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THE MOST RECENT RESULT

PDE-based Numerical Method for X-Ray Tomography with
Incomplete Data

M.V. Klibanov and L.H. Nguyen

• The Radon transform works only with a Special Case of
Incomplete Data

• The efforts of researchers were focused so far on the integral
formulation

• Unlike these, our method is based on a PDE of the first order
• Works with a special case of incomplete data
• Carleman estimate is used to prove uniqueness, existence and
convergence

• Applications are in checking luggage in airports and in checking
walls
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AN ILLUSTRATION OF A 3D TOMOGRAPHIC EXPERIMENT

Figure 1: Source/detector configuration in 3D.
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AN ILLUSTRATION OF A 3D TOMOGRAPHIC EXPERIMENT

Figure 2: Source/detector configuration in any 2D cross section.
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INVERSE PROBLEM STATEMENT

Let a,b,R,d = const > 0,a < b.

Ω = (−R,R)× (a,b), x = (x, y) ∈ R2

Let f(x) ∈ C2(R2) be the unknown function,

f (x) = 0 for x ∈ R2⧹Ω.

Consider sources

xα = (α, 0) ∈ Γd = {x = (α, y) : α ∈ (−d,d), y = 0} .

We define the function u(x, xα) as

u(x, xα) =
∫

L(x,xα)

f(ξ)dσ,

where L(x, xα) is the line segment connecting points x and xα. xα is
the source and x is the detector.
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RADON TRANSFORM PROBLEM

Determine the function f from the measurement of Rf

Rf = u(x, xα),

∀x = (x, y) ∈ ∂Ω,∀xα = (α, 0) ∈ Γd.

The function Rf is known as the Radon transform of the function f
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A SPECIAL ORTHONORMAL BASIS IN L2 (−d,d)

(Klibanov, J. Inverse and Ill-Posed Problems, 25, 669-685,2017)

We need to construct such an orthonormal basis {Ψn (α)}∞n=0 in
L2(−d,d) that:

1. Ψn ∈ C1 [−d,d] , ∀n = 0, 1, ...
2. Let (·, ·) denotes the scalar product in L2 (−d,d) .

Let amn = (Ψ′
n,Ψm) . Then the matrix MN = (amn)N−1m,n=0 is invertible for

any N = 1, 2, ...

Neither standard orthonormal polynomials nor trigonometric
functions

{
e[i(nπx)/d]

}
are not suitable since each such basis

contains a constant function whose derivative is identical zero.
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A SPECIAL ORTHONORMAL BASIS IN L2 (−d,d)

Functions {αkeα}∞k=0 are linearly independent and form a complete
set in L2(−d,d).

Gram-Schmidt orthonormalization procedure→ {Ψk (α)}∞k=0 in
L2(−d,d), Ψk(α) = Pk(α)eα.

Lemma 1. We have

ϕmk =

d∫
−d

Ψ′
k(α)Ψm(α)dα =

{
1 if k = m,

0 if k < m.

Consequently, for any integer N > 1, the determinant of the matrix
MN = (ϕmk)

N
m,k=0 equals 1. Therefore, the matrix MN is invertible.
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PARTIAL DIFFERENTIAL EQUATION

[A. H. Hasanoğlu and V. G. Romanov, Introduction to Inverse Problems
for Differential Equations, Springer, Cham, 2017]:

x− α√
(x− α)2 + y2

ux +
y√

(x− α)2 + y2
uy = f (x, y) , (x, y) ∈ Ω.

Differentiate with respect to α. Let v (x, y, α) = ∂αu (x, y, α) .

• Then the unknown function f (x, y) is eliminated: as in the first
step of the Bukhgeim-Klibanov method

vy = − x− α

|x− xα|2
uy −

x− α

y vx +
y

|x− xα|2
ux, , α ∈ (−d,d). (1)
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PARTIAL DIFFERENTIAL EQUATION

• Approximate the function u (x, y, α) via a truncated Fourier
series

u(x, y, α) =
N−1∑
n=0

un(x, y)Ψn(α), x = (x, y) ∈ Ω, α ∈ (−d,d). (2)

• The number N should be chosen numerically.

v(x, α) =
N−1∑
n=0

un(x)Ψ′
n(α), x = (x, y) ∈ Ω, α ∈ (−d,d). (3)

Substituting (2) and (3) in (1), we obtain
N−1∑
n=0

∂yun(x)Ψ′
n(α) = − x− α

|x− xα|2
N−1∑
n=0

∂yun(x)Ψn(α)− (4)
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PARTIAL DIFFERENTIAL EQUATION

−x− α

y

N−1∑
n=0

∂xun(x)Ψ′
n(α) +

y
|x− xα|2

N−1∑
n=0

∂xun(x)Ψn(α).

Multiplying (4) by Ψk(α), k = 0, ...,N− 1 and integrating with respect
to α ∈ (−d,d), we obtain

(MN − D1 (x))Uy(x)− D2 (x)Ux(x) = 0, x = (x, y) ∈ Ω, (5)

U (x) = (u0, ...,uN−1)T (x) ,

max
x∈Ω

∥D1 (x)∥ ≤ C
a .
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PARTIAL DIFFERENTIAL EQUATION

Lemma 2. For each N > 1 there exists a sufficiently large number
a0 = a0 (N,R,d) > 1 depending only on listed parameters such that
for any a ≥ a0 the matrix MN

(
I−M−1

N D1 (x)
)
is invertible. Denote

D (x) = −
[
MN
(
I−M−1

N D1 (x)
)]−1 D2 (x) . Then there exists a constant

C1 > 0 such that

max
x∈Ω

∥D (x)∥ ≤ C1

and equation (5) is equivalent with

Uy(x) + D (x)Ux(x) = 0, x = (x, y) ∈ Ω.
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OVERDETERMINED BOUNDARY VALUE PROBLEM

Find the vector function U(x) satisfying the following conditions:

Uy(x) + D (x)Ux(x) = 0, x = (x, y) ∈ Ω, (6)

U(x) = g(x), x ∈ ∂Ω. (7)

• Semi-discrete formulation of the boundary value problem (6),
(7).

• Consider the grid of the finite difference scheme with the step
size h:

x0 = −R < x1 = h < ... < xi = ih < ... < xK−1 = (K− 1)h < xK = R.
We define the domain Ωh as

Ωh = {x = (x, y) : y ∈ [a,b] , x = ih, i = 1, ..., (K− 1)} .

Uhi (y) = U (ih, y) ,Uh (y) =
(
Uh1 , ...,UhK

)
(y) , y ∈ [a,b] .

Since U is an N−D vector, then Uh is a N× (K+ 1) matrix.
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OVERDETERMINED BOUNDARY VALUE PROBLEM

We approximate the derivative Ux at the point (ih, y) by the central
finite difference as

Uhix (ih, y) =
Uhi+1 (y)− Uhi−1 (y)

2h , i = 1, ..., (K− 1) .

Semi finite difference formulation of the problem (6), (7):

Uhy (x) + Dh (x)Uhx (x) = 0, x ∈ Ωh, (8)

Uh (x) = gh(x), x ∈ ∂Ω. (9)

Spaces of semi discrete functions:

Lh2
(
Ωh
)
=

Uh :
∥∥∥Uh∥∥∥2

Lh2(Ωh)
=

K−1∑
i=1

h
b∫
a

[
Uhi (y)

]2
dy < ∞

 ,
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OVERDETERMINED BOUNDARY VALUE PROBLEM

H1,h
(
Ωh) =

Uh :
∥∥Uh∥∥2H1,h(Ωh)=

K−1∑
i=1

h
b∫
a

[(
Uhix (ih, y)

)2
+
(
Uhiy (y)

)2
+
(
Uhi (y)

)2]
dy< ∞

 ,

H1,h0
(
Ωh
)
=
{
Uh ∈ H1,h

(
Ωh
)
: Uh |∂Ω= 0

}
.

There exists a constant Bh0 = Bh0 (h0) > 0 depending only on h0 such
that ∥∥∥Uhx (y)∥∥∥2Lh2(Ωh)

≤ Bh0
∥∥∥Uh∥∥∥2

Lh2(Ωh)
, ∀h ∈ [h0, 1] .

Thus, the semi-discrete QUASI-REVERSIBILITY METHOD applied to
problem (8), (9) is:
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OVERDETERMINED BOUNDARY VALUE PROBLEM

MINIMIZATION PROBLEM 1. Let ε ∈ [0, 1) be the regularization
parameter. Minimize the functional Jhα

(
Uh
)
,

Jhε
(
Uh
)
=
∥∥∥Uhy (y) + Dh (x)Uhx (y)

∥∥∥2
Lh2(Ωh)

+ ϵ
∥∥∥Uh (y)∥∥∥2

H1,h(Ωh)

on the space of matrices Uh ∈ H1,h
(
Ωh) satisfying boundary

condition Uh (x) = gh(x).

Lemma 3. (Carleman estimate). Let the parameter λ > 0. Let H10 (a,b)
be the subspace of functions w ∈ H1 (a,b) satisfying the boundary
condition w (b) = 0. Then the following Carleman estimate holds

b∫
a

(w′)
2 e2λydy ≥ 1

2

b∫
a

(w′)
2 e2λydy+ 1

2λ
2

b∫
a

w2e2λydy,

∀w ∈ H10 (a,b) ,∀λ > 0.
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EXISTENCE AND UNIQUENESS OF THE MINIMIZER

Theorem 1. Assume that a ≥ a0 = a0 (N,R,d) > 1, where a0 (N,R,d)
is the number of Lemma 2. Also assume that there exists a N× (K+ 1)
matrix Fh ∈ H1,h

(
Ωh) such that Fh |∂Ω= gh(x). Then for each number

ϵ ∈ [0, 1) and for each h ∈ [h0, 1) there exists unique solution
Uh ∈ H1,h

(
Ωh) of the Minimization Problem 1. Furthermore, there

exists a constant Ch0 = Ch0 (N,Ω,d,h0) > 0 depending only on listed
parameters such that for all h ∈ (0,h0) the following estimate holds:

∥∥∥Uh∥∥∥
H1,h(Ωh)

≤ Ch0
∥∥∥Fh∥∥∥

H1,h(Ωh)
.
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CONVERGENCE OF REGULARIZED SOLUTIONS

Let δ ∈ (0, 1) be the level of noise in the data. Let U∗,h (x) be the
exact solution of problem (8), (9) with noiseless data g∗,h(x) in (9).
Suppose that there exists a matrix F∗,h ∈ H1,h

(
Ωh) such that

F∗,h |∂Ω= g∗,h(x).

Also, let ghδ(x) be the noisy data in (9) and assume that there exists a
matrix Fhδ ∈ H1,h

(
Ωh) such that Fhδ |∂Ω= ghδ(x). We assume the

following error estimate:

∥∥∥Fhδ − F∗,h
∥∥∥
H1,h(Ωh)

≤ δ. (10)
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CONVERGENCE RATE THEOREM

Theorem 2. (convergence rate) Let U∗,h (x) be the exact solution of
equation (8) with noiseless data g∗,h(x) in (9). Let Uhδ (x) be the
solution of equation (8) with noisy data ghδ(x) in (9), which was
constructed in Theorem 1. Assume that conditions of Theorem 1 hold
and also that error estimate (10) is valid. Then for all h ∈ [h0, 1) the
following convergence rate is valid:

∥∥∥Uhδ − U∗,h
∥∥∥
H1,h(Ωh)

≤ Ch0
(
δ +

√
ϵ
∥∥∥U∗,h

∥∥∥
H1,h(Ωh)

)
.
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GENERALIZATION: ATTENUATED TOMOGRAPHY

Equation:

x− α√
(x− α)2 + y2

ux+
y√

(x− α)2 + y2
uy+c (x, y)u = f (x, y) , (x, y) ∈ Ω.

The only difference with the original equation is in the term c (x, y)u.

However, since Carleman estimates are insentive to lower terms of
PDE operators, then our technique works for this case.

Inversion formula was derived by Novikov in 2002.
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NUMERICAL STUDIES: COMPARISON WITH FBP

(a) True image.

(d) FBP, artifacts removed.

(b) The Radon transform data.

(e) Our method, artifact removed

(c) Our incomplete data.

Figure 3: The reconstructions of the function with an L-shape image.
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NUMERICAL STUDIES: COMPARISON WITH FBP

(a) True image.

(d) FBP, artifacts removed.

(b) The Radon transform data.

(e) Our method, artifact removed

(c) Our incomplete data.

Figure 4: The reconstructions of the function with an L-shape image.
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CONVEXIFICATION

Figure 5: An example of multiple local minima which are depicted a maxima
for convenience. J. A. Scales, M. L. Smith, and T. L. Fischer, J. of Computational
Physics, 103, 258-268, 1992.
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CONVEXIFICATION

• Coefficient inverse problems for PDEs are nonlinear
• Therefore, conventional least squares functionals for them
usually have many local minima and ravines

• Hence, only LOCALLY convergent numerical methods can work in
the conventional case, i.e. small perturbation approaches, e.g.
gradient-like methods and Newton-like methods

• Convexification constructs globally strictly convex cost
functionals for CIPs

• The main ingredient: CARLEMAN WEIGHT FUNCTION
• GLOBALLY convergent numerical methods are constructed and
tested numerically
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CIPs WITH SINGLE MEASUREMENT DATA

DEFINITION. We call a numerical method for a CIP globally
convergent if a theorem is proved, which claims that this method
delivers at least one point in a sufficiently small neighborhood of
the exact solution without any advanced knowledge of this
neighborhood.

A. CIPs with single measurement data.

• Two types of globally convergent numerical methods: Klibanov
and his group, 1995-2018.

• Carleman Weight Functions Method.
• The tail function method.
• Both methods are fully verified on experimental backscattering
data.
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CIPs WITH DIRICHLET-TO-NEUMANN MAP DATA

B. CIPs with restricted Dirichlet-to-Neumann map data:
convexification

C. CIPs with Dirichlet-to-Neumann map data

• Methods of M.I. Belishev and S.I. Kabanikhin.

ELECTRICAL IMPEDANCE TOMOGRAPHY WITH RESTRICTED
DIRICHLET-TO-NEUMANN DATA

Michael V. Klibanov, Jingzhi Li and Wenlong Zhang
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Let Ω,G ⊂ Rn,n = 2, 3 be two bounded domains with piecewise
smooth boundaries, Ω ⊂ G, ∂Ω ∩ ∂G = ∅.
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Let x ∈ Rn−1 be a fixed point. For s ∈ [0, 1] denote xs = (x1s, x) the
position of the point source. Let

I = {xs = (x1s, x) : s ∈ [0, 1]} ⊂ G,

I ∩ Ω = ∅.

be the interval of the straight line of sources.

Consider a small neighborhood Iε of the interval I,

Iε = {x ∈ Rn : dist(x, I) < ε} ⊂
(
G⧹Ω

)
,

f (x− xs) =
{

1
ε exp

(
− 1
1−|x−xs|2/ε

)
, if (x− xs)2 < ε,

0, otherwise.{
∇ · (σ(x)∇u(x, s)) = −f(x− xs), x ∈ G,∀xs ∈ I,
u(x, s)|x∈∂G = 0, ∀xs ∈ I.
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COEFFICIENT INVERSE PROBLEM (CIP)

Let the conductivity function

σ (x) ∈ C2+α(G), σ (x) = 1 for x ∈ G \ Ω and σ (x) ≥ const. > 0.

We measure both Dirichlet and Neumann boundary conditions of
the function u on a part Γ ⊆ ∂Ω of the boundary ∂Ω,

u(x, s)|x∈Γ,xs∈I = g0(x, s) and ∂nu(x, s)|x∈Γ,xs∈I = g1(x, s). (11)

• We call (11) Restricted Dirichlet-to-Neumann Data
• These data are non overdetermined in both 2D and 3D cases

CIP. Assume that the function σ (x) is unknown for x ∈ Ω. Also,
assume that functions g0(x, s) and g1(x, s) in (11) are known for all
x ∈ Γ, xs ∈ I. Determine the function σ (x) .
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First, we introduce the well known change of variables u1 =
√
σu.

a0(x) = −
∆
(√

σ(x)
)

√
σ(x)

Then

{
∆u1(x, s) + a0(x)u1(x, s) = −f(x− xs), x ∈ G, ∀xs ∈ I,
u1(x, s)|x∈∂G = 0, ∀xs ∈ I,

(12)

u1(x, s)|x∈Γ,s∈(0,1) = g0(x, s) and ∂νu1(x, s)|x∈Γ,s∈(0,1) = g1(x, s). (13)

If we would recover the function a0(x) for x ∈ G from conditions (12),
(13), then we would recover the function σ (x).

We have u1(x, s) > 0 for all x ∈ G and all s ∈ [0, 1] . Hence, we can
consider the function v(x, s),
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v(x, s) = lnu1(x, s).

Then (12) implies that

∆v(x, s) + (∇v(x, s))2 = −a0(x), x ∈ Ω,∀s ∈ [0, 1]. (14)

In addition, using (13), we obtain

v(x, s)|x∈Γ,s∈[0,1] = g̃0(x, s) and ∂νv(x, s)|x∈Γ,s∈[0,1] = g̃1(x, s). (15)

Differentiate equation (14) with respect to s,

∆vs + 2∇vs · ∇v = 0, x ∈ Ω,∀s ∈ [0, 1]. (16)

Now the CIP1 is reduced to the following problem:

30



Reduced Problem. Recover the function v (x, s) from equation (16),
given the boundary measurements g̃0(x, s) and g̃1(x, s) in (15).

Let {Ψn (s)}∞n=0 ⊂ L2 (0, 1) be the orthonormal basis as above.

APPROXIMATE MATHEMATICAL MODEL. We assume that the function
v (x, s) is represented via a truncated Fourier series with respect to
the basis {Ψn (s)}∞n=0 ,

v (x, s) =
N−1∑
n=0

vn (x)Ψn (s) , x ∈ Ω, s ∈ (0, 1) ,

where the vector function V (x) = (v0 (x) , ..., vN−1 (x))T of coefficients
is unknown.
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As above, the number N should be chosen numerically.

Similarly with the tomography case

MN∆V− F̃ (∇V) = 0, x ∈ Ω, V ∈ C3
(
Ω
)
,

ϕmk =

1∫
0

Ψ′
k(s)Ψm(s)ds,

MN = (ϕmk)
N−1
m,k=0. M

−1
N exists. Let F (∇V) = M−1

N F̃ (∇V) . Then

∆V− F (∇V) = 0, x ∈ Ω, V ∈ C3
(
Ω
)
, (17)

V (x) |Γ= p0 (x) , ∂νV (x) |Γ= p1 (x) . (18)
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CONVEXIFICATION FOR THE PROBLEM (17), (18)

Let µ, ρ > 0 and µ < ρ. Denote r = |x| . Let

Ω =
{
x ∈ R3 : |x| < ρ

}
,

Ωµ =
{
x ∈ R3 : µ < |x| < ρ

}
⊂ Ω,

H20 (Ωµ) =
{
w ∈ H2 (Ωµ) : w |r=R= wr |r=R= 0

}
.

Lemma 2. (Carleman estimate). There exists a number
λ0 = λ0 (Ωµ) ≥ 1 and a number C = C (Ωµ) > 0, both depending only
on the domain Ωµ, such that for any function w ∈ H20 (Ωµ) and for all
λ ≥ λ0 the following Carleman estimate with the CWF e2λr holds:∫
Ωµ

(∆w)2 e2λrdx ≥ 1
2

∫
Ωµ

(∆w)2 e2λrdx+Cλ
∫
Ωµ

(∇w)2 e2λrdx+Cλ3
∫
Ωµ

w2e2λrdx

−Cλ3e2λµ ∥w∥2H2(Ωµ)
.
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Let
Γ = ∂Ω = {r = R}

Arrange zero Dirichlet and Neumann boundary conditions at Γ,

P (r, φ, θ) = p0 (r, φ, θ) + (r− ρ)p1 (r, φ, θ) ,

W (r, φ, θ) = V (r, φ, θ)−P (r, φ, θ) ; W (r, φ, θ) = (W0, ...,WN−1)
T (r, φ, θ) .

Hence, (17) and (18) imply that

∆W+∆P− F (∇W+∇P) = 0,

W ∈ H30 (Ωµ) .

Weighted Tikhonov-like functional:

Jλ,β (W) = (19)

= e−2λ(µ+η)

∫
Ω

[∆W+∆P− F (∇W+∇P)]2 e2λrdx+ β ∥W+ P∥2H3(Ωµ)
.
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Let R > 0 be an arbitrary number,

B (R) =
{
W ∈ H30 (Ωµ) : ∥W∥H3(Ωµ)

< R
}
.

Minimization Problem 2. Minimize the functional Jλ,β (W) on the
closed ball B (R).

Theorem 3. (global strict convexity) Let η > 0 be such that µ+ η < ρ.

The functional Jλ,β (W) has the Frechét derivative J′λ,β (W) at every
point W ∈ H30 (Ωµ) . Furthermore, there exists numbers

λ2 = λ2 (µ, η, F,N,P,R) ≥ λ0 > 0 and C2 = C2 (µ, η, F,N,P,R) > 0
depending only on listed parameters if 2e−λ2η < 1 then for all λ ≥ λ2
the functional Jλ,β (W) is strictly convex on B (R) for the choice of
β ∈

(
2e−λη, 1

)
. More precisely, the following inequality holds:

Jλ,β (W2)− Jλ,β (W1)− J′λ,β (W1) (W2 −W1)

≥ C2 ∥∆(W2 −W1)∥L2(Ωµ+η)
+C2 ∥W2 −W1∥2H1(Ωµ+η)

+
β

2 ∥W2 −W1∥2H3(Ωµ)
,

∀W1,W2 ∈ B (R).
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Let PB : H30 (Ωµ) → B (R) be the projection operator of the space
H30 (Ωµ) on the closed ball B (R).

Let W0 ∈ B (R) be an arbitrary point. The gradient projection method:

Wn = PB
(
Wn−1 − ζJ′λ,β (Wn−1)

)
, n = 1, 2, ..., (20)

where ζ ∈ (0, 1) is a sufficiently small number. [, ] denotes the scalar
product in the space of real valued N−D vector functions H3 (Ωµ) .

Theorem 4. Let λ2 = λ2 (µ, η, F,N,P,R) ≥ λ0 > 0 be the number of
Theorem 3 and let the regularization parameter β ∈

(
2e−λη, 1

)
. Then

for every λ ≥ λ2 there exists unique minimizer Wmin,λ,β ∈ B (R) of the
functional Jλ,β (W) on the closed ball B (R). Furthermore, the
following inequality holds[

J′λ,β
(
Wmin,λ,β

)
,W−Wmin,λ,β

]
≥ 0, ∀W ∈ B (R).
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In addition, there exists a sufficiently small number
ζ0 = ζ0 (µ, η, F,N,P,R, λ, β) ∈ (0, 1) depending only on listed
parameters such that for every ζ ∈ (0, ζ0) the sequence (20)
converges to the minimizer Wmin,λ,β and the following estimate of
the convergence rate holds:∥∥Wn −Wmin,λ,β

∥∥
H3(Ω)

≤ ωn
∥∥W0 −Wmin,λ,β

∥∥
H3(Ω)

, n = 1, 2, ...,

where ω= ω (ζ) ∈(0, 1) depends only on the parameter ζ.

Let δ ∈ (0, 1) be the level of the noise in the data.

Let W∗ be the exact solution with the noiseless data P∗ ∈ C3
(
Ωµ

)
,

∆W∗ +∆P∗ − F (∇W∗ +∇P∗) = 0,

W∗ ∈ H30 (Ωµ) .

Let P ∈ C3
(
Ωµ

)
be the noisy data. Denote P̃ = P−P∗. We assume that∥∥∥P̃∥∥∥

H3(Ωµ)
≤ δ.
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Theorem 5. Let λ2 ≥ λ0 > 0 and C2 > 0 be numbers of Theorem 3.
Choose the number δ1 > 0 so small that δ1 < min

(
e−4ρλ2 , 3−4ρ/η

)
and let δ ∈ (0, δ1) . Set λ = λ (δ) = ln δ−1/(4ρ), β = β (δ) = 3δη/(4ρ).
Also, assume that the vector function W∗ ∈ B (R). Let
Wmin,λ(δ),β(δ) ∈ B (R) be the minimizer of the functional Jλ,β (W),
which is guaranteed by Theorem 4. Also, let the number ζ ∈ (0, ζ0) in
(20) be the same as in Theorem 4, so as the number ω ∈ (0, 1). Then
the following estimates hold:∥∥W∗ −Wmin,λ(δ),β(δ)

∥∥
H1(Ωµ+η)

≤ C2δη/(8ρ), (21)

∥W∗ −Wn∥H1(Ωµ+η)
≤ C2δη/(8ρ)+ωn

∥∥W0 −Wmin,λ(δ),β(δ)
∥∥
H3(Ω)

, n = 1, 2, ...,
(22)

∥∆W∗ −∆Wn∥L2(Ωµ+η)
≤ C2δη/(8ρ)+ωn

∥∥W0 −Wmin,λ(δ),β(δ)
∥∥
H3(Ω)

, n = 1, 2, ...
(23)

In the case of noiseless data with δ = 0 one should replace in
(21)-(23) δη/(8ρ) with

√
β, where β = 3e−λη and λ ≥ λ2.
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CONCLUSION

Theorem 5. ensures the GLOBAL convergence of the gradient
projection method to the exact solution.
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NUMERICAL STUDIES

(a) Example 1, true solution. (b) Computed for (a). N = 8.

Figure 6: The first example of the reconstruction.
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NUMERICAL STUDIES

(a) True solution.

(b) 3D visualization of (a).

(c) Computed for (a).

(d) 3D visualization of (c). N = 8.

Figure 7: The second example of the reconstruction..
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COEFFICIENT INVERSE PROBLEM IN FREQUENCY DOMAIN

COEFFICIENT INVERSE PROBLEM IN FREQUENCY DOMAIN.

∆u+ k2c(x)u = 0, x ∈ R3,

u = eikz + usc,

∂rusc − ikusc = o
(
1
r

)
, r→ ∞, r = |x| ,

c ∈ C15(R3), c(x) ≥ 1,

c(x) = 1 for x ∈ R3 \ Ω.

Regularity Assumption. We assume that geodesic lines of the metric
(8) satisfy the regularity condition, i.e. for each two points x, y ∈ R3

there exists a single geodesic line Γ (x, y) connecting these points.
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A sufficient condition for the validity of Regularity Assumption is (V.G.
Romanov, 2014):

3∑
i,j=1

∂2 ln c(x)
∂xi∂xj

ξiξj ≥ 0, ∀ξ ∈ R3,∀x ∈ Ω.

•
Ω = {x = (x, y, z) : −b < x, y < b, z ∈ (−ξ,a)} ,

Γ = {x = (x, y, z) : −b < x, y < b, z = −ξ} .
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COEFFICIENT INVERSE SCATTERING PROBLEM (CISP)

Let the backscattering data be given:

u (x, k) = g1 (x, k) , ∂zu (x, k) = g2 (x, k) , x ∈ Γ, k ∈ [k, k].

u (x, k) = eikz, x ∈ ∂Ω⧹Γ, k ∈ [k, k].

Find the coefficient c (x) for x ∈ Ω.

One can prove that u (x, k) ̸= 0 for sufficiently large k.

Furthermore, using asymptotic behaviour of u (x, k) at k→ ∞
(Vainberg, 1975; Klibanov and Romanov, 2016), one can uniquely
define logu (x, k) for sufficiently large k.

v (x, k) =
log
(
u (x, k) e−ikz

)
k2 , x ∈ Ω, k ∈ [k, k],

q (x, k) = ∂kv (x, k) ,
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v (x, k) = −
k∫
k

q (x, τ)dτ + v
(
x, k
)
.

Denote
V (x) = v

(
x, k
)
.

V (x) is the tail function.

To use the SIMPLEST POSSIBLE Carleman Weight Function

φ (z) = e−2λz,

we consider the semi-discrete form: finite differences with respect
to x, y with the step size h ≥ h0 > 0. But we do not let h→ 0.

L(q) = ∆hq+ 2k
(
∇hV−

∫ k
k ∇hq(κ)dκ

)
·
(
k∇h(q+ V)−

∫ k
k ∇hq (κ)dκ

)
+ (24)
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+2i
(
kqz + Vz −

∫ k

k
qz (κ)dκ

)
= 0.

q (x, k) = ϕ0 (x, k) , ∂zq (x, k) = ϕ1 (x, k) , x ∈ Γ, k ∈ [k, k],

q (x, k) = 0, x ∈ ∂Ω⧹Γ, k ∈ [k, k]. (25)

In (25) we heuristically complement the data on Γ by the data on
∂Ω⧹Γ.

Hn,h(Ωh) = {f(xj, ys, z) : ∥f∥2Hn,h(Ωh)
=

Nh∑
j,s=1

n∑
r=0

h2
d∫

−ξ

∣∣∂rzf (xj, ys, z)∣∣2 dz < ∞},n = 2, 3.

Lh2 (Ωh) = {f(xj, ys, z) : ∥f∥2Lh2 (Ωh)
=

Nh∑
j,s=1

h2
d∫

−ξ

∣∣f (xj, ys, z)∣∣2 dz < ∞},
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Hhn = {f(xj, ys, z, k) : ∥f∥2Hhn =
k∫
k

∥f (x, k)∥2Hn,h(Ωh)
dk < ∞}, n = 2, 3.

H2,h0 (Ωh) = {f(xj, ys, z, k) ∈ Hh2 (Ωh) : f |∂Ωh= fz |Γ= 0},

Lh2 (Ωh) = {f(xj, ys, z) : ∥f∥2Lh2 (Ωh)
=

Nh∑
j,s=1

h2
d∫

−ξ

∣∣f (xj, ys, z)∣∣2 dz < ∞},

Hhn = {f(xj, ys, z, k) : ∥f∥2Hhn =
k∫
k

∥f (x, k)∥2Hn,h(Ωh)
dk < ∞}, n = 2, 3.
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Theorem 6. (Carleman estimate). For λ > 0 let

Bh(u, λ) =
Mh∑
j,s=1

h2
d∫

−ξ

|∆hu(xj, ys, z)|2φλ(z)dz.

Then there exists a sufficiently large number λ0 = λ0(ξ,d) > 1 such
that for all λ ≥ λ0 the following estimate is valid for all functions
u ∈ H2,h0 (Ωh)

Bh(u, λ) ≥ C
Mh∑
j,s=1

h2
d∫

−ξ

∣∣uzz (xj, ys, z)∣∣2 φλ (z)dz+

+ Cλ
Mh∑
j,s=1

h2
d∫

−ξ

∣∣uz (xj, ys, z)∣∣2 φλ(z)dz+

+ Cλ3
Mh∑
j,s=1

h2
d∫

−ξ

∣∣u (xj, ys, z)∣∣2 φλ(z)dz.
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APPROXIMATION OF THE TAIL FUNCTION V (x)

V (x) = v
(
x, k
)
=
p (x)
k

+ O
(
1
k2

)
, k→ ∞, x ∈ Ω,

q
(
x, k
)
= −p (x)

k2
+ O

(
1
k3

)
, k→ ∞, x ∈ Ω.

Drop the terms with O
(
k−2
)
and O

(
k−3
)
and substitute in (24) at

k = k,

∆hV = 0, x ∈ Ω,

V(x) = V(0)(x), Vz(x) = V(1)(x), x ∈ Γ; V(x) = 0, x ∈ ∂Ω \ Γ. (26)
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Minimization Problem 3. For V ∈ H2,h(Ωh), minimize the functional
Iµ(V),

Iµ (V) = e2µd
Nh∑
j,s=1

h2
d∫

−ξ

∣∣∣(∆hV)(xj, ys, z)
∣∣∣2 φµ(z)dz, (27)

subject to boundary conditions (26). The multiplier e2µd is
introduced here to ensure that e2µdmin[−ξ,d] φµ(z) = 1.
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One can prove existence and uniqueness of the solution of this
problem as well as convergence of minimizers to the exact solution
as long as the level of noise in the data tends to zero.

Suppose that there exists a function F (x, k) ∈ Hh3 such that

F(x, k) = ϕ0(x, k), Fz(x, k) = ϕ1(x, k), x ∈ Γ, F(x, k) = 0, x ∈ ∂Ω \ Γ. (28)

p(x, k) = q(x, k)− F(x, k).

Let an arbitrary number R > 0 and

B(R) = {r ∈ H2,h0 (Ωh) : ∥r∥H2,h < R}.
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CONSTRUCTION OF WEIGHTED TIKHONOV-LIKE FUNCTIONAL

Construct the weighted Tikhonov-like functional,

Jλ(p) = e2λd
Nh∑
j,s=1

h2
k∫
k

d∫
−ξ

|Lh(p+ F)(xj, ys, z, κ)|2φλ(z)dzdκ, p ∈ B(R),

(29)
where the tail function in Lh is the solution of the Minimization
Problem 4:

Minimization Problem 4. Minimize the functional Jλ,ρ(p) on the set
B (R).

ANALOGS OF THEOREMS 3-5 ARE VALID FOR Jλ(p)
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GLOBAL CONVERGENCE

PERFORMANCE OF THE CONVEXIFICATION FOR THE MOST
CHALLENGING CASE:

EXPERIMENTAL MICROWAVE BACKSCATTERING DATA FOR TARGETS
BURIED IN A SANDBOX

• Frequencies ω ∈ [1, 10] GHz.
• Useful frequencies only ω ∈ [2.8, 3.2] GHz. The rest of
frequencies are too noisy.

• Dry sand. It would be harder to work out a moistured sand:
signal does not go through well

• A simple data preprocessing: we have subtracted from the data
with a target in the data without that target.

• Only backscattering data were measured.

λ = 3.
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NUMERICAL STUDIES: COMPARISON WITH FBP

(a) A photo of the experimental device.

(d) Original data.

z

y

x

Antenna

Measurement plane

Sand box

Target

(b) Schematic diagram of measurements.

(e) Propagated data.

(c) Schematic diagram of data propagation.

Figure 8: The reconstructions of the function with an L-shape image.
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BURIED TARGETS IN EXPERIMENTS

Table 1: Buried targets tested in experiments

Target number Description Size in x× y× z directions, cm
1 Bamboo 3.8× 11.6× 3.8
2 Geode 8.8× 8.8× 8.8
3 Rock 10.5× 7.5× 4.0
4 Sycamore 3.8× 9.9× 3.8
5 Wet wood 9.1× 5.7× 5.8
6 Yellow pine 9.0× 8.3× 5.8
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DIRECTLY MEASURED AND COMPUTED DIELECTRIC CONSTANTS

Table 2: Directly measured cmeas and computed ccomp dielectric constants of
objects of Table 1.

Target number cmeas, error ccomp, error
1 4.50, 5.99% 4.69, 4.22%
2 5.45, 1.13% 5.28, 3.12%
3 5.61, 21.3% 5.07, 9.63%
4 4.89, 2.89% 4.95, 1.23%
5 7.58, 4.69% 8.06, 6.33%
6 4.89, 1.54% 5.22, 8.75%
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(a) Correct image of target no. 4. (b) Computed image of target no. 4.

Figure 9: True and computed images of target no. 4. Other images are
similar.
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CONCLUSION

The convexification has demonstrated its EXCELLENT performance
accuracy for the MOST CHALLENGING case of experimental data for
buried targets.
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INVERSION OF THE WAVETHE TIME DEPENDENT FRONT IN
A HETEROGENEOUS MEDIUM

Michael V. Klibanov, Jingzhi Li and Wenlong Zhang

The forward problem. Find the solution u (x, x0, t) of the following
Cauchy problem

c (x)utt = ∆u, x ∈ R3, t > 0,
u (x, 0) = 0,ut (x, 0) = δ (x− x0) .

The travel time function τ (x, x0) is the solution of the eikonal
equation

|∇xτ (x, x0)|2 = c (x) ,
τ (x, x0) = O (|x− x0|) as |x− x0| → 0,
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τ (x, x0) =
∫

Γ(x,x0)

√
c (x)dσ.

Fix the source x0 = 0,

Ω = {x =(x, y, z) : −A < x, y < A, z ∈ (0,B)} .

Coefficient Inverse Problem. Let ST = ∂Ω× (0, T) . Let x0 = 0.
Suppose that the following two functions are given:

u (x, t) |(x,t)∈ST= g0 (x, t) , ∂nu (x, y,B, t) = g1 (x, y, t) , t ∈ (0, T) .

Find the function c (x) for x ∈ Ω assuming that c (x) = 1 outside of Ω.

Denote τ0 (x) = τ (x, 0) . Consider the function p,

p (x, t) =
t∫

0

dy
y∫

0

u (x, s)ds.

w (x, t) = p
(
x, t+ τ0 (x)

)
, for (x, t) ∈ Ω× (0, T) .

60



We obtain

∆w− 2
3∑
i=1

wxitτ0xi − wt∆τ0 = 0, x ∈ Ω, t ∈ (0, T) .

Let {Pn (t)}∞n=1 be the set of polynomials, forming an orthonormal
basis in L2 (0, T) and such that

Pn (0) = 0,∀n = 1, 2, ...

Approximate the function w (x, t) as

w (x, t) =
N∑
n=1

wn (x)Pn (t) .

Then

∆τ0 (x)+2
[ 3∑
i=1

τ0xi

N∑
n=1

P′n (0) ∂xiwn (x)
][ N∑

n=1
P′n (0)wn (x)

]−1
= 0, x ∈ Ω.

∆W = F
(
∇τ0,∇W,W

)
, x ∈ Ω,

W (x) = (w1 (x) , ...,wN (x))T , Q (x) =
(
τ0 (x) ,W (x)

)
.
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CAUCHY PROBLEM FOR A QUASILINEAR ELLIPTIC SYSTEM

∆Q+ F (∇Q,Q) = 0, x ∈ Ω,

Q |∂Ω= q0 (x) , ∂zQ |z=B= q1 (x) .

The Strictly Convex Tikhonov-like Functional

Jλ,β (Q) =
∫
Ω

(∆Q+ F (∇Q,Q))2 e2λz
2
dx+ β ∥Q∥2H3(Ω) .

Analogs of Theorem 3-5 Are Valid in This Case: Global Convergence.
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A PRELIMINARY NUMERICAL EXAMPLE

(a) True image.
(b) A 2d slice of the
computed image.

(c) 3D visualization of
the computed image.

Figure 10: A preliminary numerical example. The reconstruction of a target
of a complicated shape.
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A PRELIMINARY NUMERICAL EXAMPLE

(a) True image.
(b) A 2d slice of the
computed image.

(c) 3D visualization of
the computed image.

Figure 11: A preliminary numerical example. The reconstruction of a target
of a complicated shape.
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