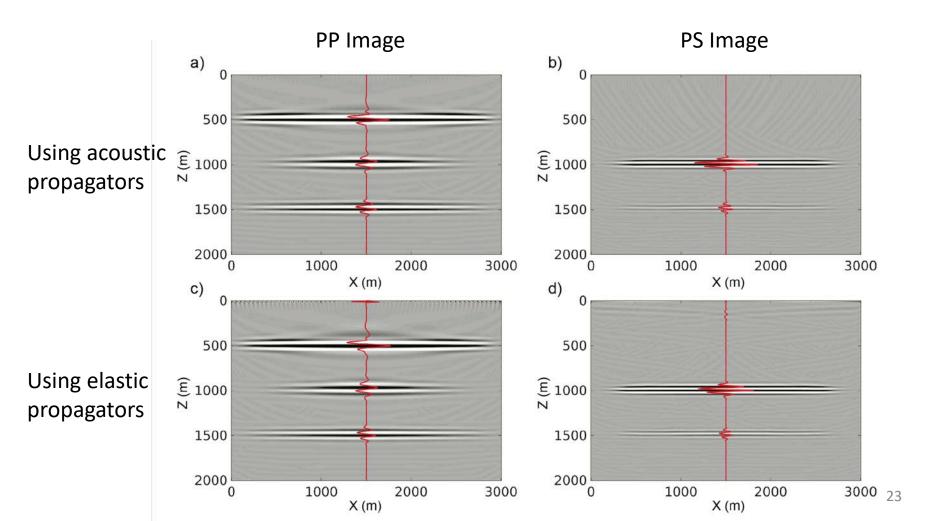
20

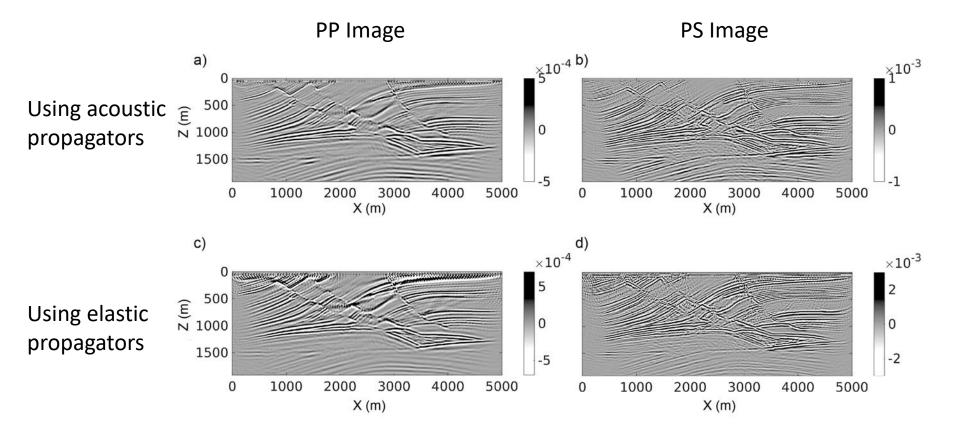
Elastic imaging using acoustic propagators

- Migration velocity models are often smooth
- Wave-equations reduce to fully decoupled P- and S-wave equations for their potential fields
- They can be efficiently solved using acoustic propagators

Elastic simulations in heterogeneous media





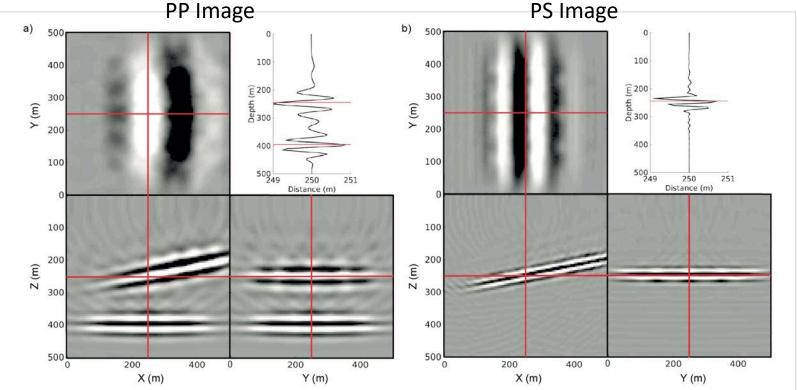


Comparison of the computational costs

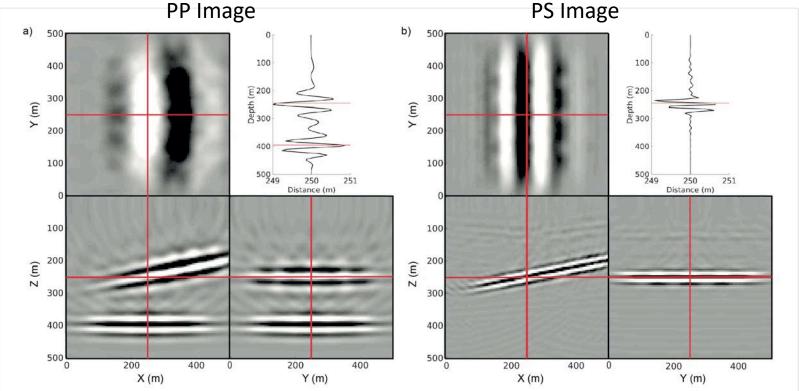
Using Cost	Acoustic propagator	Elastic propapagtors
Memory	nx*nz*3	nx*nz*3*5
Floating-point operations	O(nx*nz)	O(nx*nz*5)
# of simulations	2	1

Memory saving up to 80%, run time saving 60% Run time saving up to 80%, memory saving 60%

Elastic imaging in 3D using acoustic prop.



Elastic imaging in 3D using elastic prop.



Comparison of the computational costs

Using Cost	Acoustic propagator	Elastic propapagtors
Memory	nx*ny*nz*3	nx*ny*nz*3*9
Floating-point operations	O(nx*ny*nz)	O(nx*ny*nz*9)
# of simulations	4	1

Memory saving up to 88.9%, run time saving 55.6% Run time saving up to 88.9%, memory saving 55.6%

Discussions and conclusions

- We derive a new set of coupled, but separated wave equations for P- and S-wave propagation
- This work provides a rigorous theoretical basis for the vector image conditions
- Better interpretation of the PP and PS images based on fundamental wave physics

Discussions and conclusions

- Advantages of using acoustic propagators for elastic imaging
 - Lower memory and computational cost
 - Free of the artifacts caused by the unphysical wave mode conversion:

1. Artifacts near the receiver locations

2. Imprints of S-wave velocity model – "in-situ" mode conversions

Limitations

- Constant density assumption
 - P- and S-waves are fully coupled at all density discontinuities
 - Images are contaminated with density contrasts
- P- and S-data separation in the recorded data
 - Potential data are needed for this formulation
 - Inverse problem to solve for the separated fields

Complete set of equations for constant density media

$$\frac{\ddot{P} - \alpha \nabla^2 P}{P \text{ propagation}} = \underbrace{P \nabla^2 \alpha + 2 \nabla \alpha \cdot \nabla P}_{P \text{ scatter at } Vp \text{ constrast}} + \underbrace{2(\nabla \nabla \beta \cdot \nabla \nabla (\nabla^{-2} P) - P \nabla^2 \beta)}_{P \text{ scatter at } Vs \text{ contrast}} - \underbrace{2[\nabla \beta \cdot \nabla \times \mathbf{S} + \nabla \nabla \beta \cdot \nabla \nabla \times (\nabla^{-2} \mathbf{S})]}_{SP \text{ mode conversion at } Vs \text{ contrast}} + \underbrace{\nabla \cdot \mathbf{S} \cdot \mathbf{S}}_{S \text{ ource}}, \quad (26)$$

$$\frac{\ddot{\mathbf{S}} - \beta \nabla^2 \mathbf{S}}_{S \text{ propagation}} = \underbrace{2\nabla \beta \times \nabla P + 2\nabla \nabla \beta \star \nabla \nabla (\nabla^{-2} P)}_{PS \text{ mode conversion at } Vs \text{ contrast}} + \underbrace{\nabla \beta \cdot \nabla \mathbf{S} - (\nabla \beta) \times (\nabla \times \mathbf{S})}_{S \text{ scatter at } Vs \text{ constrast}} - \underbrace{\nabla \nabla \beta \star \{\nabla \nabla \times (\nabla^{-2} \mathbf{S}) + [\nabla \nabla \times (\nabla^{-2} \mathbf{S})]^T\}}_{S \text{ scatter at } Vs \text{ constrast}} + \underbrace{\nabla \gamma \times \mathbf{S}}_{S \text{ cource}}. \quad (27)$$