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Motivation: Sensor array imaging

• Sensor array imaging (echography in medical imaging, sonar, non-destructive

testing, seismic exploration, etc) has two steps:

- data acquisition: an unknown medium is probed with waves; waves are emitted by a

source (or a source array) and recorded by a receiver array.

- data processing: the recorded signals are processed to identify the quantities of

interest (reflector locations, etc).

• Example:

Ultrasound echography −→

• Standard processing techniques (DAS, Reverse-Time Migration) work well if the

background medium is known (ideally, homogeneous medium).
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Application 1: Ultrasound echography in concrete

Goal: detect anomalies/cracks/inclusions in concrete.

−→
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Experimental set-up Data

The recorded signals look very “noisy”.

→֒ Where does the noise come from ?
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Application 1: Ultrasound echography in concrete

1000 1200 1400 1600 1800 2000 2200 2400
− 0.20

− 0.15

− 0.10

− 0.05

0.00

0.05

0.10

0.15

0.20

1000 1200 1400 1600 1800 2000 2200 2400 1000 1200 1400 1600 1800 2000 2200 2400

Reciprocity

Reciprocity: The signal transmitted by A and recorded by B should be the same as

the signal transmitted by B and recorded by A.

→ This holds true in the data for (almost) all pairs (A,B) !

→֒ The “noise” is not measurement noise !
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Application 1: Ultrasound echography in concrete

Goal: detect anomalies/cracks/inclusions in concrete.
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?
−→

Data Real configuration

The recorded signals are very “noisy” due to scattering.

→ Concrete is highly scattering for ultrasonic waves !

→֒ Standard echography fails and new imaging methods are needed.
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Application 2: Optics in strongly scattering media

Goal: retrieve the shape of the mask from the recorded intensity.

−→

Speckle pattern

Due to scattering the intensity recorded by the camera is a speckle pattern.
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Wave propagation in random media

• Wave equation:

1

c2(~x)

∂2u

∂t2
(t, ~x)−∆~xu(t, ~x) = F (t, ~x), ~x = (x, z) ∈ R

2 × R

• Time-harmonic source in the plane z = 0: F (t, ~x) = δ(z)f(x)e−iωt.

• Random medium model:
1

c2(~x)
=

1

c2o

(
1 + µ(~x)

)

co is a reference speed,

µ(~x) is a zero-mean random process.

• Question: how to characterize the statistical properties of the wave field u ?

→ Multiscale analysis [1,2].

[1] G. Papanicolaou, SIAM J. Appl. Math. 21 (1971) 13. [2] J.-P. Fouque et al., Springer, 2007.



Wave propagation in random media

• In the paraxial regime “λ ≪ ℓc, ro ≪ L”, the envelope φ̂(x, z):

u(t,x, z) =
ico
2ω

φ̂
(
x, z

)
e−iω(t− z

co

)

satisfies the Itô-Schrödinger equation [1]

dφ̂ =
ico
2ω

∆xφ̂dz +
iω

2co
φ̂ ◦ dB(x, z)

starting from φ̂(z = 0,x) = f(x), with B(x, z) Brownian field

E[B(x, z)B(x′, z′)] = γ(x− x′) min(z, z′),

γ(x) =
∫
∞

−∞
E[µ(0, 0)µ(x, z)]dz.

→֒ Makes it possible to use Itô-Stratonovich’s stochastic calculus [2].

Sketch of proof. Consider the paraxial regime:

ω →
ω

ε4
, µ(x, z) → ε

3
µ
( x

ε2
,
z

ε2

)

, f(x) → f
( x

ε2

)

,

and take ε → 0.

[1] J. Garnier et al., Ann. Appl. Probab. 19 (2009) 318. [2] D. Dawson et al., Appl. Math. Optim. 12 (1984) 97.



Moment calculations in the paraxial regime

Consider

dφ̂ =
ico
2ω

∆⊥φ̂dz +
iω

2co
φ̂ ◦ dB(x, z)

starting from φ̂(x, z = 0) = f(x).

• By Itô’s formula,

d

dz
E[φ̂] =

ico
2ω

∆⊥E[φ̂]−
ω2γ(0)

8c2o
E[φ̂]

and therefore

E
[
φ̂(x, z)

]
= φ̂hom(x, z) exp

(
−

γ(0)ω2z

8c2o

)
,

where γ(x) =
∫
∞

−∞
E[µ(0, 0)µ(x, z)]dz and φ̂hom is the solution in the homogeneous

medium.

• Strong damping of the coherent wave.

=⇒ Identification of the scattering mean free path Zsca =
8c2

o

γ(0)ω2 [1].

=⇒ Coherent imaging methods (such as DAS or Reverse-Time migration) fail.

[1] A. Ishimaru, Academic Press, 1978.



Moment calculations in the paraxial regime

• The mean Wigner transform defined by

W(r, ξ, z) =

∫

R2

exp
(
− iξ · q

)
E

[
φ̂
(
r +

q

2
, z
)
φ̂
(
r −

q

2
, z
)]

dq,

is the angularly-resolved mean wave energy density.

By Itô’s formula, it solves a radiative transport equation

∂W

∂z
+

co
ω
ξ · ∇rW =

ω2

4(2π)2c2o

∫

R2

γ̂(κ)
[
W(ξ − κ)−W(ξ)

]
dκ,

starting from W(r, ξ, z = 0) = W0(r, ξ), the Wigner transform of f .

=⇒ Identification of the scattering cross section ω2

4c2
o

γ̂(κ) [1].

• The fields at nearby points are correlated and their correlations contain information

about the medium.

=⇒ One should use cross correlations for imaging in random media.

[1] A. Ishimaru, Academic Press, 1978.



Stability of the Wigner transform of the field

• The Wigner transform

W (r, ξ, z) :=

∫

R2

exp
(
− iξ · q

)
φ̂
(
r +

q

2
, z
)
φ̂
(
r −

q

2
, z
)
dq

is not statistically stable (i.e. standard deviation > mean).

• Let us consider the smoothed Wigner transform (for rs, ξs > 0):

Ws(r, ξ, z) =
1

(2π)2r2s ξ
2
s

∫∫

R2×R2

W (r − r′, ξ − ξ′, z) exp
(
−

|r′|2

2r2s
−

|ξ′|2

2ξ2s

)
dr′dξ′.

Its coefficient of variation:

Cs(r, ξ, z) :=

√
E[Ws(r, ξ, z)2]− E[Ws(r, ξ, z)]2

E[Ws(r, ξ, z)]

determines its statistical stability.

→֒ Analysis of high-order moments of φ̂ [1].

[1] J. Garnier et al., ARMA 220 (2016) 37.



Stability of the Wigner transform of the field
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Contour levels of the coefficient of variation of the smoothed Wigner transform.

Here rs = rs/ρ, ξs = ξsρ, and ρ = ρ(z;ω, ro, ℓc, Zsca).

→ This result makes it possible to achieve optimal trade-off between stability and

resolution for correlation-based imaging [1,2].

[1] L. Borcea et al., Inverse Problems 27 (2011) 085004. [2] J. Garnier et al., ARMA 220 (2016) 37.



Application 1: Ultrasound echography in concrete

−→
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Experimental set-up Data

Concrete: highly scattering medium for ultrasonic waves.
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Application 1: Ultrasound echography in concrete
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Image obtained by travel-time migration of well-regularized cross correlations of data.
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Remark on fourth-order moments

• Fourth-order moments are useful to:

• quantify the statistical stability of correlation-based imaging methods.

• implement intensity-correlation-based imaging methods (when only intensities can

be measured, as in optics).
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Speckle intensity correlation imaging through a scattering medium

−→

Speckle pattern

Experimental set-up [1]

• The light source is a time-harmonic plane wave.

• The object to be imaged is a mask that can be shifted transversally.

• For each position of the object the spatial intensity of the transmitted field (speckle

pattern) can be recorded by the camera.

[1] J. A. Newmann et al., Phys. Rev. Lett. 113 (2014) 263903.



Speckle intensity correlation imaging through a scattering medium

• The field just after the mask (in the plane z = 0) is (for a transverse shift r):

fr(x) = f(x− r),

where f is the indicator function of the mask.

• The field in the plane of the camera (in the plane z = L) is denoted by φ̂r(x).

• The measured intensity correlation is

Cr,r′ =
1

|A0|

∫

A0

|φ̂r(x)|
2|φ̂r′(x)|2dx

−
( 1

|A0|

∫

A0

|φ̂r(x)|
2dx

)( 1

|A0|

∫

A0

|φ̂r′(x)|2dx
)
,

where A0 is the spatial support of the camera.
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Speckle intensity correlation imaging through a scattering medium

• Result (in the paraxial regime):

E
[
Cr,r′

]
=

∫

A0

dX

∫
dY

∣∣∣ 1

(2π)2

∫ (∫
f
(
x+

r′ − r

2

)
f
(
x−

r′ − r

2

)
exp

(
− iζ · x

)
dx

)

× exp
(
iζ ·

(
X −

r + r′

2

))
exp

( ω2

4c2o

∫ L

0

γ
(coζ
ω

z − Y
)
− γ(0)dz

)
dζ

∣∣∣
2

−
∣∣∣ 1

(2π)2

∫

A0

dX
(∫

f
(
x+

r′ − r

2

)
f
(
x−

r′ − r

2

)
exp

(
− iζ · x

)
dx

)

× exp
(
iζ ·

(
X −

r + r′

2

))
exp

(
−

ω2

4c2o
γ(0)L

)
dζ

∣∣∣
2

,

with γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz.

NUS September 2018



Speckle intensity correlation imaging through a scattering medium

• Result: When L ≫ Zsca :=
8c2

o

γ(0)ω2 and

|A0|(∼ diam(camera)2) ≫ ρ2L :=
Zscaℓ

2
c

L

(ρL = speckle radius), we have

Cr,r′ ≃ E
[
Cr,r′

]
≈

∣∣∣
∫

|f̂(κ)|2 exp
(
iκ · (r′ − r)

)
dκ

∣∣∣
2

,

up to a multiplicative constant, where

f̂(κ) =

∫
f(x) exp

(
− iκ · x

)
dx.

→֒ It is possible to reconstruct the mask indicator function f .
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Speckle intensity correlation imaging through a scattering medium

• We have

Cr,r′ ≃ E
[
Cr,r′

]
≈

∣∣∣
∫

|f̂(κ)|2 exp
(
iκ · (r′ − r)

)
dκ

∣∣∣
2

→֒ It is possible to reconstruct the incident field f by a two-step phase retrieval

algorithm (Gerchberg-Saxon-type).

1) Given Cr,r′ , we know the modulus of the (I)FT of |f̂(κ)|2, and we know the phase

of |f̂(κ)|2 (zero) → we can extract |f̂(κ)|2.

2) Given |f̂(κ)|2, we know the modulus of the FT of f(x), and we know the phase of

f(x) (zero) → we can extract f(x).
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Speckle intensity correlation imaging through a scattering medium (II)

Experimental set-up

• A laser beam with incident angle θ is shined on the scattering medium.

• The object to be imaged is a mask.

• The total intensity of the light that goes through the mask is collected by a bucket

detector.

→ For each incident angle θ the total transmitted intensity Eθ is measured.
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Speckle intensity correlation imaging through a scattering medium (II)

Consider:

C(∆θ) =
1

Θ

∫

Θ

EθEθ+∆θdθ −
( 1

Θ

∫

Θ

Eθdθ
)2

• Result (in the paraxial regime):

E[C(∆θ)] =
1

(2π)2

∫∫
exp

( ω2

2c2o

∫ L

0

γ
(
x+∆θ(z + Lo)

)
dz

)
e−ix·κ|f̂2(κ)|2dκdx

× exp
(
−

ω2γ(0)L

2c2o

)
− |f̂2(0)|2 exp

(
−

ω2γo(0)L

2c2o

)
,

with γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz.
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Speckle intensity correlation imaging through a scattering medium (II)

• Result: When L ≫ Zsca :=
8c2

o

γ(0)ω2 , ρ
2
L =

Zscaℓ
2

c

L
is small enough and Lo is large

enough, then

C(∆θ) ≃ E[C(∆θ)] ≈

∫
|f̂2(κ)|2 exp

(
− iκ∆θLo

)
dκ

→֒ One can extract |f̂2(κ)|2 (by Fourier transform or FFT) and then f2(x) by a

(one-step) phase retrieval algorithm.
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Speckle intensity correlation imaging through a scattering medium (III)

• Noise source (laser light passed through a rotating glass diffuser).

• without object in path 1; a high-resolution detector measures the spatially-resolved

intensity I1(t,x).

• with object (mask) in path 2; a single-pixel detector measures the

spatially-integrated intensity I2(t).

Experiment: the correlation of I1(·,x) and I2(·) is an image of the mask [1,2].

[1] A. Valencia et al., PRL 94 (2005) 063601; [2] J. H. Shapiro et al., Quantum Inf. Process 1 (2012) 949.



Speckle intensity correlation imaging through a scattering medium (III)

• Wave equation in paths 1 and 2:

1

c2j(~x)

∂2uj

∂t2
−∆~xuj = e−iωotn(t,x)δ(z) + c.c., ~x = (x, z) ∈ R

2 × R, j = 1, 2

• Noise source (with mean zero):

〈
n(t,x)n(t,x′)

〉
= F (t− t′) exp

(
−

|x|2

r2o

)
δ(x− x′)

• Wave fields: uj(t, ~x) = vj(t, ~x)e
−iωot + c.c., j = 1, 2

• Intensity measurements:

I1(t,x) = |v1(t, (x, L))|
2 in the plane of the high-resolution detector

I2(t) =

∫

R2

|v2(t, (x
′, L+ L0))|

2dx′ in the plane of the bucket detector

• Correlation:

CT (x) =
1

T

∫ T

0

I1(t,x)I2(t)dt−
( 1

T

∫ T

0

I1(t,x)dt
)( 1

T

∫ T

0

I2(t)dt
)
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Speckle intensity correlation imaging through a scattering medium (III)

• If the propagation distance is larger than the scattering mean free path, then

CT (x)
T→+∞
−→

∫

R2

H(x− y)f(y)4dy,

where f(x) is the mask indicator function and H(x) is a convolution kernel [1].

• If the medium is homogeneous:

H(x) =
r4o

28π2L4
exp

(
−

|x|2

4ρ2gi0

)
, ρ2gi0 =

c2oL
2

2ω2
or

2
o

.

• If the medium in path 1 and 2 is random (independent realizations):

H(x) =
r4oρ

2
gi0

28π2L4ρ2gi1
exp

(
−

|x|2

4ρ2gi1

)
, ρ2gi1 = ρ2gi0 +

4c2oL
3

3ω2
oZscaℓ2c

.

→֒ Scattering (only slightly) reduces the resolution.

• If the medium in path 1 and 2 is random (same realization):

H(x) =
r4o

28π2L4
exp

(
−

|x|2

4ρ2gi2

)
,

1

ρ2gi2
=

1

ρ2gi0
+

16L

Zscaℓ2c
.

→֒ Scattering enhances the resolution !

[1] J. Garnier, Inverse Problems and Imaging 10 (2016) 409.



Speckle intensity correlation imaging through a scattering medium (IV)

- The medium in path 2 is randomly heterogeneous.

- There is no other measurement than I2(t).

- The realization of the source is known (use of a Spatial Light Modulator) and the

medium is taken to be homogeneous in the “virtual path 1” → one can compute the

field (and therefore its intensity I1(t,x)) in the “virtual” output plane of path 1.

→֒ a one-pixel camera can give a high-resolution image of the mask!
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Conclusion: On the role of the random medium

Is random medium good or bad for imaging ?

Random medium in region 0 is good.

Random medium in regions 1 and 2 is bad.

Random medium in region 3 plays no role.
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