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0 Introduction

Inverse problems arise in practical situations such as medical imaging, exploration
geophysics, and non-destructive evaluation where measurements made in the exte-
rior of a medium are used to deduce properties of the hidden interior. Since the
1980’s there have been substantial developments in the mathematical theory of in-
verse problems in the multidimensional case. The purpose of these lectures is to
describe some of these developments. We concentrate on giving some examples on
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how complex geometrical optics (CGO) solutions to partial differential equations,
which were motivated by the work of Calderón [3], are used in inverse problems.

Calderón considered the problem of determining the electrical conductivity of a
medium by making voltage and current measurements at the boundary. This inverse
method is known as Electrical Impedance Tomography (EIT). Calderón’s motiva-
tion was geophysical prospection; he worked as an engineer for YPF (Yacimientos
Petroleros Fiscales) in Argentina in the 1940’s. EIT is also called in geophysics
resistivity imaging. See [48]. Other applications include detection of leaks, see for
instance [17]. More recently EIT has received considerable attention for the poten-
tial medical applications running from early detection of breast cancer, to continuous
monitoring of brain and lung functions. See the proceedings [16], [14], and [13], [50]
for more details. We give the mathematical formulation of EIT below.

Let Ω be a bounded region in Rn (n ≥ 2) which models a conducting medium.
Let u(x) represent a voltage potential (i.e., u(x) − u(y) is the voltage difference
measured by a voltmeter with electrodes attached at the points x and y). The
current is now represented by a vector which we denote by i(x), and Ohm’s law
becomes

i(x) = −γ(x)∇u(x) .

The current is no longer independent of position in Ω, however, since we are con-
sidering steady state conduction, charge cannot accumulate in any subset Ω̃ ⊂ Ω.
This means that the net flow of current across ∂Ω̃ is zero, i.e.,

∫

∂Ω̃
i(x) · ν(x) dS(x) = 0 ,

where ν denotes the unit outer normal to ∂Ω̃. The divergence theorem implies that

∫

Ω̃
∇ · i(x) dx = 0 .

As Ω̃ is arbitrary, we have, for every x

∇ · i(x) = 0 .

Substituting 0 into this identity we arrive at

∇ · (γ(x)∇u(x)) = 0 in Ω .

The coefficient γ(x) is in general a positive definite symmetric n×n matrix; if γ(x)
is a scalar valued function we say that the medium is isotropic, in all other cases we
refer to it as anisotropic.

The central aim of EIT is to infer as much as we can about γ(x) from multiple
boundary measurements of voltages and currents. This is therefore an example of a
nondestructive testing situation: it is forbidden to penetrate the interior of Ω with
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a probe, electrodes may only be attached to the boundary. If Ω is a smooth domain,
then the set of all possible smooth measurements consists of

{(f, g) ∈ C∞(∂Ω)× C∞(∂Ω) : f = u|∂Ω, g = γ
∂u

∂ν
|∂Ω and u satisfies 0} .

A mathematically (and practically) somewhat more satisfactory approach is to con-
sider the set Cγ of all Cauchy data associated to the equation 0. The set Cγ is larger
than the set 0 – if we restrict attention to solutions of 0 with finite energy, then Cγ is
the closure of the set 0 in the H1/2×H−1/2 norm. Whereas it is natural to think of
all the information contained in the set 0 (or Cγ) as emerging from a special type of
experiment – fix voltage pattern and measure current flux across the boundary (or
vice versa)– it does also encode the information related to all other possible exper-
iments, such as fixing voltage pattern on part of the boundary, ∂Ω1, fixing current
flux on the remainder of the boundary, ∂Ω2, and then measuring current flux and
voltage pattern on ∂Ω1 and ∂Ω2 respectively.

To elaborate a little more on the natural interpretation of 0 we mentioned above,
consider the Dirichlet problem

∇ · (γ∇u) = 0 in Ω , u = f on ∂Ω .

This problem is well posed, and therefore the first component of an element of 0
can be any function in C∞(∂Ω). For any such f there is exactly one pair (f, g)
contained in 0, namely the pair (f, γ ∂u

∂ν |∂Ω). We define the map Λγ

Λγ(f) = γ
∂u

∂ν
|∂Ω where u solves 0 .

The map Λγ is referred to as the Dirichlet-to-Neumann (DN) map. The set 0 is the
graph of this map (over C∞(∂Ω)). Our mathematical formulation of EIT is to infer
information about γ from the Dirichlet- to-Neumann map, Λγ .

In section 1 of these notes we define precisely the Dirichlet-to-Neumann map and
give some of its properties. In section 2 we describe how to find the Taylor series
of a smooth conductivity is determined by the DN map. We also describe the layer
stripping algorithm based on the boundary determination.

For dimensions n ≥ 2 it is known that Λγ does indeed provide sufficient in-
formation to determine an isotropic conductivity (assuming for instance that the
conductivity is twice differentiable.) This was proven by Sylvester and Uhlmann
[40] in dimension n ≥ 3 by using CGO solutions solutions. The construction of
CGO solutions for the Schrösinger equation is done in section 3. The proof of the
result of Sylvester and Uhlmann mentioned above is in section 4. We also give in
this section an application of CGO solutions to determine cavities.

In section 5 we construct CGO solutions for first order perturbations of the
Laplacian. The intertwining property formulated in this section is the main ingre-
dient in such construction. Examples of equations or systems that can be reduced
to first order perturbations of the Laplacian are the magnetic Schrödinger equation,
the Dirac system and the elasticity system.
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1 The Dirichlet-to-Neumann Map

In this section we state the basic properties of the DN map as defined in the intro-
duction. We recall first the basic existence and uniqueness results for the solution
to the Dirichlet Problem

Lγu = ∇ · γ∇u =
n∑

i,j=1

∂

∂xi
γij

∂

∂xj
u = F in Ω

u = f on ∂Ω.

(1.1)

where γ is bounded, symmetric and strictly positive definite matrix, i.e.

γij ∈ L∞(Ω), γij = γji and

0 < c|ξ|2 ≤
n∑

i,j=1

γij(x)ξiξj ∀ξ ∈ Rn a.e. x ∈ Ω,

the domain Ω is always assumed to be smooth (C∞).
Here Hs(Ω) and Hs(∂Ω) denote the standard L2 based Sobolev spaces. H1

0 (Ω)
denotes the closed subspace of H1(Ω) with zero trace at the boundary. We denote

by R the restriction (or trace) map R : H1(Ω) → H
1
2 (∂Ω).

Before we are able to formulate the theorem that asserts the unique solvability of
the Dirichlet problem 1.1 we note that Lγ =

∑n
i=j=1

∂
∂xi
γij

∂
∂xj

may be conveniently

viewed as an operator from H1(Ω) to the dual of H1
0 (Ω), denoted H

−1(Ω), by means
of the following identity

(1.2) −〈Lγu, v〉 :=
∫

Ω
γij

∂u

∂xj

∂v

∂xi
dx ∀v ∈ H1

0 (Ω).

The notation 〈·, ·〉 is used to signify the standard duality pairing between the Hilbert
space H1

0 (Ω) and its dual, H−1(Ω). This duality pairing is the extension of the L2

inner product. If γ is in C∞, then the above definition is consistent with the natural
way in which a differential operator acts on distributions (or in this case functions
in H1(Ω)).

Theorem 1.1. The mapping

F : H1(Ω) → H−1(Ω)×H
1
2 (∂Ω) ,

defined by

(1.3) Fu :=

(
Lγu
Ru

)
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is an isomorphism.
That is, for any F ∈ H−1(Ω) and f ∈ H

1
2 (∂Ω) there exists a unique u ∈ H1(Ω)

such that

Fu =

(
F
f

)
.

This solution u satisfies the estimate

(1.4) ‖u‖H1(Ω) ≤ C(‖F‖H−1(Ω) + ‖f‖
H

1
2 (∂Ω)

) .

The above theorem guarantees the existence of a unique solution to the boundary
value problem in a very specific sense. Because of the definition 1.2 the u which
solves Fu = (F, f)t is also the unique function in H1(Ω) which satisfies

∫

Ω

n∑

i,j=1

γij
∂u

∂xj

∂v

∂xi
dx = −〈F, v〉 ∀v ∈ H1

0 (Ω) ,

and Ru = f .

(1.5)

This formulation is quite standard; u is frequently referred to as the weak solution
of the boundary value problem 1.1.

Theorem 1.2. Let F and f be elements of H−1(Ω) and H
1
2 (Ω) respectively. The

weak solution to the boundary value problem

Lγu = F in Ω, u = f on ∂Ω ,

introduced by Theorem 1.4 may also be characterized as the unique minimizer to the
Dirichlet integral

DF (w) =
1

2

∫

Ω
γij

∂w

∂xj

∂w

∂xi
dx+ < F,Pw > ,

in the set {w ∈ H1(Ω) : w|∂Ω = f }.

If the coefficient γ is assumed to be infinitely often differentiable then the weak
solution, u, is as regular as the data F and f naturally permit. If the data are
sufficiently regular then it follows immediately that the weak solution is also the
unique strong solution (by this we mean a function in C2(Ω) which satisfies 1.1 in
the classical sense).

Corollary 1.3. If γ, in addition to being positive definite, is in C∞(Ω), then the
map F defined by 1.3 is an isomorphism

F : Ht(Ω) → Ht−2(Ω)×Ht− 1
2 (∂Ω)

for any value t ≥ 1.
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The fact that the weak solution to 1.1 satisfies an estimate of the form

(1.6) ‖u‖Hk(Ω) ≤ C(‖F‖Hk−2(Ω) + ‖f‖
Hk− 1

2 (∂Ω)
)

for any integer k ≥ 1 follows from the regularity theory concerning elliptic boundary
value problems. We shall not here give a proof of 1.6, but instead refer the reader
to chapter 7 of [8]. Corollary 1.4 now follows for arbitrary t ≥ 1 from interpolation
between Sobolev spaces and the estimates 1.6 corresponding to integer k. We note
that the interior regularity of u is fairly easy to assert; the regularity up to the
boundary is slightly more tricky and in particular requires that the boundary of the
domain Ω is C∞. We also note that the estimate 1.6 for a fixed k does not really
require that the conductivity γ be in C∞(Ω), it suffices that γ be in Ck−1(Ω).

We are now finally in a position to define the DN map. Consider the boundary
value problem 1.1 with F equal to zero

∇ · γ∇u = 0 in Ω, u = f on ∂Ω .

If the boundary data f is in H
3
2 (∂Ω), and γ is in C1(Ω), then the unique solution

to this problem, as we have just seen, belongs to H2(Ω). Therefore ∇u is in H1(Ω)

and as a consequence ∇u|∂Ω = R(∇u) belongs to H 1
2 (∂Ω). We may now define

(1.7) Λγf := (γ∇u) · ν|∂Ω) =

n∑

i,j=1

γij
∂u

∂xj
νi|∂Ω ∈ H− 1

2 (∂Ω) ,

where ν denotes the outward unit normal to ∂Ω. As we shall see below Λγ is defined
for f ∈ H1/2(∂Ω) (and γ ∈ L∞(Ω)) even though the classical formula above, in
terms of the restriction map, does not make sense. The classical formula fails to
make sense for f ∈ H1/2(∂Ω) because in that case ∇u is generally only in L2(Ω) and
therefore there is no appropriate notion of a restriction to the boundary. Similarly
if γ is only in L∞(Ω) then we would generally only know that γij

∂u
∂xj

is in L2(Ω)

and there would again not be an appropriate notion of its restriction to ∂Ω. In
order to define Λγ on all of H

1
2 (∂Ω) we shall need its dual space H− 1

2 (∂Ω). The

duality pairing between H
1
2 (∂Ω) and H− 1

2 (∂Ω) is the extension of the L2(∂Ω) inner
product; we shall also use the notation 〈· , ·〉 for this duality pairing.

Theorem 1.4. Assume that γ ∈ C1(Ω). The DN map, Λγ, defined by 1.7, extends
as a bounded map

Λγ : H
1
2 (∂Ω) → H− 1

2 (∂Ω) .

Proof. We shall use from now on the summation convention. If u, v and γ are
arbitrary but smooth functions then Green’s formula immediately gives

(1.8)

∫

Ω
γij

∂u

∂xj

∂v

∂xi
dx = −

∫

Ω

∂

∂xi

(
γij

∂u

∂xj

)
v dx+

∫

∂Ω
γij

∂u

∂xj
νi v dS(x) .
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From the continuity of all the terms involved it is clear that this formula holds for
u ∈ H2(Ω), v ∈ H1(Ω) and γij ∈ C1(Ω). If u is the solution to ∇ · γ∇u = 0 in Ω,
u = f on ∂Ω, defined in the sense of Theorem 1.3, then we know that

(1.9)

∫

Ω
γij

∂u

∂xj

∂v

∂xi
dx = 0 ∀v ∈ H1

0 (Ω) .

As noted above the solution, u, is in H2(Ω) if f is in H
3
2 (∂Ω); it follows from a

combination of 1.8 and 1.9 that
∫

Ω

∂

∂xi

(
γij

∂u

∂xj

)
v dx = 0 ∀v ∈ H1

0 (Ω) .

From the above identity it follows immediately that the L2 function ∂
∂xi
γij

∂u
∂xj

van-

ishes. Inserting this fact and the definition of Λγ , 1.7, into 1.8 we get

(1.10)

∫

∂Ω
Λγf v dS(x) =

∫

Ω
γij

∂u

∂xj

∂v

∂xi
dx ∀v ∈ H1(Ω) .

Given any g ∈ H
1
2 (∂Ω) Theorem 1.1 guarantees the existence of a v ∈ H1(Ω) such

that
v|∂Ω = Rv = g and ‖v‖H1(Ω) ≤ C‖g‖

H
1
2 (∂Ω)

.

Insertion of this v into 1.10 yields
∫

∂Ω
Λγf g dS(x) =

∫

Ω
γij

∂u

∂xj

∂v

∂xi
dx

≤ C‖u‖H1(Ω)‖v‖H1(Ω)

≤ C‖f‖
H

1
2 (∂Ω)

‖g‖
H

1
2 (∂Ω)

.

Here we have also used the estimate of the H1(Ω) norm of u in terms of the

H
1
2 (∂Ω) norm of f , as given in Theorem 1.4. Since the duality between H

1
2 (∂Ω)

and H− 1
2 (∂Ω) is the extension of the L2(∂Ω) inner product we get, by taking the

maximum over all g with ‖g‖
H

1
2 (∂Ω)

≤ 1,

‖Λγf‖
H− 1

2 (∂Ω)
≤ C‖f‖

H
1
2 (∂Ω)

.

The above estimate was proven under the assumption that f ∈ H
3
2 (∂Ω). This

estimate, however, is sufficient to insure the existence of a unique extension of Λγ

from H
1
2 (∂Ω) to H− 1

2 (∂Ω).

The above discussion leads to a quite general definition of the DN map for any
positive definite γ ∈ L∞(Ω). Given f and g in H

1
2 (∂Ω) we let u denote the weak

solution to Lγu = 0, u|∂Ω = f and we let v be any function in H1(Ω), with the

property that v|∂Ω = g. We then define Λγf ∈ H− 1
2 (∂Ω) by the requirement that

(1.11) 〈Λγf, g〉 =
∫

Ω
γij

∂u

∂xj

∂v

∂xi
dx .
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It is easy to see that the right hand side of 1.11 is independent of which v satisfying
v|∂Ω = g we take. This follows immediately from the fact that

∫

Ω
γij

∂u

∂xj

∂w

∂xi
dx = 0 ∀w ∈ H1

0 (Ω) .

Furthermore, since there exists v ∈ H1(Ω) with v|∂Ω = g and ‖v‖H1(Ω) ≤ C‖g‖
H

1
2 (∂Ω)

,

the right hand side of 1.11 for fixed u (i.e., for fixed f) defines a bounded linear func-

tional on H
1
2 (∂Ω). This ensures the existence (and uniqueness) of Λγf ∈ H− 1

2 (∂Ω)
satisfying 1.11. From the inequalities

∫

Ω
γij

∂u

∂xj

∂v

∂xi
dx ≤ C‖u‖H1(Ω)‖v‖H1(Ω) ≤ C‖f‖

H
1
2 (∂Ω)

‖g‖
H

1
2 (∂Ω)

,

and the definition 1.11 it follows immediately that the “generalized” map Λγ is

bounded from H
1
2 (∂Ω) to H− 1

2 (∂Ω) It is obvious that this general definition yields
exactly the extension of the map defined by 1.7 for γ ∈ C1(Ω).

Returning to the variational characterization of the weak solution to

Lγu = 0 in Ω, u = f on ∂Ω ,

we recall that it was shown in Theorem 1.5 that this u is also the unique minimizer
to

D0(w) =
1

2

∫

Ω
γij

∂w

∂xj

∂w

∂xi
dx

in the set {w : w ∈ H1(Ω), w|∂Ω = f }. The functional Qγ defined by

Qγ(f) =

∫

Ω
γij

∂u

∂xj

∂u

∂xi
dx = min

w∈H1(Ω) w|∂Ω=f

∫

Ω
γij

∂w

∂xj

∂w

∂xi
dx ,

is a quadratic functional on H
1
2 (∂Ω). From the formula 1.11 it follows immediately

that Λγ is the selfadjoint linear map associated to this quadratic functional, i.e.,

〈Λγf, f〉 = Qγ(f) ∀f ∈ H
1
2 (∂Ω) .

Knowledge of Qγ(f) is therefore the same as knowledge of 〈Λγf, f〉. Since knowledge
of the two quadratic expressions 〈Λγ(f + g), (f + g)〉 and 〈Λγ(f − g), (f − g)〉 by
means of the formula

4〈Λγf, g〉 = 〈Λγ(f + g), (f + g)〉 − 〈Λγ(f − g), (f − g)〉

leads to knowledge of the expression 〈Λγf, g〉, it follows that

Proposition 1.1. Knowledge of Qγ(f) for all f ∈ H
1
2 (∂Ω) leads to knowledge of

〈Λγf, g〉 for all f, g ∈ H
1
2 (∂Ω) and therefore leads to knowledge of the map Λγ.

Conversely knowledge of Λγ also leads to knowledge of Qγ(f) for all f ∈ H
1
2 (∂Ω).
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In the later chapters we shall see that many of the developments for the inverse
conductivity problem have parallels when the boundary value problem ∇ · γ∇u = 0
in Ω u = f on ∂Ω is replaced by the Schrödinger equation

∆u+ qu = 0 in Ω

u = f on ∂Ω .
(1.12)

We assume that q ∈ L∞(Ω). The operator ∆+q with Dirichlet boundary conditions
is self adjoint from D(∆ + q) ⊂ L2(Ω) to L2(Ω). The domain of definition, D(∆ +
q), equals H2(Ω) ∩ H1

0 (Ω), and the operator has a compact resolvent [20]. Given

f ∈ H
3
2 (∂Ω) the boundary value problem, 1.12, therefore has a unique solution,

u ∈ H2(Ω), exactly when zero is not an eigenvalue for ∆ + q. In this case it is also

possible to show that 1.12 has a unique weak solution for any f ∈ H
1
2 (∂Ω); this

weakly defined solution is in H1(Ω). If zero is not an eigenvalue we may define the
DN map

(1.13) Λqf =
∂u

∂ν
|∂Ω

as a map from H
3
2 (∂Ω) to H

1
2 (∂Ω). Based on what we have seen earlier it is not

surprising that this map extends as bounded map from H
1
2 (∂Ω) to H− 1

2 (∂Ω). We
summarize the previous discussion with

Theorem 1.5. Suppose that q ∈ L∞(Ω) and that zero is not an eigenvalue of ∆+ q
with Dirichlet boundary conditions, then the boundary value problem 1.12 has a
unique solution satisfying

‖u‖Ht(Ω) ≤ C‖f‖
Ht− 1

2 (∂Ω)
t ≥ 1 .

The map Λq defined by 1.13 has a unique extension as a bounded map

Λq : H
1
2 (∂Ω) → H− 1

2 (∂Ω) .

There is a very direct relation between the isotropic conductivity equation and
the Schrödinger equation. Suppose that γ is in C2(Ω) and that u ∈ H2(Ω) is a
solution to

Lγu = ∇ · γ∇u = 0 in Ω, u = f on ∂Ω ,

for some f ∈ H
3
2 (∂Ω). If we define

w = γ
1
2u

then we find that
∆w + qw = 0 in Ω ,

with

q = −∆γ1/2

γ1/2
.
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At the same time
w = γ

1
2 f on ∂Ω ,

and we therefore easily calculate that

Λq(γ
1
2 f) =

∂

∂ν
w|∂Ω =

∂

∂ν
(γ

1
2w)|∂Ω

=
1

2
γ−

1
2
∂γ

∂ν
f + γ−

1
2Λγf .

Through substitution of g = γ
1
2 f this yields

Λqg =
1

2
γ−1∂γ

∂ν
g + γ−

1
2Λγ(γ

− 1
2 g) .

We have therefore proven

Theorem 1.6. Let γ be a conductivity in C2(Ω) and define

q = −∆γ1/2

γ1/2
,

then

Λq = γ−
1
2Λγ(γ

− 1
2 · ) +

1

2
γ−1∂γ

∂ν
I .

We conclude this chapter with a remark owing to the fact that the DN map is
not always well defined for a Schrödinger operator. It is therefore often convenient
to work with the set of Cauchy data

Cq =
{
(f, g) ∈ H

1
2 (∂Ω)×H− 1

2 (∂Ω) : f = w|∂Ω, g =
∂w

∂ν
|∂Ω, with ∆w + qw = 0

}
.

The normal derivative ∂w
∂ν |∂Ω is here defined by Green’s formula:

〈∂w
∂ν

|∂Ω, φ〉 =
∫

Ω

(
∂w

∂xi

∂v

∂xi
− qwv

)
dx ,

where v ∈ H1(Ω) satisfies v|∂Ω = φ. We note that that when Λq exists, Cq is just its
graph

Cq = {(f,Λqf) : f ∈ H
1
2 (∂Ω) } .

2 Boundary Determination and Layer Stripping

The goal of this section is to show that if two conductivities γ1 and γ2 are in C∞(Ω̄)
and give rise to the same boundary measurements (i.e., Λγ1 = Λγ2) on the entire
boundary, then the conductivities, and their normal derivatives of all orders agree
on ∂Ω. This was first proven in [22]. The result is
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Theorem 2.1. Suppose that γ1 and γ2 are in C∞(Ω̄) and

Λγ1 = Λγ2 ,

then, for any integer ℓ ≥ 0

(2.1)

(
∂

∂ν

)ℓ

γ1 =

(
∂

∂ν

)ℓ

γ2 on ∂Ω .

The assertion of Theorem 2.1 immediately guarantees that all derivatives of γ1
and γ2 agree on ∂Ω. As a consequence it follows that Λγ uniquely determines γ
within the class of real-analytic γ. There is also a local version of Theorem 2.1
which guarantees the coincidence of all the derivatives of γ1 and γ2 near a point p
solely based on the coincidence of Λγ1(f) and Λγ2(f) near p for any f with support
near p.

A slightly more careful argument can be used to prove a stability estimate for
the inverse problem at the boundary. For that purpose we define the operator norm

‖A‖1/2,−1/2 = sup
‖φ‖

H1/2(∂Ω)
=1

‖Aφ‖H−1/2(∂Ω).

If the operator A is an unbounded self adjoint operator on L2(∂Ω), then

‖A‖1/2,−1/2 = sup
‖φ‖

H1/2(∂Ω)
=1

(φ,Aφ)L2(∂Ω)|

= sup
‖φ‖

H1/2(∂Ω)
=1

|QA(φ)|

Where QA denotes the unique quadratic from associated to A [8].

Theorem 2.2. Suppose that γ0 and γ1 are isotropic C∞ conductivities on Ω̄ ⊂ Rn

satisfying:

i) 1/E ≤ γi ≤ E

ii) ‖γi‖C2(Ω) ≤ E,

Given any 0 < σ < 1/(n+ 1) there exists C = C(Ω, E, n, σ) such that

(2.2) ‖γ1 − γ2‖L∞(∂Ω) ≤ C‖Λγ1 − Λγ2‖1/2,−1/2

and

(2.3) ‖∂γ1
∂ν

− ∂γ2
∂ν

‖L∞(∂Ω) ≤ C‖Λγ1 − Λγ2‖σ1/2,−1/2 .
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In this section we sketch an alternative approach to the proof of Theorem 2.1
developed first in [41] which uses the fact that Λγ is a pseudodifferential operator of
order 1. Then one computes its full symbol in appropriate coordinates. In [28] this
approach was further simplified by using a “factorization” method. We will follow
this approach here because it also leads to a Riccati type equation satisfied by the
DN map. This, and the boundary determination of the conductivity, are the key
elements of the layer stripping algorithm developed in [39]. Also the factorization
method leads to boundary determination results for more general equations and
systems ([28], [30], [33] ). Furthermore it provides an easy way to show that the DN
map is a pseudodifferential operator. For related approaches using the singularities
of the Green’s kernel instead see [1] and [29].

We start with a very simple example. Let Ω = Rn
+ = {x = (x′, xn), xn > 0}.

Then ∂Ω = Rn−1. Let f ∈ H
1
2 (Rn−1). Let us consider the unique solution, u ∈

H1(Rn
+), of

∆u = 0 in Rn
+

u|∂Ω = f
(2.4)

Then the DN map is

(2.5) f → − ∂u

∂xn
|Rn−1

where u solves (2.4).
We factorize

(2.6) −∆ = (Dxn + i
√
−∆′)(Dxn − i

√
−∆′)

where Dxj =
1
i

∂
∂xj

, j = 1, . . . , n and −∆′ = −
n−1∑

j=1

∂2

∂x2j
.
√
−∆′ is the pseudodifferen-

tial operator given by

√
−∆′f =

1

(2π)n−1

∫

Rn−1

eix
′·ξ′ |ξ′|f̂(ξ′)dξ′.

The point is that we can solve

(Dxn + i
√
−∆′)u = 0 in Rn

+

u|xn=0 = f.
(2.7)

We simply take for xn > 0

(2.8) u(x′, xn) =
∫
eix

′ξ′e−xn|ξ′|f̂(ξ′)dξ′.

From (2.7) we then deduce that

− ∂u

∂xn

∣∣∣∣
xn=0

=
√
−∆′f.

12



So the DN map in this case is just
√
−∆′ whose full symbol is |ξ′|. Note that the

term (Dxn−i
√
−∆′) behaves like a heat equation in Rn

+ and (Dxn+i
√
−∆′) behaves

like a backwards heat equation.
Now we try a similar idea for (−∆ + q), q ∈ C∞(Ω) where Ω is a bounded

domain with smooth boundary. First we take coordinates near a point x0 ∈ ∂Ω so

that locally Ω = {(x′, xn), xn > 0} and − ∂
∂xn

∣∣∣
∂Ω

= ∂
∂ν

∣∣
∂Ω

with ν the unit outer

normal to ∂Ω.
In these coordinates

(2.9) −∆+ q = (D2
xn

+ iE(x)Dxn +Q(x,Dx′) + q)

with E ∈ C∞(Ω) real-valued and Q(x,Dx′) a differential operator of order 2 in x′,
with no zero order term, depending smoothly on xn, with full symbol g2(x, ξ

′) +
g1(x, ξ

′) with g2 > 0 and gi homogeneous of degree i in ξ′, i = 1, 2.
We try to find an operator B(x,Dx′) so that we have the factorization

(2.10) (−∆+ q) = (Dxn + iE(x) + iB(x,Dx′))(Dxn − iB(x,Dx′).

Using (2.9) and (2.10) B(x,Dx′) must solve

(2.11) i[Dxn , B(x,Dx′)] + EB(x,Dx′) +B2 −Q− q = 0

where [A,B] = AB − BA denotes the commutator. Notice that (2.11) is a Riccati
type equation for B. We solve (2.11) using the calculus of pseudodifferential opera-
tors. If b(x, ξ′) denotes the full symbol of B(x,Dx′) a pseudodifferential operator of
order 1 then the full symbol of i[Dxn , B(x,Dx′ ] is ∂

∂xn
b(x, ξ′). The full symbol of B2

is
∑

α

1
α!∂

α
ξ′b(x, ξ

′)Dα
x′b(x, ξ′) where the

∑
is interpreted asymptotically (as usual).

The full symbol of EB is b(x, ξ′)E(x′). Therefore the equation we must solve
for b(x, ξ′) is
(2.12)

∂xnb(x, ξ
′) + b(x, ξ′)E(x) +

∑

α

1

α!
∂αξ′b(x, ξ

′)Dα
x′b(x, ξ′)− g2(x, ξ

′)− g1(x, ξ
′)− q = 0.

Now we write

(2.13) b(x, ξ′) ∼
∑

j≤1

bj(x, ξ
′)

with bj homogeneous of degree j in ξ′.
Now we compare terms of the same homogeneity in (2.12). The term homoge-

neous of degree 2 in (2.12) is

b21(x, ξ
′)− g2(x, ξ

′) = 0.

Therefore we choose

(2.14) b1(x, ξ
′) =

√
g2(x, ξ′).
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We choose the positive sign in the square root in (2.14) since we want the term
Dxn − iB(x,Dx′) to behave like a heat equation in Ω. The term homogeneous of
degree 1 in (2.12) is

∂xnb1(x, ξ
′) + b1(x, ξ

′)E(x) +
n−1∑

j=1

∂ξ′jb1Dx′
j
b1 + 2b0b1 − g1 = 0.

Therefore we choose

(2.15) b0 =
1

2b1



−∂xnb1(x, ξ

′)− b1(x, ξ
′)E(x)−

n−1∑

j=1

∂ξ′jb1Dx′
j
b1 + g1



 .

We will do one more step. The term homogeneous of degree 0 in (2.12) is

∂xnb0(x, ξ
′) + b0(x, ξ

′)E(x) + 2b−1b1 + b20

+
∑

|α|=1

∂αξ′b0D
α
x′b1 +

∑

|α|=1

∂αξ′b1D
α
x′b0 +

∑

|α|=2

1

α!
∂αξ′b1D

α
x′b1 − q = 0

We then choose

b−1 =
1

2b1

{
−∂xnb0(x, ξ

′)− b0(x, ξ
′)E(x)−

∑

|α|=1

∂αξ′b0D
α
x′b1

−
∑

|α|=1

∂αξ′b1D
α
x′b0 −

∑

|α|=2

1

α!
∂αξ′b1D

α
x′b1 + q

}
.

(2.16)

Now the inductive procedure is clear. For any j < −2, collecting terms homogeneous
of degree j + 1, we obtain

(2.17) bj =
1

2b1

{
−∂xnbj+1 − bj+1E − 2

∑

l+k=j+1
l,k≥j+1

blbk −
∑

|α|≥1
l+k−|α|=j+1

l,k≤1

1

α!
∂αξ′(bl)D

α
x′(bk)

}

Note, that this forces l, k ≥ j+ |α| ≥ j+1, i.e. the procedure is recursive. Then we
have proven

Theorem 2.3. In local coordinates (x′, xn) as chosen above, there exists a pseudod-
ifferential operator B(x,Dx′) of order 1 depending smoothly on xn such that

(2.18) −∆+ q = (Dxn + iE(x) + iB(x,Dx′))(Dxn − iB(x,Dx′))

modulo a smoothing operator.

Remark. The equation is solved modulo smoothing since we have only compared
the full symbol of both sides of (2.18).
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Now we can solve the pseudodifferential equation

(Dxn − iB(x,Dx′))u = 0 (mod smoothing)

u|∂Ω = f
(2.19)

in the form

(2.20) u(x′, xn) =
∫
eix

′ξ′e−xn|ξ′|a(x, ξ′)f̂(ξ′)dξ′

with a ∼
∑

j≤0

aj , aj(x, ξ
′) homogeneous of degree j in ξ′. (See [42].)

Now the other term in the factorization (2.18) is a smoothing operator (see [42]).
Therefore we conclude that if u is the solution of

(−∆+ q)u = 0

u|∂Ω = f.
(2.21)

Then in local coordinates (x′, xn)

Dxnu = iB(x,Dx′)u mod smoothing.

Therefore

(2.22) Λq = B(x′, 0, Dx′) mod smoothing.

proving that the DN map is a pseudodifferential operator of order 1 on ∂Ω. Now we
prove

Theorem 2.4. From the full symbol of Λq we can recover ∂αq|∂Ω ∀ α.

Proof. Using (2.22) we need only to compute the full symbol of B(x′, 0, Dx′) i.e.

b(x′, 0, ξ′) ∼
∑

i≤1

bj(x
′, 0, ξ′).

The terms b1, b0 don’t give any information on q (see (2.14) and (2.15)). Now
from (2.16) we conclude that if we know b−1(x

′, 0, ξ′) we can determine q(x′, 0) since
all of the other terms in the RHS of (2.16) are known.

Proceeding inductively: if we know that from b−j+1 we can determine ∂jq

∂xj
n
(x′, 0),

and if we know bk, k ≥ −j + 1, then from (2.17) we conclude that we can recover

from b−j(x
′, 0, ξ′), ∂

j+1q

∂xj+1
n

(x′, 0) finishing the proof.

We now use Theorem 2.4 to prove the Kohn-Vogelius result.

Theorem 2.5. Let γi ∈ C∞(Ω), γi ≥ ǫ > 0, so that Λγ1 = Λγ2. Then

∂α γ1|∂Ω = ∂α γ2|∂Ω ∀ α
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Remark. This result is also local, i.e., one only needs to take x0 ∈ ∂Ω and a
neighborhood U(x0) of x0 in Ω so that Λγ1(f)|U(x0)

= Λγ2(f)|U(x0)
∀ f supported

in U(x0) to conclude that ∂αγ1(x0) = ∂αγ2(x0) ∀ α.
We recall Theorem 1.9 relating Λqj and Λγj if qj =

∆
√
γj√
γj

, j = 1, 2

(2.22) Λqjf = γ
− 1

2
j

∣∣∣∣
∂Ω

Λγj

(
γ
− 1

2
j

∣∣∣∣
∂Ω

f

)
+

1

2

(
γ−1
j

∂γj
∂ν

)∣∣∣∣
∂Ω

f, j = 1, 2.

Now we know that

σ1(Λqj ) =
√
g2(x′, 0, ξ′) = γ

− 1
2

j

∣∣∣∣
∂Ω

σ1(Λγj ) γ
− 1

2
j

∣∣∣∣
∂Ω

where σm(A) denotes the principal symbol of a pseudodifferential operator of order
m. So we deduce that

γ1|∂Ω
√
g2(x′, 0, ξ′) = σ1(Λγ1) = σ1(Λγ2) = γ2|∂Ω

√
g2(x′, 0, ξ′)

We then have that γ1|∂Ω = γ2|∂Ω. Therefore under the hypotheses of Theorem 2.5,
from (2.22) we conclude that

Λq1 − Λq2 −
1

2

(
γ−1
1

∂γ1
∂ν

)∣∣∣∣
∂Ω

− 1

2

(
γ−1
2

∂γ2
∂ν

)∣∣∣∣
∂Ω

= 0.

Now we take the principal symbol of order zero in the above equation. We have
that Λq1 − Λq2 is a pseudodifferential operator of order zero and σ0(Λq1 − Λq2) = 0.
We then obtain that

∂γ1
∂ν

∣∣∣∣
∂Ω

=
∂γ2
∂ν

∣∣∣∣
∂Ω

.

Therefore we have that Λq1 = Λq2 and by Theorem 2 ∂αq1|∂Ω = ∂αq2|∂Ω ∀ α.
Since qj =

∆
√
γj√
γj

we arrive to the conclusion of the theorem. �

In [?] it was shown that knowing the principal symbol of Λγ σ1(Λγ) = γ|∂Ω |ξ′|
implies the stability estimate (2.2) for just continuous conductivities. The computa-
tion of σ0(Λγ − γ|∂Ω Λ1) where Λ1 is the DN associated to the conductivity 1 leads
to the following result in [?].

Theorem 2.6. Let γi be measurable functions such that

0 <
1

λ
≤ γi ≤ λ.

If γi are Lipschitz continuous in Ω and for some β

sup
x∈Ω

|∇γi| ≤ β

Then we have that the bounded linear map

Bi : H
1
2 (∂Ω) → H

1
2 (∂Ω)
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where
Bi = Λγi − γi|∂Ω Λ1,

satisfies
‖B1 −B2‖ 1

2
, 1
2
≤ C(λ, β)‖γ1 − γ2‖W 1,∞(Ω)

and
‖γ1 − γ2‖W 1,∞(∂Ω) ≤ C‖B1 −B2‖ 1

2
, 1
2
+ ‖Λγ1 − Λγ2‖ 1

2
,− 1

2

where ‖ ‖ 1
2
, 1
2
and ‖ ‖ 1

2
,− 1

2
denotes the corresponding operator norms.

This method has been generalized to the anisotropic case in [28].
(a) (Anisotropic conductivities) Let g(x) = gij(x) be a smooth Riemannian
metric in Ω, i.e. gij is assumed to be a smooth, symmetric, positive definite matrix
in Ω. Let ∆g be the Laplace-Beltrami operator associated to g, i.e.

(2.22) ∆g =
n∑

i,j=1

1√
det g

∂

∂xi

(√
det ggij

∂

∂xj

)

where (gij) = (gij)
−1.

Let f ∈ H
1
2 (∂Ω). Let u ∈ H1(Ω) be the unique solution of

−∆gu = 0

u|∂Ω = f
(2.23)

The DN map is defined by

(2.25) Λg(f) =
n∑

i,j=1

gijνj
∂u

∂xi

∣∣∣∣
∂Ω

where νj denotes the components of ν. In section 1 of [28] the following result was
proven: Let (x′, xn) denote boundary normal coordinates with respect to the metric
g. Then the full symbol of Λg determines ∂αxn

g
∣∣
∂Ω

∀ α.
We recall the definition of boundary normal coordinates. For each r ∈ ∂Ω,

let αq : [0, ǫ) → Ω denote the limit-speed geodesic starting at r and normal to
∂Ω. If {x1, . . . , xn} are local coordinates for ∂Ω near p ∈ ∂Ω, we can extend them
smoothly to functions on a neighborhood of p in Ω by letting them to be constant
along each normal geodesic. If we define xn to be the parameter along each αr, then
{x1, . . . , xn} are coordinates called boundary normal coordinates.

The method of proof proceeds as before. Namely we find B(x,Dx′) a pseudodif-
ferential operator of order 1 in x′, depending smoothly on xn such that we have the
factorization

−∆g = D2
xn + iE(x)Dxn +Q(x,Dx′)

= (Dxn + iE(x) + iB(x,Dx′))(Dxn − iB(x,Dx′))

modulo smoothing.
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Then we prove

Λg = B(x′, 0, Dx′) mod smoothing.

Finally from the full symbol of B(x′, 0, Dx′) we recover ∂αg
(∂xn)α

∣∣∣
∂Ω

. Notice that this

statement depends on the coordinates (x′, xn).
B Layer stripping algorithm

Layer stripping algorithms have been developed for several inverse problems. For
the Electrical Impedance Tomography the corresponding algorithm was developed
in [39]. The idea is quite simple: We embed the domain ∂Ω in domains Ωa a ≥ 0
small with Ω0 = Ω. In the case of the Schrödinger equation −∆+ q, Ωa is given by

Ωa = {(x′, xn);xn = a}

so we have a family of DN maps Λ
(a)
q = Λq|xn=a. We know that we can determine

q
∣∣
∂Ω0

from Λq. Then we use the Riccati equation (2.11) (note that B(x′, a,Dx′) is

the DN map) to compute
dΛq

dxn

∣∣∣∣
xn=0

. We now use the approximation

Λq|xn=a ≈ Λq|xn=0 + a
dΛq

dxn

∣∣∣∣
xn=0

In this way we can determine Λq|xn=a. We can then determine q|xn=a and therefore
we can use (2.12) again to write

Λq|xn=a+∆a ≈ Λq|xn=a +∆a
dΛq

dxn

∣∣∣∣
xn=a

.

Of course, the problem is that the Riccati equation is non-linear and there will be
“blow-up” as xn increases. Some regularization of this is needed. In [39] this was
investigated for a ball R2 by dropping the high frequency modes. / We finish this
section by showing another derivation of the Riccati equation (2.11‘) is satisfied
exactly, not just up to a smoothing operator as shown earlier. We follow [39].

We solve the family of Dirichlet problems

Lqu = (D2
xn

+ iE(x)Dxn +Q+ q)u(x, a) = 0 in Ωa(2.26)

u(x, a)|xn=a = f(x′)(2.27)

We define the family of DN maps

(2.28) Λ(a)
q (f) = − ∂u

∂xn

∣∣∣∣
xn=a

.

We differentiate (2.26) and (2.27) with respect to a to obtain

Lq
∂u

∂a
= 0

∂u

∂a

∣∣∣∣
xn=a

=
∂u

∂xn

∣∣∣∣
xn=a

= −Λ(a)
q (f)
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Therefore

(2.29) (Λ(a)
q )2(f) =

∂2u

∂xn∂a

∣∣∣∣
xn=a

Now we differentiate (2.28) with respect to a. We get
(
dΛ

(a)
q

da

)
(f) =

d

da
(Λ(a)

q f)

=
d

da

(
− ∂u

∂xn

∣∣∣∣
xn=a

)

= −
((

∂

∂xn
+

∂

∂a

)(
∂

∂xn

))
(u)|xn=a

= −iE(x)Λa
qf +Qf + qf − (Λ(a)

q )2f

(2.30)

by using (2.26), (2.27), (2.28) and (2.29). So we get

(2.31)
dΛ

(a)
q

da
+ EΛa

q + (Λ(a)
q )2 −Q− q = 0

which is equation (2.11) since i[Dxn , B(x,D′
x)]f(x

′) = ∂xnB(x,Dx′)f(x′).

3 Complex Geometrical Optics Solutions

If we look for “plane wave” exponential solutions to Laplace’s equation, i.e., if we
seek

u = ex·ζ ζ ∈ Cn

which satisfy
∆u = 0,

then we must necessarily have

ζ · ζ = 0 ;

conversely 3 solves Laplace’s equation whenever 3 is satisfied. As any nontrivial
solutions to 3 will have non-zero real part, the corresponding solution 3 will grow
exponentially in most directions. The search for solutions analogous to 3 with the
Laplacian replaced by ∆ + q will be the main subject of this section. The utility
of complex geometrical optics solutions in solving the inverse conductivity problem
was first observed by Calderón in [3]. We begin by exhibiting Calderón’s proof of
injectivity of the linearized inverse boundary value problem.

We recall that the mapping Λ defined by

γ
Λ7→Λγ
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is an analytic map from L∞(Ω) to BL1/2,−1/2, the vector space of bounded linear

maps from H1/2(∂Ω) to H−1/2(∂Ω) endowed with the operator norm. We denote by
DΛγ [δγ] the Frechet derivative of Λ at γ acting on the perturbation δγ. Calderón
proved the following result.

Theorem 3.1. The Frechet derivative of Λ at γ = 1, DΛ1[ · ], is injective. That
is, if

DΛ1[δγ] = 0 for some δγ ∈ L∞(Ω)

then
δγ = 0

Proof. Let γ = γ(t) be a smooth curve in L∞(Ω) and let u(t) and v(t) satisfy, for
each t




Lγu = 0, Lγv = 0
u|∂Ω = f, v|∂Ω = g

γ ∂u
∂ν |∂Ω = α, γ ∂v

∂ν |∂Ω = β,




then integration by parts gives the identity
∫

∂Ω
(fβ(t)− gα(0)) dS(x) =

∫

Ω
(∇u(0)Tγ(t)∇v(t)−∇u(0)Tγ(0)∇v(t)) dx.

Differentiation with respect to t at t = 0 gives
∫

∂Ω
f

•
β(0) dS(x) =

∫

Ω
∇u(0)T •

γ(0)∇v(0) dx ,

where • denotes d
dt and u and v satisfy 3. Since

•
β(0) equals DΛγ(0)[

•
γ(0)]g this

identity may also be written

〈f,DΛγ(0)[
•
γ(0)]g〉 =

∫

Ω
∇u(0)T •

γ(0)∇v(0) dx ,

for every f and g ∈ H1/2(∂Ω). By taking
•
γ(0) = δγ it now follows that he equation

DΛγ(0)[δγ] = 0

is equivalent to

∫

Ω
∇uT δγ∇v dx = 0

for every u and v ∈ H1(Ω) which satisfy Lγ(0)u = Lγ(0)v = 0. If we further restrict
to γ(0) = 1 then 3 must hold for every pair of harmonic functions u and v. A very
natural set of choices for u and v are those exponentials 3 which satisfy 3, i.e., let

u = ex·ζ1 , v = ex·ζ2
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with ζj · ζj = 0. Then it follows from 3 that

ζ1 · ζ2
∫

Ω
ex·(ζ1+ζ2)δγ dx = 0

or
(ζ1 + ζ2) · (ζ1 + ζ2)− (ζ1 − ζ2) · (ζ1 − ζ2)

4

∫

Ω
ex·(ζ1+ζ2)δγ dx = 0 .

We now require that
ζ1 + ζ2 = ik, k ∈ Rn,

and note that since ζ1 · ζ1 = ζ2 · ζ2 = 0

−(ζ1 − ζ2) · (ζ1 − ζ2) = (ζ1 + ζ2) · (ζ1 + ζ2) = −k · k .

Hence DΛ1[δγ] = 0 implies that

k · k
∫

Ω
eix·kδγ dx = 0 ,

which again implies that

supp ̂(χΩδγ) ⊂ {0} ,

with χΩ denoting the characteristic function of the set Ω. However, χΩδγ is an

element of L2(Rn), so that χ̂Ωδγ is in L2(Rn) and therefore cannot be supported
at a single point. As a consequence

χΩδγ = 0 ,

which proves that DΛ1[ · ] is injective.

Before proceeding, we formulate the analog of Theorem 3.1 for Schrödinger op-
erators. Let Cq denote the Cauchy data for ∆ + q, defined by

Cq = {(f, g) ∈ H1/2(∂Ω)×H−1/2(∂Ω) :

∃v ∈ H1(Ω) with ∆v + qv = 0 in Ω, and v|∂Ω = f,
∂v

∂ν
|∂Ω = g} .

The map

L∞(Ω) ∋ q
C7→ Cq ∈ { linear subspaces of H

1
2 (∂Ω)×H− 1

2 (∂Ω)}

is also real analytic, and we denote by DCq, its Frechet derivative at q.

Theorem 3.2. The Frechet derivative of C at q = 0, DC0[ · ], is injective.
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Remark. For any fixed Ω and q sufficiently small (‖q‖L∞ < smallest eigenvalue of
−∆ with Dirichlet boundary conditions) Cq is the graph of the Dirichlet to Neumann
map, Λq, corresponding to the operator ∆+ q. Hence, the Frechet derivative acting
on the perturbation δq is given by

DCq[δq] = {(0, DΛq[δq]f) : f ∈ H1/2(∂Ω)} ,

and the statement that DC0[ · ] is injective is equivalent to the statement DΛq[ · ]
is injective at q = 0. �

The approach that we will use to prove identifiability later in § 5 is based on
exponential solutions which are constructed in a way that naturally extends the
previous construction for the Laplacian. To construct these solutions we shall make
use of the following norms, defined for any u ∈ C∞

0 (Rn) and any −∞ < δ <∞ :

‖u‖L2
δ
=

(∫

Rn

(
1 + |x|2

)δ|u|2 dx
)1/2

.

The space L2
δ is defined as the completion of C∞

0 (Rn) with respect to the norm
‖ · ‖L2

δ
.

The main theorem in this section is:

Theorem 3.3. Let −1 < δ < 0. There exists ǫ = ǫ(δ) and C = C(δ) such that, for
every q ∈ L2

δ+1 ∩ L∞ and every ζ ∈ Cn satisfying

ζ · ζ = 0 and

‖(1 + |x|2)1/2q‖L∞ + 1

|ζ| ≤ ε ,

there exists a unique solution to

∆u+ qu = 0 in Rn

of the form

u = ex·ζ
(
1 + ψ(x, ζ)

)

with ψ(x, ζ) ∈ L2
δ. Furthermore,

‖ψ‖L2
δ
≤ C

|ζ|‖q‖L2
δ+1
.

This theorem has a counterpart for the conductivity problem, which is obtained
by invoking the correspondence in Theorem 0.6 between the Schrödinger equation
and the conductivity equation. The statement is
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Theorem 3.4. Let −1 < δ < 0. There exists ǫ = ǫ(δ) and C = C(δ) such that, for

every positive γ with ∆γ1/2

γ1/2 ∈ L2
δ+1 ∩ L∞ and every ζ ∈ Cn satisfying

ζ · ζ = 0 and

‖(1 + |x|2)1/2 ∆γ1/2

γ1/2 ‖L∞ + 1

|ζ| ≤ ǫ ,

there exists a unique solution to
Lγu = 0

of the form
u = γ−1/2ex·ζ

(
1 + ψ(x, ζ)

)

with ψ(x, ζ) ∈ L2
δ. Furthermore,

‖ψ(x, ζ)‖L2
δ
≤ C

|ζ|
∥∥∆γ

1/2

γ1/2

∥∥
L2
δ+1
.

Most of the work necessary for the proof of Theorem 3.3 is associated with
establishing the following proposition.

Proposition 3.1. Suppose that ζ · ζ = 0, |ζ| ≥ c > 0, f ∈ L2
δ+1 and − 1 < δ < 0.

There exists a unique ϕ ∈ L2
δ such that

(∆ + 2ζ · ∇)ϕ = f.

Moreover,

‖ϕ‖L2
δ
≤ C(δ, c)

|ζ| ‖f‖L2
δ+1
.

We postpone the proof of this proposition to the end of this chapter, instead we
first show how it may be applied for the

Proof of Theorem 3.3. We seek u of the form

u = ex·ζ(1 + ψ)

satisfying
(∆ + q){ex·ζ(1 + ψ)} = 0

or

∆ψ + 2ζ · ∇ψ = −q − qψ.

To solve 3, we define
ψ−1 = 1
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and we recursively define ψj by

(∆ + 2ζ · ∇)ψj = −qψj−1 for j ≥ 0.

We claim that

ψ :=
∞∑

j=0

ψj

is the desired solution. It needs to be proved that the functions ψj , j ≥ 0, are
well defined, and that the series 3 is convergent. We may without loss of generality
restrict our attention to ǫ < 1, so that we only consider ζ for which |ζ| ≥ 1. Since
q ∈ L2

δ+1 and ψ−1 = 1 it follows from Proposition 3.1 that there exists a unique
ψ0 ∈ L2

δ that solves 3 with j = 0. This ψ0 furthermore satisfies

‖ψ0‖L2
δ
≤ C(δ)

|ζ| ‖q‖L2
δ+1

.

If v is an element in L2
δ , then the fact that (1 + |x|2)1/2q is in L∞ immediately

implies that qv is in L2
δ+1 with the estimate

‖qv‖L2
δ+1

≤ ‖(1 + |x|2)1/2q‖L∞‖v‖L2
δ
.

Using this observation in connection with Proposition 3.1 we conclude that if ψj−1

is in L2
δ then there exists a unique solution to 3 in L2

δ . This solution ψj furthermore
satisfies

‖ψj‖L2
δ
≤ C(δ)

|ζ| ‖qψj−1‖L2
δ+1

≤
(
C(δ)‖(1 + |x|2)1/2q‖L∞

|ζ|

)
‖ψj−1‖L2

δ
.

(3.16)

An induction argument based on the estimates 3 and 3.16 now gives that ψj , j ≥ 0,
are all elements of L2

δ and satisfy the estimates

‖ψj‖L2
δ
≤ C(δ)

|ζ| θ
j‖q‖L2

δ+1
with θ =

C(δ)‖(1 + |x|2)1/2q‖L∞

|ζ| .

By selecting ǫ sufficiently small, say that θ < 1/2, we now obtain that the series 3
is convergent, with the bound

‖ψ‖L2
δ
≤ 2

C(δ)

|ζ| ‖q‖L2
δ+1

.

This completes the proof of the existence part of Theorem 3.3.
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To verify the uniqueness of the solution ψ (and therefore of u), suppose that

∆ψ + 2ζ · ∇ψ = −q − qψ

and
∆ψ̃ + 2ζ · ∇ψ̃ = −q − qψ̃ ,

with ψ and ψ̃ ∈ L2
δ . Then

∆(ψ̃ − ψ) + 2ζ · ∇(ψ̃ − ψ) = q(ψ − ψ̃) ,

so that according to Proposition 3.1

‖ψ̃ − ψ‖L2
δ
≤ C‖(1 + |x|2)1/2q‖L∞

|ζ| ‖ψ̃ − ψ‖L2
δ

≤ 1

2
‖ψ̃ − ψ‖L2

δ
,

which can only occur if
‖ψ̃ − ψ‖L2

δ
= 0 .

�

It is not exactly Theorem 3.3 we use later on in our proof of identifiability, rather
it is the following version for a bounded domain.

Corollary 3.5. Let Ω be a bounded domain in Rn. There exist constants ǫ and C
such that for every q ∈ L∞(Ω) and every ζ ∈ Cn satisfying

ζ · ζ = 0 and

‖q‖L∞ + 1

|ζ| ≤ ǫ ,

there exists a solution u ∈ H1(Ω) to

∆u+ qu = 0 in Ω

of the form
u = ex·ζ

(
1 + ψ(x, ζ)

)

with

‖ψ‖L2(Ω) ≤
C

|ζ|‖q‖L2(Ω) and

‖ψ‖H1(Ω) ≤ C‖q‖L2(Ω) .

Proof. Define

q̃ =

{
q in Ω

0 in Rn \ Ω .
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We may apply Theorem 3.3 to q̃, say with δ = 1/2. This way we obtain the existence
of a solution to ∆u+ q̃u = 0 in Rn (and therefore a solution to ∆u+ qu = 0 in Ω)
of the form u = ex·ζ(1 + ψ(x, ζ)) with

‖ψ‖L2(Ω) ≤
C

|ζ|‖q‖L2(Ω) .

By interior elliptic regularity estimates it follows that u ∈ H1(Ω). It only remains
to prove the estimate concerning the H1 norm of ψ. As a means to obtain this
estimate we establish a particular interior estimate for solutions to

∆v = −F in Rn ,

namely

‖v‖H1(Ω) ≤ C
(
‖F‖H−1(Ω′) + ‖v‖L2(Ω′)

)
,

provided Ω ⊂⊂ Ω′. Let χ ∈ C1
0 (R

n), 0 ≤ χ ≤ 1 be such that χ ≡ 1 on Ω and
supp χ ⊂ Ω′, then integration by parts and use of Hölder’s inequality yields

∫

Rn

χ2|∇v|2 dx =

∫

Rn

Fχ2v dx+ 2

∫

Rn

χ∇χ · ∇v v dx

≤ C‖F‖2H−1(Ω′) +
1

8
‖χ2v‖2H1(Ω′)

+
1

4

∫

Rn

χ2|∇v|2 dx+ C

∫

Rn

v2|∇χ|2 dx .

(3.19)

On the other hand

‖χ2v‖2H1(Ω′) =

∫

Rn

|∇(χ2v)|2 dx+

∫

Rn

|χ2v|2 dx

≤ 2

∫

Rn

χ4|∇v|2 dx+ 2

∫

Rn

v2|∇χ2|2 dx

+

∫

Rn

|χ2v|2 dx

≤ 2

∫

Rn

χ2|∇v|2 dx+ C‖v‖2L2(Ω′) .

(3.20)

A combination of 3.19 and 3.20 gives
∫

Rn

χ2|∇v|2 dx ≤ C
(
‖F‖2H−1(Ω′) + ‖v‖2L2(Ω′)

)

+
1

2

∫

Rn

χ2|∇v|2 dx ,

and therefore

1

2

∫

Ω
|∇v|2 dx ≤ 1

2

∫

Rn

χ2|∇v|2 dx

≤ C
(
‖F‖2H−1(Ω′) + ‖v‖2L2(Ω′)

)
.
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This immediately leads to the estimate 3.
Going back to the equation 3 we get that

∆ψ = −2ζ · ∇ψ − q̃ − q̃ψ in Rn ,

and the estimate 3 thus gives

‖ψ‖H1(Ω) ≤ C
(
‖2ζ · ∇ψ + q̃ + q̃ψ‖H−1(Ω′) + ‖ψ‖L2(Ω′)

)
,

with Ω ⊂⊂ Ω′. On the other hand we also have

‖2ζ · ∇ψ + q̃ + q̃ψ‖H−1(Ω′) ≤ 2|ζ|‖ψ‖L2(Ω′) + ‖q̃‖L2(Ω′) + ‖q̃‖L2(Ω′)‖ψ‖L2(Ω′)

= 2|ζ|‖ψ‖L2(Ω′) + ‖q‖L2(Ω) + ‖q‖L2(Ω)‖ψ‖L2(Ω′) ,
(3.22)

and

‖ψ‖L2(Ω′) ≤
C

|ζ|‖q̃‖L2(Ω′) =
C

|ζ|‖q‖L2(Ω) .

The estimate 3 is obtained by replacing Ω by Ω′ in the estimate 3 (the constant C
changes). A combination of 3-3 yields

‖ψ‖H1(Ω) ≤ C

(
‖q‖L2(Ω) +

‖q‖2L2(Ω)

|ζ| +
‖q‖L2(Ω)

|ζ|

)
,

and since the assumption about |ζ| implies that 1/|ζ| ≤ Cmin(1, ‖q‖−1
L2(Ω)

), we

immediately get
‖ψ‖H1(Ω) ≤ C‖q‖L2(Ω) ,

as desired.

We now return to the

Proof of Proposition 3.1. We first prove uniqueness. Suppose that w ∈ L2
δ and

∆w + 2ζ · ∇w = 0.

Fourier transformation gives

(−|ξ|2 + 2ζ · iξ)ŵ = 0.

As this equation is invariant under rotations, we may without loss of generality
assume that

ζ = s




1
0
0
·
·
·




+ is




0
1
0
·
·
·




= se1 + ise2, s =
|ζ|√
2
,
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in which case 3 is equivalent to

[(
ξ21 + (ξ2 − s)2 + ξ23 · · ·+ ξ2n − s2

)
+ 2isξ1

]
· ŵ = 0.

The content of 3 is that the tempered distribution ŵ is supported on the manifold
M(s), whereM(s) denotes the codimension 2 sphere which arises as the intersection
of the plane ξ1 = 0 and the n-1 dimensional sphere with center se2 and radius s.
Whenever misunderstandings are excluded we shall for brevity use the notation M
in place of M(s).

We will apply Plancherel’s theorem to ŵ, but, in order to do so, we first smooth
the distribution ŵ by introducing

ŵε(·) = ε−nβ̂(|x|)
( ·
ǫ

)
∗ ŵ(·)

where

β(|x|) =
(

1

2π

)n ∫

Rn

χ(|ξ|2)e−iξx dξ with

χ ∈ C∞([0,∞)) and supp χ ⊂ [0, 1] .

From these definitions it follows immediately that

β̂(|x|)(ξ) = χ(|ξ|2) .

We furthermore normalize β by the requirement that

∫

Rn

β̂(|x|)(ξ) dξ =
∫

Rn

χ(|ξ|2) dξ = 1 .

It straightforward to see that
lim
ǫ↓0

ŵǫ = ŵ ,

supp ŵε ⊂ Nε (M(s)) = {ξ| dist(ξ,M(s)) ≤ ε} ,
(
ε−nβ̂(| · |)

(
ξ

ǫ

))∨
(x) = β(ǫ|x|) .

For any ϕ ∈ S(Rn)

〈w,ϕ〉 = 〈ŵ, ϕ̌〉

= lim
ǫ↓0

∫

Rn

ŵǫϕ̌ dx

so that

|〈w,ϕ〉| ≤ lim
ǫ↓0

ǫ

(∫

Nε

|ŵǫ|2dξ
)1/2

·
(

1

ε2

∫

Nǫ

|ϕ̌(ξ)|2dξ
)1/2
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As ϕ̌ is smooth and the (volume of Nǫ) /ǫ
2 converges to a constant times the surface

area of M,

|〈w,ϕ〉| ≤ C

(
lim
ǫ↓0

ǫ‖ŵǫ‖L2

) (∫

M(s)
|ϕ̌(ξ)|2dS(ξ)

)1/2

.

Moreover,
(

1

2π

)n

‖ŵǫ‖2L2 = ‖wǫ‖2L2

=

∫

Rn

|β(ǫ|x|)|2 |w(x)|2 dx

≤ sup(
∣∣β2(ǫ

∣∣x|)(1 + |x|2)−δ|) · ‖w‖2L2
δ
.

As β ∈ S(Rn), and δ < 0, it therefore follows that

‖ŵǫ‖2L2 ≤ C sup(|(1 + ǫ2|x|2)δ| · |(1 + |x|2)−δ|) · ‖w‖2L2
δ

≤ Cǫ2δ‖w‖2L2
δ
.

Returning to 3

|〈w,ϕ〉| ≤ C lim
ǫ↓0

(ǫ · ǫδ)‖w‖L2
δ

(∫

M(s)
|ϕ̌(ξ)|2dS(ξ)

)1/2

.

Since δ > −1, it therefore follows that

〈w,ϕ〉 = 0

for every ϕ ∈ S, so that w = 0.
We turn to prove existence of a solution to 3.1. Suppose for now that f ∈ S(Rn)
and define

ŵ(ξ) =
f̂(ξ)

−|ξ|2 + 2iζ · ξ .

We shall prove that w is well defined and satisfies the estimate

‖w‖L2
δ
≤ C

|ζ|‖f‖L2
δ+1

.

Once this estimate is established we can dispense with the assumption that f ∈
S(Rn) by continuity. As we did in the uniqueness proof, we may assume that

ζ = s(e1 + ie2) , s =
|ζ|√
2
,

and therefore

−|ξ|2 + 2iζ · ξ = ξ21 + (ξ2 − s)2 + ξ23 · · ·+ ξ2n − s2 + 2isξ1 = P (ξ, s).
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With this definition of the polynomial P it is easy to see that

P (ξ, s) = s2P (ξ/s, 1) .

As before we denote

Nr(M(s)) = {ξ ∈ Rn| dist (ξ,M(s)) ≤ r}

and we define an open cover of Rn by

O1(s) = Rn\Ns/2n(M(s))

O2(s) = {|ξ2 − s| ≥ s/2n} ∩
◦
Ns(M(s))

Oj(s) = {|ξj | ≥ s/2n} ∩
◦
Ns(M(s)) for j > 2.

It is useful to note that M(s) = sM(1) and that Oj(s) = sOj(1).
Let χj(ξ) be a partition of unity subordinate to this open cover, so that

ŵ(ξ) =

n∑

j=1

ŵj(ξ) =

n∑

j=1

χj(ξ)f̂(ξ)

P (ξ, s)

Since O1(1) is disjoint from M(1) and since P (ξ, 1) → ∞ as |ξ| → ∞ there exists a
constant c such that

P (ξ, 1) ≥ c > 0 ∀ξ ∈ O1(1) .

For ξ ∈ O1(s) this leads to the estimate

P (ξ, s) = s2P (ξ/s, 1) ≥ cs2

so that

‖w1‖L2
δ
≤ ‖w1‖L2 ≤ 1

cs2
‖f‖L2 ≤ 1

cs2
‖f‖L2

δ+1
.

Here we are use the facts that δ < 0 and δ+1 > 0. Since our hypothesis guarantees
that |ζ| =

√
2s is greater than some c > 0, 3 gives the desired estimate for w1.

To estimate each of the wj , j = 2, ..., n we first introduce new coordinates in Oj(s)
by

η1 = 2ξ1

ηℓ = ξℓ for ℓ 6= 1, j

ηj =
ξ21 + (ξ2 − s)2 + ξ23 · · ·+ ξ2n − s2

s

In terms of these new coordinates

ŵj(η) =
χj(ξ)f̂(ξ)

s(ηj + iη1)
.
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The Jacobian of this coordinate transformation on Oj(s) is easily calculated to be

Det

(
∂η

∂ξ

)
=

4ξj
s

for j 6= 2 ,

and

Det

(
∂η

∂ξ

)
=

4(ξ2 − s)

s
for j = 2 .

These expressions are in all cases bounded from above and below on Oj(s), j =
2, ..., n independently of s. At this point we shall make use of the following three
results, the proofs of which will be given later.

Lemma 3.1. The maps Zj defined by

(Zjf)(ξ) =

(
f̂

ξj + iξ1

)∨

f ∈ S(Rn)

are bounded from L2
δ+1 to L2

δ.

Lemma 3.2. For any χ ∈ C∞
0 (Rn) and any f ∈ S(Rn)

‖
(
χ(ξ)f̂(ξ)

)∨ ‖L2
δ+1

≤ C‖f‖L2
δ+1

,

where the constant C depends on χ, but is independent of f .

Lemma 3.3. Let O and O′ be open subsets of Rn Let f̂ be in C∞
0 (O′) and let Ψ be

a diffeomorphism from O to O′ such that the Jacobians DΨ and DΨ−1 are bounded
on O and O′ respectively, then

‖(f̂ ◦Ψ)∨‖L2
δ+1

≤ C‖f‖L2
δ+1

.

The constant C depends on Ψ, but is independent of f .

The proof of Proposition 3.1 now proceeds as follows. Let

gj(x) = [(χj f̂)(ξ(η))]
∨(x) ,

then it follows immediately from the formula for the wj that

wj(x) =
1

s

[
χj f̂(ξ(η))

ηj + iη1

]∨
(x) =

1

s

[
ĝj(η)

ηj + iη1

]∨
(x) .

Using Lemma 3.1 we obtain that

(3.30) ‖wj‖L2
δ
≤ C

s
‖gj‖L2

δ+1
.

At the same time, if we define

hj =
[
χj f̂

]∨
(x) and Ψ(η) = ξ(η) ,
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then we get

gj =
[
χj f̂ ◦Ψ

]∨
=
[
ĥj ◦Ψ

]∨
,

so that according to Lemma 3.2 and Lemma 3.3

‖gj‖L2
δ+1

≤ C‖hj‖L2
δ+1

= C‖(χj f̂)
∨‖L2

δ+1

≤ C‖f‖L2
δ+1

.
(3.31)

A combination of 3.30 and 3.31 gives estimate

‖wj‖L2
δ
≤ C

s
‖f‖L2

δ+1
s =

|ζ|√
2
.

Invoking the formula w =
∑n

j=1wj this completes the proof of Proposition 3.1.

It still remains to prove the three auxiliary lemmas 3.1–3.3. If we note that ‖f̂‖Hδ+1 =
‖f‖L2

δ+1
then lemmas 3.2 and 3.3 merely state that multiplication by smooth, com-

pactly supported functions and composition with smooth diffeomorphisms are bounded
operators on Hs(Rn); two facts that are well known. It thus only remains to give
the

Proof of Lemma 3.1. The map

f 7→
(

f̂

ξj + iξ1

)∨

may also be written

f 7→ f ∗
(

1

ξj + iξ1

)∨
f ∈ S(Rn) .

Furthermore it is well known that for an appropriate constant C

(
1

ξj + iξ1

)∨
=

C

xj + ix1
δ0(x̃) ,

where x̃ = (x2, . . . xj−1, xj+1, . . . xn) and δ0 denotes a Dirac delta function at the
origin. Therefore Zj is given by

f 7→ f ∗ C

xj + ix1
δ0(x̃) ,

which is to say that Zj is proportional to the solution operator for the inhomogeneous
equation

(∂x1 − i∂xj )v = f in Rn.
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To prove Lemma 3.1 it clearly suffices to consider a single value of the index j,
for instance j = 2. We furthermore claim that it suffices to prove the estimate
‖Z2f‖L2

δ
≤ C‖f‖L2

δ+1
in R2. To see this we note that

‖u‖2L2
δ(R

n) =

∫

Rn

(1 + |x|2)δ|u(x)|2 dx

≤
∫

Rn

(1 + x21 + x22)
δ|u(x)|2 dx

since δ < 0. Therefore

‖Z2f‖2L2
δ(R

n) ≤
∫
dx3 . . . dxn

[
‖Z2f(·, ·, x3, . . . xn)‖2L2

δ(R
2)

]
.

Here we use the fact that (Z2f)(x1, x2, . . . xn) = [Z2f(·, x̃)](x1, x2), i.e., we use that
x̃ = (x3, . . . xn) may be treated as parameters untouched by Z2. At the same time

‖f‖2L2
1+δ(R

n) =

∫

Rn

(1 + |x|2)1+δ|f(x)|2 dx

≥
∫

Rn

(1 + x21 + x22)
1+δ|f(x)|2 dx ,

since 1 + δ > 0. Therefore

‖f‖2L2
δ+1(R

n) ≥
∫
dx3 . . . dxn

[
‖f(·, ·, x3, . . . xn)‖2L2

δ(R
2)

]
.

The estimates 3 and 3 immediately imply that it suffices to prove the estimate
‖Z2f‖L2

δ
≤ C‖f‖L2

δ+1
in two dimensions. This latter estimate follows from the

following lemma with p = 2.

Lemma 3.4. If Z is defined by

Zf :=

∫

R2

1

(u2 − v2) + i(u1 − v1)
f(v1, v2) dv f ∈ S(R2) ,

then Zf is bounded from Lp
δ+1(R

2) to Lp
δ(R

2) provided p > 1 and −2/p < δ < 1−2/p

Proof The space Lp
δ consists of the functions

{u : (1 + |x|2)δ/2u ∈ Lp} ,

equipped with the norm ‖u‖Lp
δ
= ‖(1+ |x|2)δ/2u‖Lp . It is well known that the spaces

Lq
−δ and Lp

δ are dual, provided 1/p+ 1/q = 1. Due to this fact, it suffices to verify
the estimate |〈g, Zf〉| ≤ C‖f‖Lp

δ+1
‖g‖Lq

−δ
for any g ∈ Lq

−δ. We have

|〈g, Zf〉| =
∣∣∣∣
∫

R2

∫

R2

g(u)f(v)

(u2 − v2) + i(u1 − v1)
dudv

∣∣∣∣

≤
∫

R2

∫

R2

(
|g(u)|(1 + |u|)β(1 + |v|)−α

)
·
(
|f(v)|(1 + |u|)−β(1 + |v|)α

)

|u− v| dudv ,
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where α and β will be chosen later. Employing Hölder’s inequality,

|〈g, Zf〉| ≤
(∫

R2

{∫

R2

(1 + |u|)−pβ(1 + |v|)p(α−δ−1)

|u− v| du

}
(1 + |v|)p(δ+1)|f(v)|pdv

)1/p

×
(∫

R2

{∫

R2

(1 + |u|)q(β+δ)(1 + |v|)−qα

|u− v| dv

}
(1 + |u|)−qδ|g(u)|qdu

)1/q

≤ C‖f‖Lp
δ+1

· ‖g‖Lq
−δ

with the constant C given by

C =

(
sup
v

∫

R2

(1 + |u|)−pβ(1 + |v|)p(α−δ−1)

|u− v| du

)1/p

×
(
sup
u

∫

R2

(1 + |u|)q(β+δ)(1 + |v|)−qα

|u− v| dv

)1/q

.

In order to guarantee that C is finite, it suffices to require that

1/p < β < 2/p and 1/q < α < 2/q

with

δ = α− β − 1/q .

On the other hand, if p > 1 and δ satisfies

−2/p < δ < 1− 2/p ,

then it is not difficult to check that it is always possible to select α and β such that
3 and 3 are satisfied. This completes the proof of Lemma 3.5 and consequently the
proof of Lemma 3.1.

See the notes of Mikko Salo [34] for another construction, due to Peter Hähner,
[11], of CGO solutions for the Schrödinger equation.

4 Applications of Complex Geometrical Optics Solu-
tions

We give two applications of CGO solutions. One is to prove unique identifiability of
a C2 conductivity a result due to [40] and to determine cavities using the enclosure
method [15].
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4.1 Uniqueness for Calderón’s Problem

For any ζ ∈ C3 satisfying ζ · ζ := tζζ = 0, ex·ζ satisfies ∆ex·ζ = 0. This harmonic
function is called the complex plane wave solution. There are two important prop-
erties for the complex plane wave solution. The one is that the complex plane wave
solution is exponentially decaying and growing for each side of the surface x·Reζ = 0
and oscillating on this surface as |ζ| → ∞. The other is that the linear combinations
of their products of two complex plane wave solutions are complete in L2(Ω). We
will refer this second property by the completeness of product.

The CGO solutions is a generalization of complex plane wave solution for more
general equation than the Laplace equation . It still has the two properties. For
example, let Ω ⊂ R3 be a bounded domain with smooth boundary ∂Ω, then the
CGO solutions u of the Schrödinger equation (∆ + q(x))u = 0 in Ω with potential
q ∈ L∞(Ω) has the form

(4.1) u = ex·ζ(1 +O(|ζ|−1)) (|ζ| → ∞).

These CGO solutions u can be used to prove the uniqueness for identifying q
from the Dirichlet to Neumann map Λq defined by

(4.2) Λq(f) :=
∂u

∂ν
|∂Ω ∈ H1/2(∂Ω),

where ν is the outer unit normal vector of ∂Ω and u = u(f) is the solution to

(4.3)

{
(∆ + q)u = 0 in Ω

u|∂Ω = f ∈ H3/2(Ω)

The outline of the proof is as follow. Let qj ∈ L∞(Ω) and Λqj be its Dirichlet to
Neumann map. We have to prove that Λq1 = Λq2 implies q1 = q2. By Green’s
formula, we have the identity:

(4.4)

∫

∂Ω
(Λq1 − Λq2)f1f2dσ =

∫

Ω
(q1 − q2)u1(f1)u2(f2) dx,

where dσ is the surface element of ∂Ω. For any k ∈ R3 \ {0} and r > 0, let
ζ(j) = ζ(j)(k, r) (j = 1, 2) satisfy

(4.5)

{
(ζ(j))2 = 0, |ζ(j)|2 = 2r2 + 1

2 |k|2, |ζ(j)| = O(r) (r → ∞) (j = 1, 2)

ζ(1) + ζ(2) = ik

Substitute the CGO solutions

(4.6) uj = ex·ζ
(j)
(1 + ψj(x, ζ

(j))), ‖ψ(j)‖L2(Ω) = O(r−1) (r → ∞)

to the identity recalling that Λq1 = Λq2 . Then, we have

(4.7)

∫

Ω
eix·k(q1 − q2) dx = −

∫

Ω
eix·k(q1 − q2)(ψ1 + ψ2 + ψ1ψ2) dx.
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The right-hand side of (4.7) is O(r−1) (r → ∞) and hence

(4.8)

∫

Ω
eix·k(q1 − q2) dx = 0

which implies q1 = q2 in Ω. This completes the proof.
By the relation:

(4.9) u = γ−1/2v, q = −∆(γ1/2)

γ1/2
,

u is the solution of the conductivity equation:

(4.10) ∇ · γ∇u = 0 in Ω

if v is the solution to the Schrödinger equation with potential q. Here γ > 0 in Ω is
the conductivity in the Sobolev spaceW 2,∞(Ω). Hence, (4.10) has the CGO solution
u of the form:

(4.11) u = ex·ζγ−1/2(1 +O(|ζ|−1)) (|ζ| → ∞).

Also, we have the uniqueness result for identifying the conductivity γ from the
Dirichlet to Neumann map Λγ defined by

(4.12) Λγ(f) := γ
∂u(f)

∂ν
|∂Ω,

where u = u(f) ∈ H2(Ω) is the solution of the conductivity equation satisfying the
boundary condition u|∂Ω = f ∈ H2/3(Ω).

Further Developments There has been many other developments in EIT using CGO
solutions. See the survey papers [45], [46] and the special volume [12]. For recent
improvements on the regularity assumed in the unique identifiability of the conduc-
tivity from the DN map see [10] and [5]. A subsequent review paper applying CGO
solutions to hybrid inverse problems is [21]. We also recommend the excellent notes
of Mikko Salo [35].

4.2 Determining Cavities

So far we have only used the completeness of the product of the CGO solutions.
Combining this property with the exponential decay and growth of the CGO solu-
tions, we can give the reconstruction of a cavityD with strongly convex C2 boundary
∂D inside a conductive medium Ω with conductivity 1 such that Ω\D is connected.
This result is in [15] and its proof is as follows. Define the Dirichlet to Neumann
map ΛD by

(4.13) ΛD(f) :=
∂u(f)

∂ν
|∂Ω,
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where u = u(f) ∈ H2(Ω) is the solution to

(4.14)





∆u = 0 in Ω \D,
∂u
∂ν |∂D = 0,

u|∂Ω = f ∈ H3/2(Ω)

and ν is the unit normal of ∂D directed outside D. If D = ∅, we denote ΛD by
Λ0. Let ω, ω⊥ be unit 3 dimensional real vectors perpendicular to each other. For
τ > 0, consider the CGO solutions v = v(x, τ, ω, ω⊥) of the Laplacian in Ω :

(4.15) v(x, τ, ω, ω⊥) = eτx·(ω+iω⊥).

For t ∈ R, define the indicator function Iω,ω⊥(τ, t) by

(4.16) Iω,ω⊥(τ, t) := e−2τt

∫

∂Ω
((ΛD − Λ0)v|∂Ω)v|∂Ω dσ.

Define the support function hD(ω) of D by

(4.17) hD(ω) := supx∈Dx · ω.

Then, we can characterize the support function in terms of the indicator function.
That is we have

(4.18) (hD(ω),∞) = {t ∈ R ; lim
τ→∞

Iω,ω⊥(τ, t) = 0}.

Hence, by taking many ω, we can recover the shape of D. The outline of charac-
terizing the support function is as follow. Let w be the reflected solution of e−τtv
which is defined as the solution to

(4.19)





∆w = 0 in Ω \D,
∂w
∂ν |∂D = −∂e−τtv

∂ν |∂D,
w|∂Ω = 0.

Then, by integration by parts, we have

(4.20) −Iω,ω⊥(τ, t) =

∫

Ω\D
|∇w|2 dx+

∫

D
|∇(e−τtv)|2 dx.

By reminding the well known inequality:

(4.21) ‖w‖H1(Ω\D) ≤ C‖e−τtv‖H1(D)

for some constant C > 0 and analyzing the asymptotic behaviour of∫
D |∇(e−τtv)|2 dx as τ → ∞, we can prove (4.18).
Further Developments The method indicated above, called enclosure method,
has been applied to determine cavities , inclusions and other defects in several other
situations. See the review paper [47] and the references given there. A recent
development is the paper [9] where inclusions within inclusions and the surrounding
medium can be determined using CGO solutions.

37



5 Complex Geometrical Optics Solutions for First Or-
der Perturbations of the Laplacian

Several partial differential equations arising in applications can be transformed to
∆ + l.o.t and ∆I + l.o.t., where I is the identity matrix and ”l.o.t” denotes lower
order terms. We mention the magnetic Schrödinger equation, the linear elasticity
system and the Dirac system among many. It is interesting and important to find a
systematic way of constructing CGO solutions and this is what we do in this section.

Let

(5.1) M = ∆I +N(x,D),

where N(x,D) is a ℓ × ℓ system of differential operator of the first order whose
coefficients are C∞ and compactly supported in R3. Of course when ℓ = 1, we have
the differential operator ∆ + l.o.t. By conjugating M with ex·ζ , we have

(5.2) Mζ · = (∆ζ +Nζ)·

with

(5.3) ∆ζ = ∆+ 2ζ · ∇

and a system of differential operator Nζ of the first order.
The idea to construct solutions of 5.2 is to find invertible operators Aζ , Bζ so

that

(5.4) MζAζ = Bζ(∆zeta+ Cζ)

where Cζ is an operator of order zero in an appropriate sense. This operator plays
the same role as a potential term in section 3. One can then, using the same
approach as in section 3, construct solutions vζ of ∆ζ + Cζ . The CGO solutions of
M will then be uζ = Aζvζ .

Equation 5.4 is referred to as the intertwining property. The remaining of this
section is devoted to the construction of Aζ , Bζ . The material in this section is in
[32].

5.1 Intertwining property (part 1)

The operators Aζ , Bζ will be constructed in a class of pseudodifferential operators
depending on a parameter studied, for instance, in Shubin’s book [38] and formulate
precisely the intertwining property for Mζ defined by (5.2).

Here we quote here the definitions and theorems from Chapter 2, section 9 in
[38].

Definition 5.1. Let l ∈ R and

(5.5) Z := {ζ ∈ C3; |ζ| ≥ 1, ζ · ζ = tζζ = 0}.
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(i) Let V ⊂ Rm (m = 3 or 6) be an open set. For a matrix aζ = aζ(x, ξ),
aζ ∈ Sl(V,Z) if and only if the following (i–1), (i–2) are satisfied.

(i–1) For any fixed ζ ∈ Z, aζ(x, ξ) ∈ C∞(V ×R3).

(i–2) For any α ∈ Z3
+, β ∈ Zm

+ := {β = (β1, . . . , βm); βj ∈ Z+ (1 ≤ j ≤ m)} and
compact set K ⊂ V , there exist a constant Cα,β,K > 0 such that the estimate

(5.6) |∂αξ ∂βxaζ(x, ξ)| ≤ Cα,β,K(|ξ|+ |ζ|)l−|α| (x ∈ K, ξ ∈ R3, ζ ∈ Z)

holds.

(ii) Define S−∞(V,Z) :=
⋂

l∈R
Sl(V,Z).

(iii) Let U ⊂ R3 be an open set and aζ(x, y, ξ) ∈ Sl(U × U,Z). Then, define
Aζ = Op(aζ) by

(5.7) Aζf(x) = (2π)−3

∫

R3

∫

R3

ei(x−y)·ξaζ(x, y, ξ)f(y)dydξ

for any f ∈ C∞
0 (U). Here, the integral is the oscillatory integral and i denotes

the unit of the pure imaginary number if there isn’t any confusion. Further-
more, define

Ll(U,Z) := {Op(aζ); aζ ∈ Sl(U × U,Z)}.

(iv) Define L−∞(U,Z) := ∩l∈RL
l(U,Z).

(v) Denote the Schwartz kernel of Aζ ∈ Ll(U,Z) by Kζ . We call Aζ is properly
supported if there exists a proper closed set H ⊂ U×U such that supp KAζ

⊂
H for any ζ ∈ Z. Here H is proper if

(πj)
−1(K) ∩H ⊂ R6 (j = 1, 2)

is relatively compact for any compact setK ⊂ U , where π1(x, y) = x, π2(x, y) =
y ((x, y) ∈ U × U).

(vi) For a properly supported Aζ = Op(aζ) ∈ Ll(U,Z), define

σ̃(Aζ)(x, ξ) := e−ix·ξAζ(e
ix·ξ)

and call it the total symbol of Aζ .

Theorem 5.2.

(i) The formula for the full symbols of the composition, adjoint etc. of pseudodiffer-
ential operators are the same as those of the usual classical pseudodifferential
operators without parameter.
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(ii) For any Aζ ∈ Ll(U,Z), there exist a properly supported A′
ζ ∈ Ll(U,Z) such

that A′
ζ −Aζ ∈ L−∞(U,Z).

(iii) For any properly supported Aζ = Op(aζ) ∈ Ll(U,Z), we have
(5.8)

σ̃(Aζ)(x, ξ)−
∑

|α|≤N−1

(α!)−1∂αξ D
α
y aζ(x, y, ξ)|y=x ∈ Sl−N (U,Z) (N ∈ N).

We denote (5.8) by

(5.9) σ̃(Aζ)(x, ξ) ∼
∑

(α!)−1∂αξ D
α
y aζ(x, y, ξ)|y=x.

(iv) Let Aζ ∈ Ll(R3, Z), r ≥ l. Assume that there exist a compact set K ⊂ R6

such that supp KAζ
⊂ K for any ζ ∈ Z. Then, for any k ∈ R, there exists a

constant Ck,r ≥ 0 depending on k, r such that

(5.10) ‖Aζ‖k,k−r ≤ Ck,r

{
|ζ|l (r ≥ 0)
|ζ|l−r (r ≤ 0)

(ζ ∈ Z),

where ‖Aζ‖k,k−r is the operator norm of Aζ : H
k(R3) → Hk−r(R3).

(v) For any partial differential operator P (x,D) of order l with C∞(U) coefficients,

Pζ(x,D)· := e−x·ζP (x,D)(ex·ζ ·)

is properly supported and Pζ(x,D) ∈ Ll(U,Z), where D = Dx.

(vi) For χ ∈ B∞(R3) := {x ∈ C∞(R3); ∀α ∈ Z3
+, supx∈R3 |Dαχ(x)| ≤ ∞}

satisfying ∇χ ∈ C∞
0 (R3), we have χ(|ζ|−1ξ) ∈ S0(R3 ×R3, Z).

Proof. The proofs are given in Chapter 2, Section 9 in [38] except (v), (vi). (v) is
clear if we note Pζ(x, ξ) = P (x, ξ − iζ).

As for (vi), we only have to note

∂ξjχ(|ζ|−1ξ) = (∂xjχ)(|ζ|−1ξ)|ζ|−1

and
|ζ|−1 ≤ (1 + r2)

1
2 (|ξ|2 + |ζ|2)− 1

2 (|ξ| ≤ r|ζ|).
Here we have assumed supp ∇χ ⊂ {|x| ≤ r}.

Definition 5.3.

(i) Let χ ∈ C∞
0 (R3), χ(x) = 1(|x| ≪ 1). Then, for l ∈ R, define

(5.11) λlζ(x, y, ξ) := χ(x− y)(|ξ|2 + |ζ|2) l
2 ∈ Sl(R3 ×R3, Z)

(5.12) Λl
ζ := Op(λ

l
ζ) ∈ Ll(R3, Z).
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(ii) Let a properly supported Aζ ∈ Ll(U,Z) admit an asymptotic expansion :

σ̃(Aζ)(x, ξ) ∼
∞∑

j=0

al−j(x, ξ, ζ),

where for each ∈ Z+,

{
al−j(x, ξ, ζ) ∈ Sl−j(U,Z)
al−j(x, tξ, tζ) = tl−jal−j(x, ξ, ζ) (t > 0, ζ ∈ Z, ξ ∈ R3).

Then we call such anAζ classical pseudodifferential operator and σ(Aζ) (x, ξ) :=
a0(x, ξ, ζ) is called the principal symbol of Aζ .

(iii) We call a properly supported pseudodifferential operator Aζ ∈ Ll(U,Z) elliptic
if

detσ(Aζ)(x, ξ) 6= 0 (x ∈ U, ξ ∈ R3, ζ ∈ Z)

holds.

Theorem 5.4. Let Aζ ∈ Ll(U,Z) be a properly supported pseudodifferential oper-
ator with principal symbol aζ(x, ξ).

(i) If Aζ is elliptic, then there exist properly supported elliptic classical pseudodif-
ferential operators Bζ , Cζ ∈ L−∞(U,Z) such that

AζBζ − I, CζAζ − I ∈ L−∞(U,Z).

Bζ and Cζ are called the right and left parametrix of Aζ , respectively.

(ii) Let Aζ ∈ Lm(R3, Z) be a classical properly supported with the principal symbol

a
(m)
ζ (x, ξ). Let a

(m−1)
ζ (x, ξ) be the m − 1 th order symbol of Aζ , φ1, φ2 ∈

C∞
0 (R3) and f ∈ C∞(R3). Then, we have the followings.

(ii-1) {|ζ|−m+1φ1(Aζ − a
(m)
ζ (x, 0))φ2f}ζ∈Z is bounded in B∞(R3) := {f ∈

C∞(R3) ; f and its derivatives are bounded}.
(ii-2)

{|ζ|−m+2φ1(Aζ − a
(m)
ζ (x, 0)− a

(m−1)
ζ (x, 0)− (∂ξa

(m)
ζ (x, 0) ·Dx)φ2f}ζ∈Z

is bounded in B∞(R3).

Proof. (i) is proven in Chapter 2, Section 9 in [38]. We first prove (ii-1).

σ̃(Aζ)(x, ξ)− a
(m)
ζ (x, 0) ≡ a

(m)
ζ (x, ξ)− a

(m)
ζ (x, 0)

=
∫ 1
0 (∂ξa

(m)
ζ )(x, θξ) dθ · ξ mod S(m−1)(R3, Z)

Put

b
(m−1)
ζ (x, ξ) :=

∫ 1

0
(∂ξa

(m)
ζ (x, θξ) dθ.
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|ζ|−m+1(φ1(Aζ − aζ(x, 0))φ2f)(x) = |ζ|−m+1

∫
eix·ξφ1(x)b

(m−1)
ζ (x, ξ)φ̂2f(ξ)d̃ξ,

||ζ|−m+1φ1(x)b
(m−1)
ζ

ˆφ2f(ξ)| ≤ C < ξ >−4

{
|ζ|−m+1(|ζ|+ |ξ|)m−1 < ξ >−m+1 (m ≥ 1)
|ζ|−m+1|ζ|m−1 (m < 1),

where C depends on φ2, f and d̃ξ := (2π)−3 dξ. For the ”mod term” (=rζ ∈
Sm−1(R3, Z)), use the estimate

‖φ1Op(rζ)(φ2f)‖k,k ≤ Ck|ζ|m−1‖φ2f‖k.

Similar estimate hold for the derivatives. Hence we have proven (i).
Next we prove (ii).

σ̃(Aζ)(x, ξ)− a
(m)
ζ (x, 0)− a

(m−1)
ζ (x, 0)− (∂ξa

(m)
ζ )(x, 0) · ξ

≡ b
(m−2)
ζ (x, ξ) · ξ +∑3

j,k=1 bj,k,ζ(x, ξ)ξjξk mod Sm−2(R3, Z),

where

bm−2
ζ (x, ξ) :=

∫ 1

0
(∂ξa

m−1
ζ )(x, θξ) dθ,

b
(m−2)
j,k,ζ (x, ξ) :=

∫ 1

0
(1− θ)(∂ξj∂ξka

(m)
ζ )(ξ, θξ) dθ.

Hence, likewise (i) before, we have (ii).

From now on we only consider properly supported classical pseudodifferential
operators.

Now, for ζ ∈ Z, we define

Mζ · := e−x·ζM(ex·ζ ·) ∈ L2(R2, Z)(5.13)

∆ζ · := e−x·ζ∆(ex·ζ ·) ∈ L2(R2, Z).(5.14)

We also define

(5.15) qζ(ξ) := σ(∆ζ) = −|ξ|2 + 2iζ · ξ.

Then, we have the following.

Lemma 5.1.

(i) By putting q−1
ζ (0) := {ξ ∈ R3; qζ(ξ) = 0} we have

(5.16) q−1
ζ (0) = {ξ ∈ R3; (ℜζ) · ξ = 0, |ξ + ℑζ|2 = |ℑζ|2},

where ℜζj , ℑζj (1 ≤ j ≤ 3) are the real and imaginary parts of ζj , and
ℜζ = (ℜζ1,ℜζ2,ℜζ3), ℑζ = (ℑζ1,ℑζ2,ℑζ3) for ζ = (ζ1, ζ2, ζ3).
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(ii)∇ξℜqζ , ∇ξℑqζ are linearly independent on q−1
ζ (0), where∇ξℜqζ := t(∂ξ1ℜqζ , ∂ξ2ℜqζ , ∂ξ3ℜqζ)

etc.

Proof. Since (i) is easy, we only prove (ii).
It is enough to show

∇ξℜ(−|ξ|2 + 2iζ · ξ) = −2(ξ + ℑζ)(5.17)

∇ξℑ(−|ξ|2 + 2iζ · ξ) = 2ℜζ(5.18)

are linearly independent on q−1
ζ (0).

Let α, β ∈ R satisfy

(5.19) α(ξ + ℑζ) + β ℜζ = 0 on q−1
ζ (0).

First note that we have

(5.20) |ℜζ| = |ℑζ| > 0, ℜζ · ℑζ = 0

from ζ ∈ Z. Then, using this and taking the inner product of the both hand sides
of (5.19) with ℜζ, we have β = 0. Hence,

(5.21) α(ξ + ℑζ) = 0 on q−1
ζ (0).

Next using
|ξ|2 + 2(ℑζ) · ξ = 0 on q−1

ζ (0)

and taking the inner product of the both hand sides of (5.21) with ξ, we have

(5.22) α(ℑζ) · ξ = 0 on q−1
ζ (0).

On the other hand, we have

α|ℑζ|2 + α(ℑζ) · ξ = 0 on q−1
ζ (0)

by taking the inner product of the both hand sides of (5.21) with ℑζ.
Hence we have α = 0 from (5.20), (5.22).

Remark 5.5. Note that ∆ζ is by no means an elliptic pseudodifferential operator
in terms of the definition of ellipticity given in Definition 5.3. By Lemma 5.1, it is
like ∂ near q−1

ζ (0).

Next we formulate the intertwining property as a theorem.

Theorem 5.6 (intertwining property). For any N ∈ N, there exist elliptic pseu-
dodifferential operators Aζ , Bζ ∈ L0(R3, Z) such that the followings hold. That is,
for any φ1 ∈ C∞

0 (R3), there exist φj ∈ C∞
0 (R3) (1 ≤ j ≤ 3) and r > 0 such that for

any ζ ∈ Z, |ζ| ≥ r, we have

(5.23) φ1MζAζ = φ1Bζφ2(∆ζI + φ3R
(−N)
ζ φ4),
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where for each s ∈ R, R
(−N)
ζ : Hs(R3) → Hs+N (R3) is an bounded linear operator

whose operator norm has the estimate :

(5.24) ‖R(−N)
ζ ‖s,s+N ≤ Cs|ζ|−N

with some constant Cs ≥ 0 depending on s.

Since the proof of Theorem 5.6 is very long, we postpone its details to the
succeeding sections. We only explain here the outline of the proof of Theorem 5.6.

Neglecting the auxiliary functions φj (1 ≤ j ≤ 4), (5.23) means

(5.25) MζAζ = Bζ∆ζ

modulo an element in L(−N−1)(R3, Z).
So we construct Aζ , Bζ in the following three steps.

Step 1 Construct Aζ in a neighborhood of q−1
ζ (0) such that Aζ = Bζ is elliptic.

Step 2 Extend σ(Aζ) constructed in Step 1 smoothly to {ξ ∈ R3} from the
neighborhood of q−1

ζ (0) without destroying its ellipticity.

Step 3 Define σ̃(Aζ), σ(Bζ) be equal to σ(Aζ) in {ξ ∈ R3} − q−1
ζ (0) constructed

in Step 2 so that Aζ , Bζ are elliptic. Then, construct σ̃(Bζ)− σ(Bζ).

In each step, the neighborhood q−1
ζ (0) and σ(Aζ)(x, ξ), σ(Bζ)(x, ξ) are chosen

to be invariant under the scaling by t > 0 :(ξ, ζ) 7→ (tξ, tζ).

Remark 5.7. Since ∆ζ is not elliptic on q
−1
ζ (0), the construction of the intertwining

operator Aζ = Bζ in Step 1 is the most important part throughout this lecture note.

5.2 Intertwining property (part 2)

In this subsection we give the proof of Theorem 5.6 formulated in the last section
according to the the procedure given as Step 1–3 in the last subsection.

Before going into the construction of Aζ , Bζ , we note the following. By Lemma
5.1, taking ε > 0 small enough, ∇ξℜqζ , ∇ξℑqζ are linearly independent on
(5.26)
N3ε|ζ|(q

−1
ζ (0)) := {ξ = (ξ1, ξ2, ξ3) ∈ R3; |(Reζ) · ξ| < 3εs2, ||ξ + Imζ| − s| < 3εs},

where |Reζ| = |Imζ| = s. So define

(5.27) Uζ,2 := N2ε|ζ|(q
−1
ζ (0)), Uζ,1 := R3 −Nǫ|ζ|(q−1

ζ (0))

and we look for Aζ , Bζ in the form

(5.28) Aζ =
2∑

j=1

Aζ,jχζ,j , Bζ =
2∑

j=1

Bζ,jχζ,j ,
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where χζ,j ∈ L0(R3, Z) are the partition of unity subordinated to the open covering
Uζ,j (j = 1, 2) of R3 and Aζ,j , Bζ,j ∈ L0(R3, Z).

Step 1 Let N ′ ∈ N and we look for Aζ,2, Bζ,2 in R3 × Uζ,2 in the form :

(5.29) Aζ,2 = Bζ,2 =
N ′−1∑

k=0

A
(−k)
ζ,2 .

Here we let the full symbol (A
(−k)
ζ,2 ) (0 ≤ k ≤ N ′ − 1) of A

(−k)
ζ,2 ∈ L−k(R3, Z) satisfy

(A
(−k)
ζ,2 ) = σ(A

(−k)
ζ,2 )(5.30)

Hqζ (A
(0)
ζ,2) +N

(1)
ζ (A

(0)
ζ,2) = 0 in R3 × Uζ,2(5.31)

Hqζ (A
(−k)
ζ,2 ) +N

(1)
ζ (A

(−k)
ζ,2 ) + σ(J (−k)) = 0 in R3 × Uζ,2(5.32)

(1 ≤ k ≤ N ′ − 1),

where

Hqζ := −i∇ξqζ · ∇x(5.33)

J (−k) := Mζ(x,D)(

k−1∑

l=0

A
(−l)
ζ,2 (x,D))− (

k−1∑

l=0

A
(−l)
ζ,2 (x,D))∆ζI.(5.34)

The existence of (A
(−k)
ζ,2 ) ∈ S−k(R3, Z) (0 ≤ k ≤ N ′−1) inR3×Uζ,2 is guaranteed

by the following 2 lemmas.

Lemma 5.2. There exist a solution (A
(0)
ζ,2) ∈ S0(R3, Z) to (5.31) in R3 × Uζ,2 and

it is elliptic there. That is

(5.35) det(A
(0)
ζ,2)(x, ξ) 6= 0 ((x, ξ) ∈ R3 × Uζ,2, ζ ∈ Z).

Furthermore, if σ(J (−k)) ∈ S−k+1(R3, Z) (1 ≤ k ≤ N ′ − 1) in R3 ×Uζ,2, there exist

solutions (A
(−k)
ζ,2 ) ∈ S−k(R3, Z) (1 ≤ k ≤ N ′ − 1) to (5.32) in R3 × Uζ,2.

The proof will be given later in the next two sections together with that of
Lemma 5.4 which will be given later.

Lemma 5.3.

(5.36) J (−N ′) ∈ L−N ′+1(R3, Z)

holds in R3 × Uζ,2.

Proof. We use the induction argument on N ′.
First we prove (5.36) for N ′ = 1. By (5.34),

J (−1) = (∆ζI +Nζ)A
(0)
ζ,2 −A

(0)
ζ,2(∆ζI)

= [∆ζI, A
(0)
ζ,2] +NζA

(0)
ζ,2,
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where [∆ζI, A
(0)
ζ,2] := (∆ζI)A

(0)
ζ,2 −A

(0)
ζ,2(∆ζI). Hence, by (5.31), we have

σ(J (−1)) = Hqζ (A
(0)
ζ,2) +N

(0)
ζ (A

(0)
ζ,2) = 0 in R3 × Uζ,2.

This proves (5.36) for the case N ′ = 1.
Next we prove (5.36) for the case N ′assuming that it holds up to N ′ − 1. By

(5.34), we have

J (−N ′) = (∆ζI +Nζ)(

N ′−2∑

l=0

A
(−l)
ζ,2 +A

(−N ′+1)
ζ,2 )− (

N ′−2∑

l=0

A
(−l)
ζ,2 +A

(−N ′+1)
ζ,2 )∆ζI

= J (−N ′+1) + [{(∆ζI)A
(−N ′+1)
ζ,2 −A

(−N ′+1)
ζ,2 (∆ζI)}+NζA

(−N ′+1)
ζ,2 ].

Hence, by (5.32), we have

σ(J (−N ′)) = Hqζ (A
(−N ′+1)
ζ,2 ) +N

(1)
ζ (A

(−N ′+1)
ζ,2 ) + σ(J (−N ′+1)) = 0 in R3 × Uζ,2.

This proves (5.36) for the case N ′.

Step 2 Let ψ1 ∈ C∞
0 ((−3ε, 3ε)), ψ2 ∈ C∞

0 (D(s−1Imζ, 3ε)) satisfy

(5.37)

{
ψ1(τ1) = 1 (|τ1| < 2ε)
ψ2(τ) = 1 (τ ∈ D(s−1Imζ, 2ε)),

where

(5.38) D(s−1Imζ, r) := {τ ∈ R3; τ · Reζ = 0, ||τ + s−1Imζ| − 1| < r}

for r > 0.
Now, consider an equation which interpolates (5.31) and Hqζ (A

(0)
ζ,2) = 0 :

(5.39)

Hqζ (A
(0)
ζ,2) + ψ1(s

−1(Reζ) · ξ)ψ2(s
−1ξ)N

(1)
ζ (A

(0)
ζ,2) = 0 in {(x, ξ) ∈ R3 ×R3}.

Then, we have the following lemma.

Lemma 5.4. There exists a solution (A
(0)
ζ,2) ∈ S0(R3, Z) of (5.39) which is elliptic

in R3 ×R3. That is

(5.40) det(A
(0)
ζ,2)(x, ξ) 6= 0 ((x, ξ) ∈ R3 ×R3, ζ ∈ Z).

the proof is given in the next two sections.

Step 3 We first define Aζ,1 ∈ L0(R3, Z) by

(5.41) σ̃(Aζ,1) = (A
(0)
ζ,2) in R3 × Uζ,1

in R3 × Uζ,1. Then, for N
′ ∈ N, we define Bζ,1 ∈ L0(R3, Z) by

(5.42) Bζ,1 =

N ′∑

k=0

B
(−k)
ζ,1
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in R3 × Uζ,1. Here, we let each B
(−k)
ζ,1 ∈ L−k(R3, Z) satisfy

σ̃(B
(0)
ζ,1) = (A

(0)
ζ,2) in R3 × Uζ,1(5.43)

σ̃(B
(−k)
ζ,1 ) = −q−1

ζ σ(I(−k+1)) in R3 × Uζ,1 (1 ≤ k ≤ N ′),(5.44)

where

(5.45) I(−k) := (
k∑

l=0

B
(−l)
ζ,1 (x,D))(∆ζI)−Mζ(x,D)Aζ,1(x,D)

for each k (0 ≤ k ≤ N ′ − 1).

The following lemma shows that B
(−k)
ζ,1 defined in this way satisfies B

(−k)
ζ,1 ∈

L−k(R3, Z) (0 ≤ k ≤ N ′).

Lemma 5.5.

(5.46) I(−N ′) ∈ L−N ′+1(R3, Z)

in R3 × Uζ,1

Proof. We prove by using the induction argument on N ′.
First we prove (5.5) for the case N ′ = 0. By (5.44),

I(0) = B
(0)
ζ,1(∆ζI)− (∆ζI +Nζ)Aζ,1.

Hence, by (5.43),

σ(I(0)) = (A
(0)
ζ,2)qζ − qζ(A

(0)
ζ,2) = 0 in R3 × Uζ,1.

This proves (5.46) for the case N ′ = 0.
Next assuming that (5.46) holds up to N ′ − 1, we prove (5.46) for the case N ′.

By (5.44),

I(−N ′) = (

N ′−1∑

k=0

B
(−k)
ζ,1 +B

(−N ′)
ζ,1 )(∆ζI)− (∆ζI +Nζ)Aζ,1

= I(−N ′+1) +B
(−N ′)
ζ,1 (∆ζI).

Hence, by (5.44),

σ(I(−N ′)) = σ(I(−N ′+1)) + qζ(B
(−N ′)
ζ,1 ) = 0 in R3 × Uζ,1.

This proves (5.46) for the case N ′.

Lemma 5.6.

(5.47) R
(−N ′)
ζ :=MζAζ −Bζ(∆ζI) ∈ L−N ′+1(R3, Z)

holds.
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Proof. By (5.36), (5.46) and χζ,j(∆ζI) = (∆ζI)χζ,j ,

R
(−N ′)
ζ = Mζ(

2∑

j=1

Aζ,jχζ,j)− (
2∑

j=1

Bζ,jχζ,j)(∆ζI)

=

2∑

j=1

{MζAζ,j −Bζ,j(∆ζI)}χζ,j ∈ L−N ′+1(R3, Z).

To rewrite (5.47) in the form of (5.23), we need the following two lemmas.

Lemma 5.7. Let Qζ ∈ Ll(R3, Z) be elliptic in R3×R3. Then, for any ϕ ∈ C∞
0 (R3)

there exist r > 0 and a linear operator Q̃−1
ζ with ζ satisfying |ζ| ≥ r such that

(5.48) ϕQζQ̃
−1
ζ = ϕ or ϕQ−1

ζ Q̃ζ = ϕ.

Moreover, for any s ∈ R, k ≥ −l, Q̃−1
ζ : Hs(R3) → Hs−k(R3) satisfies the estimate

:

(5.49) ‖Q̃−1
ζ ‖s,s−k ≤ Cs,k

{
|ζ|−l (k ≤ 0)
|ζ|−l−k (k < 0)

(ζ ∈ Z, |ζ| ≥ r),

where Cs,k > 0 is a constant depending on s, k. For later reference, we call Q̃−1
ζ

the semi-inverse of Qζ .

Proof. We only prove (5.48) for the former one and the corresponding (5.49),
because the latter one can be proven similarly.

If we can prove for the case l = 0, we can prove for the case l 6= 0 by first
applying the result for the case l = 0 to Q′

ζ := QζΛ
−l
ζ ∈ L0(R3, Z) and then using

Λ−l
ζ Λζ − I ∈ L−∞(R3, Z) and Theorem 5.2, (iv).
So we assume l = 0 in the rest of the proof.
Since Qζ is elliptic inR3×R3, by Theorem 5.4,(i), there exists a right parametrix

Q−1
ζ ∈ L0(R3, Z) of Qζ . So we take ϕ0 ∈ C∞

0 (R3) which is one in a neighborhood
of supp ϕ and define

(5.50) Sζ := ϕ0(I −QζQ
−1
ζ ) ∈ L−∞(R3, Z).

Since Qζ , Q
−1
ζ are properly supported, there exist a compact set K ⊂ R6 such that

(5.51) supp KSζ
⊂ K.

Hence, by Theorem 5.2, (iv), there exist r > 0 and C > 0 such that for any ζ
satisfying |ζ| ≥ r, the bounded linear operator

I − Sζ : L
2(R3) → L2(R3)
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has a bounded inverse (I − Sζ)
−1 and it satisfies the estimate :

(5.52) ‖(I − Sζ)
−1‖0,0 ≤ C (|ζ| ≥ r).

Moreover, by (5.50), (5.51) and (5.52), we can easily see that for any s ∈ R, there
exists a constant Cs > 0 depending on s such that

(5.53) ‖(I − Sζ)
−1‖s,s ≤ Cs (|ζ| ≥ r).

Reminding the choice of ϕ0, we have

(5.54) ϕQζQ
−1
ζ = ϕ(I − Sζ).

Hence, defining

(5.55) Q̃−1
ζ := Q−1

ζ (I − Sζ)
−1

when |ζ| ≥ r, it is clear that the first formula of(5.48) holds. Also, by (5.53) and
Theorem 5.2, (iv), we have (5.49).

Now we have prepared everything which is necessary to prove (5.23). First note
the following two things.

(i) Bζ is properly supported.

(ii) By (5.29), Lemma 5.4, (5.43), Bζ is elliptic in R3 ×R3.

Hence, by Lemma 5.7, there exist the semi-inverse B̃−1
ζ ofBζ and φj ∈ C∞

0 (R3) (1 ≤
j ≤ 4) such that

(5.56) φ1Bζφ2 = φ1Bζ , φ1φ3 = φ1, φ1BζB̃
−1
ζ = φ1I.

Therefore

(5.57) φ1BζB̃
−1
ζ = φ1Bζφ2B̃

−1
ζ .

By (5.47), (5.56), (5.57), we have

(5.58) φ1MζAζ = φ1(Bζ(∆ζI) + φ3R
(−N ′)
ζ ) = φ1Bζ(∆ζ + φ2B̃

−1
ζ φ3R

(−N ′)
ζ ).

To finish the proof, we only have to argue as follows. First, reminding R(−N ′) is
properly supported, we can take φ4 ∈ C∞

0 (R3) satisfying

φ3R
(−N ′)φ4 = φ3R

(−N ′).

Next, rewrite Then, we only have to define

R
(−N)
ζ := B̃−1

ζ φ3R
(−N ′).
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5.3 Intertwining property (part 3)–Some reductions

Now, we are going to start proving Lemmas 5.2, 5.4. Since the proof of Lemma 5.2
can be done in a similar way as that of Lemma 5.4, we omit its proof.

We first find a global transformation which transforms Hqζ = ℓ1 ·∇x+
√
−1ℓ2 ·∇x

to ∂ in two variables, where

(5.59)





ℓ1(x, ξ) := t(ℓ11(ξ, ζ), ℓ12(ξ, ζ), ℓ13(ξ, ζ))
= 2Reζ

ℓ2(ξ, ζ) : = t(ℓ21(ξ, ζ), ℓ22(ξ, ζ), ℓ23(ξ, ζ))
= 2(ξ + Imζ).

Lemma 5.8. There exist an invertible matrix T (ξ, ζ) ∈ C∞(N3ε|ζ|(q
−1
ζ (0)) × Z)

such that

(i) T (ρξ, ρζ) = ρ−1T (ξ, ζ) (ρ ≥ 1),

(ii) In terms of z = t(z1, z2, z3) = T (ξ, ζ)x where x = t(x1, x2, x3),

(5.60) Hqζ = ℓ1 · ∇x + iℓ2 · ∇x =
1

2
(∂z1 + i∂z2)(= ∂).

T (ξ, ζ) is given more precisely by the following relations.

(5.61)

{
z1 = 1

2(w1 − λ12w2), z′ = t(z2, z3) =
1
2w

′

w1 = |ℓ1|−2(ℓ1 · x), w′ = |λ′2|−1|ℓ1|−1tP ′(tMx)′,

where

(5.62) (tMx)′ =

(
0 1 0
0 0 1

)
(tMx)

and λ′2, P
′,M are defined as follows.

(5.63)





M : = [m1,m2,m3], K : = |ℓ1|M
m1 = |ℓ1|−1ℓ1, m2 = |m̃2|−1m̃2, m3 = m1 ×m2

m̃2 = ℓ2 − (ℓ2 ·m1)m1,

(5.64)





P ′ = [|λ′2|−1λ′2, |λ̃′3|−1λ̃′3], λ̃′3 = λ′3 − |λ2|−2(λ′3 · λ′2)λ′2
λ′2 : = t(λ22, λ32), λ′3 : = t(λ23, λ33)
K−1ℓ2 = t(λ12, λ22, λ32), |ℓ1|K−1m3 = t(λ13, λ23, λ33).

Proof. We will make the change of variables 3 times i.e. x = (x1, x2, x3) to y =
(y1, y2, y3), y to w = (w1, w2, w3) and w to z = (z1, z2, z3). Define matrix K by
K = [k1, k2, k3]. Clearly, K = |ℓ1|M and M is an orthogonal matrix. Consider the
change of variables x = Ky. We easily see ∂y1 = ℓ1 · ∇x = L1. Also,

y1 = e1 · y = e1 ·K−1x = |ℓ1|−1(e1 · tMx)

= |ℓ1|−1((Me1) · x) = |ℓ1|−2(ℓ1 · x),
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where e1 =
t(1, 0, 0). Let

L2 = ℓ2 · ∇x = λ12∂y1 + λ22∂y2 + λ32∂y3 ,

L3 = k3 · ∇x = λ13∂y1 + λ23∂y2 + λ33∂y3 .

Then, since L1, L2, L3 are linearly independent due to the linearly independency
of ℓ1, ℓ2, k3, λ

′
2, λ

′
3 are linearly independent nonzero real vectors. Let Q′ = |λ′2|P ′.

Consider the change of variables





y1 = w1

y′ = t(y2, y3) = Q′w′

w′ = t(w2, w3).

Since P ′ is an orthogonal matrix, we easily see

L1 = ∂w1 , L2 = λ12∂w1 + ∂w2

and

w2 = e′2 · w′ = e′2 ·Q′−1
y′ = |λ′2|−1(e′2 · tP ′y′)

= |λ′2|−1((P ′e′2) · y′) = |λ′2|−2(p′2 · y′),

aligned where e′2 = (1, 0).
Finally, consider the change of variables

{
z1 = 1

2(w1 − λ12w2)
z′ = t(z2, z3) =

1
2w

′.

Then, we easily see that L1 =
1
2∂z1 , L2 =

1
2∂z2 .

For simplicity we write

(5.65)

{
N = N(x, ξ, ζ) = ψ1(s

−1(Reζ) · ξ)ψ2(s
−1ξ)N

(1)
ζ (x, ξ)

A = A(x, ξ, ζ) = (A
(0)
ζ,2)(x, ξ).

By Lemma 5.8, we can write (5.39)

(5.66) ∂A+NA = 0

in terms of the variables zj (1 ≤ j ≤ 3). Here, we have used the same N for
simplicity. To avoid too many notations, we write

(5.67) xj = zj (1 ≤ j ≤ 3)

Also, we will sometimes write only the variable x′ := (x1, x2) and suppress all the
other variables.
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5.4 Construction of pseudoanalytic matrices

Let N(x) ∈ C∞
0 (R2) be a ℓ× ℓ matrix. Consider the equation :

(5.68) ∂A+NA = 0 in R2,

where ∂ = 1
2(∂x1+i∂x2). We look for an invertible C∞(R3) matrix solution A(x). We

call this equation a pseudoanalytic matrix in analogy with pseudoanalytic functions
in complex analysis. For a different approach see [6].

Lemma 5.9. Let N ∈ C∞
0 (R2). Then, there exist a negatively large constant τ ∈ R

and a constant C > 0 such that for any f ∈ L2
τ+2(R

2),

(5.69) ∂u+Nu = f in R2

admits a solution u ∈ L2
τ (R

2) with the estimate

(5.70) ‖u‖τ ≤ C‖f‖τ+2.

Here u ∈ L2
τ (R

2) if and only if

(5.71) ‖u‖2τ :=

∫

R2

(1 + |x|2)τ |u(x)|2dx <∞.

Proof. First of all note that we can easily prove

(5.72) (L2
σ(R

2))∗ = L−σ(R
2)

for any σ ∈ R. More precisely, for any T ∈ (L2
σ(R

2))∗, there exists a unique
u ∈ L2

−σ(R
2) such that

(5.73) T (φ) = (u, φ)L2(R2) (σ ∈ L2
σ(R

2))

and

(5.74) ‖T‖ = ‖u‖−σ,

where (u, φ)L2(R2) is the L
2(R2) inner product.

A. Bukhgeim [2] prove that, for any real valued function ρ ∈ C∞(R2),

(5.75)

∫

R2

(∆ρ)|φ|2eρdx ≤ 4

∫

R2

|∂φ|2eρdx (φ ∈ C∞
0 (R2)),

where ∂ = 1
2(∂x1 − i∂x2).

By taking ρ = α log(1 + |x|2) with a constant α > 0, a direct computation gives

(5.76)
√
α‖φ‖α ≤ ‖∂φ‖α (φ ∈ C∞

0 (R2)).

Combine this with the estimate:

(5.77) ‖(∂ −N∗)φ‖α−2 ≥ ‖∂φ‖α − ‖ < x >2 N∗‖L∞(R2)‖φ‖α−2.
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Then, reminding that N is compactly supported, we have for large enough α,

(5.78) ‖φ‖α−2 ≤ C‖(∂ −N∗)φ‖α (φ ∈ C∞
0 (R2))

for some constant C > 0 independent of φ.
Now for given f ∈ L2

−α+2(R
2), consider the map T : E −→ C defined by

(5.79) T (−(∂ −N∗)φ) = (f, φ)L2(R2) (φ ∈ C∞
0 (R2)),

where

(5.80) E = {−(∂ −N∗)φ ; φ ∈ C∞
0 (R2)} ⊂ L2

α(R
2).

From (5.78), (5.79), we have
(5.81)
|T (−(∂ −N∗)φ)| ≤ ‖f‖−α+2‖φ‖α−2 ≤ C‖f‖−α+2‖(∂ −N∗)φ‖α (φ ∈ C∞

0 (R2)).

By Hahn-Banach theorem, T can be extended to L2
α(R

2) and its extension T̃ satisfies

(5.82) ‖T̃‖ ≤ C‖f‖−α+2.

By (5.72), there exists a unique u ∈ L2
−α(R

2) such that

(5.83) T̃ (ψ) = (u, ψ)L2(R2) (ψ ∈ L2
α(R

2)),

(5.84) ‖T‖ = ‖u‖−α.

Hence,

(5.85) (u,−(∂ −N∗)φ) = T (−(∂ −N∗)φ) = (f, φ)L2(R2) (φ ∈ C∞
0 (R2),

(5.86) ‖u‖−α ≤ C‖f‖−α+2.

(5.85) means that u satisfies (∂ + N)u = f . So the proof is done if we take τ =
−α.

Now let k ∈ N be k > −τ . By 5.9, there exists a matrix solution U ∈ L2
τ (R

2) to

(5.87) ∂U +NU = −zkN,

where z = x1 + ix2.

Lemma 5.10. For large |x|, U admits an expansion:

(5.88) U(x) =

∞∑

n=0

Unz
k−n−1.
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Proof. Let χ ∈ C∞(R2) be a function satisfying

(5.89) 1− χ ∈ C∞
0 (R2), χ = 0 near x = 0.

From (5.87),

(5.90) ∂(χz−kU) = (∂χ)z−kU + χz−k∂U = G

with

(5.91) G = (∂χ)z−kU − χz−kNU − χN ∈ C∞
0 (R2).

For further argument, we need the following well known fact (see [40]).

Let −1 < δ < 0. Then, for given f ∈ L2
δ+1(R

2) such that

(5.92) ∂u = f in R2,

(5.93) u(x) =
1

π

∫

R2

1

(x1 + ix2)− (y1 + iy2)
f(y)dy

with x = (x1, x2), y = (y1, y2) and

(5.94) ‖u‖δ ≤ C‖f‖δ+1

for some constant C > 0 independent of f .

Note that χz−kU = χz−k < x >−τ (< x >τ U) ∈ L2(R2) ⊂ L2
δ(R

2) for any
−1 < δ < 0, because −(τ + k) < 0. Hence, by 5.4,

(5.95) χz−kU(x) =
1

π

∫

R2

G(y)

(x1 + ix2)− (y1 + iy2)
dy.

Put z = x1 + ix2, ζ = y1 + iy2. Then, for large |z|,

(5.96) χz−kU(x) =
1

π

∞∑

n=0

z−n−1

∫

R2

ζnG(y)dy.

Therefore, for large |z|,

(5.97)
U(x) = 1

π

∑∞
n=0 z

k−n−1
∫
R2 ζ

nG(y)dy
=
∑∞

n=1 z
k−nUn

with

(5.98) Un =
1

π

∫

R2

ζnG(y)dy.

This proves 5.10.

54



Since (∂ +N)(zkI) = zkN , A′ defined by

(5.99) A′ = zkI + U

satisfies

(5.100) ∂A′ +NA′ = 0 in R2

and A′ admits an expansion

(5.101) A′ =
∞∑

n=0

A′
nz

k−n, A′
0 = I, A′

n = Un (n = 1, 2, · · · )

for large |z|.
Next we investigate the zeros of detA′.

Lemma 5.11. detA′ satisfies

(5.102) ∂ detA′ = −(traceN)detA′ in R2,

where traceN is the trace of N .

Proof. Let A′ = (a′ij), N = (nij). By (5.100), we have

(5.103) ∂a′ij +
ℓ∑

k=1

nika
′
kj = 0 (1 ≤ i, j ≤ ℓ).

Hence

(5.104) ∂detA′ =
ℓ∑

i=1

det




a′1
·
·
∂a′i
·
·
a′ℓ




= −
ℓ∑

i=1

ℓ∑

k=1

nik det




a′1
·
·
a′k
·
·
a′ℓ




where a′k in the matrix of the right-hand side is the i-th row vector and a′i (1 ≤ i ≤ ℓ)
are the row vectors of A′. This immediately implies (5.102).

Lemma 5.12. The number of zeros of detA′ is kℓ.

Proof. Let −1 < δ < 0 and β ∈ L2
δ(R

2) be the solution of

(5.105) ∂β = −trace N in R2.

Also, write detA′ in the form:

(5.106) detA′ = α eβ .
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Then, we easily see that α satisfies

(5.107) ∂ α = 0 in R2

and β satisfies

(5.108) β(x) = O(|x|−1) (|x| → ∞).

By (5.101), we have

(5.109) detA′ − zkℓ = O(|x|kℓ−1) (|x| → ∞).

Hence, by (5.106),(5.107), we have

(5.110) α− zkℓe−β = O(|x|kℓ−1) (|x| → ∞).

So, by taking R > 0 large, we have

(5.111) |α− zkℓ| ≤ |α− zkℓe−β |+ |zkℓ||e−β − 1| < |zkℓ| (|z| = R).

Hence, reminding (5.107), we have from Rouche’s theorem, the number of zeros of
α is kℓ. Therefore, by (5.106), the number of zeros of detA′ is kℓ. This proves
5.12.

Next we want to modify A′ to get an invertible C∞(R2) matrix solution A of
(5.68) by dividing out the zeros of detA′. For this we prove the following.

Lemma 5.13. Fix y ∈ R2. Let m ∈ R and a(x) ∈ C∞(R2) be a function satisfying

(5.112) a(x) = O(|x− y|m) (x→ y).

Then, we have

(5.113) ∂(z−ma) = z−m∂a in R2,

where z = (x1 − y1) + i(x2 − y2) for x = (x1, x2), y = (y1, y2).

Proof. In this proof, < , > denotes the pairing between a distribution and a test
function. Let φ ∈ C∞

0 (R2). Then,
(5.114)

< ∂(z−ma), φ > = − < z−ma, ∂φ >

= − limε→+0

∫
|x−y|>ε z

−ma(x)∂φ(x)dx

= − limε→+0

∫
|x−y|>ε{∂(z−ma(x)φ(x)} − z−m∂a(x)φ(x)}dx

=
∫
R2 z

−m∂a(x)φ(x)dx− limε→+0 Iε(y),

where

(5.115) Iε(y) =

∫

|x−y|>ε
∂(z−ma(x)φ(x))dx.
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By Stokes’ theorem, we have

(5.116)
Iε(y) = 1

2

∫
|x−y|=ε z

−ma(x)φ(x)(dx2 − idx1)

= −1
2

∫ 2π
0 (εeiθ)−m+1(aφ)(y1 + εcosθ, y2 + εsinθ)dθ,

where the first integral in the right-hand side of (5.116) is a contour integral along
the circle |x− y| = ε in the clockwise direction. Hence, by (5.112), we have

(5.117) lim
ε→+0

Iε(y) = 0.

Therefore, by (5.114), (5.117),

(5.118) < ∂(z−ma), φ >=< z−m∂a, φ > (φ ∈ C∞
0 (R2)).

This proves 5.13.

Combining the local regularity property of the elliptic equations with 5.13, we
have the following.

Lemma 5.14. If a vector valued function a ∈ C∞(R2) satisfies

∂a+Na = 0 in R2

and a(x) = O(|x − y|m) (x = (x1, x2) → y) at a point y = (y1, y2) ∈ R2, then a(x)
can be written in the form

(5.119) a(x) = zma′(x), z = (x1 − y1) + i(x2 − y2)

with some a′(x) ∈ C∞(R2).

Now we will use 5.14 to divide out the zeros of detA′ to make A′ invertible.
First of all divide out the zero column vectors of A′ at any point by using 5.14. Let
a′j (1 ≤ j ≤ ℓ) be the resultant nonzero column vectors such that

(5.120) a′j = zdjej , as |z| → ∞, 1 ≤ j ≤ ℓ, with z = x1 + ix2,

where ei =
t(0, · · · , 1, · · · , 1) with 1 in the i-th component and 0 in the rest of the

components.
Suppose there exists a point x0 ∈ R2 such that

(5.121) detA′ = 0 at x = x0.

Let a′jr(x
0) (1 ≤ r ≤ k) be the linearly independent vectors such that

(5.122)

k∑

r=1

cra
′
jr(x

0) = 0 with cr 6= 0 (1 ≤ r ≤ k).
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Multiply, a′jr (1 ≤ r ≤ k, r 6= r1) by c
−1
r1 cr and add to a′jr1 . Then, denoting the

new jr0 th column vector by the same symbols a′jr1 , we of course have a′jr1 (x
0) = 0.

Dividing out the zero of a′jr1 at x = x0 and denote the resultant nonzero jr1 th

column vector again by the same symbol a′jr1 . We refer this procedure as dividing

out the zero due to the linear dependency. With this new a′jr1 , we again denote

[a′1, a
′
2, · · · , a′ℓ] by A′. Then, the column vectors a′j (1 ≤ j ≤ ℓ) of this new A′

are nonzero and the number of zeros of detA′ is reduced. So we have returned
to the starting point when we divided out the zero due to the linear dependency.
We repeat this argument until we get a new A′ = [a′1, a

′
2, · · · , a′ℓ] such that detA′ 6= 0.

Applications
The CGO solutions constructed in this section have been applied to solve inverse

boundary problems for the magnetic Schrödinger equation with different regularity
in the coefficients [30], [35], [36], [42], [19], [26]. Also applications to an inverse
boundary problem for linear elasticity are given in [31] (see also [7]). See also
applications to inverse problems for higher order operators [23], [24], [25].
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