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A classical problem in electromagnetism :  
          electromagnetic interaction between metallic (nano)particles

Modern applications :

• ultra sensitive spectroscopy      
• single molecule sensing 
• optical integrated circuit or optical computer 
• nonlinear optics

Controlling light at the nanoscale (challenging due to Abbe’s diffraction limit)

wavelength of visible light : 

~ 400nm - 700nm

nano-particle
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What is so special about metallic particles? 

• Surface Plasmon Resonances (SPRs) : oscillations of electron densities on the surfaces of the particles  
• At certain frequencies, SPRs are excited -> confine light into their nanoscale volumes 

What happens if they are close to touching?

• Origin: metal permittivity becomes negative at optical frequencies
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When the metallic (or plasmonic) particles get closer..
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 2. light absorption for a broad range of frequency

 1. extremely large EM field at the gap

�

� ! 0

So, the close-to-touching spheres are useful 
              for controlling light on the nanoscale

R.C. McPhedran and D.R. McKenzie, Applied Physics 23 (1980) 223-235  
R.C. McPhedran and W.T. Perrins, Applied Physics A  24 (1981) 311-318 
R.C. McPhedran and G.W. Milton, PRSA 411 (1987) 313-326  
A. Aubry, et al. Nano Lett. 10 (2010) 2574–2579 
J. B. Pendry, A.Aubry, D.R.Smith, S.A.Maier, Science 337 (2012) 549-552

    broadband light harvesting 
     of close-to-touching particles

*

*
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•When extreme small gap, the non-local effect becomes significant (below 0.25 nm).

So we shall assume the gap distance is very small 

Non-local effect

Y. Luo, R. Zhao, and J. B. Pendry, PNAS 111 (2014), 18422-18427.
O. Schnitzer, V. Giannini, R. V. Craster, and S. A. Maier, Phys. Rev. B, 93 (2016), p. 041409.

C. Ciracì. et al., Science 337 (2012), 1072-1074.

Even in touching case, the gap distance is effectively non-zero.

•Our focus is not on modelling the non-local effect but on the strong interaction between the particles.

but not so much that the non-local effect is not significant.

•Non-local effect can be incorparated using the approach in Luo et al. PRL 111 (2013), 093901.
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But, understanding their strong interaction is quite challenging.. Why?

�

� ⌧ R

R

Difficulty 1: Analytical solution for two 3D spheres is not available (2D solution is known*).

Difficulty 2: (i) Numerical computation of EM field requires very fine mesh  
                        or a large number of spherical harmonics  
                   (ii) The resulting linear system is ill-conditioned.

* Ross.C. McPhedran and Graeme.W. Milton, PRSA 411 (1987) 313-326 



   Sanghyeon Yu (ETH Zurich)                              Strong Interaction between Plasmonic Spheres 7

 
 
1. Derive a fully analytic solution for two ‘plasmonic’ spheres 
    (convergent quickly even in the nearly touching case) 
 
2. Develop an efficient and accurate hybrid numerical scheme valid for  
    arbitrary number of plasmonic spheres which can be nearly touching 
 
Key idea : Clarify the connection between Transformation Optics and Image Charge Method

Strong interaction between plasmonic spheres (S.Y. and H. Ammari, SIAM Review 2018)

Our recent work  

•Limitation: quasi-static approximation is assumed.

The retardation effect should be considered for large systems.

•But, even for large particles, the quasi-static term is dominant in the gaps.
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(
r · (✏BrV ) = 0 in R3

,

V (r) = �E0z +O(|r|�2) as |r| ! 1.

•Near field is described by electric potential:

•Smallness of nanoparticles compared to wavelength ➞ Quasi-static approximation

Problem formulation: two plasmonic spheres

 Here, the permittivity distribution is

✏(!) = 1�
!2
p

!(! + i�)

•Drude’s model for metal permittivity

✏B =

(
✏ in B+ [B�,

1 in R3 \ (B+ [B�).

•The metal permittivity is negative ➞ The problem is not uniformly elliptic. 
                                                         ➞ singular behavior of the solution (plasmon resonances) 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Mathematics of Surface Plasmons

where          is the Neumann-Poincaré (NP) operator given by

(�I �K⇤
@B)['] = �E0⌫z|@B � =

✏+ 1

2(✏� 1)

• The PDE is equivalent to the following boundary integral equation:

K⇤
B ['](r) =

1

2⇡

Z

@B

(r� r0) · nr

|r� r0|2 '(r0)dS(r0), r 2 @B.

K⇤
B

• The analysis of plasmons            the spectral analysis of the NP operator 

• The spectrum depends sensitively on the geometry.

• Geometrical singularity on the surfaces (corner, two touching surfaces.. ) 
     → The NP-operator becomes non-compact  
     → continuous spectrum & singular behavior of (generalized) eigenfunctions

    ( eigenvalues - resonance frequencies  &  eigenfunctions - resonance modes )
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•An example of Lipschitz domains whose spectrum is continuous: ‘the intersecting disks’

Spectral resolution of NP operator on intersecting disks

Remark A similar result was derived by T. Carleman in 1906 
thesis. Not rigorous but idea was already there  
(Mihai Putinar at UCSB informed us its existence)

b =
1

2
� ✓0

⇡

�ess(K⇤
@⌦) = [�b, b]

• Essential spectrum on general Lipschitz domains: Mihai Putinar and Karl-Mikael Perfekt, ARMA 2017
• Characterization of essential spectrum using Weyl sequence: Eric Bonnetier and Hai Zhang, RMI 2017
• 3D Rotationally symmetric domains : Johan Helsing and Karl-Mikael Perfekt, JMPA 2017

• Embedded eigenvalues : Wei Li and Stephen Shipman, arXiv 2018
• Bowtie structures : Eric Bonnetier, Charles Dapogny, Faouzi Triki and Hai Zhang, arXiv 2018

Mathematics of Surface Plasmons: Corner singularity

(joint with Hyeonbae Kang & Mikyoung Lim, ARMA 2017)
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Mathematics of Surface Plasmons: Nearly Touching Surfaces

•Let us turn to the two spheres problem.

•The nearly touching spheres is also a geometrical singularity 
    (a narrow gap region between the spheres).

•Two singular phenomena: 
   (i) singular shift of resonance frequencies (or eigenvalues) 
   (ii) high field concentration in the narrow gap 

•Q: How can we capture the singular behaviours analytically? 
Key : Clarify the connection between Transformation Optics and Image Charge Method
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Brief Review: Transformation Optics and Image Charges Method
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r0 = �(r)= R2
T
(r�R0)

|r�R0|2
+R0

0

Approach 1 : Transformation Optics

 
• Inversion mapping => “two 3D spheres”  become “concentric shell” 
• TO solution uses spherical harmonics in the transformed frame

Pendry et al. Nature Phys. 2013

Remark        The same solution was derived 42 years ago.

Mm
n,±(r) = |r0 �R0

0|(r0)±(n+ 1
2 )�

1
2Y m

n (✓0,�0)

V (r) = �E0z +
1X

n=0

An

�
M0

n,+(r)�M0
n,�(r)

�

•But the solution is not fully analytic.

  R. Ruppin, PRB 26 (1982), 3440

A. Goyette and A. Navon, PRB 13 (1976), 4320

A more extensive study in the plasmonics context
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uk = ⌧k
sinh(s+ t0)

sinh(ks+ s+ t0)

U(r) =
1X

k=0

uk(G(r� zk)�G(r+ zk))

⌧ =
✏� 1

✏+ 1

Approach 2 : Image charges method

•Two 3D spheres (L. Poladian, PRSA 426(1989) 343-359, Poladian’s PhD thesis)

•However, the image series solution is not valid for “plasmonic” spheres  
   due to non-convergence.

charge when the permittivity ϵ is large. 

Poladian’s image series solution

•Two 2D cylinders (R.C.McPhedran, L.Poladian and G.W.Milton, PRSA 415 (1988) 185-196)

•Image charge method is to find fictitious sources which generate the desired field.

: potential by a point chargeG

- Potential generated by image charges

- Image charges strength

•Asymptotic solution by continuous density approximation of discrete image sources

Remark The asymptotics of the multipole coefficients are valid for the plasmonic case.  
             But computing the field enhancement is still challenging.
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Leon Poladian & his thesis (1/2)

•His thesis: a complete image charges method for two 3D spheres 
  and its applications to composite materials 

 

•Every textbook on classical electromagnetism discusses  
   the image charge method but not for 3D dielectric spheres 
   (3D case is extremely difficult..). Leon Poladian

•A former student of Ross C. McPhedran (Univ. of Sydney)

L. Poladian, Effective Transport and Optical Properties of Composite Materials.  
Ph.D. thesis, University of Sydney, 1990

Leon Poladian

•But, Poladian is the first to solve two 3D dielectric spheres problem.

•Image charge method for a ‘single’ 3D dielectric sphere 
   was discovered by several people independently. 
  (Neumann 1883, Iossel 1971, Poladian 1989, Lindell 1992, Norris 1995) 
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•Mikyoung Lim and I got an asymptotic result for two 2D circlular  
   cylinders (M. Lim and S.Y. 2015). 

Leon Poladian & his thesis (2/2)

Poladian’s thesis is a long and rich work.. It deserves a more attention. 

•Graeme Milton and Ross McPhedran informed us the Poladian’s thesis. 

•In 2014 Summer, Mikyoung Lim (KAIST) and I were visiting Univ. of Utah.

•Poladian’s 3D solution became the key to solving  
   the plasmonic spheres problem.

•Our proof shows the connection between the image charges and TO  
    for 2D case. So the next step was to extend it to 3D.

Moab
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Analytic solution for two plasmonic spheresResult 1
(connection between image charges method and TO)
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Main obstacle - Non-convergence of the image series

Our idea - Converting image series into TO-type solution

Mm
n,±(r) = |r0 �R0

0|(r0)±(n+ 1
2 )�

1
2Y m

n (✓0,�0)U(r) =
1X

k=0

uk(G(r� zk)�G(r+ zk))

V (r) = �E0z +
1X

n=0

An

�
M0

n,+(r)�M0
n,�(r)

�

Image Charges Method Transformation Optics (TO)



   Sanghyeon Yu (ETH Zurich)                              Strong Interaction between Plasmonic Spheres 19

Theorem 1 (S.Y. and H. Ammari, SIAM Rev. 2018) 

ukG(r⌥ zk) =
sinh(s+ t0)

4⇡↵

1X

n=0

⇥
⌧e�(2n+1)s

⇤k

⇥e�(2n+1)(s+t0)M0
n,±(r)

We have the following connection formula:

r 2 R3 \ (B+ [B�)for

LHS : The potential generated by k-th image charge

RHS : The potential which is represented in terms of TO basis functions

Connection between Transformation Optics and Image charges method

Image charge

TO basis
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Analytic solution for two 3D plasmonic spheres

V (r) ⇡ �E0z +
1X

n=0

eAn

⇣
M0

n,+(r)�M0
n,�(r)

⌘

eAn = E0
2⌧↵

3� ⌧
· 2n+ 1� �0
e(2n+1)s � ⌧

�0 =
1X

n=0

2n+ 1

e(2n+1)s � ⌧

� 1X

n=0

1

e(2n+1)s � ⌧

Theorem 2 (S.Y. and H. Ammari, SIAM Rev. 2018) 
The following approximation for the electric potential V holds:

where

convergent for the plasmonic case

fully analytic!
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E(0, 0, 0) ⇡ E0 � E0
8⌧

3� ⌧

 1X

n=0

(2n+ 1)2

e(2n+1)s � ⌧
(�1)n

��0

1X

n=0

2n+ 1

e(2n+1)s � ⌧
(�1)n

�

�a ⇡ !E0
8⌧↵3

3� ⌧

 1X

n=0

(2n+ 1)2

e(2n+1)s � ⌧

�
✓ 1X

n=0

2n+ 1

e(2n+1)s � ⌧

◆2� 1X

n=0

1

e(2n+1)s � ⌧

�

Comparison between our analytical approx. and exact sol.

field enhancement at the gap center polarizability
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Result 2 : Hybrid numerical scheme for an arbitrary number of  
                                              nearly touching spheres.  

� ⌧ 1

�
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Review: Cheng and Greengard’s hybrid numerical scheme for “dielectric” spheres  
                                        

image source series

multipole sources

• hybrid method combining the image charge method and the multipole expansion method 
• extremely efficient and accurate even when nearly touching 
• But it cannot be applied to plasmonic spheres (due to the divergence of the image series). 

Hongwei Cheng and Leslie Greengard, SIAM Appl. Math. 1998
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valid for plasmonic spheres!

by replacing image source series with their TO versions
•We modify Cheng & Greengard’s hybrid scheme 

image source series

multipole sources

Cheng & Greengard’s hybrid scheme

TO-type solution

multipole sources

Our Hybrid scheme

Our method : Hybrid numerical scheme for plasmonic spheres  
                      (S.Y. and H. Ammari, SIAM Review 2018)
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Numerical result: Multipole expansion  vs  Hybrid method

~2,000 times more efficient

•Field enhancement at the gap center

(Radius: 30nm    Gap distance: 0.3nm)
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Numerical result: Potential distribution

The field concentration is clearly shown.(Radius: 30nm    Gap distance: 0.3nm)
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A similar problem in linear elasticity : Stress concentration

Part II
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Linear elasticity for two rigid inclusions (general shapes)  
- Lamé system with high-contrast coefficients

28

Stress Concentration

stress tensor

� = Cbru

- When 𝜖 goes to zero, the stress may blow up in the narrow gap region. 

- asymptotic behavior of the gradient         ?          ru

Stress Concentration

- Lame operator

D1 D2

✏

⌦L�,µu := µ�u+ (�+ µ)rr · u

- Rigid motions:

- Bdry conditions on the inclusions
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Elasticity case is difficult to solve..  
- difficulty 1 : elliptic system -> no maximum principle 
- difficulty 2 : Keller’s function doesn’t work

Previous works 
- upper estimate of the gradient by H. Li, Y.Y. Li, and J. Bao (ARMA 2015) 

- lower estimate of the gradient (H. Li et al. 2017) 
 
 
- Single inclusion close to the boundary  (J. Bao, H. Ju, H. Li 2017, H. Li, L.Xu 2017) 

krukL1(⌦) 
Cp
✏

|Q(g)|p
✏

 krukL1(⌦)

- Continuous density approximation approach (R.C.McPhedran and A.B.Movchan, 1994)

Stress Concentration
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Bonnetier-Triki, ARMA (13)

Ammari-Kang-Lim(05), Ammari-Kang-Lee-Lee-Lim(07), Yun(07),  
Ammari-Kang-Lee-Lim-Zribi(09), Yun(09), Bonnetier-Vogelius (00),  
Ammari-Ciraolo-Kang-Lee-Yun (ARMA ’13), Bowtie case: Kang-Yun (17) 
Bao-Li-Yin(ARMA 09,10), Lim-Yun(09), 

Stress Concentration

•Conductivity case (scalar PDE) : well understood..  
                                                     occurrence of the gradient blow-up 
                                                     blow-up rate of gradient etc..

•Elasticity case (system of PDEs) : much less is known.. 

- upper estimate of the gradient by Haigang Li, YanYan Li, and Jiguang Bao

✏

- lower estimate of the gradient by Yuanyuan Hou, Hongjie Ju, and Haigang Li (2017)
(ARMA 2015, Adv. Math. 2017)

optimal blow-up rate was not proved.
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1. We completely characterize the gradient blow-up (stress concentration) 
   by explicit singular functions. 
2. The optimality of the blow-up rate is proved. 
3. New method based on variational principles 

Quantitative characterization of stress concentration

Our recent work  

✏

Stress Concentration

(joint work with Hyeonbae Kang, ARMA 2018)
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Decompose the solution as 
 
where        is an explicit function and        satisfies                        . 
 

32

u = s+ b
s b krbkL1  C

u

Problem formulation

Characterization of the stress concentration by singular functions

sThen the function     completely characterize the gradient blow-up of the solution.

Stress Concentration



   Sanghyeon Yu (ETH Zurich)                              Strong Interaction between Plasmonic Spheres 33

How can we find singular functions for linear elasticity? 
 
 

�(x)e1 �(x)e2
x

|x|2
x?

|x|2

point forces point pressure point moment

point sources in elasticity - nuclei of strains

Stress Concentration
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q3(x) := �?(x� p1)e1 + �?(x� p2)e1 + ↵2a

✓
(x� p1)?

|x� p1|2
� (x� p2)?

|x� p2|2

◆

Singular functions (H. Kang and S.Y.  ARMA 2018) 
They are defined as follows: 

where

�(x) = ↵1 log |x|I� ↵2x⌦r(ln |x|),

�?(x) = ↵1 arg(x)I� ↵2x⌦r(arg(x)).

Stress Concentration
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Theorem 1 (H. Kang and S.Y.  ARMA 2018) 
The solution can be decomposed as 
 
 
where the regular part        satisfies

35

Stress Concentration

Corollary (optimality of the blow-up rate) 
The blow-up estimate of the gradient

singular functions

Question : Can we achieve the condition                    ?   Yes.1 . |K⌦,j |

u(x) = b⌦(x)�
3X

j=1

K⌦,jqj(x), x 2 e⌦,

b⌦
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Theorem 2 (joint with Hyeonbae Kang,  ARMA 2018) 
Assume the inclusions are circular disks. Then, under some condition on 
Lame parameters, the followings hold: 
 
 

36

(i) If g(x) = (Ax,By) with A 6= 0, then

(ii) If g(x) = C(y, x) with C 6= 0, then

Stress Concentration
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Effective Properties of Elastic Composites

Effective bulk and shear modulus 
Flaherty and Keller derived the following  
asymptotic formulas (CPAM 1974) 

Rigourous Justificatoin (joint work with H. Kang, 2018) 
- Based on Primal-dual variational principles with our new singular functions  
   (Keller’s function doesn’t work as test function) 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Thank you.


