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Current State of Urban Water Supply Systems
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Source: Smart UWSS project presentation
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Source: Smart UWSS project presentation

Complex, Large and Inaccessible
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Sources: Smart UWSS project presentation, creative commons

Waves as diagnostic tools 



Simple Demonstration 

Transmitter

8m

Receiver

• Low frequency acoustic waves as source6



Electrical Cable Networks

7Sources: creative commons, public domain

• Cars, planes and 
networks have 
1000’s km of wires 
and cables



Challenges and Talk Contents

• Pipeline Channel and noise characterization

▪ What is the noise PSD and PDF?

▪ Channel attenuation and transfer function?

▪ Optimum signal and receiver design?

▪ Link budget?

▪ Waveguide channel with multiple cutoffs?

• Fault Detection

▪ Blockage detection

▪ Impedance and Shunt Detection 

▪ Remaining challenges
8



• Noise is the smallest signal we 
can measure

• Care needs to be taken in its 
measurement and analysis.

• Self noise of system needs to 
be less than the noise we are 
trying to measure.
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Pipeline Acoustic Noise Characterization
Noise Measurement System 



Noise floor of the measurement system
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ADC = 16 bit, Full scale input range = ±1V,

Theoretical Quantization error =[1-(-1)]/ 216 ≈ 30μV. 

Transducer : TC 4032



Water pipeline systems  measured
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Standalone pipeline setup with no flow (Pipeline-I). 

HF-N: Hydrophone (Teledyne TC4032); 

Pipe Material: Steel; 

Pipe length and diameter: 7m, 90mm (external).

Pipeline-IPipeline-II
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Pipeline-III (Operational Urban Water Supply System)

Campus University of Canterbury, New Zealand. 

Hydrants used as access points to water pipelines



PSD for Pipeline I- No water flow

𝑓𝑝
𝑚𝑎𝑥, 𝑃𝑝

𝑚𝑎𝑥

𝑓𝑝
𝑏

PSD are flat after 𝑓𝑝
𝑏 and the PSD slopes before 𝑓𝑝

𝑏 depend on noise conditions.

𝑃𝑝
𝑚𝑖𝑛 almost same 

for all experiments

10𝐻𝑧, 𝑃𝑝
10𝐻𝑧 (Not always reliable)

Presence of 50 Hz and Harmonics, and ADC abnormalities

Piecewise Linear approximation using 5 
parameters

Parameters only depends on external 
noise conditions
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PDF for pipeline I- No water flow in lab 

Bulk: nearly 

Gaussian

Heavy Tails

Low 

probability 

Spikes

Variance =

-18 dBuV 

Variance =

8 dBuV 

• Sources of heavy tails are external acoustic noise like door bang, speech signals and 
machine noise
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PSD for Pipeline III- Actual water system  

(𝑓𝑝
𝑚𝑎𝑥, 𝑃𝑝

𝑚𝑎𝑥 ), around 40 dB higher than experiments without flow 

High power in low frequencies is due to turbulence as Reynolds number 𝑅𝑒 > 

20000 and slope of the spectrum is verified by Kolmogorov's third hypothesis.

𝑓𝑝
𝑑

𝑓𝑝
𝑎

Piecewise Linear approximation using 
6 parameters
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PDF for Pipeline III: actual water system 

Variance =

53 dBuV 

Variance =

57 dBuV 

• Reason for heavy tails is transients in water pressure in operational water 
system caused by opening/closing of valves, pipe branches and water pumps. 



PSD- Analysis and Modeling
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Piecewise Linear model for PSD
Turbulence

External Noise

Self noise of 
system and 
ambient noise



PDF-We propose α-stable  

• Stable distributions are a group of probability distributions suitable for 
modelling heavy tails, large variance and skewness

• Classical central limit theorem: the normed sum of a set of finite variance 
RVs, will tend towards a normal distribution 

• Without the finite variance assumption, the limit may be a stable 
distribution that is not normal.

• Four parameters: S(α,β, γ, δ)

18

α Shape parameter-Decides the overall shape and tails 0 < α ≤ 2

β Decides skewness of the distribution- (β=0:Symmetric) -1 ≤ β ≤ 1

γ Scale parameter (Directly related to the variance of the data) 0 < γ < ∞

δ Location parameter (Directly related to the mean of the data) -∞ < δ < ∞
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α-stable model for UWSS noise 

Value of 𝛼 estimated using MLE method 



Simulation Model

• Propose 4 independent noise sources

▪ Water flow noise

▪ External environment noise

▪ System noise

▪ Periodic deterministic sources

20
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White α-stable

Deterministic 

Sources

PSD shaping

Simulated 

Noise
Self Noise:

White Gaussian

White α-stable PSD shaping

Proposed- Simulation Model

• Four sources of noise

• PSD/correlation shaping

Flow Noise

External Noise



Summary of Noise characterization

• Channel noise modeled as α-stable noise

▪ Unusual noise source- special system design required

• Value of α depends on experimental conditions

• PSD shape depends on flow conditions and external noise

• Propose noise simulation model based on four main 
sources of noise

[1] Dubey, Amartansh, et al. "Measurement and Spectral Analysis of Acoustic Noise in Water Pipeline Channels." 
OCEANS 2018-Kobe, Japan. IEEE, 2018.

[2] Dubey, Amartansh, et al. (2018) "Measurement and Modeling of Acoustic Noise in water pipeline channel.“ The 
Journal of the Acoustical Society of America, Manuscript in preparation.



Challenges and Talk Contents

• Pipeline Channel and noise characterization

▪ What is the noise PSD and PDF?

▪ Channel attenuation and transfer function?

▪ Optimum signal and receiver design?

▪ Link budget?

▪ Waveguide channel with multiple cutoffs?

• Fault Detection

▪ Blockage detection

▪ Impedance and Shunt Detection 

▪ Remaining challenges
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Measurement Setup
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❑ The channels: Acrylic-air (rigid), Steel-water (elastic), 
HDPE-water (elastic) 

❑ Equipment: Transducers , Speaker 
and Microphone, Vector Network Analyzer

.

Ph.D. Thesis Proposal



Dispersion Curve

❑𝑘 and 𝑧 are spatial Fourier transform pairs
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Acrylic-Air Steel-Water

where

Summation of modes

Axial Wavenumber



Dispersion Curve

❑ Wavenumber 𝑘 and group velocity 𝑣𝑔

❑ Need to include Elastic boundary conditions

▪ Otherwise: wrong cutoff, wrong shape of dispersion curves

▪ Wave propagates in both water and pipe wall

26

Acrylic-Air Steel-Water



Attenuation in Water Channel

❑ High attenuation occur around cutoff frequencies.

❑ High attenuation also occurs when the mode is pipe wall dominant 
(power ratio <0 dB).
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Channel Capacity

❑ For an SNR of 10 dB we can achieve a range of over 50 m 

❑ Demonstrates that acoustic communication in steel-water 
waveguides is indeed possible.

❑ We can observe that for the 20kHz to 30kHz band useful capacity 
can be obtained up to 50 m for Vin greater than 20 dBV.  

28



Summary of Channel Characterization

• Proposed model predicts essential channel features such as mode cutoffs,
dispersion curves and delay spread.

• Elastic boundary condition need to be considered for all water pipes.

• Attenuation for a steel-air water pipe is around 1dB/m

• Estimated communication range of 50 m

• Plane wave mode (below 8.3kHz in acrylic-air channel and below 15kHz in
steel-water channel) can be utilized for fault detection

[1] Z. Li, L.Jing and R.D. Murch, ”Propagation of monopole source excited acoustic waves in a cylindrical high-density
polyethylene (HDPE) pipeline”, the Journal of the Acoustical Society of America, vol. 142(6), 3564-3579, 2017.

[2] L.Jing, Z. Li, Y.Li and R.D. Murch, ”Channel Characterization of Acoustic Waveguides Consisting of Straight Gas and Water
Pipelines”, IEEE Access, vol.6, pp.6807-6819, 2018.

[3] L.Jing, Y. Li and R.D. Murch, "Wideband modeling of the acoustic water pipe channel." OCEANS 2016-Shanghai. IEEE, 2016.

[4] L.Jing, Z. Li and R.D. Murch, "Experimental Study of Acoustic Channel Characteristics of Rigid and Elastic Pipelines." OCEANS
2017-Aberdeen. IEEE, 2017.

[5] Z. Li, L. Jing, W. Wang, Y. Li, A. Dubey, P. Lee and R.D. Murch, ”Experimental Measurement and Analysis of Acoustic Wave 
Propagation in Water-filled Steel Pipeline Using the Iterative Quadratic Maximum Likelihood Algorithm, 175th Meeting of 
Acoustical Society of America, Minneapolis, 2018. 29



Challenges and Talk Contents

• Pipeline Channel and noise characterization

▪ What is the noise PSD and PDF?

▪ Channel attenuation and transfer function?

▪ Optimum signal and receiver design?

▪ Link budget?

▪ Waveguide channel with multiple cutoffs?

• Fault Detection

▪ Blockage detection

▪ Impedance and Shunt Detection 

▪ Remaining challenges
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Summary of pipeline communication

• Identify special features of wideband waveguide channel

• Use adaptive delay spread OFDM

• Shorten the length of cyclic prefix

• Improve transmission efficiency

• For these examples around 25% increase in throughput

[1] Y.Li, L.Jing, Z. Li and R.D. Murch, ”Subcarrier Delay Spread Based Adaptive OFDM for Mobile Wideband Waveguide
Channels”, IEEE Transactons on Communications, vol.66(5), 2206-2218, 2018.
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Challenges and Talk Contents

• Pipeline Channel and noise characterization

▪ What is the noise PSD and PDF?

▪ Channel attenuation and transfer function?

▪ Optimum signal and receiver design?

▪ Link budget?

▪ Waveguide channel with multiple cutoffs?

• Fault Detection

▪ Blockage detection

▪ Impedance and Shunt Detection 

▪ Remaining challenges
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Source: Smart UWSS project presentation

Waves as diagnostic tools for UWSS 



Direct Problem and Inverse Problem

34

𝑽𝒊𝒏𝒄 +𝑯𝒐𝒃𝒋𝒆𝒄𝒕 𝑽𝒐𝒃𝒔 𝑽𝒊𝒏𝒄 + 𝑽𝒐𝒃𝒔 𝑯𝒐𝒃𝒋𝒆𝒄𝒕

Direct Problem Inverse Problem



❑Problem

How to find defects and faults.

❑Proposed solution

Insert signals into the networks and measure reflections 
to detect defects and faults.

❑Challenge

Difficult to estimate the signals and parameters inside the 
networks. 

Exact solution first proposed in 1950’s  by Gelfand-
Levitan. Practical application of the solution limited 35



Wave Equations and Definitions

Transmission Line Acoustic Pipeline

Fundamental 

Equations

Propagation 

Constant

Characteristic 

Impedance

Time-Harmonic 

Equations (lossy)

36



Wave Equations and Definitions
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❑F represents voltage V or pressure P.

❑Q represents current I  or volume velocity U.

❑𝛾 𝑧 propagation constant and 𝑍(𝑧) is the 
channel characteristic impedance.



Liouville Transformation

❑ Liouville transformation:

❑ Wave equations:

❑ Low loss case:

38



Born Approximation

❑ Use incident wave and known frequency independent attenuation to 
approximate the total wave:

where 

❑ A straightforward final solution (explicit expression):

❑ The compensation for know frequency independent loss can be 
achieved by directly multiplying 𝑒𝛼𝑏𝑥 to the time domain impulse 

response.
39



Simulation Results

Cross-sectional Area Reconstruction (explicit expression)

𝐴 𝑥 = 𝐴 0 𝑒− 0
2𝑥

2ℱ−1 𝑃𝑠 0,𝑘 𝑒𝛼𝑐𝑥 𝑠 𝑑𝑠
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Explicit expression and examples
• Cross-sectional Area

𝐴 𝑥 = 𝐴 0 𝑒− 0
2𝑥

2ℱ−1 𝑃𝑠 0,𝑘 𝑒𝛼𝑐𝑥 𝑠 𝑑𝑠

𝐴 𝑥 = 𝐴 0 𝑒− 0
2𝑥

2 ෪𝑃𝑠 0,𝑠/𝑐 𝑒𝛼𝑐𝑥 𝑑𝑠

41



Simulation Results (Water Pipeline)
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Ideal Case

(BW=500Hz,

Mild Blockage)

(BW=50Hz,

Mild Blockage)

(BW=50Hz,

Severe Blockage)

(BW=500Hz,

Severe Blockage)



Experimental Results (Water Pipeline)
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Italy

Mild Blockage
Italy

Severe Blockage

New Zealand

Short Blockage

New Zealand

Long Blockage



Experimental Results (Water Pipeline)

❑ The position of the blockage can be found and a rough 
reconstruction of the blockage shape can be obtained.

❑ The probing signal is valve closure, so that the frequency 
bandwidth is limited (Italy test: 30Hz; New Zealand test: 50Hz). 
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Experimental Results (Transmission Line)
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Experimental Results (Transmission Line)
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Experimental Results (Transmission Line)
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Distributed LCRG Transmission Line Model
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❑ L(z), C(z), R(z,k) and G(z,k) are related to impedance Z(z) faults.

❑ △G is related to shunt conductance fault.

❑ △R is related to series resistance fault.

❑ △Xs and △Bp are related to reactive faults.



Formulation

❑ Telegrapher’s equation:

❑ Wave equations involving impedance and propagation constant:
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Impedance (blockages) and Shunt 
Conductance (leak) Profile Separation

❑ Kernel p(x) has two terms relating to impedance fault Z(z) and 
shunt conductance fault △G respectively.

❑ Conducting 2-port measurement is essential for separating the 
two terms.  
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𝐹𝑠 0, 𝑘 =

❑ Following similar Born approximation procedure we can obtain 
solution for shunts and impedances (leaks and blockages)



Frequency Dependent Loss Compensation 

❑ Although the attenuation coefficient 𝑒2𝛼𝑏(𝑘)𝑥 is frequency dependent, 

it varies slowly with frequency (typically increases around 3dB/m/GHz) 

compared to 𝑒2𝑗𝑘𝑥. Therefore we can collapse the second integral with 

respect to k.

❑ In essence we can reconstruct 𝑝(𝑥) by multiplying 𝑆11(𝑘) by 𝑒2𝛼𝑏 𝑘 𝑥

and then take the inverse Fourier Transform, for each 𝑥, with respect 
to 𝑘. This allows us to reconstruct 𝑝(𝑥).

51



2-Port Measurement

❑Explore the symmetry of kernel 𝑝(𝑥).

52



Examine p(x) from Two Ports
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❑ Neither p1(x) nor p2(b−x) can 
be used for determining the 
impedance and shunt 
conductance faults directly.

❑

❑

❑ The shunt fault is symmetric 
because its p(x) part has Z(x) 
term.

❑ The impedance fault is anti-
symmetric because its p(x) part 
has the derivative of Z(x).



Examine p(x) from Two Ports

54



Simulation results-Loss Compensation
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Simulation Results
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Simulation Results
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Simulation Results
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Relative Errors of the Reconstructions

❑Relative Errors
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Relative Errors of the Reconstructions

❑Validity range
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Experimental Results: Microstrip Line (FR4)
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Experimental Results: Coaxial Cable

62



Summary of fault detection

• An analytical solution for reconstructing the spatial profile of the 
blockages (distributed impedance Z) and leaks (shunt conductance △G)

• Explicit straightforward expression

• Separating the blockages from the leaks using full 2-port S-parameters of 
the transmission line.

• Using transmission loss measurements to estimate the frequency 
dependent losses along the line and compensating for them.

• Performing simulations and experiments to show that the technique 
performs well in a wide variety of cable and feedline configurations.

[1] L.Jing, W. Wang, Z. Li, R.D. Murch, ”Detecting Impedance and Shunt Conductance Faults in Lossy Transmission Lines”, IEEE
Transactions on Antennas and Propagation, vol.66(7), pp.3678-3689, 2018.

[2] L.Jing, Z. Li, W. Wang, A. Dubey, P. Lee, S. Meniconi, B. Brunone, R.D. Murch, ”An Approximate Inverse Scattering Technique for
Reconstructing Blockage Profiles in Water Pipelines Using Acoustic Transients”, the Journal of the Acoustical Society of America Express
Letters, vol.143(5), EL322-327, 2018.

[3] W. Wang, L.Jing, Z. Li and R.D. Murch, ”Utilizing the Born and Rytov Inverse Scattering Approximations for Detecting Soft Faults in
Lossless Transmission Lines”, IEEE Transactions on Antennas and Propagation, vol.65(12), 7233-7243, 2017.
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Further Challenges

• Pipeline assessment is interested in deterioration- such as 
pipeline thickness, radius, pipeline material type
▪ Can these be deduced from acoustic measurements?

▪ Also includes estimations of L(z), C(z), R(z), G(z) in transmission lines

• Often pipelines and cables are networked together
▪ What measurements are required to determine faults in networks

• What is the acoustic source
▪ Mechanical valves too slow and not consistent, PZT transducers too low 

power

• How to handle alpha-stable noise in inverse methods

• Many other challenges:
▪ Sensing Technology, Internet of Things, Robotic Fish, Energy Conservation, 

System Optimization, Cyber Security

• Other problems… determining building plans from WiFi signals64



Pipeline Assessment

• Estimate pipeline parameters for deterioration

65

Z. Li, etal, ” Nonlinear Bayesian Inversion for Estimating Water Pipeline Dimensional and Material Parameters Using Ultrasonic Wave
Dispersion”, In preparation for submission to IEEE Transactions UFFC, 2018



Extension to network 

• Solutions of single pipes or cables but not networked

• Visible and hidden junctions

• Make use of graph theory and modes?

• Any known theoretical results?

• Can it be mapped to a 1D problem?
66



Conclusions 

• Critical need for assessment of pipelines

• One method is to use acoustic signals in the pipelines in a format such 
as pipeline sonar

• Requires development of signal processing and communication 
techniques

• Have proposed that:
▪ Acoustic noise in water pipelines is alpha-stable

▪ Acoustic channel requires modeling of the elastic pipe wall- leads to waves that 
propagate in the wall and water with power switching between them

▪ Special communication techniques for multimode waveguide transmission

▪ Straightforward explicit expressions for blockage and leak detection  

• Largely unexplored area- further research required
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