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Extraordinary Optical Transmission Through a Small Hole Array

T. W. Ebbessen et al, Nature (1998)
Size of each hole: 150 nm, metal thickness: 300 nm, skin depth: 30nm

Classical Bethe theory for diffraction by a small hole



Subsequent Development in Extraordinary Optical Field Enhancement

F. J. Garcia-Vidal et al, Rev. Mod. Phy. (2010)
S. Rodrigo, F. León-Pérez, L. Martín-Moreno, Proceedings of the IEEE (2016)

Applications: Near-field optical imaging, biosensing, novel optical devices....



Possible Enhancement Mechanisms

Surface plasmonic resonances in noble metals

Non-plasmonic resonances (e.g., resonances induced by the geometry
of the structure)

Non-resonant enhancement,....



Motivations

There has been a long debate on the interpretation of enhancement
effects. For instance, surface plasmonic resonances strengthen or inhibit
the enhancement? interplay between different enhancement
mechanisms?

Other questions: How large is the field enhancement and at what
frequencies?

Quantitative analysis of the field enhancement would be desirable!



Focus on a Prototype Structure: Narrow Slits

Field enhancement for slit structures in perfect conducting (PEC) metals:

• Single slit and an array of slits.

Related work:
• E. Bonnetier and F. Triki (2010): Resonances for a subwavelength cavity.
• Gao, Li, Yuan (2017): field enhancement for a subwavelength cavity.

• High transmission for the periodic structures: G. Bouchitté, B. Schweizer,
G. Kriegsmann, and many others in physics literatures.



Electromagnetic Field Enhancement in a Single PEC Slit
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Transmission with metal thickness = 1, gap size = 0.02.

Resonant effect
Y. Takakura (2001), J. Sambles et al (2002), F. Garcia-Vidal, et al (2004),
R. Gordon (2006) · · ·

Non-resonant effect
Experiments: D-S. Kim (2009), S-H. Oh (2014)



Scattering Problem II

                                         

 

𝑢𝑖 

  


  

1
x

 

2
x

 


  

  

 

 

• Normalization: `= 1.

• The exterior domain: Ωε = Ω+∪Ω−∪Sε .

• TM polarization: the incident magnetic field Hi = (0,0,ui), where ui = eikd·x,
k = ω/c.

• The total field uε = ui +ur +us
ε in Ω+, and uε = us

ε (transmitted wave) in Ω−.

• The scattering problem:

∆uε + k2uε = 0 in Ωε ,

∂uε

∂ν
= 0 on ∂Ωε .

lim
r→∞

√
r
(

∂us
ε

∂ r
− ikus

ε

)
= 0, r = |x| .



Scattering Resonances and Field Enhancement

Im k

Re k

• Fact: The scattering problem attains a unique solution if Im k ≥ 0.

Defintion

The scattering resonances are the poles of the scattering operator when
continued meromorphically to the whole complex plane.

• Field enhancement at resonant frequencies: O
(

1
|k− kres|

)
.



Integral Equation Formulation
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• Integral equation formulation:
∫

Γ
+
ε

ge(x,y)
∂uε

∂ν
dsy +

∫
Γ
+
ε ∪Γ

−
ε

gi
ε (x,y)

∂uε

∂ν
dsy =−(ui +ur), on Γ

+
ε ,∫

Γ
−
ε

ge(x,y)
∂uε

∂ν
dsy +

∫
Γ
+
ε ∪Γ

−
ε

gi
ε (x,y)

∂uε

∂ν
dsy = 0, on Γ

−
ε .

• Boundary integral equations after scaling ( x1 = εX, y1 = εY, X,Y ∈ (0,1) ):[
Te +T i T̃ i

T̃ i Te +T i

][
ϕ1

ϕ2

]
=

[
f/ε

0

]
.

where Te, T i, and T̃ i are the integral operators with kernels Ge
ε , Gi

ε and G̃i
ε ,

ϕ1(X) :=−∂ν uε (εX,1), and ϕ2(X) :=−∂ν uε (εX,0).



Asymptotic Expansions for the Integral Operators

• Asymptotic expansions of the kernels:

Ge
ε (X,Y) =

1
π
[lnε + lnk+ γ0]+

1
π

ln |X−Y|+O((ε|X−Y|)2 ln(ε|X−Y|);

Gi
ε (X,Y) =

cotk
kε

+
2ln2

π
+

1
π

[
ln
(∣∣∣∣sin

(
π(X+Y)

2

)∣∣∣∣)+ ln
(∣∣∣∣sin

(
π(X−Y)

2

)∣∣∣∣)]
+O(k2

ε
2);

G̃i
ε (X,Y) =

1
(k sink)ε

+O
(

e−1/ε

)
.

• Asymptotic expansions of the integral operators:[
Te +T i T̃ i

T̃ i Te +T i

]
=

[
β β̃

β̃ β

]
P+KI+

[
K∞ K̃∞

K̃∞ K∞

]
=: P+L.

• The system of integral equations becomes (P+L)ϕ = f.



Resonant Effect I: Resonance Condition

• Look for k such that (P+L)ϕ = 0 attains non-trivial solutions.

• The operator equation reduces to

(M+ I)

[
〈ϕ,e1〉
〈ϕ,e2〉

]
= 0,

where e1 = [1,0]T and e2 = [0,1]T , and the matrix

M=

(
β I+ β̃

[
0 1
1 0

])
·

[
〈L−1e1,e1〉 〈L−1e1,e2〉
〈L−1e1,e2〉 〈L−1e1,e1〉

]

• The eigenvalues of M+ I are given by

λ1(k,ε) = 1+(β (k,ε)+ β̃ (k,ε))
(
〈L−1e1,e1〉+ 〈L−1e1,e2〉

)
,

λ2(k,ε) = 1+(β (k,ε)− β̃ (k,ε))
(
〈L−1e1,e1〉−〈L−1e1,e2〉

)
.

Resonance condition

The resonances are the roots of λ1(k,ε) = 0 or λ2(k,ε) = 0.



Resonant Effect II: Asymptotic Expansions for Resonances

Re k

Im k

π 2π 3π 4π

O(ε)

Theorem

The following asymptotic expansions hold for the resonances of the
scattering problem:

km,1=(2m−1)π +2(2m−1)π
[

1
π

ε lnε +

(
1
α
+

1
π
(2ln2+ ln((2m−1)π)+ γ0)

)
ε

]
+O(ε2 ln2

ε),

km,2=2mπ +4mπ

[
1
π

ε lnε +

(
1
α
+

1
π
(2ln2+ ln(2mπ)+ γ0)

)
ε

]
+O(ε2 ln2

ε),

for m = 1,2,3, · · · , and mε � 1. Here α = 〈K−11,1〉, γ0 = c0− ln2− iπ/2, and c0

is the Euler constant.

Remark The imaginary part of each resonance has an order of O(ε).



Field Enhancement at Resonant Frequencies: In the Slit
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The wave field inside the slit adopts the following expansion at the odd and
even resonances respectively:

uε (x) =
1
ε
· 2i

k sin(k/2)
· cos(k(x2−1/2))+O(ln2

ε)

and
uε (x) =−

1
ε
· 2i

k cos(k/2)
· sin(k(x2−1/2))+O(ln2

ε).



Non-resonant Enhancement at Low Frequencies I
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• Expand the wave field in the slit as the sum of wave-guide modes:

uε (x) = a0 coskx2 +b0 cosk(1− x2)+ ∑
m≥1

[
am exp

(
−k(m)

2 x2

)
+bm exp

(
−k(m)

2 (1− x2)
)]

cos
mπx1

ε
,

where k(m)
2 =

√
(mπ/ε)2− k2.

Theorem

No significant magnetic field enhancement is gained. However, the electric field
|Eε | ∼ O(1/k) or |Eε | ∼ O(1/(k`)) if ` 6= 1.



Scattering by A Periodic Array of PEC Slits
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• A periodic array of slits: Sε =
∞⋃

n=−∞

(
S(0)ε +nd

)
.

• The scattering problem: ∆uε + k2uε = 0 in Ωε and ∂ν uε = 0 on ∂Ωε .

• Look for quasi-periodic solutions such that uε (x1 +d,x2) = eiκduε (x1,x2).

• Outgoing radiation condition: the scattered field

us
ε (x1,x2) =

∞

∑
n=−∞

us,±
n eiκnx1±iζnx2 in Ω

±,

where

κn = κ +
2πn

d
and ζn(k) =


√

k2−κ2
n , |κn| ≤ k,

i
√

κ2
n − k2, |κn|> k.



Three Configurations of Periodic Slits
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• Normalization: `= 1.

• Three configurations of periodic slits:

(I) ε � d ∼ λ ∼ O(1): diffraction regime.

(II) ε � d� λ : homogenization regime I

(III) ε ∼ d� λ ∼ O(1): homogenization regime II



Diffraction Regime: ε � d ∼ λ
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• Reduce to the first Brillouin zone: κ ∈ (−π/d,π/d].

• Exterior Green’s function in Ω±: ge
](x,y) = gd

] (x,y)+gd
] (x
′,y), where

gd
] (x,y) =−

i
2d

∞

∑
n=−∞

1
ζn(k)

eiκn(x1−y1)+iζn(k)|x2−y2|,

and

κn = κ +
2πn

d
and ζn(k) =


√

k2−κ2
n , |κn| ≤ k,

i
√

κ2
n − k2, |κn|> k.



Diffraction Regime: Integral Equation and Asymptotic Expansion
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• Integral equation formulation over one reference period:
∫

Γ
+
ε

ge
](x,y)

∂uε

∂ν
dsy +

∫
Γ
+
ε ∪Γ

−
ε

gi
ε (x,y)

∂uε

∂ν
dsy =−(ui +ur), on Γ

+
ε ,∫

Γ
−
ε

ge
](x,y)

∂uε

∂ν
dsy +

∫
Γ
+
ε ∪Γ

−
ε

gi
ε (x,y)

∂uε

∂ν
dsy = 0, on Γ

−
ε .

• Boundary integral equation after scaling:[
Te
] +T i T̃ i

T̃ i Te
] +T i

][
ϕ1

ϕ2

]
=

[
f/ε

0

]
.

Te
] is the integral operator with kernel Ge

],ε :

Ge
],ε (X,Y) =

1
π

(
lnε + ln2+ ln

π

d

)
+

1
2π

∑
n 6=0

1
|n|
− i

d

∞

∑
n=−∞

1
ζn(k)

+
1
π

ln |X−Y|+O(ε|X−Y|).

• Asymptotics of integral operators and the resonance condition can be obtained!



Diffraction Regime: Rayleigh Anomaly Frequencies

• Rayleigh anomaly frequencies: k = κn = κ +2πn/d or ζn = 0 for some n.

Note that the scattered field

us
ε (x1,x2) =

∞

∑
n=−∞

us,±
n eiκnx1±iζnx2 , ζn(k) =


√

k2−κ2
n , |κn| ≤ k,

i
√

κ2
n − k2, |κn|> k.

• Resonances away from the Rayleigh anomaly frequencies: consider the
domain

Dκ,δ ,M := C\Bκ,δ ∩{z | |z| ≤M}, where Bκ,δ :=
∞⋃

n=−∞

Bδ (κ +2πn/d).



Diffraction Regime: Resonances and Eigenvalues

Theorem

For each κ ∈ (−π/d,π/d], if mπ ∈ Dκ,δ ,M , there exists a resonance or an eigenvalue km

in the neighborhood of mπ.

If mπ > |κ|, km is a resonance. Otherwise, km is an eigenvalue.

The following asymptotic expansion holds for km if mε � 1:

km = mπ +2mπ

[
1
π

ε lnε +

(
1
α

+ γ(mπ,κ,d)
)

ε

]
+O(ε2 ln2

ε),

Here α = 〈K−11,1〉, γ(k,κ,d) =
1
π

(
3ln2+ ln

π

d

)
+

(
1

2π
∑
n 6=0

1
|n|
− i

d

∞

∑
n=−∞

1
ζn(k)

)
.

κ

k

k = |κ|

• Im γ(mπ,κ,d) =− 1
d ∑
|κn|<mπ

1
ζn(mπ)

< 0 if mπ > |κ|,

and the resonance has an imaginary part of O(ε).

• Im γ(mπ,κ,d) = 0 if mπ < |κ|.

• The eigenvalue occurs only if d < 1.

• The eigenmode us
ε is a surface bound state

(decaying exponetial away from the grating surface).



Surface Bound State



Field Enhancement at Resonant Frequencies II
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In the slit S(0)ε

The wave field adopts the following expansion at the odd and even resonances
respectively:

uε (x) =
1
ε
· i

Imγ(mπ,κ,d) · k sin(k/2)
· cos(k(x2−1/2))+O(ln2

ε)

and
uε (x) =−

1
ε
· i

Imγ(mπ,κ,d) · k cos(k/2)
· sin(k(x2−1/2))+O(ln2

ε).



Homogenization Regime I. ε � d� λ
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• No scattering resonance or eigenvalue exists if k� 1 (or λ � 1).

• If ε � 1 and k = εσ , in the reference slit,

uε (x) =
(

α

ε ·λ1
+

α

ε ·λ2

)
· cos(kx2)

k sink
+

(
α

ε ·λ1
− α

ε ·λ2

)
· cos(k(1− x2))

k sink
+H.O.T

=

2x2 +O(ε2σ )+O(ε1−σ ) if 0 < σ < 1,

1+ id · cosθ
(
2x2−1

)
εσ−1 +O(εσ+1)+O(ε2(σ−1)) if σ > 1,

• No magnetic enhancement is gained. However, the leading-order term has a slope of
2 and O(εσ−1) respectively .



Homogenization Regime I: Non-resonant Field Enhancement
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Electric field enhancement

If ε � 1 and k = εσ , then Eε = [Eε,1,Eε,2,0] in the reference slit, where

Eε,1 =


2i√

τ0/µ0
· 1

εσ
+H.O.T if 0 < σ < 1,

d cosθ√
τ0/µ0

· 1
ε
+H.O.T if σ > 1,

and Eε,2 ∼ O(e−1/ε ).



Homogenization Regime II: ε ∼ d� λ
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• η := ε/d, where 0 < η < 1.

• Asymptotic expansion of the scattering solution can be obtained, using the expansion
for the periodic Green’s function:

Ge
ε (X,Y) =

1
π

ln2− iη
ζ ε

+
1
π

ln |sin(πη(X−Y))|+ κη

ζ
(X−Y)+O(ε),

where κ2 +ζ 2 = k2.



Homogenization Regime II: “Surface Plasmon"
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Theorem

There exist two groups of dispersion relations satisfying |κ|> k, and their leading

orders are: κ = k

√
1+η2

(
sink

cosk±1

)2

, η = ε/d.

• The associated eigenmodes us
ε are surface bound states.

• The dispersion relations and surface bound states resemble the ones for surface
plasmon polaritons in the dielectric-metal configuration.
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Homogenization Regime II: Total Transmission
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• Scattering by an incident plane wave ui = ei(κx1−ζ (x2−1)), where κ = k sinθ , ζ = k cosθ ,
and |κ|< k.

• The leading orders of the reflection and transmission coefficients are

R0 =
i tank · (η2− cos2 θ)

−i tank · (η2 + cos2 θ))+2η cosθ
, T0 =

2cosθ ·η
−isink · (η2 + cos2 θ)+2cosθ ·η cosk

.

• Total transmission is achieved when k = mπ (Fabry-Perot resonance), and all
frequencies for a special incident angle θ such that cosθ = η (Brewster angle).
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A Quick Summary

Field enhancement for PEC metals:

• Single slit: resonant and non-resonant enhancement effects.

• An array of slits: resonant and non-resonant enhancement effects, surface
bound states, “surface plasmon", and total transmission.

• Asymptotics of resonances/eigenvalues are derived, and the enhanced
wave modes are characterized.



Field enhancement for a single slit in a real metallic slab
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1 Multiscale problem: size of slit aperture δ , skin depth of metal δm,
thickness of slab d, and wavelength λ ;

2 The skin depth effect weakens the Fabry-Perot resoance, and induces
small shifts of the FP resonance;

3 The slit structure can excite plasmonic surface waves (plasmonic
resonance) along the metal interface;

4 The plasmonic resonance can interact with the FP resonance, an vice
visa.



Numerical results
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Figure: The transmittance T over the frequency band [0.5,15] for various slit sizes.

1 For numerical results, see “An integral equation method for numerical
computation of scattering resonances in a narrow metallic slit”, J. L and
H. Z, submitted;

2 For theoretical results, coming soon.



Outlook

1 3D subwavelength structures: quantitative analysis

2 Applications in sensing and control of light.

Thank you for your attention!


