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MIMO structured

Quantitative: reconstruct the spatial distribution of permittivity (&r)
Based on inverse scattering problem

Essentially nonlinear, especially for larger &r
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Scene

Transmission
pattern

Phased array (MISO/SIMO) structured
Qualitative: reconstruct the spatial distribution of reflectivity (+/&r)
Based on Born approximation
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Linearized, especially for larger &r
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Transmitter metasurfaces (24 total)
Receiver metasurfaces (72 total)

-1 J. Gollub, et al, D. Smith, “Large Metasurface Aperture for Millimeter Wave
Computational Imaging at the Human-Scale”, Scientific Report, 2017

-l Frequency-diverse metasurfaces, 17.5-26.5 GHz, spatially-diverse patterns

- 2.1mX2.1m, consisting of 24 transmitting and 72 receiving metasurfaces,
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Linear reconstruction matrix equation g = Hf +n

H: linear transfer matrix should be established in advance

Resolution researches 7 mm

Identify gun and knife attached on a mannequin (painted by conductive layer)
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Feed antenna

1 Diode based dynamic 1-D and 2-D metasurfaces
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|

- Antenna array with randomized elements

Frequency-diverse Resonant cavity with randomized slots

1 Metasurface with complicated frequency dispersion
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Introduction

Randomness of the llluminations: random or pseudo random?
Bandwidth: spectrum efficiency?

Power consumption: energy efficiency?

System scale: redundant?

Imaging resolution: guaranteed?
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1 Making randomness definite
1 Using conventional phased array
] Customization on demands
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Array aperture: N element lies in x-y plane, i-th element located at ri
Imaging plane: N’ grids, i’-th grid located at r;

f: spatial distribution of reflectivity, g: measured scattered fields, n: noises
To solve f, correlation between all of the row vectors of H should be zero



Theory

Incidence to the i’-th grid by the i-th
element of the array

E(7) = jkn,l,e”" G(r',7)
where G(r,7)=e "7 / 4z |7 - 7]

Incidence to the i’-th grid by all the N
elements of the array

E, (r)=)Y E(7)= jkn,» I,e " G(F,7).
i=1 i=1

where E.inc - [Einc(?l)9 Einc(?E)’ T Einc(?m)]
The Green'’s functions of different elements are independent
For N illuminations with completely randomized ¢i , the total electric field

incident to the i-th grid (and therefore all the grids) will be completely random
Any additional illumination will be correlated with the previous N illuminations




Theory

1 For all the grids on the imaging plane

Einc = Jkﬂnfo‘pG

where

Einc = [EEHC(F])S Einc(’_"‘?)a "t Efnc(‘;roo)]
¢ = [e?ﬂﬂ] .o -e_j'pf- . .e_ﬂ;‘N]
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re
Array P

G=| GG.7%) G(E.F)  G(FE.7)

_G(risFN)G(rstN)'“G(F y) |



Theory

For M measurements to E.

E = jkn,J® G
where

E=[E",E® .. ET

inc? inc inc

¢=[?(1},¢(2) -

(M) ]T

According to matrix theory, the rank of E will satisfy
R(E) < min{R(®), R(G)}

Since the maximum rank of R(G) is N, and the maximum rank of R(®) is the
smaller one in M and N, when M is increased to N, the rank of E can be
maximized to N.

In this case, the N measurements will be independent, leading to the most
independent equations for the reconstruction of the image.

Any additional measurement over N will be redundant.
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O If the imaging region was meshed so that N'=N, f= H''g
- If N> N, ill-posed.



Simulations
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Measurements

10X 10-element array, 20X 20 0.5-A grids, periodicity 1A

Normalized singular values suddenly drop at M = N’ = N =100 measurement
1-bit phase toggling between 0 and 1T phase works best.

When M = N’ = N, H will be full-rank, f= H'lg., implying an efficient imaging
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1 Input: approximate size of the object and desired imaging resolution Ar’
1 Output: the size of the imaging region, total grids number N’ , antenna
element number N, element periodicity Ar, measurement number M,

imaging distance D
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Left: With a 25-dB SNR: (a) T-shaped object, (b) random illumination, (c)
singular values of H, (d) reconstructed imaging

Right: Reconstructed images with a 15-dB SNR: (a) 5-A, (b)10-A and (c) 15-A
imaging distances. (d) NRMS errors for different imaging distances.



Experiments
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1 Designed at 5.8 GHz
-1 (a) Circuit and test board; (b) Measured amplitude and phase difference.
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i 4 USB
MCU controller \ﬂ-

Power divider

Lin
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Top layer Bottom layer Phase modulator

] Board-integrated imaging system
1 5X5 elements, 25 measurement, each finished in microseconds
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(b)

1] Randomness of the experimental H matrix
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] Measurement inside a chamber
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1 (a) Imaging to two discrete copper sheets at 7-, 10- and 13-A distances
- (b) Imaging to an L-shaped copper sheet at the same distances.
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1 At the optimal distance, the imaging quality is the best
1 Reconstructed background also contributes to the error
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1 Other shapes also work
1 The above results verified the proposed imaging system and algorithms.



Discussions

Based on the ensured, complete randomness, imaging is highly efficient
The imaging system can be customized on demand, to realize various
minimal imaging system, costing minimum resources
Including: minimum number of antenna elements, full-rank H matrix with a
minimum dimension, minimum measurements
Imaging can be finished in milliseconds
Best spectrum efficiency and power efficiency
Solutions for larger objects or higher resolutions
Increasing the scale of the illumination array
Using higher frequencies: switches are available at sub-THz band
Using step-frequency, multicarrier or wideband signals
Adopting inverse problem based imaging



Thank you for your attention!
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