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Traveltime Tomography

To image the inner structure of the Earth, we need signals that can get from
there to the surface. One such signal are seismic waves.

When there is an earthquake, a network of seismic stations around the world
record the seismic wave that arrives there and in particular, time it takes the
wave to get there.

The speed of those waves depends on the structure of the Earth, and one hopes
to use this information to recover the latter.
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Basic setup

Assume that we have a Ck metric g = (gij ) with k ≥ 2. We define Hamiltonian
Hg by

Hg(x , ξ) =
1
2

(
n∑

i,j=1

g ij (x)ξiξj − 1)

for each x ∈ Ω and ξ ∈ Rn, where (gij )
−1 = (g ij ).

Let X (0) = (x (0), ξ(0)) be a given initial condition, where x (0) ∈ ∂Ω and
ξ(0) ∈ Rn, such that the inflow condition holds,

Hg(x (0), ξ(0)) = 1,
n∑

i,j=1

g ij (x (0))ξ
(0)
i νj (x (0)) < 0

where ν(x) is the unit outward normal vector of ∂Ω at the point x and νj (x)

denote the j th component of this vector.
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Basic setup(cont.)

Hamiltonian system

We define Xg(s,X (0)) = (xg(s,X (0)), ξg(s,X (0))) by the solution to the hamiltonian
system defined by

dx
ds

=
∂Hg

∂ξ
,

dξ
ds

= −
∂Hg

∂x

with the initial condition

(x (0), ξ(0)) = X (0).

The solution Xg defines a geodesic/ray in the phase space. The parameter s denotes
travel time. Thus, we denote the set of geodesics Xg which are contained in Ω with
endpoints at ∂Ω byMΩ.

Case of an isotropic medium

gij =
1
c2
δij ,

where c is a function from Rn to R.
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The reconstruction method

Let f be a smooth function from Ω to R. To determine the unknown function f (x)

from the geodesic X-ray data of the function, our method is based on a
truncation of convergent Neumann series.

First, we define the geodesic X-ray transform of the function f defined on Ω as
the collection (If )(Xg) of integrals of f along geodesic Xg ∈MΩ, where

(If )(Xg) :=

∫
x(s)

f (s) ds,

where Xg(s) = (x(s), ξ(s)).

We note that (If )(Xg) this is the measurement data, and we use this data to
reconstruct f (x).
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The reconstruction method(cont.)

Let Λ be the adjoint of the operator I. Then Uhlmann and Vasy show that there is
an operator R such that

RΛ(If ) = f − Kf ,

The error operator K is small in the sense of ||K || < 1 for an appropriate norm.

Neumann series

The unknown function f can be represented by the following convergent Neumann
series

f =
∞∑

n=0

K nRΛ(If ). (1)
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Remark

The operator R is the inverse of the operator Λ ◦ I.

Results from Uhlmann suggest that the unknown function f can be reconstructed
locally in a layer by layer fashion.

Layer by layer fashion

One can first reconstruct the unknown function f using (1) in small neighborhoods near
the boundary of the domain, and then repeat the procedure in the next inner layer of
the domain, and so on.

The challenges in the numerical computations of the unknown function f using
the above representation:

computing the operators Λ and R
implementating the layer stripping algorithm
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An illustration

First layer:

Second layer:
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Numerical procedure

Let Z be a set of grid points, denoted as {zi}, in the domain Ω.

We will determine the values of the unknown function f (x) at these grid points
using the given data set {(If )(Xg)}.

For a given point x ∈ Ω, we defineMΩ(x) as the set of all geodesics passing
through the point x . We use the notation |MΩ(x)| to represent the number of
elements in the setMΩ(x).

Numerically, we can define the action of the operator Λ ◦ I as the average of the
line integrals (back-projection) by

Λ(If ) :=

|MΩ(x)|∑
j=1

(If )(X j
g)

|MΩ(x)|
, (2)

where we use the notations {X j
g}, j = 1, 2, · · · , |MΩ(x)|.
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Remark

Notice that the above formula defines a function with domain Ω using the given
geodesic X-ray transform data (If )(Xg).

For standard X-ray transform, the above operator Λ gives a good approximation
to the unknown function f (x).

For geodesic X-ray transform, this operator provides an initial approximation,
which is the initial term in a convergent Neumann series representation of f (x).
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Neumann series

Motivated by Frigyik and Uhlmann, we will use an operator A to model the action
of the operator R presented above.

We will construct an operator A such that

(A∗A)−1Λ ◦ I = Id − K , (3)

where K is an error operator with ||K || < 1 for some appropriate norm, and Id is
the identity operator.

The operator A∗ is the adjoint operator of A.

Neumann series

Using the above, we can write the following Neumann series

f =
∞∑

n=0

K n(A∗A)−1Λ(If )

Note, the inverse of A∗A is an approximate inverse of the operator Λ ◦ I.
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Numerical implementations

In the previous section, we presented a general overview of our numerical
procedure and its corresponding theoretical motivations.

There are three important ingredients in our numerical algorithm. They are
1 Given the data {(If )(Xg)}, compute Λ(If ).
2 Compute the action of Λ ◦ I.
3 Compute the action of K := Id − (A∗A)−1(Λ ◦ I).
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Implementation details

Use the following formula for the computation of Λ(If )

using the given data set {(If )(Xg)}, where

Λ(If ) :=

|MΩ(x)|∑
j=1

(If )(X j
g)

|MΩ(x)|
, (4)

We will only recover the unknown function f on the set
of points Z , the output Λ(If ) is also defined only on
the same set of grid points Z .

But, in general, cannot find the geodesic that is
passing through a given point zi ∈ Z .

We will choose a small neighborhood of zi and find
all the geodesics passing through the
ε-neighborhood of zi .

Then, apply the above formula (4) using this set of
geodesics for each zi .

z

ε

X
g
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Implementation details

Next, we will discuss the action of the operator Λ ◦ I.

For a given function f whose values are defined only on the set of grid points Z ,
we will evaluate If .

We need to compute the integral of f on a geodesic Xg .

Solve the ray equation in the phase space starting from a particular initial point
X (0) by the 4th order Runge-Kutta Method.

Obtain a set of points {x(si )} defining the geodesic in the physical space.
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Implementation details

Use a version of the trapezoidal rule to compute the line integral (If )(Xg) of the
function f along the geodesic Xg .

(If )(Xg) ≈
∑

i

f (x(si )) (x ′(si )) (si − si−1).

(si − si−1) is the step size used in the 4th order Runge-Kutta Method.

x ′(si ) can be computed using x ′ =
∂Hg

∂ξ
.

The term f (x(si )) is not well defined since f is only defined on the set of grid
points Z and the point x(si ) may not be one of the grid points. To overcome this
issue, we replace f (x(si )) by f̂ (x(si )), which is the linear interpolation of f using
the grid points near x(si ).

Action of If

The formula to compute the action of If :

(If )(Xg) ≈
∑

i

f̂ (x(si )) (x ′(si )) (si − si−1). (5)
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Coarse and fine grid

Finally, we discuss the action of the error operator K .

Compute the operator (A∗A)−1, which approximates the action of the operator
R.

We know that the operator A is essentially integrals along geodesics, and the
operator A∗ performs average of line integrals passing through a given point.
Notice that, the action of A is similar to that of I, and the action of A∗ is similar to
the action of Λ.

In order to obtain a good approximation to the operator R and hence a good
reconstructed f , we will perform the action of A and A∗ on a finer grid Zf , which is
a refinement of the grid Z .

The following is the example of 2D grids:

· × · × ·

× · × · ×

· × · × ·

All the {×} form the coarse grid Z and all {×, ·} form the fine grid Zf .
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Reconstruction formula

To complete the steps, we need a projection operator P, which maps functions
defined on the finer grid Zf to functions defined on the grid Z .
The operator P∗ maps functions defined on the grid Z to functions defined on
the finer grid Zf .
Now, we can write down the reconstruction formula:

f =
∞∑

n=0

K nP(A∗A)−1P∗Λ(If )

where
K = Id − P(A∗A)−1P∗(Λ ◦ I).

Reconstruction formula

To regularize the problem, we will replace the above sum by

f =
∞∑

n=0

K nP(A∗A− δ∆)−1P∗Λ(If ) (6)

where δ > 0 is a regularization parameter and ∆ is the Laplace operator.
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Layer stripping algorithm for 3D model

Divide domain into k layers

Set i=1

Divide i th layer into small disks

For each small disk

Solve ODE to get a set of geodesics

Calculate line integral of f

Calculate approximation f =
∑∞

n=0 K nP(A∗A− δ∆)−1P∗Λ(If )

Sum up all approximation f for common points

Check if i=k

Approximation f is found

update i by i+1

end

yes

no
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Accuracy tests

We compared results for different test functions. The fine rectangular grid used is
chosen with grid size h = 0.02. We assume that the speed c is chosen as

c(x , y , z) = 1 + 0.3× cos(
√

(x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2).

There were five test cases for this experiment:
f1 = 0.01 + sin(2π(x + y + z)/10),
f2 = 0.01 + sin(2π(x + y)/10) + cos(2πz/20),
f3 = x + y2 + z2/2,
f4 = 1 + 6x + 4y + 9z + sin(2π(x + z)) + cos(2πy),
f5 = x + ey+z/2.
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Accuracy tests(cont.)

relative error f1 f2 f3 f4 f5
n=0 47.28% 47.45% 46.83% 46.97% 47.18%

n=1 23.89% 24.10% 23.43% 23.61% 23.76%

n=2 13.09% 13.26% 13.03% 13.23% 13.00%

n=3 8.53% 8.52% 9.32% 9.48% 8.53%

n=4 6.99% 6.74% 8.71% 8.80% 7.14%

Table: Relative errors for the functions fi , i = 1, · · · ,5.
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Accuracy tests with noisy data

Next, we show some numerical tests using noise contaminated data Λεg. We
use the same speed

c(x , y , z) = 1 + 0.3× cos(
√

(x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2)

reconstructing the function

g(x , y , z) = 0.01 sin(2π(x + y + z)/10).

The measurement data has been contaminated by uniformly distributed noise ε,

Λεg := Λg + ε

with relative error |ε|/|Λg| = 0.05 (i.e. 5% noise), where ε is a random function.

relative error g1 g2

n=5 6.72% 8.50%

Table: Tables of relative errors of test functions reconstructing from
exact data g1 and noisy data g2
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Accuracy tests with noisy data (cont.)

: exact solution : approximate solution for g1

: approximate solution for g2

Figure: Graphs of exact and reconstructed solutions using the exact
data g1 (error = 6.72%) and the noisy data g2 (error = 8.50%).
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Experiments with different speeds

We compare the numerical tests with different speeds. We use grid size
h = 0.02 as above and perform this test by considering function

f (x , y , z) = 0.01 sin(2π(x + y + z)/10)

The first speed to test is defined as

c1(x , y , z) = 1 + 0.2 sin(3πx) sin(πy) sin(2πz).

The second and the third tests are related to the well-known benchmark
problem: the Marmousi model. In our simulations, we take two spherical sections
of the Marmousi model, called c2 and c3.
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Experiments with different speeds(cont.)

Figure: The 3D Marmousi model.

Figure: A spherical part as the
test speed c2.

Figure: A spherical part as the
test speed c3.
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Experiments with different speeds(cont.)

n = 0 n = 1 n = 2 n = 3 n = 4

relative error for test speed c1 44.86% 22.88% 14.19% 11.62% 11.47%

relative error for test speed c2 48.02% 25.39% 15.71% 12.42% 11.80%

relative error for test speed c3 58.18% 35.41% 22.78% 16.25% 13.39%

Table: Relative errors for using the 3 test speeds with grid size
h = 0.02.
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Experiments with different speeds(cont.)

: exact solution : approximate solution for c1

: approximate solution for c2 : approximate solution for c3

Figure: Graphs of exact and approximate solutions reconstructing
from speed c1 and the Marmousi models c2 and c3.
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Traveltime tomography

Given boundary measurements for g1, we are interested in recovering the metric
g1.

Let g1 and g2 be two metrics. We link two metrics by introducing the function

F (s) := Xg2

(
t − s,Xg1 (s,X (0))

)
,

where t = tg1 and tg = tg(X (0)) is the length of the geodesic issued from X (0)

with the endpoint on Γ. This is the Stefanov-Uhlmann identity.

Consequently, we have

∫ t

0
F ′(s)ds = Xg1 (t ,X (0))− Xg2 (t ,X (0)).

g2 is an arbitrary metric.
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Stefanov-Uhlmann identity

Stefanov-Uhlmann identity

∫ t

0
F ′(s)ds =

∫ t

0

∂Xg2

∂X (0)

(
t − s,Xg1 (s,X (0))

)
×
(
Vg1 − Vg2

)(
Xg1 (s,X (0))

)
ds

=

∫ t

0
Jg2

(
t − s,Xg1 (s,X (0))

)
×
(
Vg1 − Vg2

)(
Xg1 (s,X (0))

)
ds,

where

Vgj :=

(
∂Hgj

∂ξ
,−

∂Hgj

∂x

)
=

(
g−1ξ,−

1
2
∇x (g−1ξ) · ξ

)
.
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Linearizing the Stefanov-Uhlmann identity(cont.)

We linearize the above identity about g2,

∫ t

0
F ′(s)ds ≈

∫ t

0
Jg2

(
t − s,Xg1 (s,X (0))

)
× ∂g2 Vg2 (g1 − g2)

(
Xg2 (s,X (0))

)
ds,

where ∂gVg(λ) is the derivative of Vg with respect to g at λ.

Approximation of Stefanov-Uhlmann identity

Xg1 (t ,X (0))−Xg2 (t ,X (0)) ≈
∫ t

0
Jg2

(
t−s,Xg2 (s,X (0))

)
×∂g2 Vg2 (g1−g2)

(
Xg2 (s,X (0))

)
ds
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Isotropic medium

By the group property of Hamiltonian flows the Jacobian matrix is equal to

Jg2

(
t − s,Xg2 (s,X (0)

)
= Jg2

(
t ,X (0)

)
× Jg2

(
s,X (0)

)−1

Case of an isotropic medium

gij =
1
c2
δij ,

where c is a function from Rn to R. Then

Vgk = (c2
k ξ,−(∇ck )ck |ξ|2).

Hence the derivative of V with respect to g, ∂gVg(λ) is given by

∂gVg(λ) = (2cλξ,−(∇c · λ+∇λ · c)|ξ|2).
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New phase space method

Let zj , j = 1, 2, . . . , p be the grid points.Then the set Z is defined by
Z = {zj , j = 1, 2, . . . , p}.

Let X (0)
i ∈ S−, i = 1, 2, . . . ,m, be the initial points and directions.

From these initial points, we can define the scattering relation Xg(ti ,X
(0)
i ) ∈ S+.

ti is the time of i th geodesic from starting point to the end point.

First we set an initial guess g0. Then we construct a sequence gn by the
following way.
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New phase space method(cont.)

Define the mismatch vector

dn
i = Xg(ti ,X

(0)
i )− Xgn (ti ,X

(0)
i ).

Define an operator Îi along the i th geodesic by the integration equation

Ii (g − gn) :=

∫ t

0
Jgn
(
t − s,Xgn (s,X (0)

i )
)
× ∂gn Vgn (g − gn)

(
Xgn (s,X (0)

i )
)
ds.

We use the above reconstruction method to recover λ := g − gn at each grid
points by the mismatch vector.

We define an operator I along the i th geodesic.

Ii (λ) = dn
i .
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New phase space method(cont.)

For each n ≥ 0, we use the reconstruction formula (6)

λ =
∞∑

n=0

K nP(A∗A− δ∆)−1P∗Λ(Iλ),

where P,A is defined as the same as the previous chapter and

K = Id − P(A∗A)−1P∗(Λ ◦ I).

We then define,
gn+1 = gn + λ.

Then we recover the metric g by this iterative algorithm.
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Numerical implementations

We will briefly explain the details of the numerical implementations of phase
space method.

1 Discuss the detail of constructing the mismatch vector dn
i .

2 Explain the calculation of the line integrals, i.e. the operator
Ii .

3 Explained the detail of the reconstruction formula and how
the metric is updated .
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Setup of mismatch vector

The mismatch vector is defined by dn
i = Xg(ti ,X

(0)
i )− Xgn (ti ,X

(0)
i ). Hence, we

need a set of the initial locations and directions {X (0)
i }.

For our settings, we will divide the 3D domain into different layers and thus divide
the layer into many small disks. We will choose 900 uniform initial locations and
directions around the boundary of the domain.

From this set of data, we will derive a set of mismatch vectors using the guess gn

and also the observed data Xg(ti ,X
(0)
i ).

We will eliminate the geodesics which do not remain in the same layer.

Solutions from outer layers are used as data for inner layers.
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Calculation of the line integrals

The operator Ii is defined to calculate the line integrals, which is defined by

Ii (g − gn) :=

∫ ti

0
Jgn
(
ti − s,Xgn (s,X (0)

i )
)
× ∂gn Vgn (g − gn)

(
Xgn (s,X (0)

i )
)
ds.

Since we have the discrete phase space of each geodesic, i.e. Xgn (sj ,X
(0)
i ) for

any 0 ≤ sj ≤ ti , then we can approximate the operator by

Ii (g − gn) ≈
∑

sj

Jgn
(
ti − sj ,Xgn (sj ,X

(0)
i )
)

× ∂gn Vgn (g − gn)
(
Xgn (sj ,X

(0)
i )
)

(X ′gn (sj ,X
(0)
i )) (sj − sj−1).

The operator can be approximated by a matrix and thus the adjoint operator I∗i .
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Update of the metric

After we construct the line integral operators, we will apply the reconstruction
formula to compute the update of the metric.

Based on the reconstruction formula, it is the infinite sum of Neumann series. In
computation, we need to choose some terms of the infinite sum to represent the
whole term.

Here, we choose the first five terms, since this terms represent the main part of
the sum.

After doing the update for each disks in the same layer, we will compute the final
metric of this layer and move on to the next layer.

When we compute the final metric of this layer, there are some overlapping
regions for different regions. Then we take the mean of this values to calculate
the final metric.
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Numerical results of New phase space method

We demonstrate the performance of our method using several test examples.
The domain Ω is a sphere with center (0.5, 0.5, 0.5) and radius 0.4.

To solve the system to get the geodesic curves, we applied the classical
Runge-Kutta method of 4th order.

For the calculations of the error operator K , the regularization parameter is
chosen as δ = 0.02.

In the layer stripping algorithm, we divide the domain into 20 layers and each
layer has 122 local regions for reconstruction.

For each local region, the size of the matrix A∗A is about 100 x100.

The whole domain has 35,000 unknowns, which requires the inversion of a
35000 x 35000 matrix.
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Constant case and the linear case

To test our algorithm, we test it on different speeds. First, we test the constant
case and the linear case.

For the constant case g = 10, we have the relative error 0.0004% for first layer
and 0.0005% for the second layer.

For the linear case g = 10 + 0.1× (x + y + z), we have the relative error
0.0727% for first layer and 0.0599% for the second layer.

We also note that the first two layers are recovered almost exactly and the errors
grow after a few layers. The fact that there are larger errors in inner layers is
because there are less data available for those regions.

1st layer 2nd layer 3rd layer 4th layer 5th layer

relative error (constant) 0.0004% 0.0005% 0.1643% 2.5194% 12.8080%

relative error (linear) 0.0727% 0.0599% 0.3647% 2.6736% 14.2001%

Table: Relative errors for different cases.
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Marmousi model

Next, we test the performance using the Marmousi model. We divide the 3D
domain into 10 layers and we recover the model in the first few outermost layers.

Then we have the relative error 8.2883% for first layer, 6.6484% for the second
layer, 9.2633% for the third layer and 12.8978% for the forth layer.

Figure 9-13, show the graphs of true and approximate solution of first,second
and third layers of standard Marmousi model. We observe that the recovered
solutions are in good agreement with the exact solutions.

1st layer 2nd layer 3rd layer 4th layer 5th layer

relative error 8.2883% 6.6484% 9.2633% 12.8978% 13.2901%

Table: Relative errors for recovering the Marmousi model.
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Marmousi model (cont.)
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Figure: Graphs of true and approximate solution of first layer of
standard Marmousi model.
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Marmousi model (cont.)
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Figure: Graphs of true and approximate solution of second layer of
standard Marmousi model.
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Marmousi model (cont.)
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Figure: Graphs of true and approximate solution of third layer of
standard Marmousi model.
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Conclusion

We develop a numerical strategy for inversion of X-ray transform.

The method is based on a convergent Neumann series and a layer-stripping
techniqe.

We develop an inverse algorithm for travel time tomography.

The method is based on the inversion of X-ray transform and layer-stripping.

We present some numerical results including the Marmousi model.

Thank you
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