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Preface

Inverse problems are those where from “external” observations of a hid-
den, “black box” system (a patient’s body, nontransparent industrial ob-
ject, Earth interior, etc.) one needs to recover the unknown parameters of
the system. Such problems lie at the heart of contemporary scientific in-
quiry and technological development. Applications include a vast variety of
medical as well as other (geophysical, industrial, radar, sonar) imaging tech-
niques, which are used for early detection of cancer and pulmonary edema,
location of oil and mineral deposits in the Earth’s interior, creation of as-
trophysical images from telescope data, finding cracks and interfaces within
materials, shape optimization, model identification in growth processes and
modeling in the life sciences among others. Most inverse problems arise from
a physical situation modeled by a partial differential equation. The inverse
problem is to determine coefficients of the equation given some information
about the solutions. Analysis of such problems brings together diverse areas
of mathematics such as complex analysis, differential geometry, harmonic
analysis, integral geometry, microlocal analysis, numerical analysis, opti-
mization, partial differential equations, probability etc. and is a fertile area
for interaction between pure and applied mathematics.

A prototypical example of an inverse boundary problem for an elliptic
equation is the by now classical Calderén problem, forming the basis of
Electrical Impedance Tomography (EIT). Calderén proposed the problem
in the mathematical literature in 1980. In EIT one attempts to determine
the electrical conductivity of a medium by making voltage and current mea-
surements at the boundary of the medium. The information is encoded in
the Dirichlet—to-Neumann (DN) map associated to the conductivity equa-
tion. EIT arises in several applications including geophysical prospection
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xii Preface

(the original motivation of Calderén) and in medical imaging. In the last 30
years or so there has been remarkable progress on this problem. This book
includes a thorough account of many of these developments. It is intended
for graduate students that have had a basic course in Real Analysis or its
equivalent.

We briefly summarize the contents of this book. In Chapter 1 we give a
motivation to Calderén’s inverse problem as well as an introduction to other
inverse problems like optical tomography and inverse scattering. Chapter
2 gives a precise formulation of Calderén’s problem. We also analyze the
linearized case at a constant conductivity, which is the case analyzed by
Calderén. Also in this chapter one can find the reduction of Calderén’s
problem to a study of the DN map associated to the Schrédinger equation.

In Chapter 3 we show that one can determine, in a stable fashion, the
conductivity at the boundary and the normal conductivity at the boundary
from the DN map. In Chapter 4 we construct complex geometrical optics
(CGO) solutions for the conductivity equation which have been the basis of
many developments in the theory of inverse boundary problems for elliptic
equations. We use these solutions to prove, in dimension greater than two,
uniqueness for C? conductivities from the DN map, develop a reconstruc-
tion procedure of the conductivity from the DN map, and prove stability
estimates for the inverse problem.

The two dimensional case is considered in detail in Chapter 5. For po-
tentials in the class C¢, € > 0, a new class of CGO solutions are constructed
that give uniqueness of the potential from the associated DN map for the
Schrédinger equation. This gives a similar result for C?*¢ conductivities. We
also describe how to get a more general uniqueness result, just for bounded
measurable conductivities, using quasiconformal maps.

The results described in Chapters 4 and 5 concern the case when the DN
map is measured on the whole boundary. Chapter 6 describes several results
for the case when the measurements are made on part of the boundary. A
basic tool is to construct CGO solutions vanishing on an open subset of the
boundary. This is done in dimension three or greater for special geometries
using a reflection method and for some other cases using Carleman estimates.

The previous chapters have discussed isotropic conductivities, that is,
conductivities that do not depend on direction. There are several impor-
tant physical examples of anisotropic conductivities, including muscle tissue.
This case is analyzed in detail in Chapter 7 in two dimensions.

A topic that has received a lot of attention in recent years is the subject of
invisibility and cloaking. The method of transformation optics has been one
of the main proposed techniques to achieve, at least theoretically, invisibility.
This technique originated in the study of EIT and Calderén’s problem, in
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constructing examples of non-uniqueness for Calderén’s inverse problem.
This construction leads to degenerate anisotropic conductivities. We give
a detailed account of this in Chapter 8, together with other selected topics
related to the Calderon problem.

Finally in Chapter 9 we consider an application of the methods developed
in the previous chapters to inverse scattering at a fixed energy.






Chapter 1

Introduction

In this introduction we discuss a number of imaging methods for which the
Calderon problem is relevant. In each situation we have a medium whose
internal properties are unknown, and the objective is to determine internal
properties of the medium from various measurements (electrical, optical, or
acoustic) on its boundary or far away.

1.1. Electrical impedance tomography

The one-dimensional case. Consider a simple electric circuit consisting
of two components: a resistor given by a metal wire occupying the interval
0 < x </ on the real line, and a voltage source attached to the resistor’s
terminals at z = 0 and = = ¢. We denote by u(x) the voltage at xz. By
Ohm’s law, the voltage difference between the points at « and = 4 h is the
current, I, flowing through the wire times the resistance between z and
x + h. If the resistance density (or resistivity) p(x) at each point x on the
wire is continuous, then

u(w + h) — u(x) = ~Ip(a')h

for some 7’ between x and z + h. Dividing across by h and taking the limit
h — 0, we get

' (z) = —Ip(x).

There are no sources or sinks of charge inside the wire, so the current [ is
a constant. We may eliminate it from the equation just by dividing p(x)
across and differentiating. In terms of the conductivity vy(z) = ﬁ, we have

(1.1) Y (z) = 1 = (y(2)d/(z)) = 0.

1



2 1. Introduction

Now suppose that the conductivity ~(z) of the wire is unknown to us,
and we may only measure the voltages and currents at the ends of the wire.
That is, we may only measure u(0),u(¢), v(0)u'(0) and (¢)u/(¢). By (1.1),
v(z)u'(x) is a constant and so takes the value v(0)u’(0) everywhere. Thus

— wlt) ~u(0) = 50w () [ 2
— u(f) —u(0) = v(0)u —.

0 (@)
Consequently, the only property of the wire that one can determine by mea-
surements at the ends of the wire is the total resistance f(f %.
Derivation of the conductivity equation. Replacing the wire by a two
or higher dimensional body changes the picture completely. In R", n > 2,

the current i(x) is a vector and Ohm’s Law is
(1.2) i(r) = —y(x)Vu(z).

Assuming that charge is still not allowed to accumulate anywhere in the
body, the net rate of charge flow across the boundary 0V of any region V
must vanish, so that

/ i(x) -n(x) dS =0
)%

where n(z) is the outward unit normal to OV at z. To derive this condition,
concentrate on the charge that, at time ¢, is on an infinitesimal piece, dS, of
the surface of V. If this charge has velocity v(z), then at the end of an infini-
tesimal time interval dt it has moved to a surface element that is the translate
by v(z)dt of dS. In the figure, this surface element is denoted dS + v dt.

A\ vt
dS\___\dS +vdt

v

The charge that has left V' through dS during this time interval now fills
a tube whose ends are dS and dS + vdt. The tube has cross—sectional
area dS and height |v(z)|dtcos@ = n - vdt. Hence the tube has volume
v(x)-n(z)dtdS. If the charge density at z is (), the tube contains charge
k(z)v(z) - n(x)dSdt = i(x) - n(x)dS dt. The total charge that leaves V
during the time interval dt is dt fav i(z)-n(x)dsS.

As we are not allowing charge to accumulate anywhere, 0 = fav i(z) -
n(z)dS = [,V -i(z)dz, by the divergence theorem. This is true for all
regions V. So, assuming that V -i(z) is continuous,

V.i(z) =0 = V- (y(z)Vu(z)) = 0.

This equation will be called the conductivity equation.
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The Calderén problem. Suppose now that we have a conductor filling a
region €2 and that we apply a voltage f on the boundary 92 and measure the
current that then flows out of the region. By measuring the rate at which
charge is leaving various parts of 9€), we are measuring the current flux
through 0, which determines the quantity v(x)Vu(z) - n(x) = v(z)0,u(x)
on J) where 0,u is the normal derivative of u.

For a given v and f, we will see in §2 that the boundary value problem
V- (v(z)Vu(z)) =0 in Q, u= f on 0N

has a unique solution w in Q. Let A,(f) be the function v0d,u|spn on the
boundary that results from a given v and f. The map f +— A,(f), which
clearly depends linearly on f, is called the Dirichlet to Neumann map (DN
map). This map encodes the electrical boundary measurements for all pos-
sible functions f on the boundary. More precisely, we will see in §2 that A,
is a bounded linear map between two Sobolev spaces on 0f2,

A, HY2(09) — H™Y2(00).

The inverse problem of Calderdn, also called the inverse conductivity prob-
lem or the inverse problem of electrical impedance tomography, is to deter-
mine the conductivity function 7 from the knowledge of the map A, (that
is, from the knowledge of A,(f) for all f € HY/2(09Q)).

Formal variable count. When dealing with inverse problems it is some-
times informative to do a formal variable count. The Calderén problem for
a domain in R™ asks to determine ~y, which is a function depending on n
variables in general, from the DN map A,. Pretend for a minute that the
boundary 0f) contains only a finite number, m, of points and call the value
of f at the j* boundary point fj and the value of A, (f) at the i*" boundary
point A(f);. Then the map f +— A,(f) would correspond to a linear map
taking f € R™ to A,(f) € R™, having of the form

A ()i =D Xijfs
j=1

where ); ; is the current that results at i*" boundary point when a unit
voltage is applied at the j* boundary point. The analogous formula for the
true, continuous, boundary 9f2 is

A (f) = /a M) )

where dS is the surface measure on 02 and A, (x,y) the current density that
results at  when a unit voltage is applied at y. Knowing the DN map A, (f)
for all applied surface voltages f is equivalent to knowing the integral kernel
Ay (x,y) for all z,y € 0S2. This is a function of 2n — 2 variables.
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Thus, in the inverse problem of Calderén we are hoping to determine
a function of n variables (the conductivity 7) from a function of 2n — 2
variables (the integral kernel A, of the DN map). For n = 1, this problem
is formally underdetermined since 7y is a function of more variables than
Ay, and we have already seen that for n = 1 the DN map cannot possibly
determine the conductivity. For n = 2 the inverse problem is formally well-
determined (v and )\, are both functions depending on two variables), while
for n > 3 the problem is formally overdetermined since the data has more
degrees of freedom than the quantity that we wish to recover. The variable
count suggests that in large dimensions there may be redundancy in the
data, and this sometimes (but certainly not always) means that the inverse
problem may be easier in high dimensions.

Different aspects of the Calderén problem. In connection with any in-
verse problem, there are a number of different questions that are of interest.
In the following, we give a list of theorems proved in this book addressing
these questions. The first result states that knowledge of the DN map de-
termines the unknown coefficient « uniquely on the boundary. This is often
a first step in determining + in the interior.

Theorem 1.1. (Boundary uniqueness) Let @ C R™ be a bounded C* do-

main, and let v1,72 € C() be positive functions. If Ay = A,,, then
Tiloa = 2lo0-

The next result states that, under certain conditions, the DN map
uniquely determines the conductivity in the interior. The cases n > 3 and
n = 2 will require different proofs, as suggested by the variable count.

Theorem 1.2. (Interior uniqueness) Let & C R™ be a bounded C? domain,
and let v1, 72 be positive functions in C?(Q) if n > 3 and in L>®(Q) if n = 2.
If A, = A,,, then y1 = 72 in Q.

The first proof that we will obtain for the interior uniqueness result is
not constructive, that is, it does not yield an algorithm for computing the
values of v in ) from the knowledge of A,. However, with extra work we
can also give a constructive procedure.

Theorem 1.3. (Reconstruction) Let @ C R™ be a bounded C? domain,
n >3, and let y1,7v2 € C%(Q) be positive functions. There is a convergent
algorithm for determining the function v from knowledge of A.

In practice one would like to have an efficient numerical implementation
of the algorithm. This is out of the scope of this book, and is a challenging
topic for several reasons. First, the imaging method is very diffuse and it
is difficult to obtain high resolution images, and secondly the problem is
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ill-posed in the sense that small errors in the measurements may lead to a
large error in the reconstructed image. The next stability result quantifies
the degree of ill-posedness in the Calderén problem and states that, under
some a priori assumptions, the inverse map taking A, to v has a logarithmic
modulus of continuity. It can also be proved that this modulus of conti-
nuity is optimal, and it cannot be improved to a Holder or Lipschitz type
continuity in general.

Theorem 1.4. (Stability) Let Q@ C R™ be a bounded C*° domain, n > 3,
and let y;, j = 1,2, be two positive functions in the Sobolev space H*+2(Q)
with s > n/2, satisfying

1
i < <M, H’YjHHs+2(Q) < M.

There are constants C = C(Q,n,M,s) > 0 and 0 = o(n,s) € (0,1) such
that

H’Yl - ’Y2HL°<>(Q) < W(HAM - A’YQHHl/Q(aQ)*)Hfl/Q(aQ))
where w is a modulus of continuity satisfying

w(t) < Cllogt|™?, 0<t<1/e.

The previous results considered the case of full data, where one can
do measurements on the whole boundary 0. In practice this is often not
possible, and for instance in geophysical imaging one can only cover a tiny
part of the Earth’s surface with measurement devices. It is therefore of
interest to consider partial data problems. For the Calderén problem this
means that one has knowledge of A, (f) on some subset of the boundary for
functions f supported in some subset of the boundary. The next theorem
gives a result of this type for the special case where the part of the boundary
that is inaccessible to measurements is part of a sphere.

Theorem 1.5. (Partial data) Let Q@ C R" be a bounded C' domain, where
n >3, and let 1 and 2 be two positive functions in C?(Q). Assume that
Q C B for some open ball B in R"™, let Ty = 0Q N OB, and let T' = 0Q \ T'y.
Assume also that OB\ 0Q # 0. If

Ay flr = Ay flr for all f € HY?(9Q) with supp (f) C T,
then v1 = 2 in €.

There are certainly many other important aspects of inverse problems
besides the ones listed above. A standard one is the problem of range char-
acterization, which asks to find a set of necessary and sufficient conditions
for a map acting on functions on 9€) to be the DN map of some conductivity.
Not much is known about this problem at the time of writing this. Also,
we have only considered the idealized mathematical problem where one can
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make infinitely many measurements (for all possible boundary voltages f) at
infinitely many points on the boundary. On the practical side of things, of
course only finitely many measurements at finitely many points are available
and discrete versions of the problem need to be studied. One also needs a
careful modeling of how the measurements are implemented with electrodes.
There will always be some noise in the measured DN map, and the stabil-
ity result above may not apply since the noisy version of the true DN map
may not be a DN map corresponding to some conductivity. Therefore, an
improved stability analysis possibly including a regularization strategy for
the numerical algorithm would be of interest. These topics are out of the
scope of this book.

The anisotropic Calderén problem. For certain materials, called isotropic
materials, if you apply a voltage u(z), then the current at z is in the direction
opposite to the voltage gradient, Vu(z), and has magnitude proportional to
the magnitude of the voltage gradient, with the constant of proportional-
ity called the conductivity and denoted ~(x). So, for isotropic materials,
i(r) = —y(x)Vu(x). The results mentioned previously in this section are
concerned with isotropic materials. However, there are more complicated
anisotropic materials where the current at z need not be parallel to Vu(z)
and the magnitude of the current depends on the direction as well as the
magnitude of Vu(z). For these materials, i(z) = —v(x)Vu(z), but with
v(z) being an n X n matrix, rather than just a number. In general, y(x) is
a positive definite, symmetric, n X n matrix.

Theorem 1.2 showed that, for n > 2, the map A, does indeed determine
an isotropic conductivity satisfying suitable assumptions. However, it can-
not possibly determine anisotropic conductivities for the following obvious
reason. Let ¥ : QO — Q be any diffeomorphism that is the identity map in
some neighbourhood of 02 and set

5= (DE(DY) ]| 0w, d=uow,

1
{| det(DV)|
where DV is the Jacobian matrix (the matrix of first partial derivatives) of
V. In fact, a change of variables shows that
(1.3)
V- [v(@)Vu(z)] =0 inQ — V. H(x)Vﬂ(x)l =0 inQ
U 4= f on 02

Let uy and uy denote the solutions of the left and right hand boundary
value problems of (1.3), respectively. By definition, A,(f)(z) = n(z) -
Y(x)Vuys(x)sn and

Ay (f)() = Ax) - 5(2) Vg (z)loa
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Since ¥ is the identity map in some neighbourhood of 9, DV¥(z) = 1,
Y(z) = y(z) and af(z) = up (¥ ' (z)) = ug(z) for all z in that neighbour-
hood of 9Q. Thus Ay = A5. In §?7 we prove that, for n = 2, A, determines
anisotropic conductivities up to diffeomorphisms like this. It is conjectured
that this is also true for n > 3.

Problems and examples.

Example 1.6. Here is a much simplified example in which an isotropic
conductivity is computed from a Dirichlet to Neumann map. The region
is the square Q) = { (z,y) € R? | 0<zy<l1 } To reduce the number
of variables that we are dealing with, we assume that the conductivity is a
function of x only. As (z) is a function only of a single variable, we hope to
be able to determine it by measuring just one function of a single variable.
We choose to measure the current k(z) = ’y(x)‘g—z y—o at the base of the
square that results from applying the boundary voltage function specified
in the figure

Y u(z,1) =0

u(0,y) =sin(my) | yl@)  u(l,y) = sin(ry)

So our boundary value problem is

(a) V- [v(@)Vu(z,y)] =0 in Q
(1.4) (b) u(0,y) = u(l,y) = sin(my) forall0 <y <1
(c) u(z,0) = u(x,1) =0 forall0 <z <1

The standard technique for solving the boundary value problem (1.4) is to
Fourier expand u(z,y) = Y o7 | an(x)sin(nmry). From the boundary condi-
tion (b), we would expect to only need the n = 1 term. So we look for a
solution of the form u(x,y) = a(x) sin(ry). Boundary condition (c) is satis-
fied for all functions a(x). Boundary condition (b) is satisfied if and only if
a(0) = a(1) = 1. The differential equation (a) is satisfied if and only if

0=V" (y(2)d (x)sin(ry) , my(x)a(x) cos(my))
= sin(my) [(’y(m)a'(aﬂ))/ — 7127(35)(1(36)]
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which is the case if and only if
(1.5) (’y(x)a’(x))l — m?y(x)a(z) =0 forall0 <z <1
We imagine that we have measured

k) = 1(2) 5] = 2 @)ala) cos(ry) |,y = m1(z)a(a)

and that we wish to determine y(z). We can do so by subbing (z) =
into (1.5) and solving for a.

e
+) o)

d
|

k:(:v)d— Ina(z)] = 72k(z)

), = 1?k(z) = 1

— k(x);l—xlna(x) _ /0 k(t) dt — 72C

== 111(1(56):7'('2/03:%[/08]{3(75) dt—C’} ds+ D

for some constants C' and D. To satisfy the boundary condition a(0) = 1,
we need D = 0 and to satisfy a(1) = 1, we need

o= [l [f it o

k
wa(zx)”

This determines!

a(z) and hence y(x) =

Exercise 1.7. Prove (1.3) by integrating the first equation against a test
function ¢ € C°(Q), the divergence theorem and a suitable change of vari-
ables.

Exercise 1.8. Find the Dirichlet to Neumann map when € = { T €
R? | |z| <1 } and the conductivity y(z) = 1.

Exercise 1.9. Let Q = (—o00,0) x S!. Functions on € can be identified with
those functions u(z,f) that are defined for x < 0 and all # € R and that
are periodic of period 27 in 6. The gradient operator for 2 is V = (%, %).
Find the Dirichlet to Neumann map when the conductivity ~(x,0) = 1.

Assume that potentials u(z,6) must remain bounded in the limit z — —oo.

Exercise 1.10. Let Q be a bounded open subset of R™. Assume that the
divergence theorem is applicable to Q. Let v(z) be a real-valued C'*° func-
tion on 2 all of whose derivatives are bounded. Suppose that the complex

Ly you are worried about dividing by k in the integrals, you shouldn’t be. We know that
0 <wu < 1on 9dQ. By the maximum principle, this implies that 0 < u < 1 in the interior of €.
This in turn forces g—; > 0 when y = 0. In fact, by the strong maximum principle [Ev, §6.4.2],

% > 0 for y = 0, which ensures that k(z) > 0 forall 0 <z < 1.
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numbers ), 1 and the, not identically zero, functions ¢, ¢ € C?(Q2) obey

V- [y(@)Ve(z)] = Ap(x) for all =z € Q)
(:U) 0 for all x € 0Q
V- (@) V()] = p(z) for all z € Q
Y(z) =0 for all z € 00

We say that ¢ and ¢ are eigenfunctions for the differential operator u —
V - [yVu] with Dirichlet boundary conditions on 9. The numbers A and p
are the corresponding eigenvalues.

(a) Prove that A\, u € R.

(b) Prove that if A # p then ¢ and 4 are orthogonal in L?(Q). In other
words, prove that [, p(z)i(x) d*a = 0.

(c¢) Suppose that v(x) > 0 for all x € 2. Prove that A\, u < 0.

(d) Let H be the closure of the subspace of L?(2) spanned by the eigenfunc-
tions for the differential operator u +— V-[yVu] with Dirichlet boundary

conditions on 0f). Prove that there is an orthonormal basis for H con-
sisting of real-valued eigenfunctions.

Exercise 1.11. Let  and =y be as in Problem 1.10. Assume that we already
know

e an orthonormal basis for L?(f2) consisting of C? eigenfunctions for
the differential operator v — V - [yVu] with Dirichlet boundary
conditions on 9€2. Call the eigenfunctions and corresponding eigen-
values {pg}ren and {As}ren.

e a linear map E : C*°(9Q) — C*(Q) such that (Ef)(x) = f(x) for
all x € 5.

Find the Dirichlet to Neumann map for conductivity ~.

Exercise 1.12. Apply the method of Problem 1.11 to find the Dirichlet to
Neumann map for { = € R? ‘ |z| <1 } with conductivity v = 1. You may
assume that a suitable orthonormal basis exists.

Exercise 1.13. Let 2 be an open subset of R”. Let v € C'(£2) be bounded
away from zero. Find ¢, 8 € C*(Q) such that

V- -[Wul =0 <= (-A+q)v=0forv=_,u

Exercise 1.14. Let Q be a bounded open subset of R™. Let A,(f) de-
note the Dirichlet to Neumann map for the conductivity ~(z). Let B(z)
be a C* function on €2 all of whose derivatives are bounded. Compute

%Aqﬁtﬁ( il 1o+ Assume that we already know
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e a complete orthonormal basis for L?(Q2) consisting of C? eigenfunc-
tions for the differential operator u — V - [yVu] with Dirichlet
boundary conditions on 0€2. Call the eigenfunctions and corre-
sponding eigenvalues {py}reny and {Ag}ren.

e the solution to the boundary value problem V - [yVu] = 0 in ,
u = f on 9. Call the solution ug(x).

1.2. Optical tomography

Optical tomography is concerned with the determination of spatially varying
optical absorption and scattering properties of a medium by measuring the
response of the medium to transmitted near—infrared light. This has been
proposed as a diagnostic tool in medicine. The standard model for prop-
agation of photons is the radiative transfer equation, also called the linear
Boltzmann equation. The main point in this section is to indicate that in
the diffusion approximation, which is often used to model highly scattering
media, the optical tomography problem essentially reduces to the inverse
problem of Calderén.

Consider photons propagating in a medium 2 C R"™ where absorption
and scattering may occur, and assume that there are no sources of photons
in Q. The function ¢(x,v,t), modeling the density of photons at point z €
moving in direction v € S™~! at time ¢, solves the radiative transfer equation

10
<E§ +v- Vg + utr(w)> ¢(z,0,1) = ps(x) /Sn1 p(v - v)g(z, v, 1) dv'.

Here c is the speed of light, pis, = j1q+ps where piq, pts € C() are the absorp-
tion and scattering coefficients, and p(v,v’") = p(v - v') with p € C([-1,1])
is the scattering kernel representing the probability of photons traveling in
direction v to scatter in direction v'. We will also make use of the photon
density
O(x,t) = d(z,v,t) dv

Sn—1

and the current J = (Jp,...,J,) where

Ji(x,t) = /S"l vgo(x,v,t) dv.

In the diffusion approximation, the following two assumptions that are
valid in predominantly scattering media are made:

(1) The density ¢(x,v,t) is only weakly dependent on the direction v.

(2) The current J(z,t) is constant with respect to time.



1.2. Optical tomography 11

Assume for simplicity that Q@ C R?, so unit vectors can be written as
vg = (cosB,sin @) for 6 € [0,27]. We formally expand ¢(z,vg,t) in complex
Fourier series with respect to 6,

d(x,v9,t) = Z (0, ).

A simple computation shows that
v - Vo = 200 + e g

where 0 and 0 are the complex derivatives

1/ 0 .0 = 1/ 0 .0
o==-|—-i—), O0==|—+i—].
2\ 0x1 Oz 2\0x1 Oz
Exercise 1.15. Prove the above representation for vg - V.

Thus, the radiative transfer equation may formally be written as
(1.6)

(1 0 +e%9 470 + Mtr>

ol > et = [ ploolad/ ) d

k=—o00 st

To express also the right hand side as a series in ¢, we will use two facts

about Chebyshev polynomials Tj: the set {To//7} U {y/2/7T;}32, is an
orthonormal basis of the L? space on (—1,1) with weight 1/v/1 —#2, and
these polynomials have the important property that

(1.7) Ty (cos 0) = cos(kB).

Write the scattering kernel as the Chebyshev polynomial expansion
o
p(t) = mTi(t), te (~1,1).
k=0

We have py = 1/27 by the following problem:

Exercise 1.16. Assume that p is a probability density function in the sense
that

2m
/ p(vg - ver) df =1 for all § € [0, 27].
0

Show that py = 1/27.
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Then formally, by using (1.7)

21
/0 p(ve UG’)¢($ Vg, t d@’ Z Z / CO& 9 o' ))gbl(ﬂ: t) io g’

j=01l=—00
© oo o ij(60—6) —ij(0—0") .
S 3 [T e a
: 0 2
j=0l=—-00
= 2mpodo(x,t) + 7 ij [elJ€¢j + e*w@(?—j} .

We insert the last expression in (1.6) and consider the three equations ob-
tained by collecting the e terms for k = 0,1,—1. In these equations,
motivated by the assumption that ¢ is only weakly dependent on v, we also
make the approximation that

¢ =0 for |k| > 2.

The resulting equations are

10 ~
< Tl ptr (T )> ¢o + 01 + 0p_1 = 2 pspodo,

0
(1 ot +,U't7"( )> ¢1 + 8¢0 = 7T,U'spl¢1=

10 _

( ot + pr (@ )> ¢-1+ 0o = TpsP1P-1.

Now, note that the photon density and current are given by
P (x,1) = 2mo(z,t)

and

27 i6 0 2w i _ fi
J(x,t) = </ ¢ —;e o(xz,vg,t) db, / &(x,vg,t) d0>
0

_or <¢1 + ¢71’ i(p1 — ¢1)> .
2 2

Consequently

2np_1 = J1 + 1o, 2Py = J1 —iJs.
Using these expressions in the three equations obtained above and taking
suitable combinations, and using that py = 1/27, we get the two equations

10
a o T’ =
<cat+“()> +V,-J=0

(12 + pal@) + (1 - ﬂp1)us(9€)> J+ %qu) = 0.

Exercise 1.17. Verify these two equations.
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We now make the approximation that J is constant in time,

oJ
— =0.
ot
The second equation becomes
J=—-D(x)V,®

where D = 1/(2(pa + (1 —7p1)ps)) is the diffusion coefficient. Inserting this
expression for .J into the first equation, we obtain

100
- 'D @ @ —_—— = .
Vi (2)V2® + pa(z)® + Y 0

Finally, suppose that our transmitters emit light at a given frequency w > 0,
so that

®(z,t) = u(z)e™".

Then u will solve the equation
-V -DVu+ <,ua+g>u:01n Q.
c

A similar equation may be derived in dimensions n > 3, if the Fourier series
in the previous argument are replaced by expansions in spherical harmonics.
The inverse problem in diffuse optical tomography (with infinitely many
measurements) is then to determine D and p, from the Dirichlet to Neumann
map associated to this equation. This problem is analogous to the inverse
conductivity problem.

1.3. Inverse scattering

Suppose that we are interested in a system in which sound waves, for ex-
ample, scatter off of some obstacle. Let p(x,t) be the pressure at position x
and time ¢. In (a somewhat idealized) free space, p obeys the wave equation
% = ¢®Ap, where c is the speed of sound. We shall assume that in most
of the world, ¢ takes a constant value ¢g. But we introduce an obstacle by
allowing ¢ to depend on position in some compact region. We further allow
for some absorption in that region. Then p obeys the damped wave equation
2
L 410 2 = cla)p

where ~y(z) is the damping coefficient of the medium at x. If the solution
p has fixed (temporal) frequency, then p(z,t) = Re [u(z)e™ ]
satisfies

where u

2

c(x)?

[1—1—2’%]11:0.

Au +
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Outside of some compact region, the coefficient in brackets is constant:

2 2
w 2[1+i7(x)}:w—2:k:2 where k::£>0.
c(x) w ch o

If we define the index of refraction by

02 X
) = ol +i2)]
then
(1.8) Au+ k*n(z)u = 0

with n(x) = 1 outside of some compact region. For concreteness, we restrict
to three dimensions for the rest of this section. We first consider two special
cases.

Example 1.18 (Free space). In the absence of any obstacle, we have Au +
k*u = 0 on all of R3. Any function u = €% where @ is a unit vector, is a
solution that represents a plane wave moving in direction 6. It is also true
that any solution of this equation (say, in the class of tempered distributions)
can be obtained as a superposition of these plane waves when interpreted in
the right way.

Example 1.19 (Point source). If we have free space everywhere except at
the origin and we have a unit point source at the origin, then

Au+ E*u = §(z)
where the Dirac delta function 6(z) is a distribution (generalized function)
that is determined formally by the properties that §(z) = 0 for all x # 0
and [ 8(z) do = 1. A rigorous version of “Au + k*u = §(x)” is provided
in Problem 1.20 below. Except at the origin, where there is a singularity,

we still have Au + k?u = 0. The point source generates expanding spherical
waves. So u should be a function of r = |z| only and obey

u”(r) + %u'(r) + k*u(r) = 0.

This equation is easily solved by changing variables to v(r) = ru(r), which
obeys

V" (r) + k*v(r) = 0.
So v(r) = asin(kr) + Bcos(kr) and u(r) = asmgfgr) + Bcosfnkr). To be an

. . . . o / ikr
outgoing (rather than incoming) wave, we require that u(r) = o/ <—. (Note

that e”*"e~™* is constant on r = #t, which is a sphere that is expanding
with speed ¢g.) To give the Dirac delta function on the right hand side of
Au + k*u = §(z), we need u(z) = id

" 4]

Exercise 1.20. Set ®(z) = —$—
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(a) Prove that A®(z) + k2®(x) = 0 for all = # 0.

(b) Let B be the ball of radius € centered on the origin and let dS be the
surface measure on dB.. Prove that, for any continuous function (z),

(z) dS:{47r¢(0) if p=2

lim —
e—0+ OB, ]m\p 0 lfp < 2.

(C) (C) Let ¢(m) c CSO(R?’) Prove that
/]R3 ®(z) [A(z) + k) (x)] do = ¢(0).

Now let us return to the general case. We want to think of a physical
situation in which we send a plane wave u’(z) = ¢**%% in from infinity. This

plane wave shakes up the obstacle which then emits a bunch of expanding
eiklz—y|

[z —
the full solution is of the form
u(z) = u'(x) + u’(x)

where the scattered wave, u®, obeys the “radiation condition”

spherical waves emanating from various points y in the obstacle. So

0 , 1
(1.9) Eus(aﬂ) —iku®(x) = O(W) as |z| = oo.
This condition is chosen to allow outgoing waves % but not incoming
waves €Y
lz—yl
Let, as in Problem 1.20,
elk\x\
()= ———.
@) =~

Since §(z — y) is the kernel of the identity operator, the equality
(A +E)®(z —y) = d(z —y)

says, roughly, that u(z) — [®(z — y)u(y)dy is the inverse of the map
u(z) — (A + k?)u(z) for functions that obey the radiation condition. We
can exploit this to convert (1.8), (1.9) into an equivalent integral equation

Au + kE*n(z)u = 0 <= Au+ k*u = k2(1 —n(z))u
= Au® 4 k*uf = k:2(1 —n(z))u
since Au’ + k*u’ = 0. As u® obeys the radiation condition, we have
wa) =1 [ o= g)(1=n)ul)dy
so that

(110 (o) =)+ [ (1= )0~ guls)dy.
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This is called the Lippmann—Schwinger equation. Observe that it is of the
form v = u’ + Fu or (1 + F)u = u’ where F is the linear operator u(z)
k2 [ ®(x—vy) (1 - n(y))u(y) dy. This operator is compact (if you impose the
appropriate norms) and so behaves much like a finite dimensional matrix. If
F has operator norm smaller than one, which is the case if k?(1 —n) is small
enough, then 1+ F is trivially invertible and the equation (1+ F)u = u’ has
a unique solution. Even if F' has operator norm larger than or equal to one,
(1 + F)u = v’ fails to have a unique solution only if F' has eigenvalue minus
one. One can show that this is impossible in the present setting. Thus, one
can prove the following result.

Theorem 1.21. Ifn € C*(R3), n(x)—1 has compact support and Ren(x),Imn(z) >
0, then (1.8), (1.9) has a unique solution.

For |y| bounded and |z| large, ®(z — y) has the asymptotic behaviour
eiklel

1.11 dlx—y) =— Y 4+ 0

(1.1) (@ =9) == e+ O

so that, when the incoming plane wave is moving in direction 6,

1
P

(1.12) u(w;0) = u'(2;0) + ——

where
un(36) = <k [ V(1= nly)u(y:6) dy.
R3

If we are observing the scattered wave from vantage points far from the
obstacle, we will only be able to measure us(%;6) for & € S2. This is
called the far field pattern, or scattering amplitude, of n corresponding to
the incoming wave u'(z) = €*%®  Assuming that we can send incoming
waves at a fixed frequency k > 0 from all possible directions 6, and that
we can measure the corresponding far field patterns for all z, the inverse
problem may be formulated in the following way.

Fixed frequency inverse scattering problem: Given u(Z;6) for all
#,0 € S? and for fixed k > 0, can we determine n?

The answer is yes, as shown by the following theorem.

Theorem 1.22. Fiz k > 0. Ifny,ne € C*(R?) with n1 —1,n2—1 of compact
support and uy oo (2;0) = us oo (2 0), for all #,0 € S%, then ny = no.

We can get a rough idea why this theorem is true by looking at the Born
approximation. In this approximation u® is ignored in the computation of
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Uso SO that

(330 =~k [ (1L~ n(y))u (43 0) dy

= —k? / eiik(if@)'y(l — n(y)) dy.

If we measure uo(;0), then, in this approximation, we know the Fourier
transform of 1 — n(y) on the set { k(& —0) | &,0 € S? } which is exactly
the closed ball of radius 2k centered on the origin in R3. Since 1 — n(y) is
of compact support, its Fourier transform is analytic. So knowledge of the
Fourier transform on any open ball uniquely determines it.

It turns out that the scattering amplitude for n at a fixed frequency is
an analog of the Dirichlet to Neumann map, except that the measurements
are made far away (on the sphere at infinity) instead of on the boundary
of a domain. We shall discuss a quantum mechanical analog of the above
classical inverse scattering problem in §7, and the methods for dealing with
that problem will be very similar to those applied to the Calderén problem.

Exercise 1.23. Prove (1.11).
Exercise 1.24. Let f € C°(R3). Prove that

F@) = [ @ - )iy
obeys AF + k?F = f and the radiation condition.

1.4. Notes

Section 1.1. Example 1.6 is due to Kohn-Vogelius.
Section 1.2. See the survey of Arridge.

Section 1.3. See Colton-Kress for more information on acoustic inverse
scattering.






Chapter 2

Formulation of the
Calderon problem

In this chapter we formulate rigorously the inverse boundary value problem
for the conductivity equation

div(yVu) =0
and for the related Schrodinger equation
(—A+qu=0.

This will include a discussion of weak solutions of the corresponding Dirichlet
problems, the definition of boundary measurements in terms of the Dirichlet-
to-Neumann map (DN map for short), and basic properties of the DN map.
We will also derive useful integral identities that allow to relate boundary
measurements of solutions to the interior values of the coefficients. The
section will end with a reduction of the inverse boundary value problem for
conductivity equation to an inverse problem for Schrodinger equation.

2.1. Calculus facts

This preliminary section collects some basic notation and facts from mul-
tivariable calculus. In the course of the book we will frequently need to
work locally in small sets and then patch up these local constructions into
global ones. Therefore, we will also discuss partitions of unity that are the
standard tool in such local arguments.

Convention. All functions will be complex valued unless stated otherwise.



20 2. Formulation of the Calderén problem

Definition 2.1. (C* spaces) Let © be an open set in R (not necessarily
bounded). If k& € Ny, we denote by C*¥() the set of functions that are
k times continuously differentiable in Q. By C¥(Q) we denote the set of
compactly supported functions in C*(Q), and C*¥(Q) is the set of functions
in C*(Q) whose partial derivatives up to order k extend continuously to
Q. By C®(Q), C*(2), and C*(Q) we denote the corresponding sets of
infinitely many times continuously differentiable functions.

For instance,
C(Q) ={f € C(Q); supp (f) is a compact subset of 0},

where the support is defined by supp (f) = Q\{z € ; f = 0 in some neighborhood of z}.
The next definition gives examples of functions in C2°(R™), in particular
showing that this set is not empty.

Definition 2.2. (Mollifiers) Define the function
1
1
n(z) = {CeXp(xQ—l)’ ol <1,

0, ] = 1,

where the constant C'is chosen so that [p, n(x)der = 1. If ¢ > 0 define the
mollifier

ne(x) = e "n(x/e).
Exercise 2.3. Prove that n and 7. are in C2°(R").

Note that 7. € C°(R") satisfies

[z =1, supp () = B2

If £ is small, the function 7). looks like a sharp peak at the origin with area
under the peak equal to one. It is thus a smooth approximation of the Dirac
delta function at the origin, and it can be used to approximate a locally
integrable function by smooth functions. Recall that the convolution of two
functions f, g : R™ — C is the function f * g defined by

(f*g)x)= | fyglx—y)dy= | [flz—y)g(y)dy.
R Rn

The convolution f * g is well defined when f,g € L'(R"), in which case
f*g € L'(R") essentially by Fubini’s theorem. If f € L} (R") (meaning
that f|x € L'(K) for any compact K C R") but g € L'(R") has compact
support, then similarly f *x g € L}OC(R"). If additionally g is smooth, then
also f * g is smooth as in the next theorem.

Theorem 2.4. (Mollifications) If f € L}, .(R™), define for € > 0 the molli-
fications of f by
Je=[*ne.
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(a) fo € C®°(R™) for any e >0, and 0“f. = f * 0*n..

(b) supp (f:) C {z € R"; dist(z,supp (f)) < e}.

(c) If f € CO°(R™), then f. — f uniformly on compact sets in R™ as ¢ — 0.
(d) If f € LP(R™) where 1 < p < oo, then fo — f in LP ase — 0.

Proof. (a) Since n. € C2(R™) and |f]| is integrable on compact sets, the
function

fe(x) = - fyme(z —y)dy

is well defined for all x € R". Fix = € R™ and note that for any h € B(0, 1),

fe(x +h) = fo(x) = - f(y) ne(x +h —y) —ne(z —y)] dy.

The integral is over the set of all y for which |z —y| <cor |z +h —y| <e.
This is a compact set (depending on x and ¢) that we denote by K. Also,
since 7. is C'°°, we have the Taylor expansion

n

1 0?
Ne(x—y+h)=n(r—y)+Vn(zr—vy) -h+ 3 Z e (x —y+h)hjhg
k=1

where h' € R" is some point on the line segment between 0 and h. It follows
that

k@HJU—ﬁ@%{Lf@)Vm@—y%h+§:%A%mem dy.
k=1

where |bji(y; x, h)| < C uniformly over y € K and h € B(0,1). By domi-
nated convergence we obtain, as h — 0

x —gx:n )ine (z — j 2).
fular 1) — f.fa) ggﬁénﬂwan< )y + O

This shows that f. is differentiable. Repeating the argument for higher order
derivatives gives that f. € C* and 9%f. = f * 0%..

(b) Clear since supp (n:) C B(0,¢).

(c) Let € K where K C R™ is compact, and fix gy > 0. Since [ 1. dy =
1, we have

|[fe(2) = f(z)| =

F( — ey dy - fumawdﬂ
R™ R™

< [ 1 =)~ f@)nto) dy
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Note that the integral is over B(0,¢). The uniform continuity of f on com-
pact sets implies that there is §y > 0 such that

|f(x —y) — f(z)| <eop whenever x € K and |y| < do.

This shows that || fo — fll (k) < €0 Whenever & < do.

(d) To prove LP convergence, we use the fact that C.(R") is dense in
LP(R™) if 1 < p < o0. Fix g9 > 0 and choose some g € C.(R"™) with

If = 9ll Lo ny < €0/3-
By the triangle inequality
1fe = Flle < e = 9ellpo + 9= = gllpe + 119 = fll o -

The supports of g and g. are contained in some compact set K, and

llge — gHLP(R") = [lg: — gHLP(K) < Ck llge — gHLoo(K) :

By part (c) in this theorem, there is 69 > 0 such that ||g- — g/;» < €0/3
whenever £ < dg. Thus, for € < dy,

Ife = Flle < I(F = 9)ellpo + 220/3.
The result will now follow if we can show that for all h € LP(R™),

el < IRl o -

This is a direct consequence of the Minkowski inequality in integral form
(Problem 2.5). The usual Minkowski inequality reads

N N
1Y Fille <Dl »
j=1 j=1

and the integral form is the same inequality but where the sums are replaced
by integrals. Thus we have

hell o = / ne(w)h(- — ) dy

< / ne@) 1A(- = 9l dy

Lp
. / ne(y) dy = 11l
J

Exercise 2.5. (Minkowski inequality in integral form) If (X, ) and (Y,v)
are o-finite measure spaces, F': X x Y — C is measurable, and 1 < p < o0,
prove that

P ) du@) < Fy)l du@)  dvly).
(L ) aw) < [ (], )
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Mollifications yield an immediate proof of a variant of the du Bois-
Reymond lemma, which is fundamental for the definition of weak deriva-
tives.

Theorem 2.6. (du Bois-Reymond lemma) Let U C R™ be an open set and
felLl ). If

/f(pdx:O for all p € C°(U),
U
then f =0 almost everywhere in U.

Proof. Let 2 € U and choose B = B(z,r) with B C U. Define f = xpf €
L'(R™) where xp is the characteristic function of the set B (that is, xp = 1
on B and yp = 0 elsewhere). If y € B, then fx Ne(y) = 0 for € small by the
assumption. Moreover, f xn. — xpf in L' as ¢ — 0 by Theorem 2.4. Thus
f =0 near x. O

The next result is an example of how mollification allows to create
smooth bump functions with specified behavior.

Theorem 2.7. (Smooth bump function) Let K C U C R"™ where K is
compact and U is open. There exists a function ¢ € C°(U) with 0 < (<1
mU and (=1 on K.

Proof. Choose a compact set L with K C int(L) C L C U. The character-
istic function x, is in LY(R™). Since L is compact and R™\ U is a closed set
disjoint from L, there exists € > 0 so that the set {z € R"; dist(z, L) < ¢}
is strictly contained in U. By Theorem 2.4 we have xr, *n. € C°(U). By
further decreasing € we have xr, *n. = 1 on K, and ¢ = xr, * 1. satisfies the
required properties. O

Theorem 2.8. (Partition of unity) Let K C R™ be compact and let K C
UjVZIVJ where Vj are open sets. There exist functions (; € C°(V;) such
that 0 < (G <1 and

N

N
ZC;‘SlmR", ZCj:l on K.
j=1

J=1

Definition 2.9. In the setting of Theorem 2.8, we say that {Q};VZI is a
partition of unity on K subordinate to the cover {Vj}j\f:1

Exercise 2.10. Prove Theorem 2.8.
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2.2. Integration by parts

In this section we give a brief discussion of one of the most fundamental and
useful methods in mathematical analysis, namely integration by parts. In the
most classical case, this amounts to the fundamental theorem of calculus: if
f is a continuously differentiable real valued function on an interval [a, b],
then

b
/ f(t)ydt = F(b) — f(a).

Observe that this formula relates information in the interior of the domain
(the integral of f’ over the interval) to information on the boundary (the
”"boundary integral”, or the sum of values of f at the endpoints taken with
opposite signs).

The integration by parts formulas in this section are multidimensional
generalizations of the fundamental theorem of calculus. They underlie the
theory of weak solutions for partial differential equations, and in fact the
theory of weak solutions essentially amounts to taking the integration by
parts formula as an azxiom rather than a theorem. Integration by parts is also
especially useful in inverse problems, since it allows to relate measurements
at the boundary to information in the interior just as in the one-dimensional
case above.

It is natural to first discuss the multidimensional domains over which we
integrate. To have a reasonable boundary integral, we need to assume some
regularity of the boundary of the domain. By definition, a domain in R" is
an open connected subset of R™. Much of the time connectedness will not
be required.

Our definition of sets with C* boundary is given in terms of mappings
that flatten the boundary locally.

Definition 2.11. Let 2 C R” be a bounded open set and let k € Z.

(a) We say that Q has C* boundary (or that 9 is C* or that 9Q € CF) if,
for each p € 09, there is an open neighbourhood U = U(p) of p and a
C* diffeomorphism ® = ®,: U — U onto some open set U C R” such
that ®(p) = 0 and

dUP)NQ)={zelU|z,>0}, 2(U(P)NQ) ={z€U |z,=0}.



2.2. Integration by parts 25

o0 Rn—1

(b) We say that  has smooth boundary (or that 0 is smooth or that
002 € C™) if each @, p € 09, of (a) is a C* diffeomorphism.

(c) We call the system (U(p), ;)

peon @ coordinate system for 0f.

If O has C! boundary, there is a well defined tangent space T,(992) at
each point p of 0Q; if (Uy, ®q)4ean is a coordinate system, a basis for this
space is given by {#1(0),...,%,_1(0)} where v, : (—¢,€) — R™ are the C!

curves (here ¢ > 0 is sufficiently small, « = 1,...,n — 1, and e, is the ath
coordinate vector)
(2.1) Ya(t) = @, (teq).

There are two other equivalent ways of looking at sets with C* boundary,
and we will mention these here since they will be useful below. The first
way expresses 0f) locally as the graph of a C* function.

Theorem 2.12. (Local graph representation) Let Q be a bounded open set
in R™. Then Q has C* boundary if and only if for any point p € O, there
exist r > 0, an orthonormal coordinate system x = (2',x,) with origin at p,
and a C* function h: R* ' = R such that

QN B(p,r) ={x € B(p,r); x, > h(z)}.

Proof. Suppose (U(q), ®,) is a coordinate system for 052, fix p € €2, and let
® = ®,. We may translate and rotate the coordinate systems so that p = 0,
®(0) = 0, and the tangent space to 99 at 0 is spanned by {e,...,e,—1}.
Since the nth component of ® vanishes on 9, ®"(q) = 0 for g € 99, we
have

(I)n(’}/oz (t)) =0

where 7, are the curves (2.1). Differentiating in ¢ and evaluating at ¢ = 0
implies that

0,2"(0) =0, a=1,....,n—1
Since ® is a C* diffeomorphism (k > 1), the Jacobian matrix D®(0) is
invertible. This implies that 9,9"(0) # 0. Changing z,, to —x,, if necessary,

we may assume that 9, ®"(0) > 0.
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By the implicit function theorem, there is a C* function h defined near
the origin in R”~! such that near 0 we have
O™ (2, x,) = 0 <= x, = h(2)).
We also have the Taylor expansion of ®"(z/, -) at =, = h(a’),
O™ (2, z,) = O™ (2, h(2))) + 0, @™ (2, h(z"))(zy, — (")) + o(z), — h(2"))

as , — h(z’). Here ®"(a',h(z')) = 0 and 9,9™(2',h(z')) > 0 for 2’
sufficiently close to 0 by continuity. Thus, if x is close to 0, the conditions
xp > h(2') and ®"(2/,x,) > 0 are equivalent. This shows that locally € is
given by {(2/,zy); xn, > h(z')}.

The converse follows by choosing diffeomorphisms ® (2, z,,) = (2/, 2, —
h(z')) in suitable neighborhoods of boundary points. O

Theorem 2.13. (Boundary defining function) Let 2 be a bounded open
set in R™. Then Q has C* boundary if and only if there is a C* function
p:R" = R such that

Q= {zeR"; p(x) >0}, 00N ={z e R"; p(x) =0},
and Vp # 0 on 0f).

Proof. (Sketch) If p € 9Q and if QN B(p,r) = {z € B(p,r); zn, > h(z')},
the function p in B(p,r) can be taken to be p(a',z,) = z, — h(z’). We can
construct the global boundary defining function p from the local expressions
by using a suitable partition of unity. O

Exercise 2.14. Prove Theorem 2.13 in detail.

We can use any of the above definitions to define C!(99) functions if Q
has C* boundary and [ < k.

Definition 2.15. If Q is a bounded open set with C* boundary and if I < k,
we say that f: 90 — Cis C! and write f € C(99) if there is a coordinate
system (U(p), <I>p) such that fo @;1 ‘R 5 Cis CL

There are two quantities associated with C* domains that will be used
frequently. The first is the outer unit normal vector of 0.

Definition 2.16. Let Q be a C* domain and let p be a boundary defining
function for 9. The outer unit normal vector of 0N) at a point p € 91 is

__Volp)
Y0 =~ 500)

The definition of v is independent of the choice of boundary defining
function. We write the vector field v : 92 — R"™ in terms of its components
as v = (v1,...,Vy), where each v; is a function in Ck=1(9Q) if the boundary
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is C*. If 0Q is locally given as the graph z’ +— (z/, h(2')), the unit outer
normal has the expression
h(x'), —1
V(x/,h(ﬁl?/)) — (Vx (:C )’ 2) )
(1 + |[Varh(a)[7)1/2

Exercise 2.17. Verify the claims about v in the preceding paragraph.

The second useful quantity on a C* boundary 0 is its (Euclidean)
surface measure d.S, induced by the usual Lebesgue measure dz in R"”. The
surface measure is a constant multiple of the (n — 1)-dimensional Hausdorff
measure restricted to 9. Another way to obtain this measure is as follows:
for any f € C°(09), define a function f near dQ by

flo+tv(p) = f(p), peit] <e.

If £ > 0 is small enough, f is a well-defined continuous function in the set
Ve = {x e R"; dist(x,00) < e}.

Theorem 2.18. (Surface measure) There is a unique positive Borel measure
on 0%, acting on functions f € CY(0Q) by f fBQ fdS, that satisfies

1 z
/andS:gl_{%?e/VEf(x)dx.

If O is expressed as the graph ' — (', h(z')) near some p € 9Q and if
f € C%00) is supported near p , then

/ fds = F(@ h(z')(A + [Vh@)[)V? da,

o0N Rn—1

Exercise 2.19. Verify that the extension f is well defined near 9, and
prove Theorem 2.18.

We are now ready to state the integration by parts formulas that will be
used in this book. Most of them are equivalent, and all are consequences of
the next result:

Theorem 2.20. (Gauss-Green formula) If Q@ C R™ is a bounded open set
with C' boundary and if u € CY(Q), then forj=1,...,n

/Gjudx:/ uv; dS.
Q a0

Proof. For each p € 0f), we choose an orthonormal coordinate system
(2',1,), a ball B(p,r) and a C! function h : R"! — R such that Q N
B(p,r) ={x € B(p,r); x, > h(2')}. These balls cover the compact set 952,
and there is a finite subcover {By})_,. Choose some open set By C 2 such
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that the sets {Bk}évzo cover Q. By Theorem 2.8, we may find a partition of
unity {¢;}1_, on Q subordinate to the cover {By}. Then

N
/Q(?judx zg/ﬂﬁj(@u) dx

Since (ou € CL(2), we have

/Q(?j(g“ou) de = /R" 0;(Cou) dz = /R"l /_C: 0;(Cou) dxj dy

where y contains all the variables in x except for z;. The fundamental
theorem of calculus implies that

/ 8]-(C0u)(x1,...,xn) dxj =0.

Thus [, 8;(Cou) dz = 0.

Let now v = (yu where 1 < k < N, and write By = B(p,r) and
QN B, ={x € By; &, > h(z')}. Since ( € C°(By), we have

/8vdm—/ / r) dx, dz’.
R7=1 Jh(z’)

Choose a function ¢ € C®(R) with ¢(¢) = 0 for t < 0 and ¥(t) = 1 for
t > 1. (Such a function can be obtained by mollifying the function which is
zero for t < 1/2 and equals one for ¢ > 1/2.) Define also p(x) = z,, — h(2/)
in By. It follows that

/de—hm Djo(x )¢<@> dz
<ty [ [os (o0 (2)) - () 2]

Since vp(p/e) € CZ(R™), the integral [;, 0;(vi(p/e))dx vanishes by the
fundamental theorem of calculus. Consequently

/avd:v——hm vy (§>%dx

e—0 £

Using that ¢/(t) = 0 for t < 0 and ¢ > 1 and writing =, = h(z') + £t, we
may write

h(z")+ _ / )
/@m _ _hm/ / <xn h(:v)) dip(x) du,, d!
Q e=0 Jrn—1 Jp(2") € 5

= — lim / / v(@', h(z") + et)y' (£)0;p(x’, h(z') + et) dt da’.
rR7—1.Jo

e—0
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We may take the limit by dominated convergence, and the fact that fol P (t)dt =
1 implies

/(9jv dx = —/ v(@’, h(z")0;p(’, h(')) dt da’.
Q Rn—1

From the definitions of the unit outer normal and surface measure, we see
that vy (o, h(z')) = —djp(a’, h(a'))/ |V p(e’, h(a'))| and dS(a) = [Vp(a’, h('))| da.
This shows that

/aj(gku)d:c:/ Ckuyde, k=1,...,N.
Q [e]9)

The result follows by summing over k£ from 0 to N and using the fact that
{Ck} is a partition of unity. O

Theorem 2.21. Let Q have C' boundary.
(1) (Integration by parts) If u,v € C1(Q), then

/uajv dx = —/(@u)v dw—i—/ uwov; dS.
Q Q o0N
(2) (Divergence theorem) If F : Q — R™ is a C' vector field, then

/ div(F)dzx = F-vdsS.
Q o0N

(3) (Green formula) If u € C*(Q),v € C?(Q), then

/ ual,vdS:/Vu-Vvdx—l—/uAvd:c.
oN Q Q

(4) (Green formula) If u,v € C?(Q), then
/ (uOyv —voyu) dS = / (uAv — vAu) dx.
o0N Q

Exercise 2.22. Prove Theorem 2.21.

2.3. Sobolev spaces

Let © be a bounded open subset of R, and let v € L>(2) be a positive func-
tion representing the electrical conductivity of the medium Q. We wish to
consider a suitable function space for solutions of the conductivity equation

div(yVu) =0 in Q.

The function spaces that will be used for this purpose are called Sobolev
spaces, and they turn out to be appropriate for describing weak solutions of
a large class of partial differential equations.

If v € CYQ) and u € C?(Q), then one can interpret the equation
div(yVu) = 0 in the classical pointwise sense since the derivatives exist
pointwise. Solutions in C?(Q) are often called classical solutions. However,
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when the conductivity v is only in L*(£2) classical solutions do not make
sense. Also, our aim is to use energy methods and Hilbert space theory
to produce solutions, and for this purpose it is more natural to use spaces
based on L?(Q) rather than the C* spaces.

To define weak solutions of the equation div(yVu) = 0, one first needs
the concept of weak derivatives of functions that may not be differentiable
in the classical sense. Weak derivatives will be defined via a suitable test
function space.

Definition 2.23. (Test functions) The elements of C2°(12), that is, infinitely
differentiable functions ¢ : @ — C with compact support in €, are called
test functions.

Motivation 2.24. To motivate the definition of weak derivatives, let  C
R™ be a bounded open set with C!' boundary and let u € C*(Q). Consider
the classical ath derivative of u, 0%u, where a € Nj is a multi-index with
la] < k. If o € C°(Q) is a test function, integrating by parts repeatedly
using Theorem 2.21(a) implies that

/Quao‘apdx: (-1)@'/9(0%)@@.

We used the fact that ¢ and its derivatives vanish near 0f2, so there are no
boundary terms. Now the left hand side is well defined if u € L}, (), and
in this case we say that u has ath weak partial derivative in L}, () if the
above identity remains true for all test functions ¢ when d%u on the right

hand side is replaced by some locally integrable function v.

Definition 2.25. (Weak derivatives) Let 2 C R™ be open, let u,v € L} (),

and let @ € N" be a multi-index. We say that v is the ath weak partial
derivative of u, written

v = 0%,
if
/uaa@dx — (_1)‘“‘ / U(Pd.%' for all p e CSO(Q)
Q Q

By Theorem 2.6, the ath weak partial derivative (whenever it exists) is
uniquely defined as an L}Oc function. Having given the definition of weak
derivatives, we proceed to discuss the spaces of functions relevant for weak
solutions of the equation div(yVu) = 0 in .

Definition 2.26. (Sobolev spaces) If € C R” is open and k € Ny, the
Sobolev space H*(2) consists of all functions u € L?(£2) for which the weak
partial derivative 9%u is in L?(2) whenever a € N} and |a| < k. We equip
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this space with the inner product
() ey = Y (0%u,00) 120
| <k
and with the norm

1/2
lull ey = (s 0) 12 -

Examples of Sobolev functions are given next; the problem below shows
that some rather pathological functions can still belong to H*(2).

Example 2.27. (a) If Q € R" is a bounded open set, the space C*(Q) is
contained in H*(Q).

(b) If @ C R™ is open, C°() is contained in H*(Q) for all k > 0.

(c) If @ = B(0,1) C R™, then the function

u(x) =lz|7%,  Jz[ <1
is in H1(9) if and only if o < n/2— 1. Indeed, this function has gradient
Vu(z) = —alz| > 2z, x €.

A computation in polar coordinates shows that = — |x|76 is integrable
near 0 if and only if 8 < n. Using these facts, it is not hard to see that
the weak gradient is equal to the pointwise gradient and that u € H(Q)
for any a < n/2 — 1.

Exercise 2.28. If Q@ = B(0,1) C R", n > 3, give an example of a function
u € H'(Q) that is not essentially bounded in any open subset of Q. Give a
similar example for n = 2. Can you find an example of this type for n = 17

The next result shows that H*(Q) is a Hilbert space, as the notation
already suggests.

Theorem 2.29. H*(Q) is a Hilbert space for each k € Ny.
Exercise 2.30. Prove Theorem 2.29.

Exercise 2.31. (Pointwise multipliers) If & C R" is a bounded open set
and a € C*(Q), u € H*(Q), show that au € H*(Q). Show also that

0% (au) = Z <g> %00 Pu, o e Ny |al <k,
BLa

a) _ al

where 8 < o means that 8; < «a; for j = 1,...,n, (ﬁ ElC=aIE and
al = aq!---ap!. (Hint: use induction on |a|. It is enough to do the case
k =1 if the general case is difficult.)
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To deal with boundary value problems for the equation div(yVu) = 0
in Q, we need to consider the space H}(f2) consisting of those functions in
H'(Q) which vanish on the boundary 952 in some sense. Functions in C2°(Q)
always vanish near the boundary, which motivates the following definition.

Definition 2.32. We denote by H{(Q) the closure of the set C2°(Q) in
H'(Q). Tts dual space is denoted by

H™YQ) = (H(Q)* = {F : H}(R) — C bounded linear functional}.

There is one potentially confusing point in the previous definition: Hilbert
space theory tells that any Hilbert space is isomorphic to its dual, so one
might wonder why the dual space H~!(2) is needed. In fact, the Riesz repre-
sentation theorem shows that any F' € H~ () can be uniquely represented
in the form

F(U) = (U7w)H%(Q)7 CAS H&(Q)7

for some w € H}(Q). The point is that this representation involves the
HZ(Q) inner product, whereas the definition of weak derivatives is given in
terms of the L? inner product. The above representation can be written in
the weak sense as

F(v) = (v,w)r2(0) + (Vv, Vw)2(0) = (v,w — Aw) 12(q)-

Thus H~1(Q) can be identified with the set {w — Aw; w € H}(Q)}, if these
functions are understood to act on H}(£2) functions with respect to the L?
inner product. In this interpretation H~1(£2) contains all functions in L?(£2),
since any function g € L?(£2) gives rise to a bounded linear functional on

HG (%) by
g(v) :/ngd:c, v e HNQ).

Theorem 2.33. H}(Q) and H~1(Q) are Hilbert spaces, and HL(R) is a
closed subspace of H(Q).

Proof. These claims follow immediately from Hilbert space theory. (]

We will need only one nontrivial fact about Sobolev spaces to obtain
weak solutions to the partial differential equations that we are interested in.
This is the fact that the inclusion map i : Hi(Q) — L?(Q) is compact, or
in other words, every bounded sequence in H&(Q) has a subsequence that
converges in L?(2). After showing this we will have access to powerful tools
in the theory of compact operators, such as the Fredholm alternative and
the spectral theorem, in the analysis of weak solutions.

The fundamental principle that allows us to extract a convergent sub-
sequence is the Arzela-Ascoli theorem. This result is an extension of the



2.3. Sobolev spaces 33

fact that any bounded sequence of complex numbers has a convergent sub-
sequence.

Theorem 2.34. (Arzela-Ascoli) Let (X,d) be a compact metric space, and
let (f;) be a sequence of functions X — C. Assume that (f;) is pointwise
bounded and equicontinuous, that is, sup;cz, |fj(z)| < oo for each x € X
and for any € > 0 there is § > 0 such that

Ifi(x) — fij(y)] <e whenever d(z,y) <6 and j =1,2,....
Then (f;) has a subsequence that converges uniformly on X.

Exercise 2.35. Prove Theorem 2.34 in the case where additionally (X, d)
is separable. (Hint: choose a countable dense subset {z;}7°, of X, and first
find a subsequence that converges at each z;.)

Exercise 2.36. Prove Theorem 2.34 in general.

Theorem 2.37. (Compact Sobolev embedding) If @ C R™ is a bounded open
set, then the inclusion map i : HH(Q) — L?(2) is compact.

Proof. Suppose that (u;) C H}(2) is a bounded sequence, so

||uj||H1(Q) <G, J=L12,....
Since C°(Q2) is dense in H}(Q), for any j there is p; € C(Q) with
l|lu; — <ijH1(Q) < 1/j. Then also (p;) is a bounded sequence in H} (),

and if we can find a subsequence (¢, ) that converges in L?(£2) then also
(uj, ) will converge in L?(£2) to the same limit. Consequently, we may assume
that (u;) C C(R™), supp (u;) C Q for each j, and

(2.2) lujl iy <C. G=12....

Assume for the moment that instead of (2.2) we have uniform bounds
for p = oo,

sl iy + IVl gy < € G= 12,

Then the sequence (u;|g) would be pointwise bounded and also equicontin-
uous since

uj (@) —u;(y)] < < s [V (z +t(y — w)l) z—yl<Clz—yl, zyek
tef0,1

By the Arz_elé—Ascoli theorem we could find a uniformly convergent subse-

quence on ).

The device that will be used to pass from the uniform bounds with p = 2
to the case p = oo described above is mollification. Define

6— .
uj = uj * 7.
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We compute
1
@)~ us(@) = [ e - wldy= [ 0| [ G- w] a
1
:/ /na(y)Wj(w—ty)-(—y)dtdy

= —6/ / y)Vuj(x —tey) -y dtdy.
B(0,1)

The Minkowski inequality in integral form (Problem 2.5) implies that

H UJHL2 R™) <6/B(01 / Hvuj _tey)Hm(Rn) |y| dt dy.

Since ||Vu;(- —tey)|l 2 = [[Vu;|| 2, the uniform bound (2.2) shows that

45 = 5| oggny < e G=1,2,.

for some C’ > 0. The point is that these bounds are uniform with respect
to j.
We will now prove the theorem by showing that (u;) has a subsequence

that is Cauchy in L?(f2). Fix 9 > 0, and choose € so small that

Huj_UEHLQ(Rn) §50/3, 7=12....

For this , the sequence (u5) is uniformly bounded and equicontinuous. In
fact, by (2.2) and Cauchy-Schwarz we have

|uS(z)] = ‘/ns(w — y)u;(y) dy‘ < me(z = g2 llujll 2 < Ce

and similarly

|Vus ()| = ‘/Vm(w —y)u;(y) dy‘ <IVne(@ — )z lugll 2 < Cy

where the constants are uniform over x € R™ and j = 1,2,.... The Arzela-

Ascoli theorem shows that there is a subsequence (ujk)z"zl that converges

uniformly on Q. It follows that

g, = ujill 2y < [Jwj = u?kHL%Q) + Hujk - uisz(Q) + Hujl - uleL2(Q)
< 20/3+ Co “uik o u§l|’L°°(Q) )
Here we used that € is bounded.

It follows that for any €9 > 0 there is a subsequence (u;, ) such that

lim sup Hu]k Uy, HL2 < €o.
k,l—o0
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We apply this argument with 9 = 1 to obtain a subsequence (u§1)) of (uj)
with
lim sup Hug) — ul(l)‘
k,l—o0

<1.
L) ~

Now, repeat the argument for g = 1/2, but with (u;) replaced by the

sequence (u§1)), to obtain a further subsequence (u§-2)) with

: 2) _ (@) L
hmsupHu( —u ‘ < —.
kilsoo || " Pl — 2
We continue this for eg = %, i, ... and use the diagonal procedure to obtain

(m)

a sequence (v, ), where vy, = um ’, that is a subsequence of the original (u;)
and satisfies

limsup [[vk — vil| f2(q) = 0.

k,l—o0

By the Cauchy criterion, we have found a subsequence that converges in

L2(9). a

As the first application of compact Sobolev embedding, we prove a
Poincaré inequality that will be crucial in showing existence of weak so-
lutions. The proof is quite general and adapts to other situations, but it
does not give any bounds on the constant C. A more direct proof is given
in Proposition ?77.

Theorem 2.38 (Poincaré inequality). Let Q C R™ be a bounded open set.
There is a constant C' > 0 such that

lull o) < ClIVull 2y, u€ Ho().

Proof. By density it is enough to prove this for all u € C°(Q2). We argue
by contradiction and assume that for any k € Z there is u;, € C°(Q) with

ullp2) > FIVurll2q) -
By dividing each uy by [lug|2(q), we may assume that

1

(2.3) lurllza@y =1, IVurliza@) < 1

Then (uy) is a bounded sequence in Hg (), and by compact Sobolev em-
bedding there is a subsequence, also denoted by (uy), converging to some u
in L(Q). By (2.3), we also have Vuy, — 0 in L*(Q).

We claim that v € H(Q) and Vu = 0 in the weak sense. In fact, if
v € C(N) then

/Quﬁjgo dr = kli_)ngo/ﬂukﬁjgo dr = —len;O[)(ajuk)¢dx =0
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and so Vu = 0. (The integration by parts for a general open set 2 is easily
justified since uy, ¢ € C°(Q).) Thus ux — u in H*(Q), and since H}() is
a closed subspace we have u € HE ().

It is proved in Problem 2.39 that any u € H} () with vanishing gradient
must be identically zero. But then

0 = [Jull 2(q) = klglolo Jull L2y =1,
and we have arrived at a contradiction. O

Exercise 2.39. Show that any u € H'()) whose weak gradient vanishes
is constant on each connected component of Q. If additionally u € H} (),
show that u = 0.

Remark 2.40. The Poincaré inequality implies that ||V - || 12(q) is an equiv-
alent norm on HE(Q):

C™H ull gray < IVull 20y < Cllull gy, u € Ho(%).

(The first inequality follows from Poincaré, and the second one is trivial.)
This will be useful for the existence of weak solutions.

We proceed to describe Sobolev spaces on the boundary 952 that will
serve as appropriate function spaces for boundary values of weak solutions.
As mentioned above, we think of H{ () as the set of those functions in
H'(92) whose boundary value, also called trace, on 9f) vanishes. In the same
spirit, we consider two functions u,v € H*(Q) to have the same boundary
value on 99 if u — v € H}(2). This motivates the following definition of an
abstract trace space of H(1).

Definition 2.41. Define H'/2(0Q) as the quotient space
HY2(0Q) = HY(Q)/H ().
The elements of HY2(Q) are the equivalence classes [u] = {u + ¢; ¢ €
H}(Q)} where u runs through all elements of H(£2). Also define the trace
operator
R:HYQ) —» HY*(Q), Ru=[ul.
We also write u|gq = Ru.

We will see later that if € is a bounded open set with C'' boundary, the
abstract space H'/2(9Q) can be identified with a subspace of L?(99) (the
space of square integrable functions on 02 with respect to surface measure).
This identification and a more precise description of H/2(9) is most con-
veniently done via the Fourier transform. At this point, we only motivate
the notation H'/2(9Q) with an example of a function v € H'(Q) whose
boundary value u|aq is in L2(9€2) but not in H(d€2). In this example, one
can heuristically think that u|sq has half a derivative in L?(9).
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Example 2.42. Let 2 C R" be a bounded open set with C* boundary
such that Q C {x, > 0} and B(0,1) N {z,, > 0} C Q, and consider the
function in Example 2.46(c),

u(x) = |z|™%, x €.

We fix @ < n/2 — 1, so that u € H*(Q).

Writing 2 = (2/, z,,), the pointwise restriction of u to 9Q N {z,, = 0} is
u(z',0) = |2/| 7.
The pointwise gradient of this function is
Veu(z',0) = —a ‘x/ra_Q x.

Thus, the function 2’ — u(2’,0) is in L2092 N {z,, = 0}) (since o < 251),
but its pointwise gradient is L? integrable only if @ < % — 1. Heuristically,
interpolating the expressions for u(2’,0) and Vu(z’,0) suggests that the
absolute value of the ”fractional gradient” ‘Vz,u(az’, 0){ would behave like
|x’|_a_9. This is always L? integrable if 0 < 6 < 1/2, suggesting that u|gq
has half a derivative in L?(9€2) but not a full derivative in general.

The benefit of the abstract definition of H/2(99) is that this definition
is valid without any regularity assumptions on the boundary 0€2. For many
results considered in this book, this abstract setup is actually sufficient to
formulate the corresponding inverse problems and their solutions. We now
describe some further properties of the abstract space H'/2(9Q). Note first
the orthogonal decomposition

H'(Q) = Hy () & Hy ().

This is valid since H} () is a closed subspace of H1(). The next result
gives the standard Hilbert space structure on H/2(9Q).

Theorem 2.43. The orthogonal projection P : H'(Q) — H}(Q)' induces
a bijective linear map

T : HY2(0Q) = H} ()Y, T([u]) = P(u).

The space Hl/z(aQ) becomes a Hilbert space when equipped with the inner
product

([l W) /2 o) = (T, T(WD) (), w,v € HY(Q)

and with the norm

1wl g1/200) = 1T (Dl g @) = Ue}%f(ﬂ) lu+ vl g ue H'(Q).
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Proof. The map T is well defined since P(u +v) = P(u) for v € H}(Q). If
T([u]) = 0, then P(u) = 0sou € H}(Q) and [u] = 0, and given w € H}(Q)*+
we have w = P(w) = T'([w]). Thus T is linear and bijective.

The inner product on H'/ 2(09) is clearly sesquilinear, conjugate sym-
metric and positive definite. If ([u;]) is a Cauchy sequence, then (T[u;]) =
(P(uj)) is Cauchy in H(Q) and converges in H'(Q2). Since H(Q)L is
closed it follows that P(u;) — P(u) in HY(Q2) for some u € H} (), so that
[u;] = [u] in HY2(09Q). O

Theorem 2.44. (Right inverse of trace operator) There is a bounded linear
map

Eaq : HY2(8Q) — HY(Q)
that satisfies
REpof =f,  f€HY*0q).
In particular, for any f € HY2(0Q) there is vy € HY) with

HUfHHl(Q) <C HfHH1/2(aQ) . vglaa = f.

Proof. It is enough to take Eyq([u]) = P(u) for u € HY (). Then REsq([u]) =
[P(u)] = [u] and || Epa([u])[| ir1(q) = 1P (@)1 (0) = N[ulll iz a0)- U

Let us finally define the negative order Sobolev space H !/ 2(00) as a
dual space:

Definition 2.45. Define H~'/2(9Q) as the Hilbert dual
H™Y2(00) = (HY?(09Q))* = {T : H?(Q) — C bounded linear functional}.

Example 2.46. We will see later that if Q has C! boundary, any function
f € L?(9Q) can be identified with the element Ty € H~1/2(09) defined by

Ty : HY2(09) — R, Tf(g):/ fgds.
o0

Thus in this case L?(99) will be a subspace of H~1/2(9Q).

2.4. Weak solutions

In this section, © will be a bounded open subset of R™ (no regularity of the
boundary 99 is required). Consider a second order differential operator L,
acting on functions u on €2, given by

=9 0 0
J
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Here the coefficients are assumed to satisfy the following conditions:
a’*,q € L®(Q) are real valued,

(2.5)
aF =aM forall jk=1,...,n,

n

Z a®(2)€;6, > c|€]? for a.e. x € Q and all £ € R™, where ¢ > 0.
k=1
The last condition is an ellipticity condition for the operator L, and it ensures
that the operator L will have similar properties as the Laplace operator A.
Later in this book, we will mostly consider L to be one of the following
special cases:
(1) The conductivity operator
Lu = —div(yVu)
where v € L*(Q) is positive.
(2) The anisotropic conductivity operator
Lu = —div(yVu)
thevz(v“ﬁ#ﬂsﬁmﬂﬂwﬂ=vﬁjGL“GDandZXhﬂwﬂﬂwéﬁkz
cl¢]”.
(3) The Schrodinger operator
Lu=(-A+q)u
where ¢ € L>(Q).
Remark 2.47. The ellipticity condition implies a similar condition for com-
plex vectors: if A = (a/* (2))7 =1 and ¢ € C", then writing ( = £ +in where
&,m € R™ and using the symmetry of A gives
AC-C=A(+1in) - (§—in) = A - &+ An .
The ellipticity condition thus implies

n

(2.6) Z a*(2)¢; G > c|¢|? for a.e. 2 € Q and all ¢ € C".
Jk=1
We will use this stronger condition below.

Remark 2.48. Notice that if a/* € C'!(€2), one can write Lu in the form

n

n
Lu=— Z a?*dju — Z (8;07%)Ou + qu.
jh=1 j=1

This operator is said to be in nondivergence form, while the operator (2.4)
is in divergence form. We will consider divergence form operators in this
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section since they are better suited to the energy method related to weak
solutions.

Motivation 2.49. (Weak solutions) Suppose Q has C! boundary, L has
C! coefficients, and v € C?(Q) is a classical solution of Lu = F in Q
which satisfies the boundary condition u|sq = f, where F € L?(Q) and
f € C°09Q). Multiplying the equation Lu = F by ¥ where v € C*(Q)
satisfies v|pn = 0, an integration by parts implies that

/ Z ajkaju%%—qu@ dx:/FT)dx.
Q Q

J,k=1

Now, the left hand side makes sense for any u,v € H'(Q) (note however
that the integration by parts above made use of the vanishing of v on 0%2).
We can use this identity to define weak solutions of the equation Lu = F
in Q with u|spn = f. More generally, we can consider any right hand side F’
that is a continuous linear functional on H}(€2).

Definition 2.50. Let L be the differential operator (2.4). The sesquilinear
form related to L is given by

(2.7) Blu,v] = / E a*0judpv + quo | dz, u,v € HY(Q).
o\
J:k=1

If Fe H Q) and f € HY/%(9Q), we say that a function v € H'(Q) is a
weak solution of the Dirichlet problem

Lu=F 1in ,

u=f on 01},
if one has

Blu,v] = F(v) for all v € H}(Q)

and if Ru = f, where R is the trace operator in Definition 2.41.
Remark 2.51. The condition v = f on 0f) is called the Dirichlet bound-
ary condition. It is understood in an abstract sense, having the following
equivalent interpretations:
(a) Ru = f where R is the trace operator,
(b) u—v € H}(Q) for some v € H'(Q) with Rv = f,
(c) u—v € HE(Q) for any v € HY(Q) with Rv = f.

We are ready to give the first solvability result for boundary value prob-
lems.
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Theorem 2.52. (Weak solutions) Let Q2 be a bounded open set in R", and
let L be as in (2.4), (2.5). Assume in addition that

q>0 a.e in .

For any F € H Q) and f € HY2(dQ), there is a unique solution u €
HL(Q) of the Dirichlet problem

Lu=F inQ,
{u =f on Of).
There is a constant C' independent of F' and f such that
lull ) < CUIEN -1y + 1l mirzn) )-
This result follows readily from the next theorem.

Theorem 2.53. Ifs € R is a constant such that g+s > 0 almost everywhere,
then the sesquilinear form Bs[u,v] = Blu, v]+5s(u,v)2(q) is an inner product
on the space H}(Q) that induces a norm equivalent to the original one:

c! HUH?{I(Q) < Bslu,u] <C ||UH%{1(Q) . u€ Hy(Q).

Proof. It is clear that the map (u,v) — Bslu, v] is sesquilinear, and Bg[u,v] =
Bj[v,u] since a’* = a* and a’¥, ¢, s are real. The ellipticity condition (2.6)
and the assumption that ¢ + s > 0 imply that

Bslu,u] = /Q Z a*0judpu + (q + ) lu* | de > c/Q \Vul? dz.
k=1

Thus Bs[u,u] > 0, and if Bs[u,u] = 0 then Vu = 0 a.e. and thus u = 0 for
instance by the Poincaré inequality (Theorem 2.38). We have proved that
Bg[-, -] is an inner product.

The triangle inequality and the fact that a/*, ¢ € L°°(Q) imply that
Bulut] < Congo | (90 +10?) < Cllulfey v e HY@).
Moreover, the previous argument and the Poincaré inequality show that
By[u,u] > ¢|Vulf2i0) > cllulfng), e H5(R).

Thus B[+, -] gives an equivalent norm on H} (). O

Proof of Theorem 2.52. Consider first the case of zero boundary values,
where we want to solve

Lu=F 1in ,
u=~0 on 0f).
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The assumption that ¢ > 0 together with Theorem 2.53 show that B[-, -] =
By, -] is an inner product on H}(f2) giving a norm equivalent to the orig-
inal one. It follows that the inner product space (H3(f2), B[+, -]) has the
same Cauchy sequences as the original H&(Q) and therefore is a Hilbert
space. Also, F' is a bounded linear functional on this space, satisfying

[F@) < 1l =10y 0]y < CNF | =10 Blo,v]'/?, v € Hg(Q).
The Riesz representation theorem implies that there exists a unique u €
H{(€), whose norm is equal to the norm of F' as a bounded linear functional
on (H}(Q),B[-, -]), such that

Blu,v] = F(v), v € Hy(Q).
Since this function satisfies Ru = 0, we have found the unique solution
of our boundary value problem. The solution also satisfies ||ul 1) <

CIE N g-1(-

We move to the case of nonzero boundary values, and want to find
u € HY(Q) with

Blu,v] = F(v) for v € H}(Q), Ru=f.
Choose ef € H(Q) with Hef||H1(Q) < C|lfllg1/2(90) (this is possible by
Theorem 2.44). Writing u = ey+u, the boundary value problem is equivalent
with
Bli,v] = F(v) — Bley,v] for v e H)(Q), Ru=0.

The map F' : w — F(w) — Bley,w] is a bounded linear functional on H{ ()
since by the triangle inequality and Cauchy-Schwarz

|Bleg, w]| < C/Q (IVerl IVw| +[ef| [w]) dz < Cllegll g1 q) lwll g1(q) -
It follows that
IF | -1@) < CUF N g-1(0y + 112 (00))-

The result for zero boundary values proved above shows that there is a
unique solution @ € H} () satisfying
el ) < CUENp-10) + 1 17200))-
Thus, the original boundary value problem for u also has a unique solution
with
lull g1y < CUF -1y + 1 L2 00))-
O

Since the conductivity operator —div(yVu) is of the form (2.4) with
q = 0, the previous result implies the basic solvability result for the conduc-
tivity equation. Next we wish to deal with the case where ¢ may be negative
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somewhere. This is different from the previous case since the Dirichlet prob-
lem is not always uniquely solvable, and there may be nontrivial solutions
of the equation (—A + ¢)u = 0 with u|gq = 0. This is due to the existence
of eigenfunctions, as illustrated by the following example.

Example 2.54. Let Q = (0,7) C R, and consider the Schrédinger operator
—A+qin Q in the special case where the function ¢ happens to be a constant,
g = —X where A > 0. A function u solves (—A + ¢)u = 0 with vanishing
boundary values if

o’ (z) + Mu(z) =0for 0 <z <, u(0) = u(m) = 0.

The general solution to the ordinary differential equation u”(z) + Au(xz) = 0
is

u(r) = Asin (\/XCC) + B cos (\/X ).
The boundary condition u(0) = 0 is satisfied if and only if B = 0. With

B = 0, the boundary condition u(mw) = 0 is satisfied if and only if either
A =0 or sin (\/X 71') = 0. The latter condition is equivalent to

VIEZ «— A=k kelZ,.

Thus there is a nontrivial solution v € H'({2) with vanishing boundary value
whenever A = k? for some positive integer k.

The next theorem shows that there is only a countable set of eigenvalues
where unique solvability of the Dirichlet problem for L may fail. Outside of
these eigenvalues, we recover the same solvability result as before. The proof
uses compact Sobolev embedding and the spectral theorem for compact
operators.

Theorem 2.55 (Weak solutions). Let 2 be a bounded open set in R", and
let L be as in (2.4), (2.5).

(1) There is a set of real numbers
Spec(L) = {\;}52;
with Ay < Ao < ... — 00, such that whenever A\ ¢ Spec(L) the
boundary value problem
Lu=X u+F inQ,
u=f on 0S)

has a unique solution v € HY(Q) for any F € H-1(Q) and any
f e H/?2(09).
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(2) If X ¢ Spec(L), then the map
HYQ) —» HY(Q) & Hz(09)
U (Lu —du, Ru)
is an isomorphism (1-1, onto, bounded with bounded inverse). There

is a constant C' independent of F' and f (but depending on \) such
that

lull iy < CUIFg-1q) + 1m0y )-

(3) If X\ € Spec(L), there is a nontrivial solution u € HE(Q) to the
Dirichlet problem

Lu=MXu in §,
u=~0 on 0f)

The space of such solutions is finite dimensional.
(4) If a € R is a constant such that

q(x) > a a.e. in Q,
then Spec(L) C (a,0).

Definition 2.56. The set Spec(L) is called the spectrum of the operator
L with Dirichlet boundary condition. The elements of Spec(L) are called
Dirichlet eigenvalues.

Proof. 1. Consider first the case of zero boundary values. Since g € L>(9),
we may choose s € R such that ¢ + s > 0 a.e. in 2. Let L; be the operator
obtained from L by replacing g by ¢ + s, so that Ly = L + s, and let B be
the corresponding sesquilinear form. Theorem 2.53 shows that Bs[-, -] is
an inner product on H&(Q) giving a norm equivalent to the original one.

Theorem 2.52 implies that the Dirichlet problem for Ls with zero bound-
ary values has unique solutions, and the map L : H}(Q) — H~Y(Q) is in-
vertible with bounded inverse L; ! taking F' € H~1(£2) to the unique solution
u € HE(Q) of Lu = F in Q with Ru = 0. We now have, for u € H} (),

Lu=Mu+F <= Lau=MN+su+F<=u—(\+s) L u=L;'F
If X\ # —s, the last part may be equivalently written as
(0l = K)(i(u)) = F
with = v, K =ioL; oj, and F = pi(L;'F), where i : H}(Q) — L*(Q)
and j : L*(Q) — H~1(Q) are the inclusion maps.
We claim that

K : L*(Q) — L*(Q) is a compact, self-adjoint, positive definite operator.
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By Theorem 2.37 the map ¢ is compact, and consequently K is compact. It
is also self-adjoint, since for F, G € L*(Q), writing v = L;'F and w = L;'G
gives that

(KF,G)p2 = (L7Y(F),G) 2 = (v, Lyw) 2 = Bs[w,v].

S
Similarly
(KG, F)r2 = Bs[v,w].

Since Bj is conjugate symmetric, Bs[v, w|] = Bslw,v]|, we have (KF,G)r2 =
(F, KG)r2. Finally, K is positive definite since by the above computation

(KF,F)r2 = Bs[v,v]

where By is a positive definite inner product.

By the spectral theorem for self-adjoint compact operators (Proposition
A.73), Spec(K) is an at most countable subset of R that may only accumu-
late at 0, and each element of Spec(K') (except possibly 0) is an eigenvalue
with finite dimensional eigenspace. Each eigenvalue is positive since K is
positive definite. Since L?(f2) is not finite dimensional, Spec(K) is in fact
countably infinite and contains 0, and we may write Spec(K) = {u;}32,U{0}
where p1 > p2 > ... and p; — 0 as j — oo. Now, ul — K is invertible on
L?(Q) for all u € R\ Spec(K).

We now return to solvability of the Dirichlet problem. We wrote earlier
that u = )%LS, so we define

N=——s j=12....
H
Then A\; < A < ...and \j = oco. If F € H=1(Q) and A\ + s # 0, we saw
above that for u € H}(Q2) one has

Lu=Xu+F < (ul — K)(i(u)) = pi(L;1(F))

where p = )\%rs ¢ Spec(K). If we assume that A € R\ {A;}52,, then
u ¢ Spec(K) and for any F' € H~(Q) there is a unique solution @ € L?(Q)
of
(ul = K)(@) = pi(LH(F)).

This function satisfies & = p~ Ly u+ L F, so @ = i(u) for some u € HE(Q)
with [|ull ;1) < C(all g2y +I1Fll 1)) < CIF | r-1(q)» using that pl—K
and Ly are invertible. This shows the existence of a unique solution if
A+ s # 0. In the remaining case where A 4+ s = 0, the equation is Lyu = F
which has unique solutions in H}(£2) by Theorem 2.52.

The case of nonzero boundary values is handled in the same way as in
Theorem 2.52. This proves part 1 in the theorem.
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2. The fact that u — (Lu—Au, Ru) is an isomorphism follows easily (only
boundedness remains to be proved, but the inequality ||Lu — Aul| -1y +
[Rull /2090y < C llull g1 o follows from the arguments above).

3. If A = A\; € Spec(L), then the proof in part 1 shows that the equation
Lu = \u for u € H}(Q) is equivalent with

(uI - K)(i(u)) =0

for p = p; = )\%‘_S Since pj € Spec(K) and K is compact, there is a
nontrivial finite dimensional space consisting of those @ € L?(Q) with (ul —
K)@ = 0. This space is contained in H}(2) because any such @ satisfies
@ = pu L7114, and gives rise to a finite dimensional space of solutions to
Lu = Au in Q.

4. If ¢ > a a.e., then we may choose s = —a above and each eigenvalue
satisfies A\; > a by definition. O

Exercise 2.57. Prove Theorem 2.52 in the simpler case of the Dirichlet
problem for the Laplacian,

—Au=F in Q,

u=7f on 0f),

by using Remark 2.40 instead of Theorem 2.53.

Exercise 2.58. Show that Theorem 2.55, except for part 4, remains true if
L is the following operator containing first order terms,

<9 o Ou ou 0
Lu=— | atF == j = 4+ =
== 3 g (P am) < (v + ) v

J,k=1

where the coefficients satisfy (2.5) and additionally & € L*°(f) are real
valued. The sesqulinear form corresponding to L is given by

B[u,v]:/Q Za] Guakv—i-zz (8;u)0 — Yud;v) + quv | de.
7,k=1

2.5. Higher regularity

We will end this chapter with a discussion of higher order regularity of
solutions. The philosophy is that a solution of the second order elliptic
equation Lu = F' should always be two derivatives smoother than the right
hand side F', unless this gain of regularity is prevented by lack of smoothness
in the coefficients of L, the boundary values of u, or in the boundary 0f2.
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Theorem 2.59. (Elliptic regularity) Let Q2 be a bounded open set in R™,
and let L be the second order operator (2.4). Assume that u € H'(Q) solves
the Dirichlet problem

Lu=F in ),
u=f on 0f).

(1) Assume Q has C? boundary, v € C*(Q), and ¢ € L>®(Q). If F €
L*(Q) and f € H3%(Q), then u € H*(Q) and

lull g2 < CUFN L2y + 1 f 1 m3/200))-

(2) Letl > 1 and assume that ) has Cl+2 boundary, v € Cl+1(ﬁ)’ and
qe CQ). If F € H(Q) and f € H3/2(0Q), then u € H72(Q)

and
lull g2y < CUFE N ey + 1 s o0))-

Theorem 2.59 has two useful consequences. The first concerns interior
regularity of solutions.

Theorem 2.60. (Interior regularity) Let Q and ' be bounded open subsets
of R™ with Q C €. Let L be the second order operator (2.4) in ', and let
¢ € N. There is a constant C, depending only on £, Q, ' and L such that,
for allu € HY(QY) and F € H*=2(Q') obeying

Lu=F in Q

we have ulg € HY(Y) and

el Lz < C(NF -2y + il 2y )-

The second consequence of Theorem 2.59 shows that if all quantities are
C®°, then also the weak solution u is C'* up to the boundary.

Theorem 2.61. (Smoothness up to the boundary) Let Q be a bounded open
set in R™ with smooth boundary, and let L be the second order operator
(2.4). Assume that v € C®(Q) and ¢ € C*(Q). If u € HY(Q) solves the
Dirichlet problem

Lu=F in (),

u=f on 0N

where F € C(Q) and f € C®(0N), then u € C®().
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2.6. The DN map and inverse problems

Let ©Q be a bounded open set in R", and let v € L%°(2) be a positive
function. We would like to define the Dirichlet-to-Neumann map mapping
a boundary voltage f to the current flux at the boundary,

AA/ : f — ’yal,uﬂaﬂ

where uy is the solution the conductivity equation div(yVuy) = 0 in Q with
uflog = f.
In fact we can consider the more general operators (2.4),

= 9 o Ou
Lu = — = | g
Jik=1

where a/* ¢ € L*°(Q) satisfy the conditions (2.5). The corresponding DN
map for L would be formally given by

n

(2.8) Ap:f— ‘;1(1] (@u)uk‘aﬂ.
j, =

Motivation 2.62. (Definition of DN map) Assume that € has smooth
boundary and a’*,q € C°°(Q), and suppose that uy solves the Dirichlet
problem Lu = 0 in , uf|pn = f, for some f € C(9€). Then uy € C*(Q)
by Theorem 2.61, and we may define Ay f by the right hand side of (2.8) as a
function in C*(0N). Let g € C*°(90) and let e, € C>(Q) be any function
such that e4|pn = ¢g. An integration by parts, using that all quantities are

smooth, shows that

/8 (Ahgds = /8 @ (@yu)egids

jk=1

= Zn: /Qak <ajk((9jujr)eg) dx

J,k=1

n
:/Q { Z a?*Oju e, + qufeg} dx.
k=1

In the last step we used that Lu = 0.

Notice that the expression on the last line is just Bluys,€,] where B is
the sesquilinear form corresponding to L. This expression is well defined
even when a/%, q € L>°(Q) and uys,e, € H'(Q). We use this observation to

define the DN map in a weak sense even when the quantity a/* (Oju)vy, may
not be defined pointwise.
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Recall that H~/2(09) is the dual space of HY/2(9Q) = H'(Q)/H(Q).
If fe H1/? (092), we will express the duality by the notation
(f.9)00 = flg), g€ H?09).
If Q has C! boundary and f € L?(92), this reduces to the usual integral

(. 9)on = /a fods.

Theorem 2.63. (DN map for L) Let 2 be a bounded open set in R™ and
let L satisfy (2.4), (2.5). Assume that 0 is not a Dirichlet eigenvalue of L
in Q. There is a unique bounded linear map

Ap : HY2(09) — H™Y2(8Q)
that satisfies

n

(2.9) (ALf,9)oa = Bluy, ég] = / [ Z ajkﬁjujrﬁkeg + QUfeg] dz
jk=1

where uy € HY(Y) is the unique solution of Lu = 0 in Q with u|lpq = f, and
ey is any function in H () with eg4laq = g.
If Q has C™ boundary and a’*,q € C>®(Q), then Ap, restricts to a linear
map
Ap : CF(0Q) — C(09Q)
which satisfies (2.8) for all f € C*(09).

Proof. 1. The first step is to show that the right hand side of (2.9) does
not depend on the particular choice of the extension e, of g. That is, if ey, €,
are two functions in H!(2) with eg4|aq = é4]an = g, then

B[uf7é9] = B[ufaa]

But this follows from the fact that é, = e, + ¢ for some ¢ € H}(f2), since
the definition of weak solutions implies Bluy, ¢] = 0.

2. Fix f € HY2(99), and define a linear functional T} : H/2(9Q) — C
by
Ty(9) = Blug,eg), g€ H'*(0Q),
where e, € H 1(Q) is the extension of g provided by Theorem 2.44 satisfying
eglon = g and HegHHl(Q) < Clgll gr1/2(90)- Then by Cauchy-Schwarz

Ty(g)] < /Q S [a] Vgl [Vegl + lal lugllegl | dz < C llugllp gy gl gy -
k=1

By Theorem 2.55 we have

gl < € 1l rogony
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Consequently
T < ClF Nl mr200) 191l 12 00) -
Thus T is a bounded linear functional on H 1/2(990), or in other words
Ty € H-Y2(99Q), and Ty has norm less than or equal to C 117200 We
define
A, HY2(0Q) — H™Y2(09Q), f— T}
This map satisfies (2.9) and is the unique map with this property.

3. If Q has C* boundary and v € C*(Q), and if f,g € C*®(99), then
up € C*(Q) by Theorem 2.61. The computation done in Motivation 2.62
implies that

(ALf, g)oa = Z / a’*(jus)eqvy dS.
J,k=1

Thus (Apf — > 74— La®(05up)vk|aq, g)aa = 0 for all g € C°°(0N2). Since
C>°(09) is dense in H/2(95), this shows that Ap f = > k=1 a?*(0ju s )vkloq
as elements of H~1/ 2(092). Consequently A, f can be identified with the C'*°
function > %, al*(0ju )k aq- O

We now obtain the DN maps for the conductivity equation, anisotropic

conductivity equation, and Schrédinger equation as special cases of the pre-
vious result.

Theorem 2.64. (DN map for conductivity and Schrédinger equations) Let
Q be a bounded open set in R™, and let ¢ > 0. Assume that

(1) v € L*(Q) and v(x) > ¢ for a.e. x € Q,
(2) G = (ij)?k:l is a symmetric matriz of L>°(Q) functions and

Z k()8 > clel? for a.e. x € Q and for all € € R,
7,k=1

(3) ¢ € L*(Q) is real valued and 0 is not a Dirichlet eigenvalue of
—A+q in €.
There are bounded linear maps
Ay, Ag, Ay s HY2(0Q) — HY2(00)
that satisfy for all f,g € HY/?(0Q)
<A7f, g>BQ = /Q’Yvufveg dm, <AGfa g>8ﬂ = /QGVfo.Veg dQE’ <Aqf’ g>BQ = /Q (V’U)f : veg + qugegy
where ug, vy, wy € HY(Q) are the unique solutions of div(yVu) = 0, div(GVv) =

0 and (—A + q)w = 0 in Q with boundary value f, and ey is any function
in HY(Q) with eglaq = g.
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If Q has C* boundary and v,~'*,q € C>(Q), then these maps restrict
to linear maps

Ay, Ag, A : C(0Q) — C(09)
which satisfy for f € C(0N)

A f =7v00uyrlo, Aaf =GVuy-v|pa, Aif =0url|oq.

Proof. By our assumptions, the operators —div(yV ), —div(GV -), and
—A + g are of the form (2.4), (2.5). In the first two cases there is no
zero order term and we see from Theorem 2.55 that 0 is not a Dirichlet
eigenvalue, and for the third case this is explicitly assumed. The result
follows from Theorem 2.63. U

Exercise 2.65. Assume the conditions of Theorem 2.63, and show that
knowledge of the DN map Ay is equivalent to knowing the quadratic form

Qu: HY2(0Q) = R, Qr(f) = Bluy,uy] = /Q | D P ojugBiugtalug | dr.
Gk=1

(Physically, for the conductivity equation, the quadratic form

Q1) = [ 11Vusl? do
expresses the power needed to maintain the voltage f at the boundary.)

The next result shows that the DN map is a symmetric operator.

Theorem 2.66. Let Q C R™ be a bounded open set, and let L satisfy (2.4),
(2.5). Assume that 0 is not a Dirichlet eigenvalue of L in Q. Then

(ALf.9)o0 = (f,ALg)oa, f.g € H'*(0Q).
In particular, the maps Ay, Ag, Ay in Theorem 2.64 also have this property.

Proof. By definition

(ALf.g)oo = Bluy, &
where uy € H'(€2) is the unique solution of Lu = 0 in Q with us|gq = f, and
ey is any function H'(2) with ey4|an = g. We choose e, = u,, the solution of
Lu = 0 with boundary value g. Then, since B[, -] is conjugate symmetric
and a/*, ¢ are real valued,

(ALf,9)oa = Bluy,ug] = Blug,uy] = Blug,uy] = (ALg, f)oq-
O

We are now in a position to give mathematically precise formulations
for the inverse problems considered in this book.
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2.6.1. Calderon problem. Let 2 C R™ be a bounded open set. We think
of € as an electrical conductor, and assume that the conductivity at each
point of €2 is given by a function v € L>(Q) satisfying vy(z) > ¢ > 0 a.e. in
Q). By Theorem 2.64 there is a bounded linear map

A, HY2(0Q) — H™Y2(09)

which formally associates to a function f € H'/?(9Q) an element A, f €
H~'/2(09) that may be thought of as the electrical current ¥d,u |aq corre-
sponding to boundary voltage f. (If Q has C* boundary and v € C*(€Q),
we saw in by Theorem 2.64 that A, f = y0,uf|pq for any f € C*°(01) in

the classical sense.)

We think that for each boundary voltage f € H/2 (09), we can measure
the corresponding current A, f € H -1/ 2(0%). This leads to the following
inverse problem.

Calderén problem. Let © C R™ be a bounded open set, and let v € L>(2)
satisfy v > ¢ > 0 a.e. in €). From the knowledge of the map A, determine
the function v in €.

2.6.2. Inverse BVP for Schrédinger equation. Let 2 C R" be a
bounded open set, and let ¢ € L*°(2). We consider an inverse problem
for the equation (—A 4 ¢)u = 0 analogous to the Calderén problem. How-
ever, in order to have a well defined DN map we need to assume that 0 is not
a Dirichlet eigenvalue of —A 4 ¢ in §2. If this is the case, then by Theorem
2.64 there is a bounded linear map

Ay HY?(0Q) — HY2(60)

that associates to any function f € H'/2(9Q) an element A,f € H~/2(0Q)
that corresponds (in the case where everything is smooth) to the normal
derivative 0, u|an, where uy € H'(f2) is the unique solution of (—A+q)u =
0 in Q with boundary value f. The inverse problem is as follows.

Inverse BVP for Schrédinger equation. Let Q@ C R"™ be a bounded
open set, let ¢ € L>°(Q), and assume that 0 is not a Dirichlet eigenvalue of
—A+ ¢ in Q. From the knowledge of the map A,, determine the function ¢
in Q.

It is also possible to formulate this problem without the assumption that
0 is not a Dirichlet eigenvalue, by using the notion of Cauchy data sets. To
do this, we observe that even though the normal derivative on 02 does not
make sense for a general function u € H!(Q), we can still define the normal
derivative weakly if we assume that v is additionally a solution. The proof
is similar to that of Theorem 2.63.
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Exercise 2.67. If u € H'(Q) is a solution of (—A + ¢)u = 0 in €2, show
that the following identity defines 9,u|pq as an element of H~/2(09):

(Dvuloa, 9Yon = / (Vu- Ve, + que,) de. g € HY2(00),
Q

where e, is any function in H'(Q) with e,4|sq = g. Show that if u € C*°(Q),
then this definition of d,u|gn coincides with the usual one.

Definition 2.68. Let 2 C R™ be a bounded open set, and let ¢ € L>(2).
The Cauchy data set associated with the operator —A 4 ¢ in 2 is the set

Cq= { (ulpq, Opulsn) | u € Hl(Q), (A +qu=01in Q }

By Problem 2.67, C, is a subset of H'/2(9Q) x H~Y/2(9%). Tf 0 is not a
Dirichlet eigenvalue of —A + ¢ in €2, the next problem shows that knowing
the Cauchy data set Cy is equivalent to knowing the DN map A,,.

Exercise 2.69. Let 2 C R™ be a bounded open set, let ¢ € L>(Q2), and
assume that 0 is not a Dirichlet eigenvalue of —A + ¢ in 2. Show that the
Cauchy data set is the graph of the DN map acting on H1/2(3Q):

Co=1{ (f,Af) | f € HV?09) }.

The next question generalizes the inverse BVP for Schrodinger equation
given above.

Inverse BVP for Schrodinger equation, Cauchy data set version.
Let Q C R™ be a bounded open set, and let ¢ € L*°(2). From the knowledge
of the set Uy, determine the function ¢ in €.

2.6.3. Anisotropic Calderén problem. Again, Q@ C R" is a bounded
open set that is thought of as an electrical conductor, but this time the
conductivity at each point of €2 is given by a symmetric matrix function
G = (’yjk)?’kzl. For this problem we assume that 2 has C*° boundary and

that each 77* is in C*°(£2). We also assume the ellipticity condition for some
c> 0,

Z VIR (2)E 6 > cl¢l? for ae. x € Q and for all £ € R™.
jk=1

By Theorem 2.64 there is a linear map
Ag : C(0Q) — C(00)

which associates to a function f € C°°(02) the boundary current A, f =
GVuf . V’ag S C°°(8(2).
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Anisotropic Calder6n problem. From the knowledge of the map Ag,
determine a symmetric matrix function G with elements in C°°(2) such that
G = F.G for some diffeomorphism F : Q — Q with F|yq = Id.

2.7. Integral identities and reductions

The purpose of this section is to introduce certain integral identities for
differences of two DN maps. These identities can be used to relate boundary
measurements to interior information about the coefficients, and they allow
to reduce uniqueness questions in inverse problems to questions about the
density of products of (gradients of) solutions. We also give two simple
reductions that will be useful later.

Theorem 2.70. (Integral identity for Ap, — Ar,) Let Q C R™ be a bounded
open set, and let Ly, Ly be two operators of the form

= 9 ou
_ E ik
Lpu=— . ij (agn 8-7;k:> + gmu,
J,k=1

where azf, gm are as in (2.5) for m = 1,2. Assume that 0 is not a Dirichlet
eigenvalue for Ly or Ly in Q. Then for any f1, fo € H1/2(8Q),

n

(Ar, —AL) f1, f2)oo = / } : (a?* — a0 u1Opus + (@1 — g2)uruy | dz,
QO ;
Ji.k=1

where uy, € HY(Q) is the unique solution of Ly, = 0 in Q with w,|oq =

fm-

Proof. Let u; and us be as described. By Theorem 2.64 we have

n
(AL, f1, f2)aa = / > ) 9ju1 Ovs + qrugvs | da
Jk=1

where vo is any function in H'(Q2) with vg|pq = fo. Similarly, also using
Theorem 2.66, we have

(AL, f1, f2)oa = (AL, f2, f1)a0 = /Q Z a%kajuzakv1 + qouavy | dx
k=1

where v; is any function in H(Q) with v1|sq = f1. Now, we may choose
v1 = u; and v9 = uy. Subtracting the two identities above, we obtain the
theorem. 0
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As an immediate consequence of the above result, we obtain integral
identities for the differences of DN maps in the case of the conductivity and
Schrédinger equation.

Theorem 2.71. (Integral identity for A, — A,,) Let Q@ C R™ be a bounded
open set, and let v1,v2 € L>®(Q) satisfy y1,72 > ¢ > 0 a.e. in .

(a) One has the integral identity

((Ayy = Ayy) f1s f2)o0 = /9(71 —72)Vuy - Vugdz,  f1, f» € HY/*(0Q),

where u; € HY(Q) is the unique solution of div(y;Vu;) = 0 in Q with
ujloq = fj-
(b) If A, = A,, then

/(’)/1 — ’)/Q)le . ng dr =0
Q

for all w; € HY(Q2) with div(y;Vw;) =0 in Q.

Theorem 2.72. (Integral identity for Ay, — Ag,) Let Q C R™ be a bounded
open set, let q1,q2 € L (), and assume that 0 is not a Dirichlet eigenvalue
of =A + q; in Q.

(a) One has the integral identity

(Agy = Agy) f1, fa)on = /Q(cn — @)uugdz, fi, fo € HY?(0Q),

where u; € HY(Q) is the unique solution of (—A + gj)u; = 0 in Q with
ujlog = fj-
(b) If Ag, = Ay, , then
/ (@1 — g2)wiwa dz =0
Q
for all wj € HY() with (—A + g;)uj = 0 in Q.

Exercise 2.73. Show that Theorem 2.72(b) remains true in the case of
Cauchy data sets: if £ C R"™ is a bounded open set and q1,q2 € L%(Q),
then

/((h - q2)w1w2 dx = <8leaw2>8§l - <w1, 5uw2>aﬂ
Q

for all w; € HY(Q) with (—A+¢j)w; = 0 in Q, where the normal derivatives
are interpreted as in Problem 2.67. If additionally C,, = C,, then

/Q(Ch — @)wiwadr =0

for all such wj.
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Suppose now that -y, 72 are two conductivities such that A, = A,,. We
would like to conclude that v; = v2. By Theorem 2.71(b), this would follow
if one can show that the set

{ Vwi - Vs | wj € H'(Q),div(v;Vw;) =0in Q }

is dense in L*(Q). In the same way, if g1, g2 € L>®(Q) and A,, = A, then it
would follow from Theorem 2.72(b) that g, = g2 if one can show the set

{ wiws | wj € H(Q), (~A+¢j)w; =0in Q }

is dense in L'(2). This implies that uniqueness in the Calderén prob-
lem would follow from the density of products of gradients of solutions
to conductivity equations. Similarly, uniqueness in the inverse BVP for
Schrodinger equation would follow from the density of products of solutions
to Schrodinger equations. Most of the interior uniqueness results in this
book will be proved by following this route.

Next we give a result showing that the Calderén problem can be re-
duced to the inverse BVP for the Schrédinger equation, provided that the
conductivity has two derivatives. This is based on a simple argument, some-
times called a Liouville transformation, where the substitution w = 1/2u
reduces the conductivity equation div(yVu) = 0 to the Schrédinger equation
(—A + ¢y)w = 0, where the potential ¢, is given by

A’yl/Q
¢ =—5
7T L2
Theorem 2.74. Let Q C R™ be a bounded open set, let v € C?(Q) be strictly

. 1/2
positive, and set q = —Aﬂ/g .

(a) If f € HY2(0R), then u € H (Q) is a solution of
V-4Vu =0 in §, u=f on 0N}

124, is a solution of

if and only if w =
—Aw 4 qw =0 in €, w=~"Y2f on 9.

In particular, 0 is not a Dirichlet eigenvalue for —A+ q in  if q arises

from a C? conductivity.

(b) If Q has C* boundary and v € C*(Q), then the DN maps A, and A,
for q as defined above are related by

Agf =7 PA (v 21 + 310 fl oy f € CF(09).

Proof. (a) Assume first that w € C%(Q). To reduce the Schrodinger equa-
tion to a conductivity equation, we attempt to find a € C?(2) such that
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V- (vV(aw)) = ya(Aw + rw) for some function r. By the product rule
V- (WV(aw)) =V - (y(Va)w +vaVw)
=vaAw + (V(ya) +vVa) - Vw + (V - (yVa))w
The first order term will disappear if we can choose a so that
V(va) +~yVa = 0.

This is equivalent with 2yVa+ (V~)a = 0, and dividing by ya we obtain
the equation

V(2loga + log~) = 0.
Thus, by the properties of logarithms log(a?y) should be constant, so
that a = Cy~1/2 for some constant C'.

We choose a = v~1/2, and the previous computation implies

V- (19 (aw)) = yadw + (V - (3Va))w
Here yVa = —V/(~a), so we obtain

A,.Yl/2

V- (VY Pw)) =42 (Aw - —iz )

This shows part (a) in the case where u,w € C%(Q). The case where
u,w € H'(Q) follows either from the definition of weak solutions or by
approximation, and is left as a problem.

(b) Set g = v~1/2f and Ug = 7_1/2wf, where wy is the unique solution of
(A + ¢)w = 0 in  with boundary value f. Then, by part (a), u4 is
the solution of V - yVug, = 0 in Q with ug4|sq = ¢, and

Aq(f) 0; (v Pug)it;

I
M=

(9 wf)nj

onN

.
—_

V2 (0ug)i;

I

—_

% v 00 0

<

=127, (g) + Z 19y 1/2(5]7)7%‘89

_ . —1/2 1/2 1 41
=720, () + I O

Exercise 2.75. Verify Theorem 2.74(a) in detail for u,w € H'(9).

The final reduction states that if two DN maps for operators in some
domain 2 are equal, then the DN maps corresponding to extensions of the
operators to a larger domain Q are also equal provided that the coefficients
agree in Q\ Q.
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Theorem 2.76. Let Q and Q be bounded open sets in R™ with Q@ C Q.
Suppose that Ly and Lo are two operators in 2 of the form

=9 2 Ou
Lm = - a_ ]k— mtue
U g oz, (amaxk>+q U
Ji:k=1

Let dz,f,cjm be extensions of afﬁ,qm to Q, and denote by Ly and Ly the
corresponding operators in 2,

o0

~ 0 0 O0u
Lyu=— — (@t =— GmU.
" Z 856]' < ma$k>+qm
j,k=1
Assume that aly, qm,df;f,('jm satisfy (2.5) form = 1,2, and assume that 0 is
not a Dirichlet eigenvalue for Ly or Lo in Q) or for Ly or Lo in €.

If
b =alf i Q\Q,  Gi=dinQ\Q
then
((Af, _Aig)f17f2>aﬁ = ((Ap, —Ap,)(W)a0), 2lon)oq, f1,f2 € HY2(0Q),

where Uy, is the unique solution in HI(Q) of Lt = 0 in Q with Um|ag =
Jm-
In particular,

AL1 :AL2 - AI~11 :AL2.

Proof. By Theorem 2.70, and using the fact that d{k = dék and ¢ = G¢o
outside of €2, we have

(Ap, = A )1 Fa)on = /Q S @ - @h)oya o + (@ - q2>a1a2)
7,k=1

dz

B / Z (@1F — a3)0;i Oy + (@1 — qo)intis | do
Q

k=1
= (AL, — AL,)(t1]on), 2|a0) o0

since Uy, |q solves Ly, = 0 in . O

2.8. Notes

Section 2.1. For more on convolutions we refer to Hormander, The analysis
of linear partial differential operators, Vol. I.
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Sections 2.3—2.5. The treatment here partly follows Evans, Partial dif-
ferential equations, which contains further material on Sobolev spaces and
weak solutions.






Chapter 3

Boundary
determination

The goal of this chapter is to show that if two conductivities v; and 9 are in
C>(€Q) and give rise to the same boundary measurements (i.e., A,, = A,,)
on the entire boundary, then the conductivities and their normal derivatives
of all orders agree on 9{2. This was the first identifiability theorem proved
for the conductivity equation and it seems to remain a necessary ingredient

in many proofs of identifiability in the interior.

The critical observation is that by choosing the Dirichlet boundary data
f to be highly oscillatory and supported near a point p € 0, we can
arrange that the solution to div(yVu) = 0, ulgq = f, is concentrated near
p. Solutions of this type can be used to extract the Taylor series of the
conductivity at p from the knowledge of A.,.

Theorem 3.1. Let €} be a bounded domain in R"™ with smooth boundary

and let T' be an open subset of O2. Suppose that v € C°°(Q)) is a positive
function, and that one has knowledge of the measurements

A“/-ﬂr for all f € C(00Q) supported in T.

From this information it is possible to determine (0/0v)ly on T for any
integer [ > 0.

The precise definition of the I** order normal derivative (9/9v)!y is given
below in Section 3.3. Note that Theorem 3.1 is a constructive and local
result: from the knowledge of the Dirichlet-to-Neumann map on a small
subset I' of the boundary, one can constructively determine the conductivity

61
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and its normal derivatives on I'. In particular, the following uniqueness
result is an immediate corollary.

Theorem 3.2. Let € be a bounded domain in R™ with smooth boundary and

suppose that 1 and o are two positive functions in C*(S2). If
A’Yl = A“{2
then for any integer [ > 0

Y\ a1\’
<$> v = <$> Yo on 0L

We wish to give one heuristic explanation as to why oscillating boundary
data are useful in boundary determination. This explanation is based on
symbol calculus for (pseudo)differential operators, which will not be used
anywhere in the book.

Recall that we are trying to determine the boundary values of the con-
ductivity from the map
A, HY2(0Q) — H-Y2(09).

As the notation suggests, this map acts like a first order differential operator
on JN) in the sense that it takes away one derivative from any function that
it is applied to. Pretend for the moment that 9Q = R"~!. First order
differential operators on R"~! have the form

n—1
A, D) = Zaj(x')Dj, o e R"L
j=1

where we write D' = (Dy,...,D,—1) and D; = %% This operator is
characterized by its symbol, which is the function

n—1
a(@, &) =) a;(2)g,  2/,¢ eRTL
=1

The symbol can be obtained from the operator by testing against oscillatory
functions:

a(z', &) = Nﬁlefile'glA(:C',D/)eiNx/'g/, N large.

Now, the operator A, is not a differential operator of order one, but
belongs to the more general class of classical pseudodifferential operators of
order one. This means that the main behavior of A, is also governed by a
symbol, but this time the symbol is given by an infinite asymptotic sum

a(z’, &) ~ay (2, &) +ag(a', &) +a_1(2', &)+ ...

where each a; is a smooth function that is positively homogeneous of degree
jin & for £ away from the origin. As for differential operators, the functions
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a; can be obtained from the operator A, by testing against (localized) highly
oscillatory functions. It turns out that one can recover 7|sq from ay, 9,7|s0
from ag, and so on. The (distributional) integral kernel A(z,y) of A, has an
expansion corresponding to the symbol expansion,

)\(.%',y) ~ )\1(1’,2/) + )‘O(xay) + )‘—1('%'7y) +...

where A1 (x, y) corresponds to the strongest singularities of the kernel A(z, y),
Ao(x,y) corresponds to the next strongest singularities, and so on. It turns
out that from the singularities of the kernel of A, one can only recover the
Taylor series of the conductivity at boundary points, but not at interior
points. The values of v at interior points are hidden in the C*° part of the
kernel, which makes the interior uniqueness problem rather subtle.

In this chapter, instead of using the theory of pseudodifferential op-
erators to recover the boundary values, we will employ elementary direct
methods. In the next two sections we will show that the boundary value
v]aq and the normal derivative d,7|sn are determined by the DN map in
a local and stable way. These arguments are valid also when the conduc-
tivity and the boundary have limited regularity. The proof of Theorem 3.1
follows similar ideas, but is longer and requires a higher order asymptotic
construction. The proof is divided in three parts. The first step is to flat-
ten the boundary near a fixed boundary point p by a suitable change of
coordinates. Next, one constructs the solutions which concentrate near the
boundary point and oscillate rapidly on the flat boundary piece, the speed of
oscillations depending on a large parameter s > 0. The third step is to use
the boundary values ¢ of these solutions in the expression (A, ¢, bs), where
A, is our given data and ¢, will be explicit functions. The Taylor series of
~v can now be read off from the large s asymptotics of this expression.

3.1. Recovering boundary values

The main result in this section states that the boundary values 7|9 can be
determined from the knowledge of the DN map A,.

Theorem 3.3. (Recovering v on 02) Let Q be a bounded open set with C*
boundary, and let v € C°(Q) be positive. Given a point xo € 09, there exists
a sequence of functions (fir) C CH(OQ) for which

lim (A far, far)ao = (o).

M—o0

The functions fyr do not depend on ~y and they are supported in B(zg,1/M)N
9.

In fact, since fj; are independent of « and are supported in small balls,
the result gives a constructive method for finding y(xg) from the local DN
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map evaluated in a small neighborhood of zy on 9€2. The method also allows
to show the following stability result at the boundary.

Theorem 3.4. (Stability of v on Q) Let Q be a bounded open set with C*
boundary, and let 1,72 € C°(Q) be positive. Then

[y = 'YZHLOO(afz) <C HAw - A’Y2HH1/2(8Q)*>H*1/2(8Q) :

Both of these results follow immediately from the existence of special
solutions to the conductivity equation that concentrate at the boundary
point xp:

Theorem 3.5. (Solutions concentrating at a boundary point) Let 2 be a
bounded open set with C' boundary, and let v € C°(Q) be positive. Given
a point xg € 0N, there is a sequence of solutions (up) C HY(QY) of the
conductivity equation

div(yVu) =0 in Q
such that
lim v [ Vup | de = ~(x).
Q

M—o0

Further, far = unr|oq are functions in C1(0) supported in B(xq, 1/M)NOS
that do not depend on 7y, and they satisfy

HfMHHl/Q(aQ) = O0(1) as M — oo uniformly over xy € OS).

Proof of Theorem 3.3. Let uys be as in Theorem 3.5. By the definition
of the DN map (Theorem 2.64), we have

<A’nyan>8§l:/’YvuM'vude
0

and consequently

(A fars Fardon = A}iinoo/ﬂv\VuM\Q dx = y(xo).

lim
M—oc0
|

Proof of Theorem 3.4. Let up; and vy be solutions provided by Theorem
3.5 of the equations

div(fyquM) = O, diV(’)/QVUM) =0.

Since the boundary values of up; and vys only depend on M and 0f2, we
have upr|ag = varlaa = far. Then by the definition of the DN maps,

(Ay, = Ayy) frr, far)on = /Q% |Vup|* dz — /972 Vo |? da.
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Taking the limit as M — oo and taking absolute values, we have
7 (20) = y2(wo)l = Bim [{(Ay, = Asy) fars Far)ac
— 00
. 2
< N}lgloo ||A71 - A’YQHHI/Q(aQ)_)Hl/?(aQ) ||fMHH1/2(aQ) .
Since ||fMHH1/2(aQ) is bounded uniformly with respect to M and =z, it fol-
lows that

71 =2l L) < C My = Mall 1200y 117206 -
O

To prove Theorem 3.5, we choose coordinates so that x¢ = 0 and h :
R" ! — R is a C! function such that for some r > 0,

Q={2eB(0,r) |z >h() }, 00 ={2e€B0,r) |z, =h() },

and moreover h(0) = 0 and V,/h(0) = 0. Consider the local boundary
defining function

p:B(0,r) = R, p(x)=m,— h(z).

Then p(0) = 0 and Vp(0) = e,. Also choose some unit tangent vector a to
09 at 0, that is, @ € R™ is a unit vector with « - e, = 0. We wish to use
oscillating boundary data eNo? for 2 € 9, where N > 0 is a large number,
to determine the conductivity on the boundary. However, in order to focus
on the value of v at the origin, we need to multiply by a cutoff function.

We will eventually choose the boundary data to be
fur = cM’Nn(Mx)eiNa'“”, x € 0N,

where 7 is a cutoff function supported in the unit ball, M and N are large
numbers, and cps n is a scaling constant. The boundary value fjs oscillates
with period 27 /N, and we should choose N so that there are many oscilla-
tions in the ball of radius 1/M. For this reason, we will choose N = N (M)
such that

(3.1) M/N =o(1) as M — oc.

For example, N(M) = M? for 8 > 1 satisfies this, and we will actually fix
the choice N(M) = M? in the end of the proof.

The next lemma will be useful in estimating the size of the corresponding
solutions.

Lemma 3.6. Let n be continuous and supported in B(0,1). Then

1
lim M" N [ n(Mz)e VP& dg = —/ n(z’,0) d2’,
M—o00 Q Rn—1
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and for M large, for some constant C only depending on n,

/n(Mx)eQNp(x) de| < CMI*™"NTL
Q

Proof. If M is large, changing variables x,, = t + h(z’) and scaling gives

/ n(Mx)e_ZNp(“”) dx = / / n(Mx', Mxn)e_QN(x”_h(xl)) dx,, dz’
9] Rn—1 h(l‘/)
= / / n(Mz', M(t + h(z"))e 2Nt dt da’
Rn-1 Jo

1-npr—1 * M LR /
=M""N s )s n(:ﬂ,ﬁt—th(M))e dt dx’.

Note that
/ n o
lim Mh(~) = lim h(sz’) — h(0)

M—o0 s—0 S

= V. h(0) -2’ =0.

Since the integral over R"~! is actually over the unit ball, dominated con-
vergence and (3.1) imply, as M — oo,

M"IN/n(Mx)GQNp(m) d:v—>/ / n(z’,0)e % dtd:c’:%/ n(z’,0) dz’.
Q rn-1.Jo Rn—1

This shows the first claim, and the second one is an immediate consequence.
O

Proof of Theorem 3.5. 1. With M and N as in (3.1), we define
vo(z) = nu (x)hn(z), = €RY,
where hy is the complex exponential
hy(z) = N (ia-z—p(z))
and s is a cutoff function
nv (z) = n(Mz)
where n € C°(R"), 0 <n <1,n=1for |[z] <1/2, and n = 0 for |z| > 1.
Note that vy € C(R") is supported in a small ball B(0,1/M).

(The function vg calls for some explanation. First of all, we will think
of 00 as being almost flat in small neighborhoods near 0 (this is justified
since the boundary is C!). In the case where 9% is exactly flat near 0, we
have v (z) = s (z)eNE@=en)® for M large. The exponential eN(@—en) ig
harmonic in Q:

A(eN(mfe”)'x) = N?(ia — e,,) - (ior — en)eN(m*e")'x =0

since \a!z =1 and e, = 0. Consequently, this exponential solves the con-
ductivity equation div(y(0)Vv) = 0 with coefficient frozen at 0. Multiplying
by the cutoff n5; concentrates the exponential in a small neighborhood of



3.1. Recovering boundary values 67

0, and in this neighborhood the conductivity equation div(yVwv) = 0 can be
approximated by the same equation with 7 replaced by ~(0). Thus, vg is
an approzimate solution of the conductivity equation that concentrates near
the boundary point 0 and eventually allows to determine ~(0).)

2. We establish two basic properties of vg: as M — oo,

(3.2) / Vol do = O(M'™"N),
Q
(3.3) Z\/}in M"INTY [ 5|V da = ¢,7(0)
o0 Q

where ¢, = [pn_1 n(2’,0)? dz’. For the proof we first write
(3.4) Vug = N(ia — Vp)narhy + M (Vn)(M - )hy .

Fy I
Lemma 3.6 implies that, as M — oo,
(3.5)
1F 7o) = O(M"N),  [|By||aq) = O(M'"N(M/N)?) = o(M'""N)

using that M /N = o(1). This shows (3.2). The second claim follows by
writing

/Q Y V00l dz = ~(0) /Q Vol du + /Q (7 = 7(0)) [Vop|? da

_ 7(0)/ Fy|? da + +(0) / (F-Bot Fy - o+ | B do +/(7 — 4(0)) |V |? da.
Q Q Q
By continuity of v we have

(3.6) sup  |y(z) —v(0)] = o(1) as M — oc.
z€B(0,1/M)

Since supp (vg) C B(0,1/M), all the terms above except the first one are
o(M'™"N) by (3.5) and Cauchy-Schwarz. For the first term we have

M"‘lN_l/Q\F1]2 dz = Ml—"N/Qn(Mm)Qe‘QN”(”’(l +|Vp(@)|?) do

= 2M1"N/977(Mx)262Np dx + MlnN/Qn(Mx)QemVp(\Vp(x)]Q — [Vp(0)?) da.

In the last expression, the first term has limit ¢, as M — oo by Lemma 3.6,
and the second term is o(1) since 2 — |Vp(z)[? is continuous near 0. We
have proved (3.3).

3. In addition to the approximate solution vy, we will make use of
the exact solution v of the conductivity equation obtained by solving the
Dirichlet problem

div(yVv) =0 in Q,
v=fo on 02
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where
fo = volaq-

Since vy € H'(Q), we have fy € H'/?(9Q) and the Dirichlet problem above
has a unique solution v € H'(Q) by Theorem ??. We also write

V=119 + V1
where v1 = v — vg is (by Theorem ??) the unique H¢ () solution of

div(yVvy) = —=div(yVvg) in €,
v=20 on 0f).

The right hand side —div(yVwg) is in H~1(), and it acts on functions
¥ € Hg () by

(=div(yVwo), ) = / Vg - Ve da.
Q

4. Now we consider the function v1, and claim that as M — oo
(3.7) / Vo1 |2 dz = o(M'"N).
Q

This estimate justifies calling vy an approximate solution, since it says that
the difference v; between the exact solution v and vy is asymptotically
smaller than vy. By Theorem ??, to prove (3.7) it is enough to show that

I=div(yV0o)[|F-1(q) = o(M'"N),

or equivalently,

(3.8) < o(MUTENY2) ol gy, @ € CE(Q).

/ YVug - Vodz
Q

Let ¢ € C°(2). We begin by writing

/ Vg - Veodr = 7(0)/ Vg - Vodr + / (v —=7(0)Vug - Ve dz.
Q Q Q

Using the continuity of v and (3.2), the second term is o(M1=™/2 N1/2) ol (-
For the first term, write Vyg as in (3.4) and use (3.5) to obtain

/ YWVoo-Vpdr = 7(0)/ N (ia—V p)narhn -V dau+o(MUI—/2 N1/2) ol ) -
Q Q

In the first term on the right write Vp = Vp(0) + (Vp — Vp(0)). Since
Vp is continuous and the integral is over B(0,1/M), we get (recall that
Vp(0) = en)

/ YVug-Vdr = 7(0)/ N (io—epn)mushy -V da+o(MI—M/2N2) ol g -
Q Q
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Integrating by parts in the first term on the right, which is possible since ¢
has compact support, yields

/ Vg - Vodx = —7(0)/ N%(ia — e,) - (ia — Vp)narhye da
Q Q

- 7(0)/ MN (ic = ep) - (Vi) (M - )hypda + o(MUZNY2) o] 1 g
Q

Here comes a key point in the proof: we can now use the fact that e’V (ia—en)x

is a harmonic function, or equivalently that (ia—e,)- (ia—e,) = 0, to write

(3.9)
/ YVug - Vpdr = 7(0)/ N2(iac —e,) - (Vp — Vp(0))narhne dx
Q Q

=9(0) [ MN{ia = ) - (V)M D + oM N o] 1 g
Q
Recall that we want o[ 1 (q) on the right. For this purpose, we write

1
(3.10) hy = =7 0nh.

This is valid since d,p = 1. Using (3.10) and integrating by parts, the second
integral on the right hand side of (3.9) becomes

/ M(ice — ep) - (Vn)(M - )(Onhn)pdr = —/ Mo — ey,) - (V) (M - )hnOnp dx
Q Q

- /QM%'a —en) - (VOum)(M - )hyep da.

The first integral on the right is of the form [o Fb - (iov — en)Onp dz and
is bounded by o(MUI=™/2N1/2) ||| ;51 by Cauchy-Schwarz and (3.5). Simi-
larly, the second integral is bounded by O(M1=™/2N1/2(M2/N))||p| 2. If
we make the choice
N(M) = M3,
then this is o(M1=/2N1V2) o] ;1.
We have proved that if N(M) = M3, then

/ YWV dr = / N*(ia—en)-(Vp=Vp(0))narhn g dz+o(MI"2N2) || 1 o -
Q Q

Inserting (3.10) in the integral on the right and integrating by parts, this
integral becomes

/QN(ioz —epn) - (Vp—=Vp(0))nrhnOnedx

+ [ NGia—en) - (Vp = Vol0) MO v da
Q
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Here we used that Vp(z) = (=Vh(2'),1) is independent of z,,, which justifies
that one can integrate by parts with respect to x,, even though Vp is only
continuous. The second integral is essentially of the same form as the second
integral on the right hand side of (3.9), and the argument above shows that
it is o(MA=/2N1/2) || ol ;1 (use again that Vp is independent of x,,). Also
the first integral is o( MUI=™/2N1/2) ||¢|| ;1 by Cauchy-Schwarz, Lemma 3.6
and the continuity of Vp. This shows (3.7).

5. We can now finish the proof of the theorem. Define

Mr—IN-1
uy = cpM,NY,  fum = cuNfo, cmN = —
0

Since fo = volaq, clearly fis is in C1(09) and supported in B(0,1/M) N o
and

12l 12 o) < Cemn lvoll gy -
We saw in (3.2) that car,n [[Vvoll 2y < € uniformly over M, and since the

constant only depends on the choice of 1 and the C! norm of p it can be
chosen uniform over xo € 0€2. Similarly cas,n [[voll 12(q) < C uniformly over
M and xy. Furthermore,

Mn—lN—l
/ YVup -V de = — / ’y(‘vvo’2+V@0-V@1+V1}0-V?}1+‘V?)1‘2)dw.
Q ul Q
The first term satisfies by (3.3)

Mn—lN—l
lim 7/7|V1}0|2 dx = ~(0).
077 0

M—o0

The other terms may be estimated by Cauchy-Schwarz and (3.2), (3.7), so
that

‘ [ A(F00- o1+ 00 or + [Fu?) di| < IVl + 90 lxey) (90l

=o(M'™"N).
This proves the result. U

Remark 3.7. For later purposes, we make the following remarks about the
proof. If  has C* boundary, it is clear that the approximate solution is in
C*(Q) and consequently fy; € C*(0Q) and uy; € H*(Q). Inspecting the
proof, we have actually shown that the sequence (ups) satisfies

lim [ g|Vuyl|* dz = g(xo)
Q

M —o00
for any function g € C°(Q) (not just g = 7).
Exercise 3.8. Verify the details in Remark 3.7.
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The end part of the proof of Theorem 3.5 may be simplified by using
the Hardy inequality. Writing

d(z) = dist(z,0Q) = inf |z — 2|,
z€00)
this inequality is as follows:

Theorem 3.9. (Hardy inequality) Let € be a bounded open set with C*
boundary. There is a constant C > 0 such that

lo/8ll 20y < CIVEl 2y . @ € HAS).

The following problems contain a proof of the Hardy inequality and
discuss how it is used in boundary determination.

Exercise 3.10. (Hardy inequality on the half line) If f € C°((0,00)),
define

Tf(z) = 1/ Ft)dt, z>0.
T Jo
For 1 < p < oo prove that
1Tl o000y < Co 1 loomey s F € C((0,09)).

Exercise 3.11. (Hardy inequality in half space) Let R} = { z € R" | Ty >
0 } If 1 < p < o0, prove that

Hu/anLP(Ri) <G HanuHLP(Ri) , uwe CF(RY).
Exercise 3.12. Let Q be a bounded open set with C'! boundary. Show that

for any g € 01, there is r > 0, a C'! function h : R®~! — R, and a constant
¢ > 0 such that QN B(xzg,7) = { « € B(xo,7) | #, > h(2') } and

c(zp — h(2")) <6(z) <2 — h(2"), x € B(xg,7)NQ.
Exercise 3.13. Prove Theorem 3.9.

Exercise 3.14. Consider the situation before the proof of Theorem 3.5, and
show that if 1 is continuous and supported in B(0, 1), then

/ §(x)fn(Mz)e 2NP@) dz| < OMIPN TR
Q

Exercise 3.15. Give an alternative proof of Theorem 3.7, by using the
Hardy inequality and Problem 3.14 in the part following (3.9).

Exercise 3.16. In this problem we construct harmonic functions on R’} that
are concentrated near the origin. We denote 2’ = (z1, -+ ,x,-1) € R 1,
Let "

F(E) T,

/
By, (27) = /2 (m% + ’x/’2)n/2

be the Poisson kernel.
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(a) Prove that AP, (2') =0 for all ,, > 0. Here A is the Laplacian on R".
(b) Prove that [p,_1 Py, (2’) da’ =1 for all ,, > 0.

(c) Let ¢(z') be a bounded continuous function on R"~!. Prove that

®(x) = /R P @ =)oy dy
obeys A®(z) =0 in R’} and
lim ®(z) = ¢(2').

z—(2’,0)
x>0

(d) Now suppose that ¢(z') = 0% (z’) with ¢ € Cl*/(R*~1) supported in
the ball of radius 1 centred on the origin. Prove that there is a constant,
which depends only on |a| and n, such that

C
< —.
2@ < e

3.2. Recovering normal derivatives

The next results imply uniqueness, reconstruction, and Holder type stability
for determining the normal derivative of v on the boundary from the DN
map.

Theorem 3.17. (Recovering 0,y on 02) Let Q be a bounded open set with
C? boundary, and let v € C*(Q) be positive. Given a point xy € O and

an open set I' C OQ containing xq, the quantity 0,7y(xg) can be determined
from the knowledge of A f|r for all f € C?(0SY) with supp (f) C T.

Theorem 3.18. (Stability of vy on 02) Let § be a bounded open set with
C? boundary, and let v; € C*(Q) for j = 1,2. Let E > 0 be a constant so
that

1/E <~; < E in Q,
||7ch2(ﬁ) <E.
Then

10,7 = B2l (o < CCB) 1Ay = Aol v o0y 120

In the previous section, we recovered the value of v at a boundary point
o by using that

Y(xo) = A}iiﬂoo/QﬂVuMF dr = ]\}iE)nOO(A»ny,beQ-

Here uy; € HY(Q) are special solutions to the conductivity equation which
concentrate near xg, and fjs is the boundary value of up;. These solutions
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can also be used to recover the normal derivative of v at 9. By Remark
3.7, if y € C1(Q) and if @ € R™ is a constant vector then one has

(3.11) a-Vy(zg) = lim /(a V) [Vua|? de.
M—oo Jo

By choosing o = v(xg), Theorem 3.17 will follow if we can somehow deter-
mine the right hand side of the above identity from boundary measurements.
This will be done by the following Rellich type identity.

Lemma 3.19. Let Q C R™ be a bounded open set with C? boundary, and let
v € CYHQ). If u € H*(Q) satisfies div(yVu) = 0 in Q, then for any o € R"
one has

/(a V) [Vul? de = / (a-v)y|Vul* dS — 2/ Re((a - Vu)yd,u) dS.
Q o0N o0N

Proof. Let first w € C°(2). Integrating by parts, rearranging terms and
integrating by parts again gives that

/(a V) [Vw|? da = / (a-v)y|Vw|? dS — Z/ ya;0;(Vw - Vw) dx
Q 09 e
= / (o -v)y|Vwl|* dS — 22/ a; Re(Vojw - yVw) dx

20 o
= / (a-v)y|Vwl|* dS — 22/ a; Re(vd;w - yVw) dS

20 o Jon

—i-QZ/Qaj Re((9;w)div(yVw)) dx

j=1

= / (a-v)y |Vw|2 ds — 2/ Re((a - Vw)vyo,w) dS + 2/ Re((a - Vw)div(yVw)) dz.
o0 o0 Q
Let now u € H?(f2) solve div(yVu) = 0 in Q. Since Q has C? boundary,
we may choose (w;) C C°°(Q) such that w; — u in H%(2). Multiplication by
v € C1(Q) is a bounded operator on H'(Q), which shows that YVw; = yVu
in H'(Q) and
div(yVw;) — div(yVu) = 0 in L*().
By the trace theorem Qw;lsq — Oulaq in L?(9S) for each I. Thus, the

theorem follows by applying the integral identity derived above to w; and
taking the limit as j — oo. (]

Proof of Theorem 3.17. By Remark 3.7, the solutions uj; in Theorem
3.5 are in H%(Q2) and their boundary values fy; are in C2(0Q). Applying
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Lemma 3.19 to ups, we have

/(a-Vy) (V| da :/ (ovv)y [Vup)? dS—Q/ Re((a-Vupr)yd,upr) dS.
Q oN oN

Denote the tangential part of Vuys on 02 by
Vruy = Vupy — (Vuyy - 1/)1/‘

Since upr|on = fur, the tangential gradient of ups on 9 is just the tangential
gradient of fi; and we have

Vunloo = Vrun + ((%UM)V‘BQ =Vrfu+ VflA»ny‘aﬂ-

Similarly, writing o = ar + (o - v)v we obtain
[ 01vun? o= [ (@ op(Orsul as+ [ @y gl as
Q o0 o0

— 2/ Re((a - Vo far)Ay far) dS — 2/ Re((a - v)y \BVuM\Q) ds.
o0 [e]9)

Thus
(3.12)

[ v vl do= [ (avpy Vesulas - [ (avy e gl as
Q oN o

— 2/ Re((a . VTfM)A,ny) ds.
o0

The right hand side of (3.11) is therefore determined by the knowledge of
A, far and the restriction of v to supp (far). By Theorem 3.3 the boundary
values of v near xzy are determined by the DN map near zg, and it follows
from (3.11) that « - Vy(xg) can be determined from the DN map near z
for any constant vector a. The normal derivative is obtained by choosing
a = v(xg). O

The proof of the stability result, Theorem 3.18, follows by comparing
the expressions in the previous theorem for two different conductivities. To
do this properly we will need certain further facts about the approximate
solutions constructed in 3.1, and these facts will be proved in the problems
in the end of this section.

Proof of Theorem 3.18. In this proof, the constants C' will only depend
on Q and E. Fix a point xg € 92 (the constants C' will also be independent
of the choice of zp), and for ease of notation assume that zop = 0. Let
ups and vys be the solutions provided by Theorem 3.5 to the equations
div(y1Vuyr) = 0 and div(y2Vuas) = 0 in Q. By Remark 3.7, these solutions
are in H2(2) and their boundary values satisfy u|aq = v|aq = fur € C2(99).
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Applying (3.12) to ups and vy, and subtracting the resulting expressions
shows that

/(a-V’yl)\VuMIQ dx—/(a-V’yg)]VvM\z dz
Q Q

- / (- 1)(71 — 72) [Vrfarl? dS — / (@) (7 —75Y) |y fur? dS
o0 o0

+/3Q(a V)751 |:(A’71fM _AWQfM)A71fM+A“{2fM(A’71fM _A"/QfM) ds

9 /8 Re [(a N far) Aoy far — Ay fM)] ds.

Notice that
Y12

Y172
Assuming that « has unit length, we obtain

it = < E? |y — ).

/(a-V71)|VuM|2 dx—/(a-V72)|VvM|2 dz
Q Q

< Clm = lle oy [1arl3n + 18 Sl
+ O Ay = M) Farll g=vye (1A Farll e + 1A Farll g + 1 faell rare] -
Using the bounds for v;, we have (see Problem 3.20)

Ay Farll e S CNFstllggsrn s Ay Farll o < C L atllpn -

Using also Theorem 3.4, it follows that

/(a-V71)|VuM|2 dx—/(a-V72)|VvM|2 dz
Q Q

2
< C Ay = Al grosse [1aals + 1 at v W e lgre]
Since fjs is an explicit function, we have the bounds (see Problem 3.21)
stz < G farlln < ONY2 faall oz < CN.
It follows that
/(a V) [Vu|? do — / (o~ Vo) [Vour|? da
Q Q

<CN HAM - A'Y2HH1/2~>H71/2 :

Inspecting the construction in Section 3.1 carefully, for any g € C1(Q) we
have the quantitative estimate (see Problem 3.22)

1 /Q 9Vur | do - g<o>\ < C(Ig(0)| M/N + Vg gy M.
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Applying this with g = - Vy;, it follows that
o= V7(0) — - V12(0)] < OV [y = Aoy 1oy grosso + M/N + M),
Let a = v(0). Recalling that we eventually made the choice N(M) = M3
in 3.1, this implies
10071(0) = 02(0)] < C(M? [[Ayy = Ayl g/ e + M),
We now fix a suitable large number M, of the form
M = HAM - AV2HSH1/2HH71/27

for some s > 0 optimized so that both terms on the right hand side of the
last estimate are comparable. This condition results in the equation

3s+1=—s,

or s = —1/4. With these choices, we have

1/4
18,71(0) = 8,72(0)] < C Ay, = Ay ll}s s

Since this applies at any boundary point with a uniform constant C', we
have proved the result. O

Exercise 3.20. Let © C R” is a bounded open set, and let v € L*()
be such that 1/E < v < FE a.e. in Q for some F > 0. Show that for any
f € HY2(89Q) the unique solution of div(yVu) = 0 in Q with ulpg = f
satisfies

||uHH1(Q) < C(E,Q) Hf”Hl/?(BQ) :
Show also that

HA«/JCHH%/?(E)Q) < C(E7 Q) Hf”Hl/Q(afl) :

Moreover, if Q has C? boundary and Yl < Eand f € H3/2(5Q), show
that

[ull g2y < C(E, Q) | f | g3r2 (00
and

HAA/fHH1/2(3Q) < C(E’ Q) HfHH3/2(BQ) :

Use also interpolation to show that
1A s oy < CB) [ Fllpegomy . 1/2< 5 < 3/2.

Exercise 3.21. Let Q C R" is a bounded open set with C? boundary. Show
that the function fj; satisfies

Iarlzeomy < COON*Y2 0<s<2,
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Exercise 3.22. Let 2 C R" is a bounded open set with C' boundary. Show

that there is C' > 0 such that for any g € C'(Q2) with modulus of continuity
w, meaning that

lg(z) = 9(y)| <w(|z —yl), =,y

one has

\ | 91V un? do = g(0)| < Cl0)] M/N +o(3171),

3.3. Boundary normal coordinates

To recover higher order derivatives of the conductivity, it will be useful to
reduce to the case where the boundary is flat. Flattening the boundary
can be carried out in different ways, and typically the scalar conductivity is
transformed into a matrix conductivity in the process. Here it is convenient
to choose the change of coordinates so that the new conductivity matrix has
special form. These coordinates are called boundary normal coordinates,
since (as may be seen from the proof) the point F~1(y/,y,) is obtained by
choosing a boundary point according to ¥’ and then moving y,, units in the
direction of the inner unit normal.

Proposition 3.23. Let Q) be a bounded domain with C*° boundary in R",
and let p € 0. There is a C*° diffeomorphism F : U — V between open
sets of R™ where U is a neighborhood of p and V is a neighborhood of 0,
such that

F(p)=0, F(QNU)=Vn{y, >0}, FOQNU)=Vn{y, =0},

and further for any y € VN {y, > 0},

OFDFY 5 = "]

n—1

for some C* symmetric positive definite matriz h(y) = [haﬁ(y)]a 51"

Proof. Since ) has smooth boundary, there is a system of coordinates where
p = 0 and where

QN B(0,2r) = { y € B(0,2r) | yn > h(y) }

for some C* map h : R"~! — R with h(0) = 0. Write q(v') = (¢, h(y/)),
and define a map ® : B(0,7) — R" by

Sy, yn) = q(¥) — ynv(¢(¥/))
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This is a C*° map in some neighborhood of 0, and its Jacobian matrix is
given in terms of columns by

(3.13)
DOy, yn) = [81(1 — .01 (v(@(¥)), - One10 — YnOn—1(v(a(¥")). —V(Q(y’))]

Thus D®(0,0) = [014(0),...,0,-1¢(0), —v(0)]. Since ¢ parametrizes 02,
the vectors {91¢(0),...,0,-1¢(0)} form a basis for all the tangent vectors
to 00 at 0. Consequently D®(0,0) is invertible. By the inverse function
theorem, there is a neighborhood V of 0 and a neighborhood U of 0 such
® : V +— U is a diffeomorphism.

We set F'=®1:U — V. This is a diffeomorphism with F(0) = 0, and
F(QnNU) coincides with V N {y,, > 0} since v was the unit outer normal.
By (3.13) we have

D& (y) DD (y) [ () v(y)]

(y)' 1
where ¢(y) is some smooth (n — 1) x (n — 1) matrix. But v = 0 since
vi(y) = [9;ay/) — yn0; (v(a(y)))] [ v(a(y'))]
:—6[(()) v(a())] =

using that 9;¢(y’) is tangent to 0 and |v| = 1. This concludes the proof
since D®(y) = DF(F~'(y))~!, and thus (DF)(DF)"|p-1(y) has the required
form where h(y) = g(y)~! is positive definite because (DF)(DF)! is. O

Remark 3.24. A brief discussion about the precise meaning of “(‘9 ) f7is

in order. Let f be any C'* function that is defined in a neighbourhood of 9f2.

For each point x, which is sufficiently close to 9€), there is a unique point
m(x) € 0N that is nearest to x. The vector from x to m(z) is normal to 02
at w(x). See Problem 3.25. Let 7(x) be a unit vector that is parallel to the
vector from x to m(x) and points from inside €2 to outside 2. In the event that
x € 09, so that w(x) = x, choose 7n(z) to be the unit outward normal to 92
at . The vector fu(z) = i(m(x)) is a C* function of z in a neighbourhood
of 9Q. Again, see Problem 3.25. We define %f(x) =n(z)-Vf(x), for all x

in a neighbourhood of 9€). Then we may define (%)z f by £ applications of
ol

%-

Exercise 3.25. Let p € 09Q. Let 2/(¢') be a C° parametrization of a
neighbourhood of p in 9Q with 2/(0) = p. Denote by 7(z’) the unit outward
normal to 9Q at 2’ € Q. Define z(¢',&,) = 2/(¢') — &n(a/(€)).

(a) Prove that x(¢',&,) is a C* diffeomorphism from a neighbourhood of
0 € R™ to a neighbourhood of p € R™.
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(b) Prove that, for all sufficiently small (¢, &,), 2/(£’) is the point of 9 that
is nearest x(&’,&,,), so that the distance from (¢, &,) to 9Q is [&,].

We now give a precise definition of higher order normal derivatives at
the boundary.

Definition 3.26. ?7?? MS:Possible exercises: relation to Remark
3.24, proof that the definition does not depend on choice of F.
???  Let Q be a bounded domain with C* boundary, let v € C*°(f), and
let p € 09). For [ > 0 we define

l
<§> Yp) = 3L, (vF (1) ly=0

where F'is as in Proposition 3.23.

Exercise 3.27. Show that the definition above is independent of the choice
of F.

77?7 MS:Could remark that coordinate invariance is explained
in more detail elsewhere in the book. 77?7  We will next determine
how the conductivity equation transforms under F. The idea is that solu-
tions to Lyu = 0 transform into solutions to Lz @ = 0 by the rule & = woF~ 1,
where 4 is a certain matrix conductivity given below. However, since the
change of coordinates is only defined near p we need to restrict our attention
to functions defined in a neighborhood of p.

Lemma 3.28. Let ), p, and F : U — V be as in Proposition 3.23, and
let v € C®(Q) be a positive function. Assume that v € C®°(U N Q) and
let o(y) = v(F~(y)) fory € V.n{yn > 0}. If o € CX(UNQ) and if
?(y) = o(F~'(y)), then 7?77 MS:Is this notation consistent? ?7??

(Lyv,0) = (L5, )

Y(y) = [cg g]

1s the matrixz in Proposition 3.23 and

) — )
|det DF(F~1(y))|
Proof. 7?77 MS:Are references needed to these basic things such

as changing coordinates in integrals, chain rule, ...7 777 Since
 is compactly supported in U N €2, we can make the change of coordinates

where

Here h = [ho"ﬁ]zfﬁlzl
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r = F~1(y) to obtain
(Lyv, ) = /U A@)Ve(e) - Vela)da

- /v ooy ET )V @) - V(P w)] det D) (w)] dy
N{yn>
The chain rule implies Dv(z) = D(0 o F)(z) = Do(F(z))DF(z), thus
Vo(z) = DF(2)'Vi(F(z))

Using the analogous result for ¢, we have

Y(F~'(y))DF(F~(y))'Vi(y) - DF(F~'(y))'Vg(y)

Lv, ¢ :/ dy
B2 = L s et DE(F-1(1)
v ¢ - -
- 1 (DF)(DF Vi(y) - Va(y) dy
/Vﬂ{yn>0} |detDF|( )(DF) F-1(y) (y) - Ve(y)
(L5, ¢) where 7 is as required. O

3.4. Oscillating solutions

Using the change of coordinates in Proposition 3.23, we may assume that
we are working in a domain ) which is flat near 0 and for some r > 0 one
has

B(0,2r)NQ = B(0,2r) Nn{y, > 0}.
We will determine the conductivity in the set

I = B(0,r) N {y, =0}

Below, we will also think of T' as a subset of R"!. Motivated by Lemma
3.28, we consider a matrix conductivity 4 having the form

(3.14) =5 Y

where h(y) = (ha,ﬁ(y))gl;ﬁl:l is a symmetric positive definite matrix and ¢(y)
is a positive scalar function, both depending smoothly on y in B(0,2r) N
{yn > 0}. We assume that the matrix A is known, and that ¢ is an unknown
function which needs to be determined.

The next step is to construct approximate solutions to the conductivity
equation in  which are supported in a small neighborhood of I' and oscillate
rapidly on T, the speed of oscillation depending on a large parameter s > 0.
To recover high order derivatives of the conductivity, we need to do an
asymptotic construction in terms of powers of s. The proof is rather long
but quite elementary.

We will use the following result several times below:
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Exercise 3.29 (Leibniz rule). If u(t) and v(t) are C™ functions on some
real interval I, then

(3.15)
m m—1
(%) (u(t)v(t)) = u™ () (t) + u(®)o™ (t) + ; [Zn} w@ (#)vm=9) (1)

Note that the approximate solutions in the next result are exponentially
decaying in €2. They are related to the exponentially growing solutions which
are used later for proving uniqueness results for the Calderén problem in the
interior.

Proposition 3.30. Let N > 0, let t' be a unit vector in I~R”*1, and assume
that n € C*®(R™ 1) is a compactly supported function in I'. For some small

d > 0 and for any s > 1, there is a function 05 € C°(QQ) satisfying

Us(y',0) = ¥ 'n(y') on T

(3.16) supp (95) € T x [0, 4]
and

(3.17) 195l g gy < Cs'/?
(3.18) 1585l 2y < Cs~ /2

where the constant C' is independent of s. Further, this function has the
form

(3.19) by =e%(ag+s a1 +...+s5 Na_y)
where ® is a smooth complex function satisfying for some o > 0
D(y',0) =ay -t for ' €T
9, ®(y',0) = f1(y) for y' €T
Re(®(y,yn)) < —0yn for y e T x [0, ¢]
with
- 1/2
AW == D r*P/, 0)tats
a,B=1
and ag,a_1,... ;a—N_are smooth complex functions independent of s and
supported in the set T' x [0,0] and they satisfy
ao(y’,0) = n(y) for 4 €T

a_i(y',0) =0 for yy el and 1>1
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Proof. 7?77 MS:Should this long proof be broken into separate
lemmas? 777 We try to find an approximate solution of the equation
L5v = 0 having the form v, = e*®a. One has the identity

9;(e*Pw) = **(9; + 50;®)w

Using this identity, the function v satisfies

n
Lyts = Y 0;(7 0kts)
Jk=1

=Y (9 + 50;®)(3* () + 50k P)a)
(3.20) irk=

o £ ena)d

+s| 3 (29740000 + 0; (7 04®) ) a] + [L5a]}

jk=1

Note that we have grouped the terms corresponding to different powers of
s. The idea is to choose ® and a so that the terms involving the largest
powers of s are small, finally resulting in the estimate (3.18). Since we are
only interested in finding approximate solutions in a small neighborhood of
T, it is sufficient to arrange that the terms vanish to high order on T instead
of vanishing in a full neighborhood of T

Finding ®. 1. Looking at the s? term in (3.20), the first task is to find
a complex function ® which satisfies

n
(3.21) (> AF0;00,@)[z =0  forj=0,1,...,N -1
g, k=1

We will look for @ in the form
Y2 yY
(3.22) O yn) = foly) + ynfi(y)) + T foly) + -+ TN ()

where f;(y) = &®(y,0) are functions to be determined. To ensure the
boundary condition (3.16), we choose

foly) =y -t
2. Next we find f1(y") = 9,®(y/,0) so that (3.21) is satisfied for j = 0.
Using the special form of 4 given in 3.14, we need that

n—1
(On®)’ +c Y h*P0aP0s2| =0
a,B=1
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Since 0, ®|; = itq, this reduces to

n—1
1= h*Ptatg =0.
a,B=1

Recalling that we want Re(®) < 0 in T' x [0,4], it makes sense to require
that f; = 0,®|; is negative. Thus, we make the choice

1/2
n—1 /

AW == D bW, 0)tats
a,B=1
(h*B(y',0)) is positive definite.
3. We continue with (3.21) for j = 1 and try to find f2 such that

on 3 #9,00,0)| =0

jk=1

Since (9,®)? + 22_51:1 hP9,®3® | = 0 by (3.21) for j = 0, we have
n n—1
~J:k 9 . — 2 a,p
on ;17 0;00,0) (f = 0, ((0n®)* + ;1h 04 ®050) ‘f
J,R= a,f=

_ c(zfla,%cb — S (0uh™ P )tats + To(h)) (f
o, f=1

where Ty(h) is a quantity only depending on ¢ and on y'-derivatives of
heB(y',0). The last expression vanishes if we choose fo = 02®|7 as

n—1
1 1
= Y (0nh*P)taty — =To(h
fo 2f1aﬁ1( Jtats 5 o(h)

4. Let fp and f1 be as above, and suppose that we have found fo,..., fin
such that 7?7 MS: The precise form of f; is actually not needed,
the only thing that one needs to know is that f; exists and is
independent of c. 777

(3.23) ag( 3 %kaj@ak@) (f —0 for0<j<m—1
7,k=1
1 n—1 ‘
(3.24) fj = 7 > (@ P oty + Tyo(h)  for2<j<m
a,B=1

where Tj(h) is an expression only depending on ¢’ and on y'-derivatives of
OFhB(y,0) for 0 < k < 1. We wish to find f,,,;1 of the form (3.24) such
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that (3.23) is valid also for j = m. Since

n n—1
S 0000 = (0,27 + 3 K 00,00
jk=1 a,f=1

the identity (3.15) and the hypothesis (3.23) imply that

n—1
o((@nd) + Y h*70,80:8)| =0 foro<j<m-1.
a,B=1

Consequently, by (3.15) again and by (3.24),

n n—1
am (j;l aﬂkajcpakcp) (f — " ((ancp)? + a%; ha’58a<1>3561>> (f

n—1

= c(2fifmi1 = Y (O aty + T (B)

CV,BZ:[

We can make the last expression vanish by choosing f,,+1, as required, as

n—1
1
frot1 =5 Y (0P )tats + T (h)
2fr ol

5. We use the previous steps to inductively find fy, f1,..., fn so that
® given by (3.22) satisfies the condition (3.21). Further, we have ®(y,0) =
1w/ -/, and

Re(®(y',0)) = yn [fl(y’) + Re (%"fz(y’) +.t y%i,_llfzv(y’)ﬂ

If 0 > 0 is such that fi|p < —20, we can find § > 0 such that

N-1

%fz(y’) +.o o+ y?w In@)

<o foryel x|0,0]

Then, for y € T x [0,0] we have Re(®(y)) < —oy,. This completes the
construction of ®.

Finding a. 1. We have constructed a function ® so that the s term in
(3.20) vanishes to high order on I'. The next task is to find a function a so
that the s' and s° terms in (3.20) have the same property. We will in fact
look for a in the form

a:ao—l—sfla,l —i—...—l—siNa,N.

Here ag,a_1,...,a_x will be complex functions functions supported in I' x
[0, 6] which are independent of s. For such a, the s! and s” terms in (3.20)
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become

s[ 3 (257*0;0a + aj(wak@)a] +[Lsa]
k=1

= S[MCLQ] + [Ma,1 + L:/ao] + Sil[Ma,Q + L;/a,l] + ...
+ s~ (N-1) [Ma_n + Laa,(N,l)] + SiN[La/a_N]
where M is the first order differential operator given by
n
M=% <2f~ijkajq>akb + aj(aﬂfakcp)b)
jk=1

Note that the quantities in brackets are independent of s. We shall find

ag,a_1,...,a_pN successively so that one has

(3.25) & (Mag)|g =0  forj=0,1,...,N—1
(3.26) &# (Ma_y + Lyag) | =0 forj=0,1,...,N -1
(3.27) :

(328) & (Ma_n+Lia_(n-1))|p =0  forj=0,1,...,N—1

2. The function ag is constructed in a similar way as ®. We look for ag
in the form
N

cald's ) = (/) + /) 4+ Bran () 6l /)

where g;(y') = ao(y',0) are functions in (') to be determined, and
¢ € C*(R) is a fixed cutoff function with ((t) =1 for |¢t| < 1/2 and ((t) =0
for |t| > 1. Tt follows that ag is compactly supported in I" x [0, ]. Motivated
by the boundary condition (3.16), we choose gy as

90(y) =)

3. Using the special form 3.14 for 7, it follows that

(3.29)
Mb=Y <2aﬂ’vkaj<1>akb+&jv’“(ajakcp)m(aﬂﬂ’v’f)(ak@)b)
j.k=1
n—1 n—1
= 2c0,20nb +2¢ > h*P0,PIpb+ (B @)+ > h*(0.03P)b
a,B=1 a,f=1
n—1 n—1

+(0n0)(On®)b+ > (0ac)h™P(D5D)b+c Y (Bah™?)(D5®)
a,f=1 a,B=1
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For the equation (3.25) with j = 0, we have
Mag|; = 2¢f10na0 + (Onc) f1n + c(02®)n + To(c, h)

where Ty (c,h) denotes an expression depending only on ', 7, and on y'-
derivatives of (9%C|f and 9 hP |z for 0 < j < k. Consequently, we have
Magly = 0 if g1 = Onao|; is chosen as 77?7 MS: The precise form
of g; for j > 1 (similarly %a,l\f for j > 1) is actually not needed
anywhere. 777

OncC
N=-p— — Tole, h
91(y") 2677 5 f277+ o(e,h)
- GR) (s
_ O (L ahaﬁtt)JrTc,h
9% n 2 a%:ZI( n )ta BN o(c, h)
by (3.24).
4. Let gg be as above, and suppose that we have found g1, ..., gm such
that (3.25) holds for j =0,1,...,m — 1, and
aj 1 \2, n—1 )
(8:30) g5 = —5=n— ( ) < 2 (%h‘l’ﬁ)tatﬁ)wTj—l(c, h), 1<j<m
2¢ 2f1 a1

We will find gy,+1 having the form (3.30) so that (3.25) is satisfied also for
j =m. By (3.29) and (3.15),

O (Mag)|z = 2cf100 M ag + (07 ¢) fin + cfmian + T (c, h).
We can make this vanish by choosing g, 11 = 8,T+la0\f having the required
form (3.30), using the expression for f,, 2 in (3.24).

5. By the previous steps, we can find gg, g1, ..., gn inductively so that
(3.25) is satisfied and each g; for j = 1,..., N has the form (3.30). This
completes the construction of ag.

6. The construction of a_; is similar to that of ag. The function a_;

will have the form
yN

1Y yn) = (g—l,o(y’)+yng—171(y’)+ +F9 L (Y )) C(yn/9)

for suitable g_1 ; € C§° (f) and with ¢ as above. Considering the boundary
condition (3.16), we choose

9-10(y") = 0.
Considering (3.26) for j = 0, since a_;| = 0 we have by (3.29)

=2cfi0pa_1 + Lvao‘r
= 2¢f10ha_1 ‘f + cgo + Ti(c, h)
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This vanishes if g_1,1 is chosen as

1= —— Ti(c,h
g-1,1 2f92+ 1(c, h)

die 1\3/ ™ 5
- _ _ a,B
- ( 2f1) 0 ( 2f1) (az: (2h8)t,, tﬁ) +Ti(c, )
Here we used (3.30). The next case to consider is

Op, (Ma_1 + La/ao) |f‘ = 20f19—1,2 + cg3 + TQ(C, h)

This vanishes if one defines

1
93+ Ta(c, h)

g-12 = 2f
e 1 73, n-1
=57 )51~ 57 83h°"5tt) To(c. h
< 2f1> 2677 ( 2f1) (a,ﬁzl( n ta g n+ 2(0, )
Continuing, we obtain g_10,9-1,1,...,9-1,~ such that a_; satisfies (3.26)

and
1=~ (= 5) Boen= (= 57) (@)
+Tiyj-1(ch), 1<j<N

We have now constructed a_j.

7. The construction of a_»,...,a_pn is completely analogous to that of
a_1. We leave it as an exercise to check that one can find a_o,...,a_n such
that (3.25)—(3.28) are satisfied, and

a’—l|f‘:0? 1<l<N

Ha_i|p = —Faﬁ a_q-nlg + Tirj-1(c, h)
19k, 12 nsl
- ()= (- = Jpa.B
( 2f1> 2 < 2f1> (aﬂZ:l(an h )to‘t5>”

+ﬂ+j—1(cyh)a 1§l§N,1§J§N

where, as before, Tk(c? h) denotes an expression only depending on t', n, and
on 7/-derivatives of 6¥Lc|f and (9,]1h0"6|f for 0 <j <k.

End of proof. We have proved all the statements in the proposition
except for the estimates (3.17) and (3.18). To verify (3.17), we first use that
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a is uniformly bounded in ' x [0, 6] and that Re(®) < —oy, to obtain

_— SRe(®)
195/l L2 (7 0,67 < C‘ € ‘ L2(F'%[0,3])
S5 1/2
< C(// e—QSOyn dy' dyn) :
i Jo
< 0512

by changing variables y,, = t/s. The derivatives of ¥, are given by 0;v, =
e*?(5(9;®)a+0;a), and a similar argument as above shows that 10505 2P xjo,8)) <
C's/? which implies (3.17).

To prove (3.18), we note that (3.20) and the construction of ® and a
imply that

Lyvg = es? (52b2 +8b1 +bo+ ...+ s_(n_1)b_(v—1) T str,N)
where each by, satisfies
HMbgl=0, 0<j<N-1, -(N-1)<k<2,
and the remainder term r_pn has the form
r-ny = Lza_p.

??? MS: This property of Taylor series could be formulated as a
problem. 7?7 It follows that for y € I' x [0, d], one has

(v yn)| S Cyl, —(N-1)<k<2,

where the constant C' depends on the N* derivatives of by and is indepen-
dent of s. Also |ry(v/,yn)| < C with C independent of s. Since s > 1, we
can estimate

‘L’yf)s(y/,yn)‘ < CGSRG((I))(S2y,r]y + SfN)

< Ce_"sy”(SQyiV + S_N)
The function Ly, is supported in I x [0,0] and satisfies
é
HLWNJSH%,Q(Q) < 202/f/0 ef2osyn (s4y,21N +872N) dy/ dyn

We used the inequality (a + b)? < 2(a? + b?) for a,b > 0. The integrand is
independent of ¢ and consequently

%)
||L’yz~}s||iz(§z) < C// 67208yn (S4y%N _{_872N) dyn
0

_ Cl /OO e—20t(84—2Nt2N + 8—2N)8—1 dt
0
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by the change of variable y,, = t/s. Finally,
0 00
1Z50sl72(q) < €87 / e N dt + C'sTI N / =%t dt
0 0
< C//S372N

We have proved (3.18). O

3.5. Recovering higher order derivatives

Let now 2 be a bounded domain with smooth boundary, and let p be a
fixed point on 9§2. Assume that v € C(Q) is a positive function. We
will prove that v and its normal derivatives at p can be recovered from the
Dirichlet—to-Neumann map measured on a small neighborhood of p.

First, let F': U — V be the boundary flattening change of coordinates
given in Proposition 3.23. We choose r > 0 so small that B(0,2r) N {y, >

0} C V, and define as in Lemma 3.28

Y(y) = [Cgl (c)]

where h(y) = [ho"ﬁ(y)]n_l is the matrix in Proposition 3.23 and where

a,B=1
) - )
| det DF(F~1(y))]

Note that ¢ and h are only defined in V N {y, > 0}. We also consider the
flat boundary piece I' = B(0,7) N {y, = 0}, and T' = F~Y(T') will be the
corresponding neighborhood of p in 0f).

Let ' € R"! be a unit vector, let n € C°°(R""!) be supported in T,
and let N be large. We take 05 to be the approximate solution given in

Proposition 3.30, and we transport o5 to the original domain € by
vs(x) = 05(F (), xeUNK.

Since ¥ is compactly supported in T’ x [0, 6], it follows that we may extend
vs by zero to Q and obtain a new function, also denoted by vs, in C*°(Q)
with supp (vs) contained in a small neighborhood of p in 2. We define the
function ¢s on 9 by

(bs = Us‘aﬂ
The next result shows that one can construct an exact solution of L,u =

0 in 2 which looks like vs when s is large.

Lemma 3.31. There is a unique solution us € H*(Q) of
Lous=0 mn
Us = s on 02
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This solution has the form us = vs + 175 with

(3.31) Irsll g gy < Cs™NF3/2

Proof. The existence of a unique solution follows from the well-posedness
of the Dirichlet problem. 7?7 MS: Insert reference for Dirichlet
problem. 7?7  To show the estimate (3.31) for the correction term rj,
we note that ry solves

L,rg = —Lyvg in Q)

rs =0 on 0)
Again by well-posedness of the Dirichlet problem, we have
17l ) < CILyvsll g-1(0) < C I1Lyosl 2(qy
Now Lemma 3.28 together with a change of coordinates shows that for any
© € CX(UNN), with g =¢po F~! one has
[(Eyvss @ = (L0 @) < L5l o vngynson 19 c2vmgunson
< ClLAs 2y gy, >0y 191l L2 (@)

7?77 MS: Should we give a reference to the density statement? 777
Since C2°(U N Q) is dense in L2(U N ), the same result remains true for
¢ € L*(U N Q). This implies that

HL’YUSHLQ(Q) = HL’YUSHLQ(UHQ) <C HL&QN)SHL2(Vm{yn>o}) < Cs N2

by (3.18). Thus

Irsllirs @y < C vl gy < O3

Note that the boundary value ¢; is explicit and is given by
eV @t p(y/(z)) if xe T
%m:{ (v ()

0 otherwise
where y'(z) = (Fi(2),...,F._1(x)) is the representation of I' as a flat

boundary piece. Thus, the next proposition proves that the boundary values
of v on I' can be determined from the knowledge of A,.

We first give a simple result needed for the proof:

Lemma 3.32. If @ is as in Proposition 5.30 and if b is a smooth function
with supp (b) C I" x [0,6], then for any k > 0

lim Sk+1[ eQSRe(Cb(y))nyb(y) dy = k!ﬁ <
T'x[0,0] r

§—00

_ 1
2f1(y')

k+1
) b(y',0) dy’
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Proof. 7?77 MS:This proof could also be left as a problem. 777
From Proposition 3.30 we have that Re(®(y)) = y»¥ (v, yn) where ¢ < —c
in ' x [0,6] and 9(y/,0) = fi(y/). Consequently, the change of variable
Yn = t/s shows that

)
it / 2 Re(®W) k() dy = sH / / 2 W) ykp (o g ) dy dyn,
'x[0,6] Jo

50
:ﬁ/ W) Ry t)s) dy' dt
IJo

Since ¥ < —o the integral is absolutely convergent, and we may apply
dominated convergence to obtain

lim sk“/ eZSRe(q)(y))yﬁb(y) dy:// thw(y/’O)tkb(y’,O) dy' dt
'x[0,8] rJo

§—00

The result follows by noting that for any A > 0,

/ e Mtk gt = \F1 / e tF dt = kI ATFL
0 0

Proposition 3.33. We have

lim s~ (A, bs) = — / c(y',0) f1(y n(y')? dy'
r

S§—00

Proof. Assume that N > 1 in the construction of ©5. Using that us =
vs + 15, we have 777 MS:Reference for this identity? 777

<A’\/¢Sa (58> - / 'YV’U/S . V@S dr = / 'YV’US . VT)S dx =+ RS

Q Q
where Ry = fQ YVrs - VU da satisfies
(3.32) |Rs| < C 75l gy 1vs oy < Cs™ 2

by (3.31) and the fact that |[vs|[f1q) < C's'/? which follows from (3.17).
Lemma 3.28 implies that

/ YV, - Vugdx = [ YV U4 Vi, dy.
Q I'x[0,0]
From the explicit form of o5 in (3.19), we see that
0j0s = €™ (5(9;®)ao + r0,5)
where |rg ;| < C uniformly in s. Combining all these facts, one has the

identity

sTHA ps, @) = s/ 2 Re(®) (3T . Vd)|ag|? dy + / 2 Re(®) g dy + s R,
'x[0,0] 'x[0,9]
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where |¢| < C uniformly in s. By Lemma 3.32 for £ = 0 the second term
converges to zero as s — oo, and this is also true for the last term by (3.32)
since N > 1. Thus by Lemma 3.32 again

}/ (VP - VP)|ag|?
2 Jp fi

: -1 N /
Tim 571 by, 65) = dy

r

It remains to observe that
_ n—1
(39 - TB)|ao | = c(y/,0) |0 2(/,0)1* + 2 ROy O)tats | n(y)?
a,f=1

where the expression in brackets is equal to 2f;(y')?%. O

Since n € C°(T) can be chosen arbitrarily and f; is known, it follows
from the previous result that ¢(y’,0) is determined by A on I'. Finally,
because ¢(y) = |det DF|~'y|p-1(,) where F only depends on p and € and
can therefore be considered as known, we recover y(F~1(y/,0)) for / € T.
Thus we have determined v|p.

The last result recovered the boundary value of «v. The simplest way to
recover the normal derivatives of v is by comparing A, to A x where the
normal derivatives of v and ~* agree up to order k — 1.

Proposition 3.34. Let k > 1 and let % € C>®(Q) be any positive function
such that for 0 < j <k —1,

(3.33) (%)jy’f = ((%)jfy onT

and
a\" .
(3.34) <$> =0 onT
Then
. _ T 1 1 A 81]2 oF! ’,0 ’ ’
B N = d6ed =5 [ (“5705) e prcer oy e

Proof. Let N > k + 1, let us = vs + 5 be the solution given in Lemma
3.31, and let u¥ = v* + ¥ be the corresponding solution in the case where
7 is replaced by 7*. Then we have v* = o* o F, where

k=
o =ePak + sk + .+ 5N )

is the function in Proposition 3.30 with ¢ replaced by ¢*, and
y) = Y (E ()
| det DF(F~1(y))|

Note that ® in Proposition 3.30 does not depend on ¢ (see (3.22) and (3
therefore @ is the same both for 7, and ¥. We also have ag|p = afl;

24)),
=7

r
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As in the proof of Proposition 3.33, we have 77?7 MS: Reference for
this identity? 77?

(8 = 00)60.60) = [ (=) Vu- Vb do

= / (5 — 35)Va, - Vok dy + R,
I'x[0,d]

—N+2_ Here

where R, involves r4 and rf and |Rs| < Cs
h 0

T
Y= = (=) [0 J

By the condition (3.33) we have &}, (c—c¥)|z = 0 for 0 < j < k—1. Therefore
777 MS: Reference for this fact on Taylor series? 777

(e =) yn) = ymvon(y', yn)
where 1, is a smooth function satisfying

) ec—F)W,00 1 8(yoF H(Y,0)
(3.35) Vr(y,0) = k! ~ kl|det DF(F—1(y/,0))|

by the Leibniz rule, (3.33), and (3.34). Using that
6jz73 = esq)(s(aj(I))ao + 7"0,]’)

0;08 = e**(s(0;®)ag + 16 ;)

where |rg ;| and |rf ;| are bounded uniformly in s, it follows that

(0 = A)ond = [ @yky, 1o, 0f

I'x[0,d]
n—1
+ Z ha’56a<1>65<i>] aodlg dy + s [ e Re(cp)yﬁq dy + R
a,B=1 I'x[0,8]

Here |¢| < C uniformly in s, and Lemma 3.32 and the condition N > k + 1
imply
=0.

5—00

lim sF~! [s / e Re(q’)yflq dy + Rs
T'x[0,6]

From Lemma 3.32 we conclude that

k+1
Jim (0~ 80008 =8 [ (~37) B ORAW PR dy

This finishes the proof by using (3.35). O

The main result of this section follows immediately.
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Proof of Theorem 3.1. If I" is as stated and p is a fixed point on I', then
it is enough to determine (9/0v)!y near p. Thus, by reducing I if necessary
we may assume that we are working in the setting described in the beginning
of this section.

If I > 0 is given, we choose N > [+ 1 and consider the solution wus given
in Lemma 3.31 such that the function ¢5 = us|gq is supported in I". Since we
have knowledge of A, f|r for f supported in I', we also know the quantities
(A ¢s, ¢s) for s > 1. By Proposition 3.33 this determines v on I' by varying
the function 7. From this knowledge we can construct a conductivity !
with v = 4! near p, and then Proposition 3.34 allows to recover (9/9v)y
near p. Continuing in this way, one finds the normal derivatives of v up to
order [ near p and thus on all of I by varying p.

??? MS:The construction of * given in this paragraph could
be left as a problem. ???  The previous argument used that if (9/9v)7y
is known on I' for 0 < j < k — 1, one can construct a smooth conductivity
7* satisfying (3.33) and (3.34) near p. To see this, define the function

(o F H(Y,0) ;
i "

—_

Ed

:Yk(y/7 yn) =

<.
Il
o

This function is known since it involves (9/9v)i~|p for 0 < j < k — 1. Also,
since 7 is positive in 2, we have 3% > ¢y > 0 in [ x [0, do] for some sufficiently
small §y > 0. Let x1(y’) and x2(y,) be smooth cutoff functions such that
x1(y') = 1 for |¢/| small and supp (x1) C I, and xa(y,) is 1 for |y,| < do/2

and 0 for [y,| > dp. We then define x(y', y) = x1(¥')x2(ys) and

V(@) = X(F(2))7"(F(2)) + (1 - x(F(2))).

This gives a smooth positive function in € for which (3.33) holds near p, as
desired. 0

3.6. Stability

??? MS: Insert discussion about the norm of DN map (maybe
also local DN map, since the proofs immediately give also local
stability results). 7?77 A slightly more careful argument can be used
to prove a stability estimate for the inverse problem at the boundary. For
that purpose we define 777 ... 777

The main stability result is as follows.

Theorem 3.35. Let 1 and 2 be two positive functions in C*°(Q). Then

(3.36) v — ’YZHLOO(BQ) < Co[lAy — Ay HH1/2(39)HH71/2(39)
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Also
(3.37)

0
H%(’yl - ’72)“[/00(39) <Cy HA'YI — A’y% — (AA/Q _ A’y%)

’Hl/Q(BQ)aHl/Q(aﬂ)

The constant Cy only depends on §2, and 7} are as in Proposition 3.34.

The proof depends on two lemmas. The first one is of independent
interest and states that even if the operators A, and A; (the Dirichlet—
to-Neumann map for the constant conductivity) only map H'/2(d) to
H~1/2(09), the difference A, — vAy has better regularity properties and
maps H'/2(09) to itself. The same holds for A, — A1, which shows that
the norm in (3.37) is well defined.

Lemma 3.36. Let v be a positive function in C*°(2), and let 4 be another
such function which satisfies ¥|oq = Y|oa. Then Ay —~yAy and Ay, — A5 are
bounded operators from HY?(9Q) to HY?(09).

Proof. Let first f € C°°(09). We have ?7? MS: Reference to the fact
that A, f =~you/ov if f € C®... 777
0
(Ay = 1A1)f =75 (1~ uo)
where u,ug € H'(£2) solve the equations

V-AaVu=0 in
Aug=0 inQ

o0N

and ulgo = uglgg = f. Then the function w = u — ug satisfies
V- -yVw = -V - yVug = —yAug — Vv - Vug = =V~ - Vuyg

Thus w € H'(Q) solves the Dirichlet problem

V- -AyVw = =V~ - Vug mn Q

w=0 on 0f)

Since Vv - Vug € L?(Q), elliptic regularity ??? MS: Reference for
elliptic regularity. ???  implies that w € H?(2) and
||w||H2(Q) <C|Vy- VUOHL2(Q) <cC ||7Hcl(ﬁ) HUOHHI(Q) <cC HVHcl(ﬁ) Hf”Hl/?((m)
Therefore

ow
O

B_w
ov

< Cllwl gy

< Clvllcron H1/2(00)

H/2(0Q)
< Clf o0

where C' depends on v. This is true for all f € H'/2(9Q) by density.
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Finally, we have
Ay = Ay = (A = 7A1) = (A — 4A1)

and this operator also maps H/2(9Q) to itself boundedly. O

The next lemma concerns norm estimates for ¢5 where the dependence
on the choice of 7 is made explicit. We make the same assumptions as in
the beginning of Section 3.5, and suppose that p € 092 is a boundary point
with a neighborhood T' in 9§ corresponding to a flat boundary piece T

Lemma 3.37.

(3.38) sl 17200 < Co(s'2 Inll g2 gn—1y + 1l 172 gn-1) )
(339)  [Ifsllg-1/2000) < Co(s™* [nll 2@n-1y + 5~ 0l 1 -y )

where Cy only depends on €.

Proof. 7?77 MS:Are references for these Sobolev facts needed?
77 The function ¢, is supported in I' which corresponds to ' in the
change of coordinates F'. The invariance of Sobolev norms under changes of
coordinates implies |[¢s| ga(90) < Co || fsll gra(rn-1) Where Co only depends
of 9Q) and «, and

Fs() = €=V n(y).

. But we

o). —n=l (6% £
By definition, HszHa(Rnﬂ) = (2m)” 2 H(l + 1€'1?) /Zfs‘ L2(Rn-1)

have f(&') = 7)(€' — st'). This satisfies

~

fs

n—1 n—1
rewn-1y = 1) 2 | fsll o n-1y = m) 2 [I0l] 2 n-1)

and, using the inequality (a + b)'/2 < a'/? +b'/2 for a,b > 0,

g2

<[ = s st e st

L2(R7—1 L2(Rn—1)

< |I1724¢) Y28 | aans

L2 (Rnfl)

n—1
< 2m) "7 [Inll g2 g@n-1y + 82 0l p2 (o)
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These results imply (3.38). To show (3.39) we note that

@m) T || fll geragnnry = H@ e e — st
< 1 112y—1/2
- (/E’ISS/2( IR

+ (/§/|>5/2(1 + |§/|2)—1/2
< (/£/|<S/2 (&' — st’)‘Q dg/>1/2 + (5/2)1/2(/ e - St,){g dg/)l/Q

1§'|>s/2

L2 (Rn—l )
1/2

g = st)|* de’)

/
e —st)[? a')

If |¢'] < s/2 then |£' — st'| > s — [&'| > s/2. Thus

H(¢ /2’1/22 /2A/2/1/2
(/§'|§S/2 U(f—st)‘ d£> < (/Rn1|z| n(z)‘ dz>

s
This proves (3.39). O

Proof of Theorem 3.35. Fix N > 2, #' € R"! with [t/| = 1, and 5 €
C2°(T"). Proposition 3.33 shows that for j = 1,2 and for s > 1,

U s ) = / & (W 0) Fu (W (W) dy’ +e5(s)
N

where ¢; corresponds to 7;, and €;(s) — 0 as s — co. The estimate (3.38)
implies

‘ /F (c1 — )y, 0) f1(y )n(y')? dy

- 2
<A = Al 12 87 sl e oq) + le1(s)] + lea(s)]

< ol = Moallgrsaygrosre (Il + 5~ /2 ) + lea(s)] + lea(s)

Taking the limit as s — oo, we obtain

/f (c1 — e, 0 fu () dyf

Since 7 is an arbitrary test function this implies

<y HA% - A’72||H1/2~>H_1/2 HUQHLl(f)

I(er = e2) fill oo iy < Co 1A = Ay [l /2y gr1/2
The stability estimate (3.36) now follows since

[(e1 — e2) (¥, 0) f1(¥)] = o] (1 —22)(F~1(Y/,0))]

for some g > 0 which only depends on 2.
The proof of (3.37) is analogous. Proposition 3.34 shows that

1/ (v 0 FH(Y,0)

(g = A)00:03) = 5 | G DFE (. 0))

5 n(y')? dy' +e;(s)
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where ¢(s) — 0 as s — 0o. Substracting these identities for j = 1,2 gives
1 / On((n =72) o FH(¥/,0)
© |det DF(F~1(y/,0))]

N2 /

d
5 n(y')" dy
Ay — A = (A, —Ay)

<

Lvr2 00 720 195 1720000 193137200
+ le1(s)] + |e2(s)]
The estimates (3.38) and (3.39) show, upon taking s — oo, that
1 / On((y1 = 12) 0o F~ (¥, 0)
2 )¢ |det DE(F~(y',0))]

< Co [y = Ay = (A, = Ay)

n(y')? dy’

2
‘Hl/Q(ag)_)Hl/Q(ag) Hn HLl(f)

This implies (3.37). O

Later, when proving an interior stability result, we will need an alter-
native version of (3.37) which involves the HY/2(0Q) — H~'/2(9Q) norm
of the difference of Dirichlet-to-Neumann maps. We outline the proof as a
problem.

Exercise 3.38. Let 71 and 72 be two positive functions in C*°(2), and
assume that 7?77 MS: More details should be given here. This
might be tricky... 777

(i) 1/E <~v; < E,

(ii) H%’HCS(E) < L.
There is 0 < o < 1 such that

1(0/0v)(71 — ’Y2)HL<><>(£)Q) < ClAy, - A’Y2H}‘{1/2(89)HH*1/2(8Q)

where C' and o only depend on 2, F, and n.

(The proof of this result is more involved than that of Theorem 3.35
partly because one needs to consider behavior for large fixed s instead of
just taking the limit as s — oco. For this reason one needs precise information
on certain constants appearing in Proposition 3.30 and Lemma 3.32 ...)

3.7. Anisotropic conductivities

7?7 Note: This section should be in the chapter on anisotropic
Calderén problem, after the discussion of boundary normal coor-
dinates and Laplace-Beltrami operator. 777
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The point is that the Laplace-Beltrami operator A, in boundary normal

coordinates looks like the operator | g|_1/ 2 L5 with anisotropic conductivity
- h(y) O
7(y) = c(y) [ E)) 1]

where ¢ = |g|1/2 and h*? = g*B. We can then use the results in Sections
3.4 and 3.5, with the exception that here both the scalar function ¢ and
the matrix h depend on the unknown metric g. The proof of the boundary
determination result needs to take this into account.

Theorem 3.39. Let ) be a bounded domain in R™ with C*° boundary, and
let g be a Riemannian metric in Q. Assume that p is a point on 0K, and
let (4, yn) be boundary normal coordinates for (0, g) near p. If n > 3, then
from the knowledge of A4 it is possible to determine (%gj,k(y’,O) near p for
any integer L > 0 and for all 1 < 5,k < n.

We begin with some preparations. Let p be identified with 0, and sup-
pose that the boundary normal coordinates (v',y,,) are defined in B(0,2r)N
{y, > 0}. Let I = B(0,r) N {y, = 0}, which is identified with the corre-
sponding set in R"~!. In boundary normal coordinates, the inverse of the

metric has the form
— h 0

-1
where h(y) = [ga’ﬁ(y)];,gﬂ .
ing smoothly on y in I' x [0,7]. Then, if v is supported in I' x [0,7], one

has

is a symmetric positive definite matrix depend-

Agv = |g|71/2 Lsyv

where 7 is the anisotropic conductivity in T’ x [0, 7] defined by

7(y) = cy) [h%y) (f]

and

c(y) = lg(y)["?

We have now reduced matters to the situation in Sections 3.4 and 3.5.
Choose a unit vector ' € R*~! and a function n € C°(I'), and let ¢, be the
explicit boundary value supported in I' and defined by

ds(y,0) = Y U n(y))

The next result states that certain quantities can be recovered from the
boundary measurements A, by using the method in Section 3.5.



100 3. Boundary determination

Proposition 3.40. In any dimension n > 2, one has

B0 i s (40080 =[S (o100 0tats] "oty

S§—00 a’,ﬁil

Further, if | > 1 and if ¢* is any C™ Riemannian metric in Q so that in the

(v, yn) coordinates l
1y P () 0
g(y)—[ N

for some matriz h', and if for all1 < j,k <n

1/2 . . -
@a)  g| " () = Rlg? ) ol foro<p<ion

1/2 . ~
@a2) o] @ =0 on T
then
(3.43)
Sli)Igo 5l_1<(Ag - Agl)qSS, ¢s>

[ RY z a o

= /f(— 2f1(y’)) +1[ %I_I(OL(IQII/Q)Q B8l (1g)"? g ’B))(y’,o)tatﬁ]n(y’)Qdy’

Proof. We first take N > 1 and let 05 be the approximate solution in
Proposition 3.30 with 47F = |g|1/2 g7* | satisfying

< Os™NH3/?2

- B N -1/2 7~
HAgUsHp(rX[o,g]) = H’g‘ L5 L2(Ex[0.4))

Following the proof of Lemma 3.31, there is a solution us = wvg + rg of
Agus = 01in Q with us|pn = ¢s and HrsHHl(Q) < Cs N+3/2 Then, as in the
proof of Proposition 3.33,

<Ag¢87(58> = /Q Z ’9’1/2 gj’kajusakﬁs dx

jk=1
n .
= / > 470;5:0k0s d + Ry
I'x[0,0] k=1

where |Rs| < Cs~V*2, The computation in the proof of Proposition 3.33
implies that

. -1 T\ 1 (r?V(I) ) V(i)) |a0|2 /
i 5 g0, 00) = —3 [ R &
= —/fC(:t/,O)fl(z/)n(y')2 dy’

Since ¢ = | g[l/ 2. the expression for fi in Proposition 3.30 implies (3.40).
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We move to the proof of (3.43), which proceeds in the same way as the
proof of Proposition 3.34. Let ¢! be the Riemannian metric in  given above,
and note that

2
(Mg — Ag)ds, ds) = / Z FIREY: k050 dx—/ Z ‘g‘/ NIkd usdal de
7,k=1

where Aju, = 0 and Agzu 0in Q and us, = u = ¢ on 0f). Let
Us be the approximate solutlon of Proposition 3.30 Where N >14+1 and

Aok = | g[l/ g’*, and let 9! be the corresponding function where g is replaced
by g'. Then

_ & , /2 . o
(g =200 = [ S (g2 | (0503 dy + R,
T'x[0,0] k=1

with |Rs| < Cs~N+2. As a consequence of (3.41), we obtain that

1/2

(gl g o[ (Ml =0 foro<p<i-i

This implies

(g = Ag)ns8) = | S Y (5 )0y 5,06 dy + R,
I'x[0,d] k=1
where wl"k is a smooth function satisfying
. .
W (y',0) = 94 (19?7 (', 0) /1!
Here we used (3.42). Then, as in Proposition 3.34,

lim s~ <(A —A, s, ds)

1 +1 n ik 1 ) / /0 / /
:l!/f(_zfl(y,)) L%jl ] (y,O)BJ@(y,0)8k<1>(y,0)}n(y ) dy

The quantity in brackets is equal to

Lo 1/2\/, 1 N2 =l 12 a.Byy s
i[9 0 A6 + S el ) 0)tats]

a,B=1
The identity (3.43) follows upon substituting the expression for f. O
The next step is to show that the information contained in (3.40) and

(3.43) is sufficient to determine all derivatives of g®# on T'. To do this, we use
a basic identity concerning the derivative of the logarithm of a determinant.
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Exercise 3.41. If A(t) is a symmetric n x n invertible matrix depending
smoothly on ¢ in some interval, then

%(log det(A®) = 3 (AW LA

Jik qt
Jik=1
Proposition 3.42. Let n > 3 and l > 1. From the knowledge of
9" |ps 0ng™P|zs ooy O 9P s, and (0L (1gI"*)g™" + 0L (19l 9P

it is possible to determine % g% |x.

Proof. Fix [ and assume that one has knowledge of the stated quantities.
The Leibniz rule implies that

3 (1g1Y2) g™ + 8L (|92 g*) = |g|"/? g™ + 28 (1g]**) g™ + T1—y

where 771 denotes an expression depending on (9,%9“*6 where 0 <57 <1 -1
and 1 < a,8 <n — 1. Since

0u91""%) = 5 o1 0u(lal)
we have again by the Leibniz rule
04 (l91"*)g™" + 0L, (191" g*7) = 191" 0hg™” + 04" (1912 Dnlog |])) g™ + Tia
= |g|'* |0hg™? — 0l (log 97| )g™7] + Tin
The last expression is then known on I'. Denoting the expression in brackets

by k8, the fact that |g|1/2 |7 and Tj_1|; are known implies that k7| is
also known. By Problem 3.41 we have in fact

n—1
ke = ohg? — o )3 950097 ) g
7,0=1

n—1
= ol g™P — ( ;lgy,aaég”"s)ga’ﬁ +T
v,0=

Since Zgjﬁlzl gaﬂgo"ﬁ =n — 1, it follows that

n—1 n—1
Z ga,ﬁkaﬂ = (2 - n) Z gv,éaibg%& + Tl—l-
a,f=1 7,0=1

Therefore (using that n > 3)

n—1
k9P = kP + < > 9 5k‘”’5>ga’5 + T4
2—n ~,0=1 7
Since k*# |- was known, this determines ol g? | as required. O

The main result now follows from Propositions 3.40 and 3.42.
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Proof of Theorem 3.39. We use boundary normal coordinates (v, y,) to
identify p with 0 as before, and denote by T a flat neighborhood of 0 in 9.
Since gan = 0 for 1 <o <n —1 and g,, = 1, it is enough to determine
8£Lga,5\f foralll/ > 0and 1 < «,8 < n—1. Further, to determine the matrix
(gap)|T it is enough to determine the inverse matrix (¢*?)|z. For higher
order derivatives the identity

n
Y 9apyg’ =8
p=1

and the Leibniz rule show that

n

> (04 ga,p)g"7 =17

B=1
where T, contains terms depending on a%gaﬁ for0<j<l—1and 8%9577
for 0 < j <I. Consequently
n
Ohgas = Y (0490,8)9"7 976 = ZTng
By=1

This shows that it is sufficient to prove that A, determines 9% g%®|s for all
[ and a, 8.

By (3.40), since the test function 1 can be chosen arbitrarily, it follows

that A, determines

n—1

> (l9lg™") (', 0)tats

a,f=1
Also the unit vector ¢ € R"~! was arbitrary, and therefore we determine for
all <a,8<n—1

l9(y’,0)| g**(y/',0)

The (n—1) x (n— 1) matrix |g| (¢9*7) has determinant ]g\"_l lg| ™t = |g|" 2
which is also known on I". Since n > 3 we know |g| on I" and thus also

-1
9*?le = 191" (9l ¢*7)z-
This determines the boundary values of ¢®# on I'. For higher order deriva-
tives, we note that (3.43) shows upon varying 7 and t' that A, determines

on I the quantity
A (19")g™ + 919" 97)
Taking [ = 1 and using that go‘ﬂh: was known, Proposition 3.42 shows that

8ng°"5\f is determined by A,. Proceeding inductively, we recover 3,290"6]1:
foralll/>0and 1 <a,8<n-—1. O
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3.8. Notes

Section 3.2. The treatment is based on an unpublished argument due
to Russell Brown, whom we would like to thank for making this argument
available to us.



Chapter 4

The Calderén problem
in three and higher
dimensions

In this chapter, we prove interior uniqueness, stability, and reconstruction
results for the Calderén problem in dimensions three and higher. To describe
the contents of this chapter, we assume that €2 is a bounded open subset of
R”, n > 3, with C? boundary, and all conductivities are positive functions
in C?(0Q).

The linearized version of the Calderén problem is considered in Section
4.1, and we present an argument showing uniqueness in the linearized prob-
lem. The proof is based on special harmonic functions given by the complex
exponentials ¢, where ¢ € C" is a vector satisfying ¢ - ¢ = 0, In Section
4.2, we construct complex geometrical optics solutions that resemble the
harmonic exponentials, and use these in Section 4.3 to prove that if two
isotropic conductivities y; and -, in €2 give rise to the same boundary mea-
surements, then v; = 79 throughout 2. This follows from the corresponding
identifiability result for Schrodinger operators.

4.1. The linearized Calderén problem

The “plane wave” exponential function
u=e""c, e,
is a solution to Laplace’s equation,

Au =0,

105
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if and only if
¢-¢=0.
If ( = n + ik with n, kK € R”, then
(4.1) 0=C-C=n*— k> +2in-k < |n| = |k| and 5 L k.

So any non—zero ¢ obeying (-¢ = 0 will have non—zero real and imaginary
parts and the corresponding solution, ¢, will grow or decay exponentially
in some directions in R™ and will oscillate in some directions. The utility of
exponentially growing solutions in solving the inverse conductivity problem

was first observed by Calderén, and we begin by exhibiting his proof of
injectivity of the linearized inverse boundary value problem.

Theorem 4.1 (Uniqueness of the linearized Calderén problem). The Fréchet
derivative of A at v =1, éy — DA[d7], is injective. That is, if
for some 6y € L>(Q)), then
oy =0.
Let us first show that the Fréchet derivative exists.

Theorem 4.2. Let Q@ C R" be a bounded open set, and let v € L>®(Q)
satisfy v > ¢ > 0 a.e. in Q. For §y € L*™(Q), the identity

(DA, 671, g)on = / V- Vode,  f.g e HY2(00),
Q

where u,v € HY(Q) satisfy div(yVu) = div(yVv) = 0 in Q with ulpq = f,
vlga = g, defines a bounded linear map
DA, [69] : HY2(89) — H™Y2(09).
This map gives the Fréchet derivative of the map v — Ay in the sense that
1
%1_{% Z(A"/thé’y —Ay) = DA, [69]

in the space of bounded operators from HY?(9Q) to H=Y/2(0Q).

Proof. Let y(t) = v be a C! curve of functions in L>°(Q2) that are uniformly
bounded from below. This means that 1/E < () < E in Q for ¢ near 0,
and

7(t) = ~(0) + 9(0) + te(?)
where 4(0) € L*>®(Q2) and

lin [£(6)] e ) = 0

Let f,g € H/2(09), and let u; and v; satisfy
div(yVug) = div(1 Vo) = 01in Q, wlan = f,veleq = 9.
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By the definition of DN maps and symmetry of Ag,

(Ay, = M) fr 9000 = (A fr g)aa — (f, Ay 9)on
= /Q(% — ) Vuy - Vg dz.

Consequently

42 (G = Afghon = [ (3(0)+£0)Var- Vand,

Using the bounds for ~;, we have

utll g1y < CE, Q) [ fll 17250

Also, since u; — ug solves
div (7 V(ur — uo)) = —div((y: — 70) Vo) in €,
u — uplo =0,
we have
(£, Q) [|div((v = 70) Vo)l g

<C
< C(EB, ) v — Y0l oo o) Vol 12 (q)
< CE, Q) It = 0l oo o) 1f L1720

[[ue = woll g1 (0

Since |7t = Y0/l Lo () < Ct, we may combine these facts and take the limit
n (4.2) as t — 0 to obtain

(DA (o) ()] f, 9o = /Q 5(0) Vg - Vo da.

This defines DA )[¥(0)]f weakly as an element of H ~1/2(99), since

[(DA(0) [7(0)1 £, 9)aa| < [IH(0)]l Lo oy Vu0ll 120y V0 120
S VO ooy 1 17200 191 1172002 -

It also follows that DA, )[¥(0)] is bounded from HY2(0Q) to H-1/2(09).
Finally, DA, )[¥(0)] is the Fréchet derivative since by (4.2) one has

([5 (e = ) = DA O)] £r5h00

=/7(0)(Vut—Vuo)-Vvodw+/s(t)vut-wodm.
Q Q
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Thus,

t
< C(|IVur = Vuoll ooy llvoll g1 ay + 6@l oo (0 1wl 10y llvoll 1)
< O+ el oo ) 1 17200 1915172050 -

{@A% ~Ay)— DA w«m] £, )00

The result follows by taking ~y(t) = v + td~. O

Proof. of Theorem 4.1 By Theorem 4.2, the equation
DA [57] =0

is equivalent to

(4.3)
/ 0yVuy - Vugdr =0 for all u; € HY(Q2) obeying div(yVu;) = 0.
Q

If we further restrict to y = 1 then (4.3) must hold for every pair of harmonic
functions uq and us. A natural set of choices for u; and us are exponentials
e®¢ with ¢ - ¢ = 0. Substituting

up = >, Uy = e

with (- (; =0, into (4.3) gives
G- C2/ e () 5y dr =0
Q

By (4.1), we may choose (; = %(n + ik) and (o = %(—77 + ik) with any
k,n € R™ for which |k| = |n| and k L n. Then

G+G=ik  and GG =—glkf
so that DA;[d0y] = 0 implies that

|k|2/ ek y dr = 0
Q

which, in turn, implies that the Fourier transform (m)(/ﬁ) vanishes for
every nonzero k. Here yq denotes the characteristic function of the set 2.
However, xqd7 is an element of L?(R™), so that m is in L?(R") and
therefore cannot be supported at a single point. As a consequence

xody =0

which proves that DA;[ - | is injective. O
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4.2. Complex geometrical optics solutions: first proof

The approach that we will use to prove identifiability in Section 4.3 is based
on exponential solutions that are perturbations of those for the Laplacian.
These solutions have many names, including exponentially growing solu-
tions, Faddeev type solutions, and Sylvester-Uhlmann type solutions. We
will call these solutions complex geometrical optics (CGO) solutions, since
they are a complex phase analogue of the standard geometrical optics solu-
tions for wave equations.

In this section, we will construct CGO solutions to the Schrodinger equa-
tion
(A +qu=0 inf.
The potential ¢ is assumed to be in L*°(€2). To motivate the construction,

first let ¢ = 0. We have seen that there are solutions to the equation
—Awu = 0 having the form of a complex exponential at frequency ¢ € C™,

Now suppose ¢ is nonzero. The function u = €? is not an exact solution of
(=A + g)u = 0 anymore, but we can find solutions which resemble complex
exponentials. These are the CGO solutions, which have the form

(4.4) u(x) = (1 +r(z, ).
Here r is a correction term which is needed to convert the approximate

solution €% to an exact solution.

In fact, we are interested in solutions in the asymptotic limit as |¢| — oo.
This follows the principle that it is usually not possible to obtain explicit
formulas for solutions to variable coefficient equations, but in suitable as-
ymptotic limits explicit expressions for solutions may exist.

The next theorem is the main result on the existence of CGO solutions.
Note that the constant function a = 1 always satisfies the transport equation
¢-Va = 0, so as a special case one obtains the solutions u = €¥*(1 + 7)
mentioned above.

Theorem 4.3. (CGO solutions) Let 2 C R™ be a bounded open set, and let
q € L*(Q). There is a constant Cy depending only on Q and n, such that
for any ¢ € C™ satisfying ¢ - ¢ = 0 and || > max(Cy ||qHLoo(Q) , 1), and for
any function a € H?(SY) satisfying

¢(-Va=0 1inQ,
the equation (—A + q)u = 0 in Q has a solution u € H*(Q) of the form

(4.5) u(z) = eic'm(a +7),
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where r € H?(Y) satisfies
1Pl ey < Col¢l HI(=A + @)all 2y, k=0,1,2.

We note that (4.4) is a solution of (—A + ¢)u = 0 if and only if
(4.6) eI~ A+ q)eT(1+7) = 0.

It will be convenient to conjugate the exponentials e’“® into the Laplacian.
By this we mean that

e T D (%) = (D + ¢)v,
e T D2 %) = (D + ¢)*v = (D? + 2¢ - D).
We can rewrite (4.6) as
(D*+2(-D+q)(1+r)=0.
This implies the following equation for 7:
(4.7) (D?>42¢-D +q)r = —q.

The solvability of (4.7) is the most important step in the construction of
CGO solutions. We proceed in several steps.

4.2.1. Basic estimate. We first consider the free case in which there is no
potential on the left hand side of (4.7).

Theorem 4.4. There is a constant Cy depending only on 0 and n, such
that for any ¢ € C" satisfying ¢ -¢ =0 and |[¢| > 1, and for any f € L?(2),
the equation

(4.8) (D> +2¢-D)yr=f inQ
has a solution r € H*(Q) satisfying
Il ey < Col<l* M I f Iz, *=0,1,2.

Note in particular that

C
17/l 2 () < ﬁ £l 2 -

If || fllp2() is uniformly bounded in ¢, this shows that 7 — 0 in L3(9) as
|¢| = oo. Accordingly, the correction term r in the CGO solution (4.4) will
be very small for large ¢, and the solution (4.4) will look like the complex
exponential €¢% then.

The idea of the proof is that (4.7) is a linear equation with constant

coefficients, so one can try to solve it by the Fourier transform. Since
(Dju) = (&) = &u(€), the Fourier transformed equation is

(€ +2¢- OP(E) = f(9).



4.2. Complex geometrical optics solutions: first proof 111

We would like to divide by &2 + 2¢ - ¢ and use the inverse Fourier transform
to get a solution 7. However, the symbol €2+ 2¢ - £ vanishes for some ¢ € R,
and the division cannot be done directly.

It turns out that we can divide by the symbol if we use Fourier series in
a large cube instead of the Fourier transform, and moreover take the Fourier
coefficients in a shifted lattice instead of the usual integer coordinate lattice.

Proof of Theorem 4.4. 1. Write ¢ = s(w; + iwp) where s = (| /v/2 and
w1y and wy are orthogonal unit vectors in R™. By rotating coordinates in a
suitable way, we can assume that w; = e; and we = ey (the first and second
coordinate vectors). Thus we need to solve the equation

(D? 4 2s(Dy 4 iDy))r = f.

2. We assume for simplicity that ) is contained in the cube Q =
(—=m,m)". Extend f by zero outside Q) into @, which gives a function in
L?(Q) also denoted by f. We need to solve

(4.9) (D? +2s(Dy +iDy))r = f in Q.

Let wg(z) = elh+3e2) for | € Zn. That is, we consider Fourier series in
the lattice Z" + %62. Writing

(u,v) = (271)"/qu dr, wu,ve L*Q),

we see that (wg,w;) = 0if k # [ and (wg, wy) = 1, so {wy} is an orthonormal
set in L2(Q). Tt is also complete: if v € L(Q) and (v,wy) = 0 for all k € Z"
then (veféim, e®*) = 0 for all k € Z", which implies v = 0.

3. Hilbert space theory gives that f can be written as the series f =

> kezn frwr, where fi = (f,wy) and Hinz(Q) = pezn | /1>, Seeking also
r in the form r = )7, _;. Tpwy, and using that

1
Duwy, = (k + §eg)wk,
the equation (4.9) implies that the Fourier coefficients should satisfy
pkrk:fka ]{?GZ”,

where

1 1
Dk = (k + 562)2 + 28(k1 + i(kz + 5))

Note that Im(pg) = 2s(ka+1) is never zero for k € Z", which was the reason
for considering the shifted lattice. We define

1
TE = —Jk
Pk
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and

T(N) = Z W .

keZn |k|<N
The Fourier coefficients satisfy

1 1
m | frl < B | frl -

Now (M) is a Cauchy sequence in L?(Q), since for M > N

lrar = rnvllp2g) = < Z |7“k|2)1/2 . §< Z |fk|2>1/2

N<|k|<M N<[|k|<M

1
|7 | Smffk’ Tom(pr)] ( ] | fel <

and the last quantity can be made arbitrarily small if M and N are large.
This shows that ™) — 7 in L?(Q), where 7 € LQ(Q) satisfies

r= Y nan Irla < - 1l

kezm

4. We next show that r € H?(Q). Note that

1 1 1
Dar™ =% | (kt5ea)arsws,  DaDpr™ =3 (k+5e2)albt+gea)srwuwn
|k|<N [k|<N

We claim that for a,b=1,...,n and for k € Z",

1
(410)  |(h+ Sea)ar < 165173l

1 1
< 4| fil, '(k+§62)a(k+562)b7°k

Consider two cases: if |k + %eﬂ <4s (the small frequency case) we have

1
k+ = _— 4
-+ gentans| < 5 < 41
and )
1 1 (4s)
k+ = k+ = — <16
'( + 262)(1( + 262)b74k > QS’k +1/2’ S’fk‘
If |k + %62‘ > 4s (the large frequency case) then
1 ? 1 ? 1 1 1 ]?
- 25k | > Zey| —2 Zeol > k4 =
‘/{7+262 + 2skq _‘k—i—zeg sk+262 _2‘k+262
which implies
1 k+ fe 1
‘(kJr —€2)aTi| < |721‘2 |fk] < = | fxl
2 3|k + 562 2
and
1 1 k+ 5es
(k+ Se2)a(k + Se2)ori| < |72"f | < 2| fkl-
R
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This proves (4.10). The estimates (4.10) imply that D,rN) and D, Dyr®)
are Cauchy sequences in L?(Q), and thus converge to some v, and v, in
L?(Q). Further, the weak derivatives of r satisfy

D,r =v,, DgDpr = vgp.

To see this, let ¢ € C2°(Q) and note that

—/ rDypdr = — lim T(N)Dagpdx
Q N—oo Jo

= lim [ (Dor™)pda
N—oo Jo

= / vap dx.
Q

The proof for D,Dyr is analogous.
5. We have proved that r € H?(Q) and that

1 1 1
Dyr = kgz:n(k: + 562)a7"kwka Dy Dyr = ;gz:n(k + 562)a(k7 + 562)67”1?“}’?'

It immediately follows that r solves (4.9), and the norm estimates for r
follow from (4.10) and the Parseval identity. O

4.2.2. Basic estimate with potential. Now we consider the solution of
(4.7) in the presence of a nonzero potential. It will be convenient to give a
name to the solution operator in the free case.

Definition 4.5. Let ¢ € C" satisfy ¢ - ( = 0 and |(| sufficiently large. We
denote by G¢ the solution operator

Ge: L*(Q) — H*(Q), frrr
where r is the solution to (D? 4 2( - D)r = f provided by Theorem 4.4.

Theorem 4.6. Let ¢ € L™(Q). There is a constant Cy depending only
on Q and n, such that for any ¢ € C" satisfying ¢ - ¢ = 0 and |¢| >
max(Co [|ql| o (q) > 1), and for any f € L3(R), the equation

(4.11) (D*4+2(-D+qr=f inQ
has a solution r € H*(Q) satisfying
171l g 0y < Coo (S 12, k=0,1,2.

Proof. If one has ¢ = 0, a solution would be given by r = G f. Here ¢ may
be nonzero, so we try a solution of the form

(4.12) r:=G¢f,
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where f € L?(Q) is a function to be determined. Inserting (4.12) in the
equation (4.11), and using that (D? + 2¢ - D)G¢ = I, we see that f should
satisfy

(4.13) (I+qGo)f =f inQ.
By Theorem 4.4, we have the norm estimate

Co llall oo o)
HQGC”L2(Q)_>L2(Q) < T

If |¢| = max(2Co [|g|[ oo () - 1) then

1
HqGCHLQ(Q)HL?(Q) < 5

It follows that I + ¢G¢ is an invertible operator on L%(f2), and the inverse
is given by a Neumann series

(I+qGe) ™' = (—aGe).
7=0
The equation (4.13) has a solution
f=U+qG)™'f.

The definition (4.12) for r implies

(D*+2¢-D+q)r=f+4qGcf =T +aGe)f = f,
and 7 indeed solves the equation (4.11). Since H(I +qG¢)™
2, we have Hf
the desired estimates for r, if we replace Cy by 2Cj. U

! HL2(Q)—>L2(Q) S

‘LQ(Q) <2 HfHLz(Q). The norm estimates in Theorem 4.4 imply

It is now easy to prove the main result on the existence of CGO solutions.

Proof. of Theorem 4.3 The function (4.5) is a solution of (—A + ¢)u = 0 if
and only if

e_ic'x(—A + q)eic'x(a +7)=0.
As in the beginning of this section, we conjugate the exponentials into the
derivatives and rewrite (4.6) as

(D*+2¢-D+q)(a+r)=0.
Since ¢ - Da = 0, this implies the following equation for r:
(D*+2¢- D +q)r = —(D* + g)a.

Theorem 4.6 guarantees the existence of a solution r satisfying the norm
estimates above. Then (4.5) is the required solution to (—A 4 ¢)u = 0 in
Q. O
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Exercise 4.7. (Small first order perturbations) Prove the analogue of The-
orem 4.6 for the equation

(D*+2(-D+2A-(D+{)+q)r=f inQ

where A € L*(Q; C"), ¢ € L*(Q), and [|A] 1 (g is sufficiently small
(depending on € and n).

Exercise 4.8. (CGO solutions for small first order perturbations) Prove
the analogue of Theorem 4.3 for the equation

(—-A4+2A-D+qu=0 inQ

where A € L>(Q; C"), ¢ € L>(Q), and [|A| () is sufficiently small. In
this case, the transport equation for a is

¢(-(D+Aa=0 inQ.

Exercise 4.9. (H* to H**2 mapping properties) Let Q@ C R” be a bounded
open set with C*¥ boundary. Show that there is a constant Cy such that for
any ¢ € C" with ¢ -¢ = 0 and |¢| > 1, there is a solution r € H¥*2(Q) of
the equation
(D> +2¢-D)r=f inQ
satisfying
7l presii0y < ColSl' ™ I f ey, 1=10,1,2.

(Hint: use the fact that there is a continuous extension operator H*(Q) —

H o (R™).)

comp

Exercise 4.10. (Additional decay for the H' norm) If f is a fived function
in L2(Q), show that for any ¢ € C" with ¢ - ¢ = 0 and [¢| > 1 there is a
solution r = r(-;¢) € H?(2) of the equation

(D*4+2¢-D)r=f inQ
satisfying
lim ||7(+; Q) g1 () = 0-

I¢|—o0

(Hint: decompose f into a smooth part and a small part.)

4.3. Interior uniqueness

In the first part of this section, we use the special solutions constructed in
4.2 together with the boundary identifiability result of 4.1 to prove a global
identifiability result for dimension n > 3. This result is originally due to
Sylvester and Uhlmann ([S-U II]). The case n = 2 will be considered in ?7.
In the second part of this section, we extend the main ideas of the proof of
the identifiability result in order to establish a result concerning the stable
dependence of the conductivity on the boundary measurements. The main
identifiability result is
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Theorem 4.11. (Interior uniqueness for Calderdn problem) Let Q C R™,
n > 3, be a bounded open set with C? boundary, and let v1,7v2 be positive
functions in C?(Q). If

A, = A,

then
71 =72

We will obtain Theorem 4.11 as a consequence of the analogous theorem
for the Schrodinger equation. We have seen in that the Dirichlet problem
for the Schrodinger equation need not always have a unique solution, and
the DN map may not exist. It is quite natural to use the Cauchy data set,
introduced already in Definition 2.68:

Cq = { (u|aQ,&/u|aQ) | u € HI(Q), (—A + q)u =01in Q }

Here, the normal derivative of a solution of (—A+¢)u = 0 in  is interpreted
as an element of H~1/2(9Q) as in Problem 2.67, and the Cauchy data set is
a subset of H/2(0Q) x H~1/2(0Q).

Theorem 4.12. (Interior uniqueness for Schridinger equation) Let € C
R™, n >3, be a bounded open set, and let q1,qo € L>(2). If
CQI = CQQ’
then
q1 = q2.

If 0 is not a Dirichlet eigenvalue of —A + ¢ in Q, the Cauchy data set C,
is just the graph of the DN map A, (Problem 2.69). Therefore, the previous
theorem has an immediate corollary for the DN map:

Theorem 4.13. (Interior uniqueness for Schrédinger equation) Let Q0 C
R™, n > 3, be a bounded open set, let q1,q2 € L*°(Q2), and assume that 0 is
not a Dirichlet eigenvalue of —A + q1 or —A + g9 in Q. If

Ath = AQ27
then
q1 = q2-

Let us now give the proofs of these results.

Proof of Theorem 4.12. Since C,, = Cy,, we know from Problem 2.73
that

(4.14) /(q1 — qa)ugug dz =0
Q

for any H'(2) solutions u; to the equations (—A + gj)u; =0, j = 1,2. (In
the case of DN maps, so that A, = Ag,, the same relation was proved in
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Theorem 2.72.) Thus, to prove that g; = go, it is enough to establish that
products ujus of such solutions are dense in L(Q).

Fix £ € R®. We would like to choose the solutions in such a way that
uqug is close to ¢, since the functions ¢ form a dense set. We begin by
taking unit vectors wy and ws in R™ such that {wy,ws,&} is an orthogonal
set (here we need that n > 3). Let

¢ = s(wy + iws),

so that ¢ - ¢ = 0. By Theorem 4.3, if s is sufficiently large there exist H'
solutions u; and ug which satisfy (—A + ¢;)u; = 0, and which are of the
form

uy = %8 4ry),
Uy = e (1 + 1),

where HerLQ(Q) < C/s for j = 1,2. For the first solution we chose a = €%
which satisfies ¢ - Va = (¢ - €)e™¢ = 0 by orthogonality, and for the second
solution we chose a to be constant.

Inserting these solutions in (4.14), we obtain
(4.15) /(q1 — q2)(€™¢ 4+ r1)(1 +7r9) da = 0.
Q

In this identity, only 71 and ro depend on s. Since the L? norms of 1 and 7o
are bounded by C/s, it is possible to take the limit as s — oo in (4.15), and
by Cauchy-Schwarz the terms involving 1y and ry will vanish. This shows
that

/(q1 — qQ)em'£ dxr = 0.
Q

This holds for every ¢ € R". If § is the function in L'(R™) which is equal
to g1 — g2 in 2 and vanishes outside €2, the last identity implies that the
Fourier transform of ¢ vanishes for every frequency £ € R™. Consequently
G=0, and ¢ = g9 in €. O

Proof. of Theorem 4.11 Since A,, = A,,, Theorems 3.3 and 3.17 imply
that y1]an = Y2laa and dyy1laq = Ouy2|sq. Also, part (b) of Theorem 2.74
guarantees that

—~1/2 —-1/2 _
By =5 28y (372 0) + 5977 03)
for all f, where ¢q; and ¢o are defined by
1/2
_ A

%= "1 -
’Vj/
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Thus we have
Ath = AQ27
and Theorem 4.13 implies that ¢; = ¢2. Consequently, the function
71 i L
v= log(%) = 2[logfyf — log'yf]
satisfies
1 11 11
V- (m72)2 Vo) =2V - [13 V7 =17 V5 ]

1
=2Mm72)2(@2—q1) =0

U{ag =0
Internal remark 1.
) ) 71/2
V- ((m72)2Vv) =V- ((7172)52V10g(11—/2))
Y2
=V ((7172)%2(7f1/2v711/2 - 7;1/2V7§/2))
—92V . (W;/vaiﬂ _ 71/2V%1/2)

=2(V"” - V% + A

— Vv — Ay
= 2(7,/2 A = 1 8%,%)

1
=2(m72)2(—q1 + q2)

and hence
v=01in Q
i.e., y1 = ¥2 in . O

4.4. Stability

A somewhat more carefully crafted version of the uniqueness proof can be
used to prove the stable dependence of v on A,. By stability, or stable
dependence, as opposed to continuous dependence, we mean that, under
the hypothesis of an a priori bound for v; and 75 (or ¢; and ¢2) in a high
norm, we can estimate the difference, 71 — y2 (or ¢1 — ¢2), in a lower norm
in terms of the difference of the Dirichlet— to Neumann—data maps (or the
Cauchy data). The stable dependence results presented here are, except for
minor modifications, due to Alessandrini ([Al2]). To measure the distance
between the Dirichlet— to Neumann—data maps we use the operator norm
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for bounded operators between H'/2 and H~1/2. To measure the distance
between the spaces of Cauchy data we use

I(f,9) — (fa g)HHl/Q@H—l/Q

dist(Cy,,Cq,) = max { sup inf

(fo)eCa Farecs, N D mream-1e
) . H(f,g) _(fag)HHl/QEBH*l/?
sup _inf
(f.9)eCa, (F)eCe, N mr2gm—1r2

The norm on the space H/2(Q) @ H~'/2(Q) is defined by the expression

19 ervsgmre = (113 o+ N9l 1 o)
It is not difficult to see that if the spaces Cy; are both graphs of corresponding
Dirichlet— to Neumann-data maps Ay, then one has the estimates
(4.16)
[Ag — AQQH%,—l

2
I IAATE T AT
27 2 2

1
T2

< dist(Cq,, Cgp) < [[Ag — Aqg”%,_l

2

Exercise 4.14. Prove (4.16).

We first show

Proposition 4.15. Suppose that 5 < s €N, n >3 and

(4.17) lgslls0 < M
then there exists C' = C(M) and 0 < 0 = o(n) < 1 such that
(4.18) llar — Q2H*1,Q < C({log{dist(cql,cqﬁ}‘_a + diSt(Cm’C(Iz))

Proof. Our point of departure is the identity in Problem 2.73, which states
that

/Q(ql ~ @)uupdr = — /(99(“25 - mE) ds

for all uy,us € H'(Q) obeying (A+q1)u; = 0 and (A+q2)uz = 0. If (f,9) is
an arbitrary element of C,, then there exists a function v € H1(2) obeying

Av+qv=0 in Q
v:fand@:g on 0f)
ov
so that
8U1 av
0= — d'z = — — —ui5—) d
/Q(ql q1)uv dx /aQ(v 5 ul@u) o
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and
n_. au1 8’[,L2 n
/Q((h_QQ)ulUQdx——/aS][E(UQ—f)—(E— )ul} d"x

We continue with
(4.19)

0 0
'/ (1 — g2)urug d"z| < || ul” 1 galluz = flly aQJerHlaQH 42 gH%’ag
ou
= H(ul’(?—ul)HH%@H*é (w2 f’ 8 g)HH%@H*%

As this is true for all (f,g) € Cq,,

(4.20)

ouq Oua

'/ @1 — g2)urug d"x| < || (u1, 5~ £y )HHQ@H 1 (f,;?equIH(UQ - ﬂg —Q)HH%@H_%
ou . ou
S H(ul’ ayl)HH%EBH_% ’ dlSt(qu’CqQ H(u27 Q)HHQEBH g

We remark in passing that, if C;, and C,, are actually the graphs of Dirichlet—
to Neumann-data maps A, and Ag,, then (4.20) implies

/(fh — q)uiug d"x
Q

1
2

1
2
<l on (1+ 180l _3)* e = Al 1 - izl o0 (1 + 180l )

Our next step is to choose uq and us to be the solutions produced in Theorem
4.3. That is

(4.21) uj = "9 (1+1;(z,¢)))
with
Lk
(1=1+ 2(5 +m)

C2:—l+i(g—m)

where k is arbitrary and [ and m satisfy the requirements
(4.22)

k
lk=Ilm=km=0 |m|*>=]*- ||

1
>0 1> Dm0+ e
The functions ; satisfy the estimates

c
(4.23) 195l L2(0) < m”qj”ﬂ(ﬂ) and [[¢]l1,0 < Cllgjlr2 (@)
J
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Since u; € H'(£2) are solutions to Au; + gju; = 0 (with ¢; bounded in L)
it follows, by Problem 2.67 and Problem 77, that

H%

v H_%,ag < CHujuLﬂ

Using Theorem ??, Lemma ?? and (4.23) we now get

1@ 5 3o < Clllia < Clle ey 1+ v1la < Cléiel?

where D denotes the constant D = sup,cq |z| and we have increased the
value of the constant C' a few times. Thus, for any fixed D, > D

ou
(4.24) (a1, )2y < G

and similarly

ou
(4.25) | (ua, 8—5){11{%%_% < CeD-lcl

1

Let r denote the parameter r = (@ + m[® +|I]*)2 — |k|. In terms of

r we have that |(1| = |(2| = |k| + r. The parameter r must be sufficiently
large, i.e.,

r>C>1

but is otherwise free. A combination of (4.20)—(4.25) now yields

‘/(ql_q2)6ix-k Az
Q

< Ce2P-IFANdigt(C,, , Coy) + / lar — a2| [v1
Q

+ 1y + 1| A
< CAP IR dist(Cyy , Coo) + lar — 2llz2e) (1122 () + 2]l 2]
+ lar — g2l @)1l 20 1¥2l L2 @)

or, by use of (4.23), (4.17) and the Sobolev imbedding result, Problem 77,

e ) 1 1
@1 = @] )] < (P st (Cor, Coo) + (M + 1) )
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where, as before, ¢; denotes the extension of g; by zero outside Q2. We
therefore have
(4.26)
vy — Govi b
a2 -1
A (@ = a@2) (K)] (L +[KI?) " d"k
Y A n -1
(@ — @) ()P + k) dk + (@ — @) (D)L + %) d"k
|k[<p k|>p

1
< Cp" (Pt (€ Cp)* + 5 ) + sl — BlEage)

T+p

C
< Cp"eP= P dist(Cyy , Cy ) + Cﬁ_z + 02

In order to make the last two terms in the final expression of (4.26) small
and of the same magnitude (p—) we choose
’I“:,OnT, for p>>1

With this choice we also have r > p. For the first term in the last line of
(4.26) we get

(4.27) petP (P dist (C,, , Cgy)? < CefTdist(Cyy 5 Cyy )
uniformly in p, for any fixed constant K > 8D,. If we now choose
1 : s
p= (?‘log{dlst(CqI,CqQ)}D 2
then .
r= ?‘log{dist(cql,CqQ)}‘

and therefore

(4.28) KT = dist(Cyy, Cgp) ™ for dist(Cq,,Cq,) < 1
A combination of the estimates (4.27) and (4.28) gives
(4.29) P et PP dist (Cyy , Cgp)? < € dist(Cyy 5 Cyy)

provided dist(Cq,,Cq,) < 1. Insertion of (4.29) and the definition of p (and
r) into the last line of (4.26) yields the estimate

(4.30)
a4
lar — @2l 10 < Vi — vy, <C (hog{diSt(Cqucqz)H Tt diSt(qu’Cq2)>
< C|10g{dist(cq1acq2)}‘_n_+2

for dist(Cqy,Cq,) < 3. This gives (4.18) with o = %4_2 when dist(Cy,,Cy,) <
L. The estimate (4.18) is trivially satisfied for dist(Cq,,Cq,) > & because of
the assumption (4.17). This completes the proof of Proposition 4.15. O
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We now proceed to transform Proposition 4.15 into an analogous result
for the conductivity problem. As we saw in the proof of the interior iden-
tifiability theorem, the proof of the interior stable dependence result makes
use of the continuous dependence result (Theorem 4.62) for the boundary
values. Among other things the proof depends on the following lemma.

Lemma 4.16. Suppose that 5 < s € N and that 1 and ~y2 are isotropic
conductivities on 2 C R™ satisfying Hypothesis 4.40 and

(i) < <E
(i) [|Vjlls+2.0 < E.
Let q1 and qo denote the potentials defined by

A71/2
(4'31) a5 = — 1]/2

Ui
There ezists C = C(Q2, E,n,s) and 0 < 0 = o(s) < 1 such that

(4.32)
dist(Cqy, Cqs) < || g, — Aq2H%,f

< O (18 = Al + 1140y = Anally 1)
27 2 2 2

Proof. The first inequality of (4.32 comes directly from (4.16. Since g; are
related to the conductivities ; by means of (4.31 it follows from Theorem
2.74 that the Cy; are graphs of the corresponding Dirichlet— to Neumann-
data maps and that, by Problem 77,

1
2

871/2

- + o dl) Ve € HE(0Q)

_1
Agd = 12 (Aw (v *¢)
7
so that

H(AQ1 - AQ2)¢H_1 a0

SCHVI% -7 C1(69) HA“(V;%@ o (bH;,aQ
+ CH’Y;% 1 o0) <HAVI (17 26) - Aw('m%)H;m
+ Ha% (?—121//2‘ co(0Q) ”¢HL2(89))

Assumptions (i) and (ii) provide, via the Sobolev imbedding bound of Prob-
lem ??, bounds on supq %, supq %, supq 71, Supq Y2, supq |Vy1| and
71 Y2

supg | V72| that depend only on ©Q and E. Since y1,72 € C®(Q), these
bounds continue to 0€). As HAw H 11 and HAV2 H 1 1 are bounded by The-
27 2 27 2

orem 2.64 (with constants depending only on E and © by Remark ?? and
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multiplication by v, V2 o Yo 172 is a bounded map on H'/2(9), by Problem
29

(4.33)
(Mg =Ag)9l 1 a0y
_1 _1
< C(H’Yl — ’Yz”cl(aQ)WH%,aQ + | Ay (71 20) — Ay (5 2¢)H_%7ag)
In a similar fashion we may also bound
_1 _1
HA% (71 2¢)_A“/2(72 2¢)H,%,ag

1

< HA% (7;§¢ - 7;2¢)“_%7QQ + H(A% - AV2)(7;§¢)“_%73Q

< C<||71 —y2lleran) + [ Ay — A,YQH%,?Q 16111 o0
Insertion of this into (4.33) yields

(4.34)
(A =Aa)8 ] ag < C(Im = r2lleramy + 1Aqs = Aalls 3 ) 19113 0
Since s — % > 5 - % = an we may use Sobolev’s imbedding theorem,

Problem 7?7, and the logarithmic convexity of the Sobolev norms, Problem
77, to obtain

I = 22ller@e) < Clim = 12lls41.00

2 2541
_ 2s5+3 _ 2543

< Clln =2l Z2faey I = 2211355 o0

2
< Cllm = L2(50)

2541
Internal remark 2. We need the index s+3 in |71 =] 321*;3 o, L0 e strictly
27

bigger than s + % in order to give a monzero power of nyl — ’ngLQ(BQ). This

leads to the index in hypothesis (ii) being strictly bigger than s + 1. To
obtain the last inequality we have also used the trace estimate (Theorem 77)

I =72lss3.00 < Clln = 2llorze

It now follows from the first part, (4.59), of the continuous dependence result
on the boundary that

2

(4.35) 71 —2llcreo) < CllAy, — Aw”?%

After insertion of (4.35) into (4.34) we obtain the desired estimate with
2

0= 2543 0

The stable dependence result for the conductivity problem is
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Theorem 4.17. Suppose that 5 < s € N, n > 3, and that 1 and 2 are
isotropic conductivities on 0 C R™ satisfying Hypothesis 4.40 and

(i) 1/E <7 < E

(ii) |jlls+20 < E.
Then there exist C = C(Q2, E,n,s) and 0 < 0 = o(n,s) < 1 such that
(4-36) HWl - 72HL°°(Q) < C{‘log ||A“/1 - A'yz”%ﬁ%ra + HA% - A"/2||l 1}

20 2

Proof. In light of the hypothesis (i) it clearly suffices to prove the estimate
(4.36) for ||A,, — Ay,[|1 _1 smaller than any strictly positive constant. The
27 2

last term in right hand side of (4.36) is there to render the estimate trivially
satisfied for |[Ay, — A,||1 _1 larger than the constant. By (4.32), we can
27 2

choose the constant small enough that dist(Cy,,Cq,) is also smaller than any
desired strictly positive constant.

Consider the function

71
v = 10g(%) = log(y1) — log(72)

This function obeys the boundary value problem

V- ((’7172)%W) —2(m72)% (@2 —q)  inQ
v{ag =logy1 —log 2

Internal remark 3.

1/2

V- ((’7172)%Vv) =V- ((7172)§2V10g(%))
2

1 — —
=V ((n)22(7; 2vn/? = 7 2V’
=2V (" V1 = V")
=2(Vy? - V2 4 282 = V2 vy - 2 A?)

= 2(7,"* A" - 1 a%,"?)
1
=2m72)2 (a1 + g2)

with the ¢; and g2 defined in (4.31), and hence, by Theorem ?7 (and
Remark 77),

logm1 —log12ll1e = llvllie < C(llar = g2l -10 + [[log 1 = log 121 5q) ??
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Now

1
dt
10 —10 = - 0. _
g — log o [/0 tm+(1—t)72] (1 —2)

1 1 1 _
VIOg’Yl — VIOg’)/Q = —v'yl _ _V’YQ —— [v’Yl _ V’}/Q] + Y2 Y1 V’}/Q
" 72 n 1172
and
1
Y — Y2 = [/ etlog%-ﬁ-(l—t) log 2 dt} . (10g " - log 72)
0
M-
Vy1 = Vv =71 Viegy —2Viegye =7 [v log~; — Vlog 72] n Vs

By hypothesis (i), + < v; < E. By hypothesis (ii) and the Sobolev imbed-
ding theorem, Problem ??, |Vv;| < CE. It follows that there is a constant
¢, depending only on n, €2 and E, such that

71 —72llie < clllogy1 —log 210
[logy1 —log 2100 < clln — 12ll1,00

Since || logy1 —log 2|1 5o < ||logy1 —logy2||1,00, (??) translates into
27

(4.37) I —ellie < Cllar — @2ll-1a + I — 12llLoe)

A combination of the estimates (4.18) and (4.32) gives that for some
0<op,09<1

HQI - Q2H71,Q <C ‘log{diSt(C(]NC(]z)}‘_al

IOg{HA% — Ay, H?,;}

27 2

—0o1

(4.38) <C

—0o1

< Cllog [Aq, = Asully s

for ||Ay, — Ay, ||1 _1 sufficiently small. In view of Sobolev’s imbedding the-
27 2
orem and the logarithmic convexity of the Sobolev norms, we have
71 = 2llz @) < Clln —12lls,0

2
s+1
1,0

s—1
< Clly =72l e I — e

2
s+1

< Clm =l
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and
I = 2ll1,00 < Clln — 72HL2(aQ [ = 72|521+3an
e e AR e
< Cln = lE,

Together with (4.37) and (4.38) these two estimates give
(4.39)

2
s+1

71 =2l @) < C(H(h —@ll-1,0+ |n— ’YQHl,@Q)
2541 2
25+3 )S+1

< C({log HA“ﬂ - A“/2H%,7%|_01 + |hl 72‘ Le=(092)

for ||Ay, — Ayl 11 sufficiently small. By combination with the boundary

continuous dependence result (Theorem 4.62) the estimate (4.39) becomes

_ 201
I = el zoe oy < Cllog [As, — Anglly _y |7

1 sufficiently small. This completes the proof of the

2
theorem. O

for [|Ay, — A’Y2H%7—

Internal remark 4. We need the s + 2 because of Lemma 4.16.

4.5. Complex geometrical optics solutions: second proof

The construction of complexr geometrical optics solutions in Theorem 4.3
was based on considering Fourier series in a slightly shifted lattice, which
avoided the problem of dividing by symbols having zeros. This construction
was sufficient for the interior uniqueness and stability results in the previous
sections. However, to obtain a reconstruction procedure for determining a
conductivity for a DN map, it is useful to give another proof of the existence
of CGO solutions. This proof is valid in R™ instead of just bounded domains,
and it comes with a reasonable uniqueness notion for the CGO solutions upon
fixing a decay condition at infinity. These additional properties will also be
crucial in the inverse scattering problems in 7.CHscattering.

To construct the solutions we shall make use of the following norms,
defined for any u € Cg°(R™) and any —oo < § < oco:

s 1/2
lull 2 = </Rn (14 |z*)°ul? dnx>

The space L?; is defined as the completion of C§°(R™) with respect to the
norm || - HLg When we say that u = e*¢(1 + ¢(x,()), with - ( =
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and i € L?;, solves Au + qu = 0, we mean that v is a weak solution of

Ay +2¢ -V =—q— qp. The latter means that

((A=2¢C- V)@, ¥) pagny = = (0,0 + q¥) 2y

for all ¢ € S(R™). We have encountered weak derivatives before, in part ()
of Proposition 7?7. The main theorem in this section is:
Theorem 4.18. Let —1 < § < 0. There exists € = €(d) and C = C(0)
such that, for every q € L§+1 with (1 + \x!2)1/2q € L™ and every ¢ € C"
satisfying

21/2,1
IO+ 2) allee +1

(= d
¢6=0 on "

there exists a unique solution to
Au+qu=0 inR"
of the form
U= em'c(l + Y(x, C))
with ¢ (x,¢) € L. Furthermore,
[¥llzz < i ||(JHL

541

This theorem has a counterpart for the conductivity problem, which is ob-
tained by invoking the correspondence of Theorem 2.74 between the Schrodinger
equation and the conductivity equation. The statement is

Theorem 4.19. Let —1 < < O There exists € = €(0) and C = C(9) such
that, for every positive v with 2 1/2 € L5+1, (1 + |x|2)1/2A,;{—722 € L™ and

every ¢ € C™ satisfying

I P R [ |
om0 aa  AFED K’”W [ZRE

there exists a unique solution to
Lou=0
of the form
u=n"12e" (14 4 (x,0))
with ¢ (x,¢) € L. Furthermore,

(e Ol < 1l S i,

Most of the work necessary for the proof of Theorem 4.18 is associated
with establishing the following proposition.
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Proposition 4.20. Suppose that ( € C™ with (- ¢ =0, |(| > ¢ > 0 and
fe L§+1 with —1 < § < 0. Then there exists a unique @ € Lg such that

(A+2¢-V)p = f27

weakly. Moreover,

C(d,¢)
lellze < —=—IFlrz,,

9

We postpone the proof of this proposition to the end of this section,
instead we first show how it may be applied for the

Proof. of Theorem 4.18 We seek u of the form

u = ex'c(l + )

satisfying

(A + e (1 + )} =0
or
(4.40) AY+20- Vi =—q—qi
To solve (4.40), we define

=1
and we recursively define v; by
(4.41) (A+2¢- V) = —qbj1 for j >0
Then, formally,
(1.42) b= S 4
§=0
obeys
Ap+20-Vp =D (A+20-V)yy = =Y g1 = —qb_1—»_qj = —q—qv)
j=0 j=0 j=0

and so is the desired solution. It needs to be proved that the functions 15,
j > 0, are well defined, and that the series (4.42) converges appropriately.
We may without loss of generality restrict our attention to € < 1, so that
we only consider ¢ for which |¢| > 1. Since ¢ € L3, and ¢_; =1 it follows
from Proposition 4.20 that there exists a unique ¥y € Lg that solves (4.41)
with j = 0. This ¢ satisfies

(4.43) lollzz < T2 lal 2,

C(9)
q
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If v is an element in L3, then the fact that (1+|z[?) 1/2q is in L*>° immediately
implies that quv is in Lg 41 With the estimate

1/2

lgvll 2, < [[(1+]al?)

S41 qHLooHUHLg??

Using this observation in conjunction with Proposition 4.20 we conclude
that if 1;_; is in L? then there exists a unique solution, ¢;, to (4.41) in L2
and this solution satisfies

C(o C(0)]|(1 11724l oo
Iosllzz < S sl §<<”“+@” ““)nwlhg?

C’ S+1

An induction argument based on the estimates (4.43) and (?7) now gives
that v, j > 0, are all elements of Lg and satisfy the estimates

C(9) _ CONA+|2[) 2l
Iq q

By selecting e sufficiently small that § < 1/2, we now obtain that the series
(4.42) is convergent, in L%, with the bound

C(0)
9l < 27l

For any ¢ € S(R™), (A —2( - V)p € L% so that D520 (A =2¢ - V)p, 1)
converges to ((A —2¢- V), ). By (?7?), the series » 22 q1p; converges in
L35 to q. For any ¢ € S(R™), ¢ € L?,_ so that > i {9, q¥j) converges
to (p, q). This completes the proof of the existence part of Theorem 4.18.

||7/)J'HL§ < HjHQHL%H with 2

To verify the uniqueness of the solution 1 (and therefore of u), suppose
that

Ap+2¢-Vp=—q—qy
and
AY+20- Vi = —q—qy
with ¢ and ¢ € L. Then
AW =) +2¢- V(e — ) = q(¢ — )
so that, according to Proposition 4.20 and (?7?)
Cll(L + [2*) g Lo

_ 1 -

19—l <

which can only occur if

1% — 4l = 0
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Proof. of Theorem 4.3 Define
_Ja in Q
Y0 mr"\0
1

We may apply Theorem 4.18 to g, say with § = —5. In this way we obtain

the existence of a solution to Au + gu = 0 in R™ (and therefore a solution
to Au+ qu =0 in Q) of the form u = (1 + ¢(z,()) with

C2 i~ C
19l L2@) < call$llzz@ny < mHQHLgH(Rn) < mHQHL?(g)'-’?
Similarly, for any n € C§°(R™), nyp € L*(R™) and obeys

A(mp) = —n(2¢ - Vi + G+ q) + 2V - Vi + (An)y € HH(R™)

Hence np € HY(R") and ¢ € H'(Q2). That u € H%(Q) follows from Propo-
sition ??, since Au = —gu € L?(Q) for all bounded open subsets ' C R™.
So it only remains to prove the estimate concerning the H' norm of ).

From equation (4.40), we get that
Ap=—-2-Vp—G—g) R
and the interior estimate of Proposition 77 thus gives
[Yll,0 < C12¢- VY + G+ Gl —1,0 + [[¥]l 20)) ??
for Q@ cC . On the other hand, we also have

(4.44)
12¢- VY + G+ q¥ll-1,0 < 2n[Cl|1¥]l L2y + 1]z + 1§01 L2 @)
< 2n[¢[[19[l L2y + Nl z2) + lall e @) 1Yl 2o
and
Il < Gllaen = Gl 27
The estimate (??) is obtained by replacing by €’ in the estimate (??) (the
constant C' changes). A combination of (??)-(??) yields

lgllzo @) llall L2 HQ||L2(Q)>
[q 1q

1
IC

\wmasc(mmmn+

and since the assumption on |¢| implies that = < 1 and |_é.|Hq||Loo(Q) <1,

we immediately get
[¥lle < Cllallze @
as desired. O

We now return to the
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Proof. of Proposition 4.20 We first prove uniqueness. If w € S(R™) and
Aw+2(-Vw=0
Fourier transformation gives
(=|k|? +2¢ - ik) (k) = 07?

As this equation is invariant under rotations, we may assume, without loss
of generality, that the real part of { is in the positive e; direction and the
imaginary part of ( is in the span of e; and ey with negative es component.
By (4.1), the real and imaginary parts of ¢ must be mutually perpendicular
and of the same length, so that

_ I
V2

¢ = se; —ises with s

in which case (??) is equivalent to
[— (k7 + (ko — 8)® + k3 -+ + k2 — %) + 2isky] @ = 07?
Let
M(s)={keR" | k1 =0, k{ + (ks —s)* + k3 -+ k2 = }

denote the codimension 2 sphere which arises as the intersection of the plane
k1 = 0 and the n-1 dimensional sphere with center se, and radius s. The
content of (??) is that w is supported on M(s) and so must vanish.

Now let w € Lg be any weak solution to Aw + 2¢ - Vw = 0. To show
that w = 0, it suffices to show that (w,¢) = 0 for all ¢ € S(R™). To do so,
we approximate w by w. € L*(R™). Let

. d"k
x € C=([0, 00)) with supp x C [0,1) and / x(|&%) 2" =1

and

8a) = [ e ex(b)

Then
we(z) = Blex)uw(z) € L*(R")
As p € S(R"), pe(z) = B(ex)p(x) € S(R™) and

. —6/2 —46/2 .
limn (1 + [af?) Poe(x) = (1+[22)Pp(z)  in LA(R?)
by the Lebesgue dominated convergence theorem. Consequently

d"k
= i =i — i b (k)@ (k
<w7@> 81{‘%<w7@6> ;{1% <’LU5,(,O> ;{{% . wE( )(P( ) (271')"

Observe that (6%3(5))\/(3:) = fB(ex). By Problem 4.24, below,

€

supp . C Nz (M(s)) = { k | dist(k, M(s)) < ¢ }




4.5. Complex geometrical optics solutions: second proof 133

so that

o mg o i 25 (3 o 25

As ¢ is smooth and a%(volume of N¢) converges to a constant times the
surface area of M(s),

(445)  |{w, )] < c(nm\sup e||weuLz) ( /M(s) |¢<k>|2d“a<k>)l/2

e\0
Moreover,

1 R -5
Sl = el = [ 18 fo@P @' < [l s 8 (1 + fof)
n x

(2m)
As f € S(R") and § <0

5 s -5 1+ |xf? qldl
liellF < € wlz sup (1+&12P)” (14 [2f) ™ = € Jlwl; sup [W]

<C e ul?,

Returning to (4.45)

e\0

1/2
[ (w,9)| < Climsup (- %) fJul ;2 ( /M( | |¢(k‘)|2d"10(k)>
Since § > —1, it therefore follows that

(w, ) =0
for every ¢ € S, so that w = 0.

We turn to proving existence of a solution to (?7?). Suppose for now that
f € S(R™) and define

) f k)
)= — 2\
k) = e %
We shall prove that w is well defined and satisfies the estimate

C
iz,

Once this estimate is established we can dispense with the assumption that
f € S(R™) by continuity. As we did in the uniqueness proof, we may assume

that
_Iel
V2

Jeollz <

¢ = s(e; —ieq) with s
and therefore

_‘k’2+zig'k:—[k%—i‘(kz—8)2+k§---+k,21—32] + 2isk; = P(k, s)



134 4. The Calderén problem in three and higher dimensions

Since the polynomial P(k, s) is homogeneous of degree two,
P(k,s) = s*P(k/s,1)
As before we denote
Ny (M(s)) = { ke R™ | dist(k, M(s)) <r }

Every point p € M(s) obeys p; = 0 and |p — ses|] = s. Hence for all
k € R™ and p € M(s) we have that |k — p| > |ki| and |k — p| > ||k —
seo| — |p — segH = ||k — sea| — s| which implies that dist(k, M(s)) > |ki|
and dist(k, M(s)) > Hk: — seg| — s|. As a result, if k € Nyjo,(M(s)), then
|k1| < 5- and |k — sea| > s — 5~ so that at least one component of k — sey
must be at least ﬁ (s - %) > 5. Consequently,

O1(s) = R™ \ Ny 2, (M(s))
Os(s) = {Jkz = 5| >3-} N N(M(s))"

0,(s) = {|kj| > %} NNg(M(s))”  for j>2

is an open cover of R"™. The singularity of Pf((]:“;l) on M(s) has been excluded
from Oy(s). The remaining sets O(s),- - ,On(s) cover Ny, (M(s)) C
N (M(s))o with the j* component of |k — ses| being relatively large on 0;.
It is useful to note that M(s) = sM(1) and that O;(s) = sO;(1). Let x;(k)
be a partition of unity subordinate to this open cover, so that

. xR (k) s
w(k) = 321 “Plhs) > (k)

J=1

Since O;(1) is bounded away from M (1) and since P(k,1) — oo as |k| — oo
there exists a constant ¢ such that

|P(k,1)] >¢>0  VkeO(1)
For k € O;(s) this leads to the estimate
|P(k,s)| = s*|P(k/s,1)| > cs®
so that

1 1
(4.46) lenllzs < lwnllze < —5 07l < =51 fllzz,,

Here we have used the assumptions that 6 < 0 and § +1 > 0. Since our
hypothesis guarantees that || = 1/2s is greater than some ¢ > 0, (4.46)
gives the desired estimate for w;.
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To estimate each w;, with j = 2,--- ,n, we first introduce new coordi-
nates in O;(s) by

m = 2k
k2 4 (k2 —s)2 + k3 + - + k2 — 52
n; = s
In terms of these new coordinates
. X;(k) f (k)
wi(n) =
s(=mn; +im)
Since
(2 ifl=m=1
1 ifl=m,0#£1,j
one ) .
T 0 ifl£m, 0#£]
T e =g, m#2
22 if = jom =2

\

the Jacobian of this coordinate transformation on O;(s) is

oy _ [T ifi#e
‘det[%” = {4k1—5| ifj=2

which is bounded above by 8 and below by % on Oj(s), j =2,...,n for all s.
At this point we shall make use of the following three results, the proofs of
which will be given later.

Lemma 4.21. For each j =2, ---, n, the map Z; defined by

A~

f

m) (z) feSR)

(Zif) () = (

has a unique continuous extension to a bounded linear operator from L?; 1
to L. For each f € Li y, Z;f is a weak solution to (8, + i0y;,)w = f.
That is,

for all o € S(R™) and f € L} ,,.
Lemma 4.22. For any x € C§°(R") and any f € S(R™)

1) I 2, < CllS Il

541

where the constant C depends on x, but is independent of f.
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Lemma 4.23. Let O and O be open subsets of R™ and C be a compact
subset of O'. Let f € C§°(C) and let ¥ be a smooth diffeomorphism from O
to O'. Then,
P\ ; v
[(For Yy <Ot 1(Fow s, <l

6+1

The constant C' depends on ¥ and C, but is independent of f.

The proof of Proposition 4.20 now proceeds as follows. If W(n) is the
inverse map of the change of coordinates (4.47), then
_ xR f(k) 1 (xgf) o

j(k) = P(k,s) - ;—nj + i o U (k)

Set

gi@) =[0G f) o v (@) hy=[x;f] ()

In this notation
1

wj = ~Zjg; ° v
Using, in order, Lemma 4.23, Lemma 4.21, Lemma 4.23 and Lemma 4.22,
we obtain that

lesllzs < 21 Zigsllie < Zlgslia,, < Zhsllie,, < 25l
Recalling that s = % and invoking the formula w = 2?21 w; completes
the proof of Proposition 4.20. O

Exercise 4.24. Let w € Lg be any weak solution to Aw+2(-Vw = 0. Let

x € C*([0,00)) with  suppx C [0,1) and /n x(|k[%) (d:;n =1

and

wilo) = Aleryule)  where  A(o) = [ ()

(a) (a) Prove that if the Fourier transform of ¢ € S(R™) vanishes in N (M(s)) =
{ k| dist(k, M(s)) < e }, then there is a 1) € S(R™) such that

Blex)p(z) = A —2C - Vi)
(b) (b) Prove that (k) is supported in N, (M(s)).

It still remains to prove the three auxiliary Lemmas 4.21-4.23. If we note
that vfvs, = W HfHLg(Rn), then Lemmas 4.22 and 4.23 merely state the
well-known facts that multiplication by smooth, compactly supported func-
tions and composition with smooth diffeomorphisms are bounded operators
on H*(R™). The former is Lemma ??. The latter is
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Exercise 4.25. Let s € R. Let O and O’ be open subsets of R” and C be
a compact subset of O’. Let ¥ be a smooth diffeomorphism from O to O'.
Prove that there is a constant C, depending only on ¥, s, O and C, such
that

vu o \I’_lvs,n < Cvuvgy,

for all v € C3°(C).
It thus only remains to give the

Proof. of Lemma 4.21 To prove Lemma 4.21, it clearly suffices to consider a
single value of the index j, like j = 2. We furthermore claim that it suffices
to prove the estimate HZQfHLg < CHfHLgﬂin R2. To see this we note that

é n
gy = [ 1+l lu() '

< [ a+srad P a

since § < 0. Therefore

(448) (1 Z2f Pagany < /dmg-..dagn 122 s 2 s
Here we use the fact that (Zaf)(z1,z2,...2n) = [Z2f (-, Z)](x1, z2), €., we
use that & = (z3, - ,z,) may be treated as parameters untouched by Z.

At the same time
1,y = [ 0+ 1o 1@ s

> [ b+ @) a

since 1 + § > 0. Therefore
(@49) 1y, o = [ dondan 170w ) By

The estimates (4.48) and (4.49) immediately imply that it suffices to prove
the estimate ||Z2f||L§ < CHfHL§+1 in two dimensions. This latter estimate

is a consequence of the following lemma with p = 2.

We now prove

<( — Oy +iaﬂﬁj)‘Pa ij> = (p, f)

for all p € S(R™) and f € Lg 41, assuming the boundedness of the map
Zj « Lj,, — L3. For any ¢ € S(R"), we have ( — 0y, +i0,,)p € L%
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and ¢ € L27571. So, by continuity, it suffices to consider f € S(R™). For
¢, f € SR

(6.1) = Gy 2B, F4) = o <<—/<:j — ik k), %>
1 o f (k)
= (27T)”< (_am + Za:vj)gp) (k)’ m>

A~

The formula ﬁ@/}(/ﬂ),g(lﬂ» = (1, g) is usually first proven for v, g €
S(R™). But, by the Lebesgue dominated convergence theorem, it extends
to g € LY(R"), since S(R") is dense in L'(R") and § € L'(R") implies
g € L (R"). O

Lemma 4.26. Define Z by

() (s, uz) = / !

R2 —(UQ — ’U2) + i(ul — Ul)

a) (a) Then Zf is bounded from LY, (R?) to L2(R?) provided p > 1 and
6+1 é

—% <d<1l-— %. The space LY consists of the functions

f(v1,v9) d*v for f € S(]R2)

{u] @+ e?)Pue LP(RY) }

equipped with the norm Hu||L§ =1+ |x|2)5/2u||Lp(Rn).
(b) (b) Furthermore

f

(Z ), uz) = =2mi( =

)v(u1,u2) for all f € S(R?)

Proof. f (a) Since the spaces LY(R™) and LP(R"™) are dual, provided %—{—% =
land 1 < p < oo, the same is true for L? ; and L{. As a result, it suffices to
verify the estimate | (Zf,¢g)| < C\\f\\L§+l\\g]]ch_6 for all g € L? ;. We have

g9(u)f(v)
/R2 /R? —(ug —v2) +i(u; —v1) dudy

(lg@I + )2+ o)) - (1 @)1+ )21+ o))
<ok

|u - U|1/P . |u — fu|1/q

[(Zf.9)| =

dudv
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where a > 0 and 8 > 0 will be chosen later. Employing Holder’s inequality,

2\—PB/2 2\p(a—6—-1)/2 1/p
ara) < ([ { [, a1+ 1o o)

=l
1+ [w2)2PH/2 (4 112y 79972 o g
< Clflleg., - lgls,

provided the constant

2\ —pB/2 2\p(a—d4—1)/2 1/p
o S N Bl )
R2

v ’u_U’

a(B+6)/2 2\ —qe/2 1/q
. (Sup [ o w2701 1 uf2) dv)
R2

u ‘U_U’

is finite.
Since 1+ |z|2 < (1 + |2])? < 2(1 + |z|?) it suffices to check that
1 -pB(1 pla—6-1) 1 a(B+9) (1
[ LT [,
R2 R2

ju =l u ju =l

sup
v

are finite, for appropriate choices of «, 3, p, ¢ and §, which we now do. We
impose the constraint that § = a — 8 — %, which implies that

p(a—5—1)=p(6+$—1)=p(ﬁ—%)=pﬁ—1
q(6+5)=q(a—$)=qa—1

For each fixed v with |v| > 1, let R be a rotation chosen so that v = |v|Re;.
Making the change of variables u = |v|Rw, we see that the integral

—pp p(a—6—1) —p8
/ (1+‘u’) (1+’U’) 2y = (1+|v|)p(a—6—1)|v|/ (1+‘UHU}D dw
R2

lu — v |’U)—61|
(1+|v pla—d— 1)|v|/ ’UHU}‘ dw
|’U)—61|
1
— (1 pB—1 lpﬁ/ S »/
R A T

converges and is bounded uniformly for |v| > 1 if 1 < p8 < 2. For each
fixed v with |v| < 1, we make the change of variables u = w + v and use the
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bound 1+ |w + v| > ¢(1 + |w|) to see that the integral

—pp pla—6—1) —pB
/ (1 + ‘u’) (1 + ’U’) du = (1 + ‘U‘)p(a—é—l) / (1 + ’U) + U‘) dw
R2 ju =] R2 [w]

1
< P8 p(a51)/ - 4
S o2 Tl @)

again converges and is bounded uniformly for |v| < 1 if p8 > 1. Similarly,
for each fixed u with |u| > 1, let R be a rotation chosen so that u = |u|Re;.
Making the change of variables v = |u|Rw, we see that the integral

1 q(8+6) (1 qa (1 —qa
[ L oy ey [ bl
R2 lu — | lw — eq]
< (1+ ful) B4y |/ {ullw)™ o,
lw — eq]
1
= (1 qa—1 lqa/ |
R I

converges and is bounded uniformly for |u| > 1 if 1 < ga < 2. For each
fixed u with |u| < 1, we make the change of variables v = w + u and use the
bound 1+ |w 4 u| > ¢(1 + |w]|) to see that the integral

q(B+9) —qo —qo
[ AL, s [ G,
R? |u— vl 2 |wl

1

<C qo 1—|— u ﬁ+6)/ —dw
O P Te I

again converges and is bounded uniformly for |u| <1 if ga > 1.

Thus, in order to guarantee that C' is finite, it suffices to require that

1 2 1 2
(4.50) -<B< = and -<a<-—
p p q q
with
1
(4.51) S=a—pf—-
q

As « and f run over the region (4.50), —3 runs over —% < - < —% and

a — B — 1 runs over
q
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Thus, if p > 1 and § satisfies
2 2
——<0<1l—-=
p p

then it is always possible to select o and 8 such that (4.50) and (4.51) are
satisfied. This completes the proof of Lemma 4.26 and consequently the
proof of Lemma, 4.21.

(b) For f € S(R™), both
(4.52)

1 2 , f
/R? —(u2 — v2) +i(ur — Ul)f(vl’w) v and —27”(m
are bounded continuous functions. To show that they are equal, it suffices
to show that they have the same inner products with all g € S(R™). This
follows from Problem 4.27, below.

~

)" (w1, us)

O

Internal remark 5. Here is the justification for “This follows from Problem
4.27, below.” For f,g € S(R™), the Lebesgue dominated convergence theorem
girves

1
d*ud?
/Rzl g(UhUQ)—(UQ — 7)2) —l—z’(ul - Ul)f(vl’v2) uaw
. x(Ju —v[ < R) 2, 12
= lim U, U - v1,v9) d ud“v
Rosoo R4g( 1 2)—(UQ—1)2)+’L(U1—’I)1)JC( 1 2)
= lim | g(ky, ko)Cr(k)f(ky, k) d°k
R—oo Jp2
where Cr(k) is the Fourier transform of %. By Problem 4.27, the

integrand is bounded by the L' function g(kl,kg)%f(kl,kg) and ap-

proaches g(kq, kg)ﬁf(kzl, ka) pointwise as R — oo. So the claim follows

by the Lebesgue dominated convergence theorem.

Exercise 4.27. (a) Prove that

etk 2% 7T .
/ : Er = : / A6 [672\k|Rcos€ _ 1]
lz|<kR —T2 + 171 —ko + k1 Jo

(b) Prove that

—ik-x
‘ / eild%c
ol <R —T2 + iT1

—ik-x ;
e 9 —2m

47

< - d
_|—k2—|—’ik31| an

R—00 J|z|<R —7%2 + 121 —ko + iky
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for all k£ # 0.

4.6. Complex geometrical optics solutions: third proof
4.7. Reconstruction

Earlier we proved a uniqueness result in the Calderon problem, stating that if
two positive conductivities v1,v2 € C?(Q) satisfy Ay, = A,, then necessarily
Y1 = o in Q. The proof was not constructive and did not give a procedure
to determine vy from A,. In this section we will give a constructive proof
that results in a reconstruction procedure for this inverse problem.

Theorem 4.28. Let (2 be a bounded domain in R", n > 3, with smooth
boundary and suppose that v € C?(Q) is a positive function. From the
knowledge of the map

A, H¥2(09Q) — HY?(90)

it 1s possible to determine v in €} in a constructive way.

As before, this result will be obtained as a consequence of a reconstruction
procedure for the inverse problem for a Schrodinger equation.

Theorem 4.29. Let 2 be a bounded domain in R™, n > 3, with smooth
boundary and suppose that ¢ € L*>(QQ). Assume that 0 is not a Dirichlet
eigenvalue of —A + q in Q. From the knowledge of the map

A, - H¥2(09) — HY?(5Q)

it 1s possible to determine q in € in a constructive way.

Let us give an outline of the proof. It is very similar to the uniqueness
proof earlier, and relies on complex geometrical optics solutions uc¢(x) =
¢ (1 +r(x,¢)) for ¢ € C" such that ¢ -¢ =0 and |(| is large. Even though
the original problem is stated in the domain 2, we extend q by zero outside
of Q and consider the solutions u¢ in R™. It is important that the solution
uc is unique as long as r(x,() satisfies a decay condition as |x| — oco.

It will be possible to characterize the boundary value uc|pn as the unique
solution f € H3/2(BQ) of the following integral equation on the boundary:

(Id+Sc(Ay — Ag))f =€ on 9.

Here S¢ is a modified single layer potential depending on the complex vector
C. The point is that the operator on the left hand side only depends on the
data Agq and other known quantities, so one can compute u¢lpq from the
boundary data by solving this integral equation. Using these functions in a
suitable integral identity and taking a limit as |(| — oo allows to recover the
Fourier transform of q.
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Before going to the proof of Theorem 4.29, let us see how Theorem 4.28
follows from it.

Proof. Proof of Theorem 4.28 Suppose that one is given the map A, :
H32(0Q) — HY2(09Q). If q is defined by ¢ = Ay/2 /412 it was proved in
Theorem ?77 that
_ _ 1 _
Agf =720 (720 4 5 0 s

From Theorem 77?7, we know that from the knowledge of A, it is possible
to reconstruct the boundary value 7v|gn and the normal derivative 9,7|aq.
Thus, we have access to the map A, : H>2(9Q) — HY2(5Q).

By Theorem 4.29, we can determine ¢ constructively from this informa-
tion. Consider the unique weak solution v € H(Q) of the equation

(-A+q@uv=0 inQ

with boundary value v|gg = A/ 2|pq. Since the coefficient ¢ and the bound-

ary value are known, we can compute the solution v. But the function /2
solves this Dirichlet problem, so we also know v = /2. This determines

in €. O

Assume that ¢ € L*°(Q) is such that 0 is not a Dirichlet eigenvalue of
—A+q in Q. The objective is to reconstruct q in Q0 from the knowledge of A,.
The first step is to extend q by zero into R™, with the extension also denoted
by q. We then have the following complex geometrical optics solutions.

Proposition 4.30. Let g € Lg5,,,(R"), and fix 6 with —1 < § < 0. There

exists C = C(d,q) > 0 such that for any ¢ € C™ satisfying ¢ - ¢ = 0 and
IC| > C, there exists a unique solution

u(z) = u¢(x) = (1 +r(x,0))
of the equation (—A + q)u = 0 in R™ where r(-,() € L(R™). Moreover,
u € H2 (R™), and one has

loc
([l <L
2Mmn) > T
B =

In the uniqueness proof of the inverse problem for the Schrédinger equa-
tion, we began from the assumption Ay, = Ay, and used the integral identity

(Mg — Agy)(uilon), uzlon)an = /Q((h — q2)ujus dzx

where u; are solutions of (—A + gj)u; = 0 in Q. We then chose complex
geometrical optics solutions u; such that ujus ~ e for large values of the
complex vector. Since the left hand side of the identity is zero, this resulted
in the vanishing of the Fourier transform of q1 — qo.
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In the reconstruction problem we are instead given the DN map A, for an
unknown potential q, and the objective is to determine the Fourier transform
of q from this information. This will be achieved by comparing Ay to Ao,
the DN map with zero potential. The next result shows how this is precisely
done.

Proposition 4.31. Let g € L*(Q2) be such that 0 is not a Dirichlet eigen-
value of —A + q in Q. Let also £ € R™ with £ # 0. If s > 0 is sufficiently
large, there exist (; = (j(s,§) € C™ with (- (G =0 and |(j| = s for j =1,2,
such that

lim ((Aq — Ao)(ug [a0), € “lon) o = / ge'"¢ da.
5§—00 0
Here ug¢, is the solution of (—A + q)u =0 in R"™ given in Proposition 4.30.

Proof. Let o, 8 € R™ be such that {«,3,£/|£|} is an orthonormal set in
R"™. We define complex vectors

2 2
G = sta+ils+y 5 -5
I € 52 &2
G = %(—a +Z(§ V3~ Zﬁ))-

By using the fact that a, 3,£/|£| are orthonormal, it follows that (j-(; =0
and |(j| = s. The main point in the choice of ¢; and (s is that

G+ G =1&.

Let u¢, be the solution of (—A + ¢)u = 0 in R" in Proposition 4.30,
and note that e$2'® solves the same equation with zero potential, that is,
A(e€2®) = 0. The integral identity in Theorem ??? implies that

(Mg = Do) (ug o), € |an)an = /QQucle@‘” dz
Q

:/qei$'§(1+r(:c,gl))dx.
Q

Since Hr(-,gl)HLg(Rn) < %, the result follows by taking the limit as s —
00. U

From Proposition 4.31 we see that the Fourier transform of ¢ at nonzero
frequencies § can be recovered from the map Ay, as long as the boundary
value u¢, |aq of the solution in Proposition 4.30 can be somehow determined
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from Ay. Since q is compactly supported, its Fourier transform is continuous
and would therefore be determined also at & = 0.

The determination of u¢|pq from Ay will require certain facts on layer
potentials. This may be motivated as follows.
Motivation 4.32. Since ¢ is extended by zero outside of €2, the equation
(—A+ q)u¢ =0 in R™ implies
—Auc =0 inR"\ Q.
Thus u¢ is harmonic in the exterior domain R™\ Q. Note that this equation
does not involve the unknown potential g. Writing u; = e 4 v, We see

that also the correction term v¢ is harmonic in the exterior domain. Further,
the function e_c'xvg satisfies a decay condition at infinity by construction.

It is known that harmonic functions in the exterior domain satisfying
certain decay conditions can be represented in terms of single layer poten-
tials, which are integral operators mapping functions on 02 to functions in
R™. In our case we will have

v¢lrma = Schlrmg

for some function h € HY2(9Q), where S, is a modified (or Faddeev type)
single layer potential that differs from the standard one by factors of e¢®
in its integral kernel. It will turn out that h = —(A; — Ag)(u¢|sn), and
collecting these facts gives that

uc = eC'J: — Sc(Aq — AO)(“C’@Q) in Q+.
The integral equation characterizing u¢|aq in terms of A, follows by restrict-
ing the last identity on 0f).

Let us begin the development of the required layer potentials. We de-
compose R in three disjoint parts,

R"=Q_UTUQy,

where (2 = (1 is the interior domain, I' = 01} is the boundary of €2, and
Q4 =R™\ Q is the exterior domain.

Consider the trace operator on I,
v HYR™) — HY2(T), ~vu = uloq,
and the corresponding trace operators from the interior and exterior,
o HY Q) — HYA(D), ~v_u=ur,
vt HY Q) = HYA(T), ypu=ulr.

Since taking traces is a local operation near I', the operators v+ can also
be applied to functions that are in H*(U N ) where U is some open set
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containing I'. If u is a function that is H' is a full neighborhood U of T, it
follows that

T-U = Y+U = YU
If w is a H? function in U N Q4 where U is some neighborhood of T', we
denote by (0,u)+ the normal derivative of u from the interior or exterior.
Note that in this case (,u)+ is in H/?(T).
The standard single layer potential on R™ will be obtained from the
fundamental solution of the Laplacian, given by the Newtonian potential in
the next problem.

Exercise 4.33. Let n > 3, and let
ko(z) = ¢p 2>, ze€R™

Show that this function gives rise to a convolution operator

Ko: L2%,,,(R") — HZ(R™), Kof(z) :/ ko(z —y)f(y) dy

n

with the property that
~AKof = f, [ € LipmpR").

comp

Proof. 1. Let F; be a compact set in R? and let f € L?(R") with
supp (f) = F, compact. We will show that

(4.53) 1Ko f | 2(pyy < Croma [ fll 2y -
This proves that Kof € L}, whenever f € Lgomp. Define

F={zx—y;ze FycF}.

Then also F' is a compact set, and we have
Kof(x) = / xr(x = ykolx —y)fy)dy, =€ F.

Since xrko € L'(R™), Young’s inequality for convolutions (Lemma ???)
implies that

HKOJCHLQ(Fl) < HXFkOHLl(R") HfHLQ(Fg) <C Hf”L?(Fg) :
2. We next show that
(4.54) “AKf =f,  feCRR).

Do the details...
3. The next step is to show that

(4.55) ~AKof=f,  felL?, [R").

comp
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Let f € L?(R™) with supp (f) compact. Choose a sequence (f;) C C2°(R™)
so that f; — f in L*(R™) and supp (f;) lies in a fixed compact set Fy for
each j. By (4.53), we have

Kof; — Kof  in L} (R™).

loc
Then also
~AKofj — —AKof  in H 2(R™).

loc
Moreover, we have already seen that —AKyf; = f;, so also
~AKyf; — f  in L*(R").

Uniqueness of limits implies (4.55).

4. It remains to show that Kof € H?, whenever f € Lgomp. By the
previous arguments, u = K f satisfies
~Au=feLl,,, ucLp.

Interior elliptic regularity (Theorem ???) readily implies that u € H2 . O

loc*

Definition 4.34. The standard single layer potential on R is defined as
the operator

So = Kov* : H_15(T') = Hp,(R").

Proposition 4.35. Let ( € C" satisfy ¢ - ¢ = 0 and |(| > 1, and let
—1 < d < 0. There is a linear operator

G¢: L, (R") — HF(R")
such that for any f € Lgﬂ(R"), the function u = G f is the unique solution

in L2(R™) of the equation e=¢*(—A)(e*%u) = f in R™. One has the norm
bounds

C
Gl < i 1Az,

1Gcf gy < C ALz,

6+1

IGcf Iz < CISTI Iz

S4+1

Proof. Follows from Theorem ?777. O

We will obtain the modified single layer potential S¢ from the following
inverse operator K¢ of the Laplacian.

Proposition 4.36. Let ( € C" satisfy (- ¢ = 0 and |{| > 1, and let
—1 < < 0. The operator

K¢ Lomp(R") = Higo(R"), Kcf = eGe(e " f)

comp
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satisfies

~AKf = f, in f e L2, (R").
Proof. This follows directly from Proposition 4.35. If f € Lgomp, then
e CTf € Lgomp and thus G¢(e ¢ f) € HZ whenever —1 < § < 0. It follows
that Kcf € H, for any f € L2, . Also, if u = Ge(e ™ f), we have
e ¢ T(—A)(e“Tu) = e=¢* f, showin that —AKf = f. O

The next result shows that the operator K, differs from the usual fun-
damental solution Ky of the Laplacian by a smoothing operator.

Proposition 4.37. Let ( € C" satisfy ¢ - ¢ = 0 and |(| > 1, and let
—1<9<0. Then
KC = KQ + RC
where R¢ is an operator satisfying for any k > 0
Re: Hyb (R™) = C®(R™).
There is a function rc € C°(R™ x R™) such that

Ref(@) = [ relo)f@)dy,  f € Ly (R,

Proof. By the mapping properties of K and Ko, we may define
R; = K¢ — Ko : L2,,,,(R") — H,.(R™).

comp

Since both K and Ky are right inverses of the Laplacian, we also have
_ARCf =0, f € Lgomp(Rn)'

Elliptic regularity (Theorem ??77) implies that R¢f € Hl]f)c(]R") whenever

f e L?, (R"), and for any bounded open sets U,V C R" one has the

comp
estimate

IR Al < Cu lFlays  f € LAR), supp(f) C V.
Let now ¢ and ¢ be any functions in C°(R").
@Rct : LA(R™) — HF(R™).
(]

The next result considers solutions of the equation (—A + ¢)u = 0 in
R™ where ¢ vanishes outside €2, having the form

2 (R"), and r € H}(R™). We will
later take ug = €5, but the following equivalences work for any harmonic
function uyg.

w=ug+ e r
where ug is any harmonic function in H?
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Proposition 4.38. Let g € L™°(Q2) be such that 0 is not a Dirichlet eigen-
value of —A + q in Q, let ¢ € C™ satisfy ¢ - ¢ = 0 with || sufficiently large,
and let —1 < § < 0. Further, let ug € HIQOC(]R") be such that Aug = 0 in R"™.
Consider the following problems:

(-A+qu=0in R"
. {ec-:v(u —uo) € Hy(R"),

u+ K¢(qu) = up in R”
(IE) S
u e Hj (R"),
i) Au=0in Q4

ii) w=dlg, for some @€ HY,

(R™)
iii) e ¢ (u— up)|o, = 7|o, for some 7 € Hg(R")

iv) (Opu)y = Ag(v4u) on T,

(Id +vS¢(Ag — Ao))f =upon T’
(BE) {f c H2(T),

Each of these problems has a unique solution. Further, these problems are
equivalent in the sense that u solves (DE) iff u solves (IE), if u solves (DE)
then ulq, solves (EP), if u solves (EP) then there is a solution @ of (DE)
with U, = u, if u solves (DE) then f = u|r solves (BE), and finally if f
solves (BE) then there is a solution u of (DE) with ulp = f.

(EP)

Proof. The function u = ug + €< %r solves (—A + ¢)u = 0 in R” if and only
if

e S T(—A 4 q)eSTr = —e S Tquy  in R".
The right hand side is in L2(R™), so by Proposition 4.35 there is a unique
solution r € H} (R™) where —1 < ¢ < 0 if (| is sufficiently large. This proves
that (DE) has a unique solution. It remains to prove that all four problems
are equivalent in the sense described above.

(DE) = (IE): Assume u solves (DE). Then u = ug + eSr where

r € HY(R"), and

e_c'x(—A + q)eC'$T = —¢$%quy in R".
By Proposition 4.35 we have r = G¢cv € HE,_(R™) where v satisfies
¢z

v+ qr = —e > Tqug.

Since ¢ is compactly supported in R™ also v = —q(r + e~¢%ug) is compactly
supported. Thus we may apply G¢ to both sides of the last identity to obtain

r+Ge(qr) = —Gc(e*C'mquo).
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Multiplying by e¢® and adding uo to both sides gives (IE).

(IE) = (DE): Assume u solves (IE). Then the function r = =5 (u —
up) satisfies
(4.56) r=—Ge¢(e ¢ Tqu).
This shows that » € H}(R"), and (DE) follows by applying —A to both
sides of (IE).

(DE) = (EP): Let @ solve (DE), and define u = 1|q,. Clearly
properties 1), ii) and iii) of (EP) are valid. We need to show iv). Since @
solves the equation (—A + ¢)a = 0 in €, we have

(Ouu)s = Byl = Aqg(illr) = Ayl ).

(EP) = (DE): Suppose u solves (EP). Define v € H?(Q) as the unique
solution of the equation (—A + ¢)v = 0 in Q with v|p = y;u|r, and define

Q
() = v(z), e,
u(z), x€Qy.
Then v_a|r = vy u|r and
(0vtt)—[r = Ag(v4ulr) = (9pit)+[r
by (EP) iv). It follows that @ € H2 (R") and (—A+¢q)@ = 0 in R". Further,
e~ (@ — up) € H}(R™) by (EP) iii).
(DE) = (BE): Let u solve (DE), and let f = u|p. We fix a point

x € Q4 and let v(y) = K¢(x,y) where y € 2. This is a smooth function in
Q by Lemma 777.

Now Green’s theorem implies

/(uayv —vdyu)dS = / (uAv — vAu) dy.
r Q

By (DE) we have Au = qu and 0,u|r = A, f. Using the properties in Lemma
777 we obtain

/Fuayv dS — SeAgf(x) = =K (qu)(z),

which is valid for € Q. The function v is harmonic in 2, hence d,v|r =
Ag(v|r). The symmetry of A implies

/uayv dS = / ulo(v|p)dS = / Ao(ulr)vdS = ScAof(x).
r r r

We obtain

(4.57) Se(hg — Ro)f = Kelqu) in 0.

Adding u to both sides, using the fact that u solves (IE), and taking traces
on I' gives (BE).
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(BE) = (EP): Let f solve (BE). We define a function @ € H,.

loc(Rn)
by

U = ug — SC(Aq - Ao)f
This function is harmonic in R™ \ T" by Lemma 7?77, and u|r = f by using
(BE). The jump relation for S¢ implies that on T’

(Dit)— — (0,i)+ = —(Aq — Ao) .

But (0,%)- = Aof, so we have (0,1)4 = Ay(y4u). Therefore uq, satisfies
(EP) i) and iv). Also (EP) ii) is valid by mapping properties of S¢.

To prove (EP) iii) it is sufficient to show that for any h € HY/?(I),
ec'mS¢h|Q+ =w|g, for some w € Hj(R™).

Formally one has e$*Sch = G¢et*y*h where G maps L2(R") to H}(R™).
However, we have not proved that G has good mapping properties on neg-
ative order Sobolev spaces. O

Finally, let us verify that the boundary integral equation (BE) in Propo-
sition 4.38 is indeed Fredholm.

Proposition 4.39. The operator
¥Sc(Ag — o) : H(I') — HP*(T)
18 compact.
Proof. Let f € H¥?(T'), and let u = P,f where P, : H¥*(T') — H?(Q)
is the Poisson operator mapping hy to vy where (—A + ¢)vg = 0 in Q and

volr = ho. The exact same argument leading to (4.57) in the proof of
Proposition 4.38 shows that

Sc(Ag —Ao)f = Ke(qEJu) in Qy

where E : L?(Q) — L*(R") is extension by zero and J : H?(Q) — L*(Q2) is

the natural inclusion. Taking traces on I', we obtain the factorization
vSc(Ag — Ao) = vKqEJP,.

The result follows since on the right hand side J is compact and all other

operators are bounded. O

4.8. Old problems for n =2

Hypothesis 4.40. There is a function'As in ??, we have made this assump-
tion stronger than necessary for simplicity of notation. It is easy to generalize
the results of this section to v € C*(Q) for suitable £. v € C>°( Q) such that

11
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the conductivity at z € Q is y(x)1 where 1 is the n x n identity matrix. We
also use the notation ~y(x) to represent the matrix valued function ~(x)1.

The following problems provide an introduction to the complex deriva-
tive operators

0 0

AR d d
8.%'1 Z@xg

5=

[N

The differential operator 0 = %( g_xl + zg—m) corresponds, upon Fourier
transforming, to multiplication by %(zkzl — ko). By (4.52), convolution by
1 1 _ 1 1
2 —otix1 | T T1t+ixeo

provides an inverse to that differential operator.

Similarly, convolution by %xl—lil‘g provides an inverse to the differential op-
erator 0 = %(g—xl - zg—m) So we define, for various classes of functions f,
to be made precise below,
1 1 1 =1 1 1
O fz)=— | —=f(Qdu(C) 0 f(z) = F(Q)du(<)
™ JRrR2 2 — C T JR2 2 — C

where dy is Lebesgue measure on R?.

Exercise 4.41. Let 2 be an open subset of R? and let f € L!(R?) vanish in

Q). Prove that 07! f(2) and 0~! f(z) are well-defined and analytic for z € €.
Exercise 4.42. Prove that if f € C}(R?), then
o~ taf=f and O'of=f

Many of the regularity properties of 9~! and 9~! will be stated in terms
of the norms

u(z) —u(w
fllor = Il +1flee— where  |flex = sup L =]
w2 — W)
for the space C¢(R?), with 0 < ¢ < 1. Then C'*¢(R?) is the collection of
functions for which the norm [|u||fec (g2 + || Vuu[ ce(r2) is finite. More gener-

ally, if n € Ny, C"T¢(R?) is the collection of functions for which the norm
> aen2 [0%Ul|Loo 2y + 22 aenz [[0%ullce(r2) is finite. The next few problems

|al<n |e|=n

concern C¢(R?).

Exercise 4.43. Let 0 < ¢ < 1. Prove that it f,g € C¢(R"™), then fg €
C¢(R™) and
[ fglloe®ny < 1 fllce@n)llgllce®ny

Exercise 4.44. Let 0 < ¢ < 1. Prove that it f € C*(R") is bounded with
bounded first partial derivatives, then f € C*(R™) and

flloeny < NIz (1 N5 + 20V Fll7)
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Exercise 4.45. Let 0 < e < 1.

(a) Let the Fourier transform f of f € L'(R™) obey (1+ ]k\e)f(k:) € LY(R™).
Prove that f has a representative in C(R™) with

1 lloeny < || (1+ 1K) F(R)|| .

(b) Let f(z) € C¢(R™) vanish for |z| > R. Prove that there is a constant
C(R,n), depending only on R and n such that

176 ‘—1+\/<:yf

(c) Let f(z) € C(R™) vanish for |z| > R. Prove that if 0 < s < ¢, then
f € H*(R™) and that there is a constant C, depending only on R, n and
€ — s such that

vfvs < Cfllce

Now here is a problem which collects together some regularity properties

of &~ and 0~'. Part (c) also contains the result that 00~ f = 901 f = f,
at least for compactly supported f € C¢(R?) with € > 0. Recall that we have
already shown, in Problem 4.42, that 9710f = 0-10f = f for f € C}(R?).

Exercise 4.46. Let 0 < € < 1 and K be any compact subset of R2.

(a) Prove that there is a constant C(K¢) such that if f € L>(R?) is sup-
ported in K, then 071 f 07! f € C*(R?) and

107 flloee) 107 flloeme) < CK, )| fl| e

(b) Let n € N. Prove that there is a constant C(K,n,e€) such that if f €
C™(R?) is supported in K, then 071 f, 01 f € C"¢(R?),

le% 1 1 e’ a—1 _l
071 =~ [ ot fQdute) o) =1 [

for all a € N2 with |a| < n, and

107 fllonreey s 107" fllontemey < C(K,n,€)|| fllon e

22—(

(c) Let f € C¢(R?) be supported in K and let xy € C§°(R?) be identically
one on K. Prove that, for each v € N§ with |a| = 1, the first order partial
derivatives 0“0~ f and 0“0~ f exist and

O f(C) dp

(©)
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0°07 f(2) = — (—i)o /RQ - _16)2)((0 [£(C) = f(2)] dul¢) + f(2) 9°0~ x(2)

007 f(2) = —7 /R ﬁx(@ [£(Q) = ()] dn(Q) + f(2) 9707 'x(2)

Prove furthermore that

907 f(x)=f(z) and  95'f(2) = f(2)

(d) Let n € Ny and 0 < € < €. Prove that there is a constant C(K,n,¢,€’)
such that if f € C"T¢(R?) is supported in K, then 81 f, -1 f € C"+1+<(R2)
and

107 Fllgmriser gey s 107" Fllgmrer ey < CU € €) | f lomber2)

We have just seen that if f € C§(R?), then 0~1f and 971 f are dif-
ferentiable. If we are willing to accept weak derivatives, we can relax the
conditions on f. Recall that, for any 1 < p < 0o and any —oo < § < o0, the
space LY(R") is defined as the completion of C§°(R™) with respect to the
norm

lull gy = [ (1 + |2f2)*ul]
and that

Definition 4.47. Let € N} and let f,g € L}(R™) for some § € R. Then
g is said to be the o™ weak (or distributional) derivative of f if

for all p € S(R™). We persist in writing g = 9 f.
Exercise 4.48. Let 1 < p < ¢ < 00 and 4,0 € R with &' < 6 —
(when g =00, 8 <§—2 = ). Prove that if f € Li(R™), then f € L%, (R

”f”Lf;, < CHfHLg for some constant C' that depends only on 4, &', p, ¢ and
n.

n 4g—p
P q
™) and

Exercise 4.49. Let o € NJ with |a| = 1 and let 9% refer to the a'® weak
derivative. Let f,u,v € L}(R™) for some § € R.

(a) Prove that if 0%f = u and 0% f = v, then u = v.

(b) Prove that if f is continuously differentiable and the ot classical deriv-
ative equals u, then 0% f = u.

Exercise 4.50. Let o € NJ with |a| = 1 and let 9% refer to the o' weak
derivative. Let § € R and f,u € L}(R™). Suppose that {f;};en is a sequence
in L}(R") such that f; converges to f in L}(R") and §*f; converges to u in
L}(R™). Prove that 9*f = u.
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Exercise 4.51. Let o € NJ with |a| = 1 and let 9% refer to the a'® weak
derivative. Let f € LY(R™) for some § € R.

(a) Let ¢ be once continuously differentiable with polynomially bounded
derivatives. Prove that 0%(¢f) = 0 f + (0“¢) f.

(b) Let ¢ € C§°(R™). Prove that 0%(¢) * f) = 1 * (0™ f).

(c) Let ¢ : R — R be once continuously differentiable. Suppose that f is
continuous. Suppose further that there are monotone increasing functions
U, F : [0,00) such that [ (¢)], [¢'(t)] < V(|t]), |f(x)] < F(|z]) and ¥ o F is
polynomially bounded. Prove that 9%(¢ o f) = (¢ o f)0*f.

We will later need to consider 0~ f where f only decays sufficiently
quickly at infinity to lie in L?(R?). As z%c does not decay quickly enough
as ( — oo to be in L?, 071 f, as currently defined, will not converge. Fortu-
nately, the inverse of 0 is only defined up to an additive constant. Replacing
the kernel lec in the definition of 071 f l_oy z%c + % = ﬁ only adds a
constant (i.e. a z-independent term) to ~'f but still increases the decay
rate at infinity from %, which is not square integrable to C%’ which is square
integrable. Unfortunately it also introduces a new singularity at { = 0. We
can eliminate the singularity by replacing % by @ where y is any C'*
function that vanishes for || < 1 and is identically one for |(| > 2. To
distinguish the new inverse for 0 from the already defined =1 f, we denote
it

) = L LENP(9]
e =1 [ (e X 1) dul©

Exercise 4.52. The purpose of this problem is to start providing some
intuition concerning the behaviour of f~!f(z). Define

0 otherwise

D(z,¢) = L {9} SJ(C):{F if ¢l <1

0 otherwise

L0 = {ﬁ if ] > 2

Observe that S, € LP(R?) if and only if o < 2 and that Ly € LP(R?) if and
only if A > %. Assume that 0 < o < 2 and that A > 0. Prove that there are
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constants C, and C) such that, if |z| < 1, then
1

[ 1PG0IS:() du(¢) < € {1"—1 e

n— ifeo=1
|2|

/ ID(2,Q)|LA(C) dulC) < Crl2]

and if |z| > 2, then
1P 01SH€) dul0) < €
R? 2]
2 ifo<a<
DG OIAQ) du(Q) < CadInfz]  ifA=1
1 ifA>1

Exercise 4.53. Let (X, u) and (Y,v) be measure spaces and let k(z,y) =
k1 (x,y)ka(x,y) be a measurable function on X x Y. Set

1/2
L = sup / |y (2, ) dv(y )}

zeX

R=sup{ [ Jralo o) auta)}

yey

Prove that, if L < oo and R < oo, then the map
(K)@) = [ bl f) dviy)

is a bounded linear operator from L?(Y,v) to L?(X, u) with operator norm
1K < LR.

Exercise 4.54. Let

and set

1/2

Lo = swp { [ (4™ IDG 0P du(o)]

z€R2

1/2
Ry = sup { [ (142D O dut) )

CER2

Prove that Ly, g, and Ry, g, are finite if 3 < 81 <1, B2 <1, aq(—6) > 1— 34
and ag(—0) > 1.
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Exercise 4.55. Let 2 < p <oo,e <1 —% and let K be any compact subset

of R2. Prove that there is a constant C(K,¢,p) such that if f € LP(R?) is
supported in K, then 971 f, 071 f € C¢(R?) and
107 flloeey » 107 fllceme) < CK, )| fll e re)

Exercise 4.56. Let, for each sufficiently small h € C, A; be a bounded
linear operator on the Banach space B. Suppose that

e 1 — Ay has a bounded inverse on B
[ ] limh*)(] HAh — A()H =0

e for each f € B, the map h +— A, f is differentiable at h = 0 in B.

Prove that 1 — A has a bounded inverse on B for all sufficiently small h
and that for each f € B, the map h + (1 — Ay,)~!f is differentiable at h = 0
in B, with the derivative being —(1 — Ag) "t AH(1 — Ag)~Lf.

Exercise 4.57. Let f € L'(R"). Prove that

lim sup/ )| d"z =0
i, sup qulf( )|

where B,.(c) is the ball of radius r centred on c.

Exercise 4.58. Let u € H'(Q2) where Q is a convex, bounded, open subset
of R? with smooth boundary. Let S; and Sy be two measurable subsets of
Q). Prove that

. 1 1
(W)s, = (W)sa] < V7 (diam®)? (o + o) [Vl

Exercise 4.59. Let 6 € R. Let y € C§°(R?), u € L} N L} and g € Lj.

-~ loc
Assume further that u has a weak derivative Ou € L% and that g is continuous

and has a weak derivative 0g € Ll20c- Prove that
d(xue ) = ue 90x + xe 90u — xue 9dg

Exercise 4.60. Let ¢(x) be a smooth nonnegative function that vanishes
for |z| > 1 and that is normalized by [ ¢(z)du(z) = 1. Let f € C¢(R?) and
set, for 0 <t <1, fi = ¢4 x f where ¢y(z) = t"%p(Z). Prove that

If = filleee < |f]cete
|ft|C6 < |f|ce

80{
I 5$§HLO@ < Colfloet if |a| > 1
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4.9. Identification of Boundary Values of Isotropic
Conductivities

Theorem 4.61. Let 2 be a bounded domain in R™ with smooth boundary
and suppose that v and s are isotropic conductivities in ) obeying Hypoth-
esis 4.40. If

Ay = Ay,
then, for any integer £ > 0,
0 \¢ 0 \¢
(4.58) G m=(5;)»r  omoQ

Theorem 4.62. Suppose that vy and vy are isotropic conductivities on ) C
R™ satisfying Hypothesis 4.40 and

(i)1/E <~ <FE
(it) ||%'Hc2(ﬁ) <E,
Given any 0 < 0 < % there exists C = C(Q, E,n,0) such that

+3
(4.59) 7 = 72l oo o) < CllAw = As ‘%,—%
and
67 8’7 o
(4.60) 15, = Zollsqon) < CllAw = Al



Chapter 5

The Calderén problem
in the plane

In this chapter we discuss the Calderén problem in two dimensions. The
arguments presented here have a somewhat different flavor compared to the
case n > 3, and will rely heavily on complex analysis. We will give the
proof of Astala and Paivarinta which allows to treat bounded measurable
conductivities. This will involve the theory of quasiconformal mappings, a
generalization of the standard theory of analytic functions.

In this chapter we will denote the conductivity by ¢ instead of «. This is
customary in the two-dimensional results and emphasizes the fact that the
conductivity has to be real valued. Let us state more precisely the result
that will be proved.

Theorem 5.1. Let Q be a bounded domain in R? with smooth boundary and
suppose that o1 and oy are two positive functions in L>($2). If

Ay = Ag,
then

g1 = 02.

We will begin with a reduction. If B C R? is an open ball centered at
the origin such that 2 C B, we define new conductivities

() oj(xz) ifxeq,
oi(x) =
! 1 if z € B\ Q.

Then ¢; are positive functions in L>°(B), and the condition A,, = Ay, on
0 implies that Az, = Az, on 0B. (The extension as constant indicates why

159
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it is useful to be able to work with bounded measurable conductivities.) By
a simple rescaling, it is sufficient to prove Theorem 5.1 when the domain is
the unit disc . We will assume throughout this chapter that 2 = D.

Exercise 5.2. Fill in the details for the reduction to = D.

5.1. Complex derivatives

This section contains a brief review of the complex derivatives 0 and 0.
Readers who are somewhat familiar with these topics may skip this section
for the time being and return whenever needed.

Ifz = (z1,29) € R? we write z = x1 + iz and identify R? with C in this
way. The complex derivatives are defined by

o= l i + 1i o= l i — Zi
N 2 63:1 8562 ’ B 2 8561 63:2 '
Let Q C R? be an open set, and let f : Q — C be a C! function. Write

f =u+iv where u = Re(f), v = Im(f). Recall that f is said to be analytic
in Q if it satisfies the Cauchy-Riemann equations

61u = 822}, 62u = —alv.

Recall also that any analytic function is C*°. The 0 operator satisfies
_ 1 , , 1 .
of = 5(51 +1i02)(u + iv) = 5(3111 — Dov + i(O1v + Dau).

This immediately implies that the O operator characterizes analytic func-
tions.

Lemma 5.3. f is analytic in Q if and only if Of =0 in Q.

Another fact to note is that the Laplacian A = 97 + 93 factors in terms
of the complex derivatives as

A = 490.

Thus, if f = u + v is analytic then Af = 49(df) = 0. Since u and v are
real valued it follows that Au = Av = 0, that is, the real and imaginary
parts of an analytic function are harmonic.

The next result establishes the existence of conjugate harmonic func-
tions.

Lemma 5.4. Let Q C R? be a simply connected open set, and let u: @ — R
be a C* function with Au = 0. There exists a C* function v : Q@ — R,
unique up to an additive constant, such that Av = 0 and f = u + iv is
analytic.
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Exercise 5.5. Let f,g: R?> = C be C! functions.

(a) Suppose that f(z,y) = F(x+iy) with F' : C — C analytic and g(z,y) =
G(z —iy) with G : C — C analytic. Prove that

Of (,y) = F'(w +iy), Of (x,y) =0,
Prove conversely that, if 9f = 0, then there is an analytic function F(z) such

that f(x,y) = F(x + iy) and if dg = 0, then there is an analytic function
G(z) such that g(z,y) = G(z — iy).

(b) Prove that
dfdg+ 0fdg =iV f-Vg.
Prove that, if f is C?, then
400f = 400f = Af.
Prove that, if f is C2, then A f = 0 if and only if there are analytic functions
F and G such that f(z,y) = F(z +iy) + G(z — iy).

(c) Prove that

d(fg) = fOg + gof, (fog)=(df)og dg+ (9f)o g g,
d(fg) = fOg + gof, I(fog)=(df)og dg+(9f)og 0g.

(d) Prove that

@N()=0(f(), 0(f()=0NE), 0(f(2) =07,
@) =0(f(2), () =(0NHE), I(f(Z) =)

Exercise 5.6. Let Q C R? be a simply connected open set (this means that
Q) is connected and every closed curve in §2 can be continuously deformed to
a point, or equivalently that € and S\ are connected where S? = CU{oo0}
is the Riemann sphere). Let F : Q — R? be a C™ vector field whose curl
vanishes,

Y

Y

81F2 - 62F1 =0 in Q.
Show that F' = Vp for some C'*® function p : Q — R.

Exercise 5.7. Prove Lemma 5.4.

Exercise 5.8. Let {2 be a bounded open subset of R? with smooth boundary.
Denote by (v1,v2) the unit outer normal to 9Q. Give 99 the standard
orientation. That is, when you walk along 0f2 in the positive direction, v is
on your right hand side.
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(a) Let each component of the vector field (f1, f2) be in C1(Q). Prove that

[l 428 o [ s
Q oN

where s is arc length.

(b) Let f € C1(2). Prove that

/Qafd%:/myfds /Qafd%:/mufds

where v = (v — ivn) and 7 = (11 + in).

Exercise 5.9. Let Q be a bounded, open, simply connected subset of R?
with smooth boundary. Let each component of the vector field (fi, f2) be
in C*(Q). Recall that if g—g = g—ﬁ, then there is a function g € C%(Q)
such that f; = g—gl and fo = 3—52. Prove that if 0f; = Of,, then there is a
function g € C2?(Q) such that f; = dg and fo = dg.

5.2. Reduction to Beltrami equation

In the first step of the proof, we reduce the conductivity equation V-eVu = 0
to a certain first order equation involving the complex derivatives,

Of = pdf.
In this section we will also show that the DN map A, for the conductivity

equation uniquely determines a corresponding boundary map for this first
order equation, namely the p-Hilbert transform #,,.

Proposition 5.10. Let u € HY(D) be a real valued solution of
V.-oVu=0 inD.

There exists a real valued v € H'(D), unique up to an additive constant,
such that f = u 4+ iv satisfies the equation

Of =pudf inD
where
l1-0
= 15s
Conversely, if f = u+iv € HY(D) satisfies (5.10) where u € L*(D) with
l14ll ooy < 1, then

V-oVu=0 inD, V-0 'Vo=0 inD

where
L—p
o= —.

1+ p
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Proof. Suppose that V-oVu = 0, and define the vector field F' = (—o0su, 001 u).
Then

O Fy — O Fy = 0.
It follows from Problem 5.11 below that there is a real valued v € H'(D),
unique up to an additive constant, such that

(31?), 82?}) = (—O'agu, a@lu).
Let f = u+ dv. Then

1 1
Of = 5(Ou = 0pv +i(Dyu + 01v)) = 5 (1 = 0)(Dru + idyu),

— 1—01
f = -
mf =153

This shows (5.10).
1—p

For the converse direction, if f = w + iv solves (5.10) and if o = T
then

1
(O1u + O2v + i(D2u — O1v)) = 5(1 — 0)(01u + i0su).

ou+idv = 0f = L‘r—g(?_f = L‘r—g(gu —i0v)

and thus
(14 0)(0u +idv) = (1 — ) (Fu — i0v).
This shows that 2i0v + 200u = 0, and therefore
(010, 09v) = (—oO9u, 00 1).

It follows that

01(001u) 4+ 02(00au) = 01090 — De01v =0
and

O1(07101v) + 02(c L Dov) = —0100u + Dd1u = 0.

The last computations are easy to justify in the weak sense, which proves

the result. O

Exercise 5.11. Let Q C R? be a bounded simply connected open set, and
let F: Q — R? be a vector field with components in L?(2) whose curl
vanishes in the weak sense,

81F2 - 62F1 =0 in Q.
Show that F' = Vp for some real valued function p € H*(Q).

Exercise 5.12. Justify in the weak sense the computations in the end of
the proof in Proposition 5.10.

Several remarks are in order. The first order equation (5.10) is called a
Beltrami equation. There is a one-to-one correspondence between solutions
of V-oVu = 0 and of f = udf, where o and p are related by the formulas in
Proposition 5.10. It is very important that the complex coefficient u satisfies
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||l ;oo < 1; this is the condition for uniform ellipticity of the Beltrami
equation and ensures that the corresponding conductivity stays positive and

bounded.

Solutions of V- oVu = 0 are called o-harmonic functions. The function
v constructed in Proposition 5.10 is called a o-harmonic conjugate of u. The
situation is symmetric so that the o-harmonic conjugate v of u is itself a
1/o-harmonic function.

In a sense, the o-harmonic conjugate ” completes” the original o-harmonic
function u into a ” y-analytic” function f = u+ dv. This generalizes the fact
that a harmonic function v can be ”completed” into an analytic function
f = u+ iv by using the harmonic conjugate v (this is also obtained from
Proposition 5.10 in the special case where ¢ = 1, so that u = 0 and the
Beltrami equation is just f = 0). The theory of analytic functions (so-
lutions of df = 0) provides strong complex analysis tools to the study of
harmonic functions (solutions of Au = 0). In the same way, the point of
view of the Beltrami equation provides powerful tools (now based on the
theory of quasiconformal mappings) to the analysis of o-harmonic functions
and also the Calderén problem. For completeness, we will give the definition
of quasiconformal mappings in the end of the section.

Above we have reduced the study of solutions of V - ¢Vu = 0 to the
Beltrami equation 0f = udf. Now we make a similar reduction on the level
of boundary measurements. Given a o-harmonic function u € H*(D), we
specify a unique o-harmonic conjugate v € H'(D) by requiring that

/ vdS =0.
oD

If pp € L*(D) with || oo (py < 1, we define the p-Hilbert transform
H,, - H/?(0D;R) — HY2(OD;R), ulap — vlop
where f = u + iv solves Of = pdf in D and faDvdS = 0.

Exercise 5.13. Show that H, is a well-defined bounded linear map on
H'Y2(0D;R).

Proposition 5.14. Knowledge of A, determines the operators H,, H_,,
and Ay /5. Further, one has the identity

for any g € H'/?(0D) with fangS =0.

Proof. 1. Let g € HY/?(9D), let u € H'(D) satisty V - oVu = 0 with
ulsp = g, and let p € H*(D). We have

(Asg, ) = / oVu - Vod.
D
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Letting v be the o-harmonic conjugate of u with faDvdS = 0, so that
(01v,09v) = (—00u, 001u), we have

(Aog, @) = /D((?gv, —01v) - Vedr = /BD((—VQ,Vl) -Vou)edsS.

This shows that
in the weak sense, where Or = (—vy, 1)V is the tangential derivative along

OD.

2. We have recovered the tangential derivative of H,, from the DN map,
and it is enough to prove that any function h € HY/ 2(D) whose integral
over 0D vanishes is uniquely determined by dph. This can be done by using
Fourier coefficients (see Problem 5.15 below): one expands h in Fourier series

h(e?)y= " h(m)e™

m=—00
where the Fourier coefficients are given by

R 1 2 . A

h(m) = — / e~ ™0 n(ei?) db.

2 0
The Fourier coefficients of drh are given by
(drh) ~ (m) = imh(m).

One has B(O) = 0 since the integral of h over 0D vanishes. Consequently

h(eiﬁ) _ i (8Th) . (m) oimo

mm
m=—o00,m#0

We have proved that A,g = OrH,g determines H,g.

3. The identity (5.14) is proved in Problem 5.16 below. Assuming this
identity, we see that Hy, are bijective operators on the space of functions
in H'/2(dD) whose integral vanishes. Therefore

Hop=—Hu) ™!

for such functions. Since H+,(c) = 0 for any constant c, the operator #,
determines H_,. Noting that

oc—1 1-1/o

c+1 1+1/o

we have Ay, = OrH_ ;. Thus the operator A, indeed determines H,,, H_,
and Ay /. O

_M:
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Exercise 5.15. If s > 0, show that

Extend this characterization to all s € R, and show that any element h €
H#*(0D) can be written as the Fourier series

. _ . 1 A .
h = Zh(m)elmg, h(m) = o /8]]]) e n (e dp

with suitable interpretations for the sum and the integral. Show that
(drh) ~ (m) = imh(m).

Exercise 5.16. Prove the identity (5.14) for any g € H'/?(9D) whose inte-
gral over 0D vanishes.

We now explain how the previous reduction is related to quasiconformal
mappings. To do this, we first need to give a definition of quasiconformal
mappings. Let Q C C be a bounded open set, and let f € Wlf)cl(Q) Then
the first partial derivatives of f exist at almost every point in 2, and at

these points we can define the directional derivative

0uf () — tim TEETEN) = )

r—0 T

= cos()01 f(2) + sin(a)da f(2).

For small r, we consider the image of the circle a — z + e’ under the map
f. The value |0, f(2)| measures how much f distorts an infinitesimal circle
at z in direction a. The next problem expresses this in terms of the complex
derivatives.

Exercise 5.17. Show that
0o f(2) = Df ()e 5 + 0 f (2).
Show that d, f(z) is independent of « if and only if 9f(z) = 0.

Recall that a map f : Q — Q' between two open sets in C is called
conformal if it is analytic and bijective onto its image (this implies that the
derivative of f is nonvanishing in §2). The previous problem can be inter-
preted so that conformal functions map infinitesimal circles to infinitesimal
circles: if 0f = 0 then

f(z+ 7€) = f(2) + 0uf(2)re’™ = f(2) + Of (2)re™®
This is, in a sense, a very strong requirement. For instance, it follows from

the Schwarz lemma in complex analysis that

az+b

f:D — D conformal = f is a Mdbius map, f(z) = td-
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Quasiconformal mappings relax this requirement, and require that f maps
infinitesimal circles to infinitesimal ellipses with uniformly bounded eccen-
tricity. Thus, instead of the condition that |0, f(z)| is independent of «, the
condition is

max |0y f(2)| < Kmin|d, f(z)| for a.e. z € Q,

where K is a uniform constant with 1 < K < oco. The precise definition is
as follows.

Definition 5.18. Let 1 < K < oco. A mapping f € VV;OCQ(Q) is called
K -quasiregular if it is orientation preserving (in the sense that its Jacobian
|af|* — {5 f {2 is nonnegative almost everywhere) and if the condition (5.2)
holds. If in addition f is a homeomorphism onto its image, then f is called
K -quasiconformal.

Quasiconformal mappings form a much larger class of mappings than
the conformal ones. For instance, compare the result of the next problem to
the fact mentioned above that any conformal map D — ID must be a Md&bius
map:

Exercise 5.19. Show that any C! orientation preserving diffeomorphism
f:Q — Q, where Q and Q' are open sets containing D, restricts to a
quasiconformal map D — D.

Despite being a much larger class than conformal mappings, quasicon-
formal mappings still have a powerful and well established theory with many
applications in elliptic PDE (both linear and nonlinear), conformal geom-
etry, complex dynamics, and inverse problems. It is remarkable that qua-
siconformal maps can also be characterized as the solutions of a PDE, the
Beltrami equation, showing that the inequality (5.2) is in effect equivalent
with a partial differential equation. The next problem discusses this equiv-
alence for mappings with C! regularity.

Exercise 5.20. Let f: Q — Q' be a C! orientation preserving diffeomor-
phism between two open subsets of C. Show that f is quasiconformal if and
only if B

Of = pudf in Q
for some p € L>(Q) with |[|p[| oy < 1.

Note that the Beltrami equation in (5.10) differs from this Beltrami
equation in the theory of quasiconformal mappings by having 0f instead of
Of on the right-hand side. However, one can sometimes make a reduction:
(5.10) can be written formally as

] 7
of = idf, ji= ua—?
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The last step can often be made rigorous, since in many cases of interest
one has df # 0 almost everywhere.

5.3. Cauchy and Beurling transforms

In the previous section, we made a reduction from the conductivity equation
V-oVu=0
into the Beltrami equation
Of = pdf.
In the study of the Calderén problem in the plane, it will be very useful

to know about properties of solutions of various Beltrami equations. The
simplest such equation is the d-equation

du=f inR2
We will construct a solution operator P, called the Cauchy transform (some-
times also solid Cauchy transform), such that u = Pf will be a unique solu-

tion of this equation in suitable function classes. In fact, we will prove the
following result. If K C R? is a compact set write

L (R?) := {f € LP(R?); supp (f) € K}.
Proposition 5.21. Let p > 2. There is a linear operator
P12, (R?) — WP(R?)

such that for any f € Llomp(R?) the function u = Pf is the unique solution
in WIP(R?) of the equation

du=f inRZ
If K C R? is a compact set then there is a constant C > 0 such that
1P fllwrome) < Cllfllomey,  f € Li(R?).

For later purposes, we also record a result for the Cauchy transform
acting on functions that are not compactly supported, but rather lie in the
space

L**(R?) = {f € L*(R?); f € L*™5(R*) N f € L*7(R?) for some € > 0}.
Proposition 5.22. The Cauchy transform extends as a linear operator
P: L**(R?) — Cy(R?).
The other main result in this section concerns a somewhat more general
Beltrami type equation, given by
Ou—vdu=f inR2%
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Here we assume that v € L5, (R?) satisfies the ellipticity condition [|v| ;. <L

We can try to solve this equation by treating it as a perturbation of the J-
equation and by looking for a solution in the form Pw. Since one should
have dPw = w, this equation reduces to

(I —vS)w=f inR?
where S is the Beurling operator (or Beurling-Ahlfors operator)
S =0P.

This operator turns out to be bounded on LP spaces, and the ellipticity
condition ||v||;« < 1 allows to solve the equation (I — vS)w = f at least
for p close to 2. The Beurling operator has the important property that it
intertwines the 9 and O operators.

Proposition 5.23. Let 1 < p < oo. There is a bounded linear operator
S : LP(R?) — LP(R?)
such that for any f € I/Vli’cl (R?) with Of € LP(R?),
SOf = 0f.
If w € Lipmp(R?) with q > 2 one also has
Sw = 0Pw.

The norm of this operator satisfies

1512 2 = 1 1Sl o = 1.

The rest of this section is devoted to proving Propositions 5.21 and 5.23.
Let us first consider solving the equation

ou=f inR2
This is a linear partial differential equation with constant coefficients, and we

can formally solve it by Fourier analysis. Fourier transforming this equation
leads to

i SN

& +i)a=f
and formally dividing by the symbol shows that the solution u should be
given by

I N
u=F"{Satgl}
Since the Fourier transform maps convolutions to products, this formally
implies that u = K * f, where

_ -1 3 1
K=r {%£1+i£2}'

It is fortunate that this inverse Fourier transform can be computed explicitly.
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Proposition 5.24. Writing z = x1 + ixs, we have
K=_L.
TZ
Proof. Writing
1 1
6 1ig  estg e T X g e

1
C1tics o ) o
transform K is also a tempered distribution. We first give a heuristic argu-

ment that allows to guess what K should be. Formally
2 - 1
K(x) = (2r _2—,/ PR S |
() = (2m) i JR2 &1+ i
This expression has the following property under dilations: a change of
variables ¢ = A~!n) shows that

€ L'(R?) + L®(R),

we see that is a tempered distribution and hence its inverse Fourier

2 ; 1
K(\x) = (27 _2—_/ AN~ e = \TIK r), A>0.
()()sz &H&& (z)
Also, if Ry = (cosf,sinf, —sinf, cosf) is the rotation matrix that corre-

sponds to multiplication by €? in the complex notation, a change of variables
& = Ryn gives
1

. 2 .
K 6202 — (27 2_'/ ezRgm-ﬁil
(e72) = (2m) ()t &1+ &

Based on these symmetries, one expects that
K(re?)y = r 1K (e?) = r e K (1).

dé = e YK (2).

Since K (1) is just some constant ¢, we make the guess that
1
K(z) =c—.
() =c;
We will now prove that this guess is correct, and we also determine the
constant c.

A. O

Issue. [Note: much of Proposition 5.21 is already proved in the
earlier version of the 2D result (Section 5.4 in the book). One
could use all the material and exercises from there that can be
used. The Lé’omp — WP bound follows from convolution estimates
and properties of the kernel.]

Issue. [Note: Proposition 5.23 is proved by noting that the kernel
of 0P gives rise to a Calder6n-Zygmund operator, and by appealing
to their L? boundedness. The property SOf = 0f for f in this class
follows by using convolution approximations. The norm bound
on L? is true because on the Fourier side the operator acts by
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multiplication by a unimodular function, and the LP statement
follows from the Riesz-Thorin interpolation theorem.]

5.4. Existence and uniqueness of CGO solutions

We are ready to introduce the complex geometrical optics solutions that will
be used to resolve the Calderén problem in the plane. Recall that in dimen-
sions n > 3, we employed exponentially growing solutions to the Schrédinger
equation (—A+¢)u = 0 which resembled the harmonic exponentials depend-
ing on a vector p € C" with p- p =0,

up(x) =e”*, Aug=0.
In the case n = 2 we have reduced the conductivity equation to a Beltrami
equation. The complex geometrical optics solutions to the Beltrami equation
will be based on the analytic exponentials depending on a complex number
keC,

fo(z) = ez’kz7 5f0 =0.
The next proposition is the basic existence and uniqueness result for such

solutions. Their behavior for large values of k is a subtle issue and will be
considered only later.

Proposition 5.25. Let u € L, (R?) with ||p||; < 1. For any k € C,

comp
there is a unique solution f, = fu(-,k) of the equation

Of = pdf in R?
having the form

Fulz, k) = (1 +nu(2, k)

where
77#( ) k) € I/Vlif(RQ)’
1
Mz k) = O(2) s |2] = oo,

Further, n,(-,k) € WYP(R?) for some p > 2. In the case k = 0 one has
fu(z,0) = 1.

This result is ultimately a consequence of a strong form of Liouville’s
theorem. The usual form of this theorem states that any analytic function
which is uniformly bounded on R? is constant. It is convenient for later
purposes to define the space of continuous functions vanishing at infinity,

Co(R?) = {f : R? = C continuous; f(z) — 0 as |z| — oo}.

It follows from the definition that any function in Cy(R?) is uniformly
bounded on R2.

Exercise 5.26. Prove the following forms of Liouville’s theorem:
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(a) Any bounded analytic function on R? is constant.
(b
(c¢) Any function f € I/Vli’cl (R?) satisfying f = 0 and f(z) = o(1) as |z| — oo
is identically zero. (The last condition means that

)
)

Any analytic function in Co(IR?) is identically zero.

lim ess sup|, >z |f(2)] =0.)
R—o0

The following is the strong form that we will use.

Lemma 5.27. Let v € L35, (R?) with ||[v|« < 1, and assume that o €

L. (R?). Let also p > 2 be such that

comp
[l e ISl o s pr < 1.
Then for any f € LEomp(R?), the equation
99 —vdg+ag=f in R?
has a unique solution g € VVI})CQ(RQ) with g(z) = o(1) as |z| — co. Moreover,
g is in WHP(R2) N Co(R?) and g(z) = O(1/2) as |z| — oco. If f is supported
i a fized compact set K, then
HgHWLP(RQ) <C HfHLP(RQ)

for some constant C' independent of f.

At this point, Proposition 5.25 follows easily. In the proof and at many
points below, we will use the notation

ex(2) = pilkztkz)
Proof of Proposition 5.25. Note that
(e v) = e**du, (e v) = (0 + ik)v.
Inserting the form f = e***(1 + ) into Of = pdf, we have the equivalences
of = pdf
& et*on = ,ue_ia(a_n — ik7 — ik)
& 0n — pe_p0n + ikpe_pn = —ikpe_y.

Notice that |eg(z)| = 1. Therefore the coefficients of the last equation are
in L, (R?) with |[pe_p||; < 1, and the right hand side is in Lmp(R?)

for any ¢ > 1. Fix p > 2 such that

ekl oo 151l o po < 1.
By Lemma 5.27 the last equation for n has a unique solution with n €
Wlif(RQ) and n(2) = O(1) as |z| — oo, and further n € WHP(R?). If k = 0
the right hand side is 0, and then the unique solution is 7(z, 0) = 0 showing
that f(z,0) = 1. O
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To warm up for the proof of Lemma 5.27, we first give a slightly simpler
result for a related equation.

Lemma 5.28. Let v € L, (R?) with ||v| ;. < 1, and assume that o €

comp

L. (R?). Let also p > 2 be such that

comp
[l oo 151l 2p s 1o < 1.
Then for any f € LEomp(R?), the equation
dg —vdg+ag=f inR2
has a unique solution g € WP N Cp(R?).

Proof. 1. The first step is to reduce (5.28) to the case « = 0. To do this,
we find a function 8 € W1P(R?) satisfying
0B — vop = a.
A solution is given by 8 = Pw, provided that w € Lfomp(R?) satisfies
w—vSw = a.

This has the solution w = (Id —vS) !, where Id —vS is invertible on LP by
the assumption. By writing w = a+vS(Id —vS) " ta we see that w € LEmp,
and consequently 8 € WHP(R?) as required.

2. To show the existence of a solution, note that the equation (5.28) is
equivalent with
(0 —vd)(’g) = €’ f.
We try e’g = Pw. This solves the last equation provided that w satisfies
w—vSw =€’ f.
Since f € WP ¢ L™, it follows that eff € L¥omp and the function w =
(Id —vS) "1 (P f) € LEomp satisfies the equation required of w. Then
g=e¢PPuw
is a solution of (5.28) with g € WP N Cy(RR?).
3. For uniqueness, assume that g € WP N Cy(R?) solves
dg —vdg + ag = 0.
Choosing 3 as in Step 2, this is equivalent with
(& —vd)(ePg) = 0.
Since efg € WP, the function w = 9(eg) € LP satisfies e’g = Puw.
Consequently
w—vSw = 0.

Now Id —vS is invertible on LP so w = 0. Thus d(e’g) = 0, and since
ePg € Cp we obtain e?g = 0 from Liouville’s theorem (Problem 5.26(c)). [
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The proof of Lemma 5.27 is similar to the previous proof, the main
difference being the appearance of complex conjugates of g and Jg.

Proof of Lemma 5.27. 1. We begin by proving uniqueness of solutions.
Suppose that g € VVI1 2(RQ) g(z) =o(1) as |z| = oo, and

dg — vdg + ag = 0.
Define
99 g
5(2):{%9, dg(2) #0, d(z):{ag, g(z)%S,

=
S5
Q
—
N
SN—
=)

Then v, & € ngmp(RQ). These functions are measurable since g and dg are.
This may be seen for instance by writing
=2

X{g;ﬁO} T2, X{g#0}

8—>0| > +e
Note also that
128 e < NVSllppope < 1.
Then g is a solution of
0g —v0g + ag = 0.
Choosing 3 € WHP(R?) such that 8 — 798 = & as in Step 1 of the proof of
Lemma 5.28 and writing h = e®¢, we reduce matters to the equation

Oh — vOh = 0.

2. It is sufficient to prove that any solution h € VVli’Cz(RQ) of (5.4)
satisfying h(z) = o(1) as |z| — oo is identically zero. From (5.4) we see
that Oh € Lgomp(]RQ) and consequently 0h = SOh. Tt follows that w = Oh
satisfies

w —vSw = 0.
Since Id —#S is invertible on L2, it follows that w = 0. Thus 0h = 0, and
Liouville’s theorem (Problem 5.26(c)) shows that h = 0.

3. It remains to prove existence of solutions. Because of the g term
the reduction to the case a = 0 is not immediately available. However, we
can use the uniqueness of solutions combined with the Fredholm alternative
to get the desired result. Write C' : g — g for the complex conjugation
operator. We need to solve

(0—vCO+aC)g = f.

Looking for a solution in the form g = Pw for w € Loy, it follows that
w should satisfy
(Id —vCS + aCP)w = f.
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Since ||[vCS||;p_,» < 1, the real-linear operator Id —vCS has the bounded

inverse
o

(Id—vCS)™' => (vCS).

=0

The equation (5.4) for w is equivalent with
(Id+R)w = (Id —vCS) "' f

where

R = (Id —vCS) 'aCP.

4. Let K C R? be a compact set containing the supports of v, a, and f.
Since P is bounded L% (R?) — W1P(R?) and multiplication by a compactly
supported function is a compact operator from W1P(R?) to LP(R?) (this is a
consequence of compact Sobolev embedding), it follows that R is a compact
real-linear operator on L% (R?). By the Fredholm alternative, (5.4) has a
solution w € L% (R?) if and only if Id +R is injective on L% (R?). But by
tracing back the steps above, any solution w € L (R?) of (Id+R)w = 0
gives rise to h = Pw € WP N Oy satisfying

Oh — vOh + ah = 0.

Thus h = 0, and also w = 0h = 0. This shows injectivity of Id +R and
solvability of (5.4), which implies existence of a solution g € WHP(R?) N
Co(R?) to the original equation. The Fredholm alternative also implies that
the inverse of Id+R is bounded on L% (R?), and the norm bound for g
follows from (5.4) since

g=PId+R)'1d-vCS)"'f.

5. The final step is to prove that any solution g € Cy(R?) satisfies
g(z) = O(1/z2) as |z| — oo. Since dg = 0 outside some large disk with radius
R, the function h(z) = ¢g(1/z) is analytic in B \ {0} where B = B(0,1/R).
By the condition g € Cy(R?), we have that h(z) — 0 as z — 0. The
removable singularities theorem in complex analysis implies that A is analytic
in B with h(0) = 0, and consequently we may write h(z) = zv(z) for some
function v analytic in B. Thus ¢g(z) = v(1/z)/z for |z| large, showing that
9(z) =0(1/z) as |z| = oc. O

Exercise 5.29. Prove the removable singularities theorem used in the pre-
vious proof: if w is analytic and uniformly bounded in D\ {0}, then w has
a unique extension as an analytic function into .

We also give a variant of Lemma 5.27 that will be used later.
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Lemma 5.30. Let v € L3, (R?) with ||[v|« < 1, and assume that o €

Lo (R?). Let also p > 2 be such that

comp
[l oo 151 Loy < 1.
Ifg e I/VZE’CQ(RQ) solves the equation
99 —vdg+ag=0 in R?,
then g is continuous. If additionally g is bounded, then g = C'e® where C' is
a constant and 8 € W1P(R?).

Exercise 5.31. Prove Lemma 5.30 by modifying the proof of Lemma 5.27.

5.5. Basic properties of CGO solutions

Using Proposition 5.25, we can easily show one basic property of the solu-
tions f,,: their values in R2\ D are uniquely determined by the DN map.
This will be an important step in the solution of the Calderén problem.

Proposition 5.32. If A,, = A,,, then
S (2,k) = fipy (2, k) for z € R*\ D.
Proof. Since A,, = A,,, we obtain from Proposition 5.14 that
Hpy = Hetps-

It is enough to consider the solutions f,,;. Decompose f,,, = f,,(-,k) into
real and imaginary parts as

Ju; = uj + ivj.
We wish to define a function
u(z) +1i0(z), =zeD,
(2) = {uz(z) +iv(2), zeR2\D,
such that f solves 8f = ,ul(?_f in R2.
Let first @ be the unique W12(D) solution of
V-onVi=0in D, |sp = uz|sp.

Since vg|p is a o-harmonic conjugate of us|p in D, it follows that for some
constant ¢y one has

valap = Hy, (u2]op) + co-
Let & € Wh2(D) be a oj-harmonic conjugate of @ in . This is unique up
to an additive constant, and we fix this constant by requiring that

/m(@ — o) dS = 0.

Then
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lap = (0 — co)lap + co
Hyn (lom) + co
= Hp, (iilop) + co
Hy, (u2lop) + co

2|oD-

I
S

Now define f by (5.5). Since @ + id|gp = uz + iva|gp, the function f is
in Wlif (R?). Then
Of = 110f in R?

since f satisfies this equation both in D and R? \ D. Also, one has

f=e™(1+7)
where 7) = e~**f — 1 is in I/VI})’(?(RZ) But since f = f,, = €**(1 4+ 1) in
R2\ D where 12(z) = O(1/2) for |z| large, it follows that 7j(z) = O(1/z)
for |z| large. We can now invoke the uniqueness part of Proposition 5.25 to
conclude that 3

= fm in R?.
This shows that f,, = f,, in R?\D. O

Another property of the solutions f,, that follows quite easily is their
smoothness with respect to the parameter k. This will be used in the next
section when deriving the 05 equation for the scattering transform. Recall
that we write f,(z,k) = e**(1 + n,(2, k)) where n,(-,k) € WHP(R?) for
some p > 2.

Proposition 5.33. For some p > 2, k — n,(-,k) is a C°° map from C
into WHP(R?) and k — fu(-,k) is a C°° map from C into I/Vllg’f(RQ).

The statement for F' : k + n,(-,k) means that all Frechet derivatives
(D™F)y exist at each k € C, and the maps k — (D™F); are continuous
C — L(C™ W1P(R?)). The proof is an easy consequence of the next result.

Lemma 5.34. If k € C define
Ly(k) : WHP(R?) — WYP(R?), Ly (k)g = P(ud(exg)).

(a) The map k + exr|p is a C™ map from C to WH°(B) for any bounded
open set B C R2.

(b) The map k +— Ly, (k) is a C* map from C to L(W1P(R?)).

(¢) For each k the map Id — Ly, is bounded and invertible on WP(R?), and
kv~ (Id—L,)"" is a C* map from C to L(W1P(R?)).
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Exercise 5.35. If X,Y,Z are normed spaces and F : U — Y is CF
(resp. C*°) in some open set U C X, and if A : Y — Z is a bounded
linear map, then Ao F is C* (resp. C*) and D™(Ao F) = Ao D™F.

Exercise 5.36. If X, Y, Z are normed spacesand F' : U — V,G:V — Z are
C* (resp. C*) maps where U C X,V C Y are open sets, then GoF : U — Z
is C* (resp. C*) and

D(G o F)y = DGp(y) o DF;.

Exercise 5.37. If X is a Banach space and U is the set of invertible elements
of L(X), show that the map U — L(X), A~ A™!is C*°.

Proof of Proposition 5.33. Note that the solutions f = e***(14-7) given
in Proposition 5.25 are characterized by

Of = pof < e**on = NW — /u'life*iE
<= On = pd(exn) — pike_p.

Since n € W1P(R?) and the right hand side is in L’c’gmp(Rz) for some p > 2,
it follows that

n = P(ud(eyn)) — ikP(pe_y).
Equivalently, (I — L, (k))n = —ikP(ue_y). By Lemma 5.34, we have
(- k) = —ik(I = Ly, (k)" (P(pe_y))-
O

Proof of Lemma 5.34. (a) Let F : k — ei|p from C to WH>(B). If
t € R, the Taylor expansion of f(t) = e implies that

sm

t
et =1+it+...+ %tm + Ryni1(t), Rmia(t) = / e (t—s)"ds.
: 0

Since ey = exep for k, h € C, we have
_ im _ _
ekrn =¢€p |1 +i(hz+hz)+...+ E(hz + hz)m} + e Rmt1(hz + hz).
The remainder term satisfies

l|exRin+1(hz + hz < Crpi B

Mo s
(b) Let B = B(0, R) be a ball containing the support of p. Define
(DLy)klhlg = P(nC(en(i(hz + hz))g)).
We have
(Lu(k + ) — Lu(k) — (DL )slH)g = P(uC(exRa(he + i)

We leave it as an exercise to check that the higher derivatives also exist and
kv L, (k) is a C° map.
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(b) It follows from (a) that I — L, is bounded on WP(R?). To show that
it is invertible, we need to show that the equation (/ —L,)g = f has a unique
solution g € WHP(R?) for any f € WIP(R?), and that ||g|lyy10 < C || fllyyiw
for some constant C' independent of f.

Writing g = f + h where h € WP(R?), the equation is equivalent with
(I—-Lyh=L,f.

We write L,w = P(uexdw + u(éeﬁ)u’)). Since p is compactly supported
and h, f € WHP(R?), we may take O of the earlier equation and obtain the
equivalent equation

Oh — perdh — p(de)h = perdf + p(dey) f.

The right hand side is in Lfomp(R?) and the coefficients pey, pu(dex) are in
L%, (R?) with ||peg|| o < 1. Thus Lemma 5.27 applies, and it follows that

the last equation has a unique solution h € WHP(R?) for any f € W1P(R?)
with the norm bound

hllyrp < Clnerdf + u(@er) fll o < C Iy -
The invertibility of I — L, on WP(R?) follows. O

Exercise 5.38. Complete the details of the proof of part (b) in Lemma
5.34.

5.6. Scattering transform

In the previous sections we have made a reduction from the conductivity
equation V - oVu = 0 into a Beltrami equation 0f = pudf, where p and o
are related by

-0 1-1/o
I
Note the symmetry between £p and o*!; from this point on it is convenient
to consider both p and —p (or o and 1/0) simultaneously.

We have also defined the p-Hilbert transform #H,, and constructed CGO
solutions f, to the Beltrami equation, and have proved the following impli-
cations:

I

Ay = Ag,
- Him = Him

= f:l:Ml‘(C\D = f:l:;m‘(C\lD)-
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The final step in the proof is to show that fi,, = fi,, also in . From this
fact, one can conclude (at least formally) that

_ 5fu1 _ 5fu2
afﬂl D af,uz

Using the relationship between o and p, this would immediately imply that
o1 = o9 in D.

pilp

o = Halp-

The proof that fi,,|p = fiu,|p is involved, and it relies on the fact that
the solutions fi, = f1,(z, k) satisfy a O-type equation also with respect to
the complex variable k. In fact, the 0 equation for these solutions turns
out to be in a sense simpler than the 0; equation 0; f1, = +10. f+, that we
have studied before.

To state the 0}, equations, it is convenient to switch from solutions of
the Beltrami equation back to the original conductivity equation. From
Proposition 5.10 and the relation (5.6) we know that Re(f,) and Im(f_,)
are solutions of V- oVu = 0 in R?, and Im(f,) and Re(f_,) are solutions
of V- (1/0)Vu = 0 in R?. We define two complex valued functions

Ug = Re(fu) + Z'Im(f,u),
Uy /g = Re(f-,) +iIm(fy,).
Note that the pair (uq,u;/,) uniquely determines the pair (fy, f-,), and

vice versa.

Proposition 5.39. Let a denote either o or 1/o. For any k € C the
function ug(z, k) is the unique complex valued solution of

V -aVug(-,k) =0 in R?
having the form
ua(z, k) = €™ (1 4+ r4(2,k))
where rq( -, k) € I/Vll’Z(RQ) and rq(z,k) = o(1) as z — oo. Further, ug is C™°

oc
with respect to the k variable, and for any z € C it satisfies the Of-equation

g (2, -) = —i7a( - ua(z, -) in R?

where 7,(k) is a complex function in R?.

The coefficient 7, (k) deserves a special name. We will explain the reason
for this terminology in the end of this section.

Definition 5.40. The function 7, (k) is called the scattering transform or
nonlinear Fourier transform of a positive L* conductivity o.

A number of basic properties of 7, (k) for a positive L* conductivity o,
with ¢ = 1 in R? \ I, are given in the next proposition.
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Proposition 5.41. The scattering transform is a C* function with respect
to k, and it satisfies [Note: formatting]

|7 (k)| <1 for any k € C,

Tl/a(k) = _Ta(k)'
It is determined from the special solutions f+, by [Note: formatting]

— 1 _
7o) = (05 (K) — b (1),
bf“(kz) = Zlggo 2(e”™ fi, (2, k) — 1), keC.
In particular, if Ay, = Ay,, then 17, = 7o, .
We will begin the proof of Propositions 5.39 and 5.41. Recall that

Nu(z, k) = e_iszu(z, k)—1
The equation O fu = ua—fu, together with the fact that 4 = 0 in R? \ D,
implies that
O:nu(- k) =0 in R?\D.
Since also 1,(z,k) = O(1/z) as z — oo, the function z — n,(1/2,k) is an
analytic function in D vanishing at 0 and continuous up to 9dD. It follows
that

nu(1/2,k) = Zb" k)2*, 2] <1,

where b, (k) is obtained as the Fourler coefficient

1 2w ) )
(k) = o /0 e~ ™0, (e k) do.

A similar argument works for 7_,, and we have
N (2, k) = Zbi“ ] >

Proof of Proposition 5.39. It is enough to consider wu,. Since f, =
e*#(1 +n,), we have

Re(fu) = ““(1+77u+6 k(1 +T70),

(/) = I

5 ¢ (L4 = ex(14775),

Consequently

us = Re(f,) +iIm(f-,) = etkz (1 + M+ 1-p + e_kn” — 77u> .

2 2
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Thus u, is a solution of V - ¢Vu = 0 in R? of the form e**(1 + r,) where
7 (2, k) has the required properties. We leave the uniqueness of solutions of
this type as an exercise. (Note that a slightly weaker statement, namely the
uniqueness of the pair (uy, uq /0) satisfying conductivity equations for o and
1/0 and having asymptotics as above, would reduce easily to the uniqueness
of f, and f_,. Also this weaker fact would be sufficient for completing the
proof of the Calderén problem.)

Proposition 5.33 and (5.6) show that u, is C* in k. Computing the O
derivative gives

Dty = ¢ [—ize_ e —277# Lo, <77u +277u> e 0 <77u —;m)]‘

The expression (5.6) implies that

o= _ V) — by (k)
2

2
where 7(-, k) € WY*(R2) and 7 = O(1/2) as z — co. Defining 7, (k) by

loc
(b (k) — by "(K)),

+7(2, k)

N | —

7o (k) =
we obtain B
Oy = e~ k% ity (k) + 7(2, k)]
with 7(-,k) € Wllg’f(Rz) and 7 = 0O(1/z) as z — 0.
On the other hand, since u, solves V - cVu, = 0 in R? and since it is

smooth in £, also the function dzu, solves the same equation. Thus we have
two solutions of this equation,

Tpug = & [im(R) +o(1)]

iTe(k)uy = e** [z% + 0(1)]

as z — oo. The uniqueness statement for these solutions implies that they
have to be equal, thus resulting in the J; equation

Opuo(z, - ) = —iT,( - Jue(z, -).
(]

Exercise 5.42. Show the uniqueness statement for the complex geometrical
optics solutions in Proposition 5.39.

For the proof of the bound (5.41) for the scattering transform, we first
record a number of useful properties of the functions

My, (2,k) = e *fo .
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We will make use the next elementary fact and also the classical Schwarz
lemma from complex analysis.

Exercise 5.43. If z,w € C, w # 0, and Re(z/w) > 0, then one has z+w # 0

and
Z—w

'<1.
Z+w

Exercise 5.44. Prove the Schwarz lemma: if i is analytic in D with A(0) = 0
and |h(z)| <1in D, then |h(z)| < || in D.

Lemma 5.45. The function M+, is nonvanishing. Moreover,
My (2, k) = eP+(=H
where, for some p > 2, Br(-,k) € WHP(R?) for each k. One also has
M
R a 0
()0

so that M, + M_,, # 0 everywhere and

7MM_M_M <1, 7fu_f_“ < 1.
My +M_, Ju+ f-n
If |z| > 1 then
MM_M_M <i fu_f_ﬂ <i
My, +M_, |~ |2| fu+f—u =

Proof. The Beltrami equation for f, immediately implies that

OM,, = pe_xOM,, — ikpe_ M, in R2.
Since M,, = 1+ 1, where n,(-,k) € WHP(R?), the function M, (-, k) is in
W52 and bounded for any k € C. Lemma 5.30 shows that M, = CeéP for

loc
some constant C' and some 3 € WHP(R?) for some p > 2. Since M,, — 1 as

z — 00, we have C' = 1. The same proof works for M_,.

To show the positivity of Re(M,/M_,), assume on the contrary that the
real part is nonpositive at some point in C. Since M,,/M_,, is continuous and
has limit 1 as z — oo, it is not possible that Re(M,/M_,,) < 0 everywhere.
Thus, Re(M,,/M_,,) = 0 for some 2y € C, so there is t € R with

Mﬂ(ZO, ki) = ’L'tM,ﬂ(Zo, ki)
Writing h(z, k) = M, (2, k) — itM_,(2, k), the equations for My, show that
Oh = peydh — ikpe_ih in R2.
Now h is bounded, so by Lemma 5.30 we have h = Ce”. Using that h(zp) = 0

we must have C' = 0, so M,, = itM_,. This contradicts the fact that the
limit of My, as z — oo is 1.



184 5. The Calderén problem in the plane

We have proved that Re(M,/M_,) > 0. Consequently M, + M_, is
nonvanishing, and the conditions (5.45) follow from Problem 5.43. If |z| > 1,
define

M, —M_
m(z, k) = L ——£,
(=4 = ST
By (5.45) we have
Im(z, k)| < 1.

The function h(z) := m(1/z,k) is then analytic in D, satisfies h(0) = 0 by
the asymptotics for M, = 1 +n,, and |h(z)| <1 in D. The Schwarz lemma
(Problem 5.44) implies that |h(z)| < |z|. Consequently |m(z, k)| < 1/]z|,
which shows the bound (5.45). O

Proof of Proposition 5.41. In the proof of Proposition 5.39 we defined
T (k) so that (5.41) is satisfied, and the expression (5.41) follows immediately
from (5.6) and the definition of fi,. Since Proposition 5.32 shows that A,
determines fu, in R?\ D, we see from (5.41) that A, determines by (k) and
thus 7, (k) for all k. The property (5.41) is a direct consequence of (5.41)
since the conductivity 1/0 corresponds to Beltrami coefficient —pu. Also, the
fact that 7, is smooth with respect to k follows since bli” are smooth, using
the Fourier coefficient definition (5.6) and Proposition 5.33.

It remains to prove the bound (5.41). By (5.41), (5.41) the scattering
transform can be expressed in terms of the functions My, as

M, — M_ M, — M_
_ 1 H o1 M M
= ey T M,

Here we used that My, — 1 as z — co. Now the bound (5.41) follows from
(5.45). 0

To explain the origin of the terminology for 7,(k), we describe briefly
and in a formal way a one-dimensional scattering problem where similar
concepts appear. (The multidimensional case will be discussed in Chapter
X.)

Consider an infinite string whose displacement at time ¢ is given by the
function u(x,t). If the string is homogeneous, the displacement function
solves the wave equation

(0 — 9*)u = 0.
A particular solution is given by the one-dimensional plane wave
ug(t,z) = 6(t — ).

This is a Dirac delta function moving to the right, whose peak at time  is
at the point z = t.
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Consider now an inhomogeneous string, whose displacement function
solves the perturbed wave equation

(02— 92+ q)u =0.

The inhomogeneity is given by the potential ¢ = ¢(z) € C°(R), and we
assume that supp (¢q) C [—R, R]. The free plane wave ug(z,t) solves this
equation if ¢ < —R, and there is a unique solution uy(z,t) satisfying

(0} — 02+ quy =0, wuy=wug when t < —R.
The function u, is called the (incoming) distorted plane wave corresponding
to ug.

To describe the distorted plane waves in more detail, we take Fourier
transforms with respect to ¢ in (5.6). Writing

¢Makw=/meimwu¢nm

ol k) = [ Moyt = e,

this results in the equation
(=02 — k* + q)tb, = 0 in R.

The incoming condition u, —ug = 0 for t < —R is transformed into analyt-
icity of g — 1o for Im(k) < 0, and the unique solution vy(x, k) satisfying
the analyticity condition can be explicitly written in terms of resolvent op-
erators.

The functions 1y and v, are also called plane waves (even though they
are the time Fourier transforms of actual solutions of the wave equation).
They are of fundamental importance in scattering theory, and can be used to
parametrize the generalized eigenfunctions of the operators —92 and —92+¢
and also to study various scattering measurements. The family of exponen-
tials ¢ (z, k) = e~ is related to the usual Fourier transform

fmz/mﬂmwwmm,

while the family 1, (z, k) gives rise to a distorted Fourier transform

ﬂﬁﬂ@:/mﬂ@%m@m.

Counterparts of the inversion and Plancherel formulas are valid also for the
distorted transform F.

Finally, we discuss an analogy between the scattering transform 7, (k)
and the above concepts. Consider the inverse backscattering problem of
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determining the potential ¢ from the measurements

lim wy(z,t), teR.

T—>—00
This corresponds to sending a free plane wave from z = —oo and then
measuring the response also at = —oco. From these measurements one can

determine lim,_,_ 94(x, k) for any k by taking the Fourier transform in
time. Simple properties of the resolvent give the asymptotics
1. oo
k) = o)+ 5™ [ Mgk dy, o< R
—0o0

Consequently, one determines the backscattering transform of ¢,

Bu(k) = [ e Mgy k) dy. ke,

—00
Note that in the Born approximation v, =~ 19, one recovers the usual Fourier
transform

By(k) ~ / e 2R g(y) dy.

We have shown that backscattering measurements for the equation (—92 — k% + ¢)y = 0
determine a nonlinear Fourier transform of g, via the special solutions 1),
by
By(k) = lim 2ike™ (4, (x, k) — o(x, k), k€R.
T—r—00

Similarly, boundary measurements for the two-dimensional conductivity equa-
tion V- oVu = 0 (or equivalently the Beltrami equation df = pudf) deter-
mine, via the special CGO solutions f4,, the nonlinear Fourier transform of
U?

b (k) = lim ze ™**(fi, (2, k) — fo(z, k), keC,

oK) = 5 W5 () — b, "(R))

This analogy motivates calling 7, the scattering transform or nonlinear
Fourier transform.

5.7. Uniqueness for C? conductivities

In this section we show that in the case of C? conductivities, one can fin-
ish the uniqueness proof of the Calderén problem. The more difficult case
of bounded measurable conductivities will be dealt with in the following
sections.

Theorem 5.46. Let 01,09 be two positive functions in C%(D) with oy =
oo =1 near OD. If
Aoy = Ay,
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then
g1 — 09.

After a standard reduction, the above theorem implies an analogous
result on any smooth domain.

Exercise 5.47. If  is a bounded domain in R? with smooth boundary
and 01,09 € C%(Q) are positive functions satisfying A,, = A,,, show that
o1 = 02.

Assume that o; are extended as functions in C%(R?) so that o; = 1
outside of D. Even for bounded measurable conductivities, up to this point
we have shown that

Ay = Ap,
= Haip = Hip,
= fimlop = frmlow
— 7—01 = 7—02

where 7, (k) is the scattering transform appearing as a coefficient in the 0j
equation (where z € C is fixed)

g (2, -) = =ity (- Jug(z, -) in RZ.
Here u, is the unique solution of V-oVu = 0 in R? of the form u = e***(1+7)
where r € I/VZE’CQ(RZ) and r = o(1) as z — oc.
In particular, writing
(k) = 76, (k) = 75, (k),
the functions u,, and u,, both solve the same J equation:
Optior (2, -) = —i7( gy (2, ) in R,
Oy (2, - ) = —iT( g, (2, -) in RZ
Using that u, = e”**(1 4 r,), the equations become
Oire, (2, k) = —iT(k)e_i(2)70, (2, k) — iT(k)e_p(2) for k € R?,
oy (2, k) = —iT(k)e_p(2)roy (2, k) —iT(k)e_(z) for k € R?.
Under the assumption that o; are C? functions, we can show that for any
fixed z € C solutions to this equation are unique. We need the following
Liouville type result, which differs from Lemma 5.27 (the case v = 0) by

involving a coefficient o that is not compactly supported but that lies in the
space

L**(R?) = {f € L*(R?); f € L*™(R?) N L?>*(R?) for some ¢ > 0}.
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Proposition 5.48. Let a € L**(R?). Ifg € VV&)S(RQ) is a bounded solution
of

dg=ag inR?
then g = CeP for some constant C' and some 3 € Co(R?). If further g(z) — 0
as z — 0o, then g = 0.

Proof. We make the same reduction as in the proof of Lemma 5.27: define
R fa
so & € L**(R?) and g solves
dg—ag=0 inR2
We wish to find an integrating factor 8 such that
dB=a in R%
If & were in Lgomp(RQ) for some p > 2, we could use Proposition 5.21 and

take § = Pa. However, it is not hard to see that the Cauchy transform P
is also well defined on L?*(R?): decompose

a=xa+(1-x)a
where x is the characteristic function of the unit disc. Then ya € Lgomp(R2)
for some p > 2, and ) = P(x@) is in WIP(R?). Further, (1 - x)a € LY(R?)
for some ¢ < 2, and the function
1 .
fo=—=x(1—x)a
Tz

is in Cp(R?) as the convolution of functions in L9 and LY. Then f =
B1 + B2 € Co(R?) satisfies 98 = & in the weak sense. We have

e Pg)=0
in the weak sense. Since e #g is bounded, the Liouville theorem implies
that g = Ce®. Further, if ¢ — 0 as z — oo, it follows that g = 0. (]

We also need certain boundedness and decay conditions for r, and 7.
Proposition 5.49. Let o € C%*(R?) with o = 1 for |z| > 1. Then, for fized
z € C,

’TU(27 )‘ S Cza
lim 7,(z,k) = o /?(2) — 1.

k—o00

Also, there is € > 0 such that
I, (B)| < C(1+|k))"15, keR2
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Given this result, we can complete the proof of uniqueness for C? con-
ductivities.

Proof of Theorem 5.46. We have seen that A,, = A,, implies 7,, = 7,,.
By the discussion in the beginning of this section, and writing 7 = 7,, = 75,,
for any fixed z € C the function r = r,, — r,, solves the equation

orr(z, k) = —it(k)e_p(2)r(z,k) for k € R2.

By Propositions 5.39 and 5.41, the functions r(z, -) and 7(-) are C*°. Then
by Proposition 5.49 we have r(z, -) € VV&;S(]RZ) NL®(R?), and 7 € L**(R?).
The Liouville theorem, Proposition 5.48, shows that

r(z, k) = C(z)eﬁ(z’k)

where (2, ) € Co(R?).
We will evaluate the last condition at k¥ = 0. Recall that
fiﬂj (2,0)=1
and thus u,(2,0) = 1 s0 74,(2,0) = 0. Thus C(z) = 0 for all z € C. But

also

0= lim C(2)e’®F = lim (r,, (2, k) — r4,(2,k)) = 01_1/2(2') — 02_1/2(2).

k—o00 k—00

This shows that o1 = o9. O

It remains to show the estimates in Proposition 5.49. This is most
conveniently done by reducing the conductivity equation to the Schrédinger
equation, as we did in the uniqueness proof for the Calderén problem in
three and higher dimensions. Recall that

V-oVu=0<= (-A+q,)¥v=0
where u = 0~1/2¢, and the potential ¢, is given by

AO_1/2
Go = 175

Proposition 5.50. Let 0 € C?(R?) with 0 = 1 for |z| > 1. For any k € C,
the equation

(~-A+¢,)Y =0 inR?

has a unique solution 1, (z,k) = €**(1 4 s,(2,k)) with s, € VV&;S(RQ) and
S¢(2,k) = 0 as z — oo. The solution 1, is related to u, by

Py = 0'1/2ug, Sg = ol — 14 01/27°U.
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Proof. This follows immediately from Proposition 5.39: if u, is the solution
of V- (¢Vu) = 0 in R? with u, = e**(1 + r,), then ¢, = 0'/?u, solves
(—=A + ¢o)ty = 0 in R? and

- eikZ(O,l/Q + 0,1/2740) _ eikZ(l + 80)

where s, is as above. For uniqueness, if ¢» = e’**(1 + s) and ¢) = e***(1 + 3)
are two solutions of (—A + ¢,)v = 0 with 5,5 = o(1) as z — oo, then
u=0"Y%Y and & = o~ /24 are two solutions of V- oVv = 0 and

u=e"M1+4 (2 =1407Y2%)), a=e**1+ (Y2 =1+0"1%3)).

The uniqueness part of Proposition 5.39 implies that s = 3. O

We will next show that the correction term s,(z, k) in the Schrédinger
solution goes to zero as k — oo, when z is kept fixed. To do this, we give a
representation of s, in terms an inverse of the conjugated Laplacian. Note
that

e~ 2 A (%7 0) = 49eF* (7 v) = 40(8 + ik)v.
Proposition 5.51. Let 1 < p < 2. The equation
ou=f

has a unique solution u € LP" (R?) for any f € LP(R?), and
ull e < Cpllf -

Proposition 5.52. Let k € C and let 1 < p < 2. The equation

O+ik)u=f

has a unique solution u € LP (R?) for any f € LP(R?), and

Jull e < Cyllf

Further, if f € LP" and Of € LP, the solution is of the form

1
= —(f — (04 ik)"Of).
ik
Proposition 5.53. Let k € C\ {0} and let 1 < p < 2. For any f € LP(R?)
the equation

u

efisz(eikzu) — f
has a unique solution uw € WHP" (R2). Further,
C

L <
||U’HLP = |]C|

1fllze > Nullywres < CNFllL-
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Proof. The equation reads

40(0 +ik)u = f.
Choose
v=0"1(f/4).
Then |[v||;,+ < C| f||;»- Now choose u to solve
(0+ik)u =v.
We have

u= %(v — (0 +ik)Lov) = ﬁ(é—lf — (8 +ik)7'SS).

O

Proposition 5.54. If 2 < ¢ < oo, one has 1 = e**(1 + s) where s € W4
and

s = Gr(I — 4,Gr) "¢

Further,

I8/l e < Isllwre <€

C
m,
and for any € >0

(-, k)l oo < C(L+[K[) 1.
Proposition 5.55.

b = ——t(k) s

Ak
where
théé%mmmwmw»
Proof.
0p(Grf) =~ = (K)e
[
iy (k) = ——t(k)
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5.8. Topological methods

Recall the 0y equation for the solutions u,,
g (2, k) = =ity (k)ug (2, k) in R%

We would like to conclude that solutions to this equation are unique. How-
ever, in the case where ¢ is only bounded and measurable, the solutions u,
will not have sufficient decay properties as k — oo to have uniqueness. The
logarithm of u, will have some decay properties, and we will eventually use
nonlinear J; equations for the logarithms to obtain a uniqueness statement.

Topological methods will be the main tool for dealing with the nonlinear
partial differential equations that arise in this process. The first result is a
simple surjectivity statement.

Lemma 5.56. Let A € C\ {0}, and let F : C — C be a continuous function
such that
F(z) =Xz +2e(z) when |z| >1, &(z) = 0asz— oo.

Then F' is surjective.

Intuitively, Lemma 5.56 should be true since for large r > 0 the curves
t — F(re') look like circles with large radius, and for very small 7 > 0 the
same curves are close to the point F'(0). By continuously deforming these
curves with large r into the curves for small r, one should pass through any
given point of C (the point F(0) is obtained as the limit when r — 0).

The second result is a version of the argument principle for certain so-
lutions of OF + kF = 0 where x € L>°(R?). It shows that one has some
control of the zeros of F' even if there is no decay for x at infinity.

Lemma 5.57. Let A € C\ {0}, and let F' : C — C be a continuous function
such that

F(z) =Xz +2e(z) when |z| >1, ¢&(z) = 0asz— oo.
If additionally F € Wllgf((C) for some p > 2 and for some C >0
|5F‘ < C|F| almost everywhere in C,

then F' has exactly one zero in C.

Let us give some definitions to prepare for the proofs.

Definition 5.58. Let ) be a connected open subset of C. A curve in  is
a continuous map v : [0,1] — €. The curve is closed if v(0) = y(1), and the
image of the curve is

7* = 7([0’ 1])
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Definition 5.59. Let ) be a connected open subset of C. Two closed
curves o and 1 in € are homotopic in € if there is a continuous map
H :[0,1] x [0,1] — Q satisfying for all s,¢ € [0, 1]
H(0,t) =70(t), H(1,t)=n(t),
H(s,0) = H(s,1).
Writing 74(t) := H(s,t), we say that curve 7 is continuously deformed into
71 through the family {vs}se(o,1)-

We also need a way of detecting if a given point is ”inside” or ”outside”
a closed curve. This is given by the index of a point.

Definition 5.60. Let v be a closed C! curve in C. The index (or winding
number) of a point z € C \ v* relative to the curve v is defined as

1 1
Ind,(2) : —/ dw.
g

211 w—z

The next set of problems contains some basic facts about the index
required for the proof of Lemma 5.56.

Exercise 5.61. If y(t) = Re*™ for t € [0,1], show that Ind,(z) = 1 when
|z| < R and Ind,(z) = 0 for |z| > R.

Exercise 5.62. Prove that the map z — Ind,(z) assumes only integer
values, is constant on the connected components of C\ v*, and is equal to 0
on the unbounded component.

Exercise 5.63. If 79,71 : [0,1] — C are closed C! curves and if z € C is
such that

0(t) =1 @) < |y() -2, tel0,1],
show that Ind,,(z) = Ind,, (2).

Exercise 5.64. Prove that if 2 is a connected open subset of C and if g
and ~; are closed C! curves homotopic to each other in 2, then

Ind,,(2) =Indy, (2), =z ¢ Q.

Exercise 5.65. Show that Ind,(z) is well defined for any closed curve ~
(which may not be C!) by

Ind,(2) := ]113.10 Ind, (2)
where ; are trigonometric polynomials that approximate ~ in the L>°([0, 1])
norm. Show also that the results of Problems 5.62 and 5.64 remain valid for
continuous curves.
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Proof of Lemma 5.56. Given wy € C, it is required to show that F'(zp) =
wq for some zg € C. Replacing F' by F' — wg, we may assume that wy = 0.
We argue by contradiction and suppose that F(z) # 0 for all z € C. Since
F' is continuous, the curves

(t) = F(de"),  7(t) = F(Re")
are homotopic in C\ {0} for any §, R > 0. It follows that
Ind,, (0) = Ind,, (0).

Now, using that F(0) # 0, we may find some small § > 0 so that
F(0B(0,0)) C B(F(0),|F(0)| /2). Then 0 is in the unbounded component
of C\ 75, and

Ind,, (0) = 0.

However, using the assumption on F we also see that F(0B(0,R)) is ho-
motopic to the circle 9B(0, R) in C\ {0} for some R > 0 sufficiently large.
This implies that

Indfyl (O) = IndaB(O,R) (0) = 1

We have reached a contradiction. O

The next problems contain the proof of Lemma 5.57.

Exercise 5.66. Prove a version of the argument principle: if F' is a holo-
morphic function in a ball B(0, R), if v(t) = re® for some r < R, and if F
has no zeros on ~+*, then the number of zeros N of F' in B(0,r) (counted
with multiplicities) is equal to

1 F'(z) B
= %[{ F) dz = Indp()(0).

Exercise 5.67. Prove another version of the argument principle: if F'is a
holomorphic function in {|z| < R} that is continuous on {|z| < R}, and if
the curve t +— F(Re*) is homotopic to t + Re*™ in C\ {0}, then the
function F has exactly one zero in {|z| < R}.

Exercise 5.68. Prove Lemma 5.57 by filling in the details of the following
outline: reduce the inequality |0F| < C'|F| to the equation OF + xF = 0
for some k € L™, let B € WLP(R?) with p > 2 satisfy 03 = kxp where
xB is the characteristic function of a suitable large disc B, and apply the
argument principle to the function e® F' that is holomorphic in B.
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5.9. Uniqueness for bounded measurable conductivities

In this section we consider the case of bounded measurable conductivities,
and give the proof of Theorem 5.1 modulo the fundamental subexponential
growth estimate for the complex geometrical optics solutions. Assume that
01,09 € L*°(D) are positive functions such that A,, = A,,. In Proposition
5.39 we have constructed CGO solutions u,; to the corresponding conductiv-
ity equations. Since these solutions are uniquely determined by fi,; (where
f; is the complex coefficient related to o), Proposition 5.32 implies that

Uy (2,k) = Ugy(2,k), 2 €R?*\D, keC.
The next proposition gives a similar result in the interior of .
Proposition 5.69. If A,, = A,,, then
Ugy (2, k) = ugy (2, k), 2z,keC.

The solution of the Calderén problem is an immediate consequence of
this result and a basic fact on quasiregular mappings.

Proposition 5.70. Let Q C R? be a connected open set. If f € VVllgcz(RQ)
satisfies

Of = pof inQ
where p € L>(Q) and [[p||poqy < 1, then Of # 0 almost everywhere in Q
unless f is constant.

Proof. See Astala-Iwaniec-Martin. O

In the case where u € C'1(Q) is real valued (corresponding to a C'! con-
ductivity), we can prove a slightly weaker result that would still be sufficient
for completing the uniqueness proof.

Proposition 5.71. Let @ C R? be a connected open set. If f € Wlif(Rz)
satisfies

Of = uof inQ
where p € C1(Q) is real valued and [kl ooy < 1, then Of # 0 in a dense
subset of Q unless f is constant.

Proof. Let S = {zx € Q; 0f(x) =0}. If @\ S is not dense, there is a point
xo € Q and a ball B centered at g such that f|g = 0. Then also df|p = 0,
so the Jacobian matrix of f vanishes a.e. on B. Then f is a constant map
on B, and also u = Re(f) and v = Im(f) are constant on B. But u and v
satisfy the conductivity equations

V-oVu=0, V-0 'Vu=0
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where
_1=w
o= T
By unique continuation, it follows that u and v must be constant in €2, and
consequently f is a constant map in 2. O

Proof of Theorem 5.1. Since Ay, = A,, implies Ay /5, = Ay/5,, Propo-
sition 5.69 is valid also with o; replaced by 1/0;. The pair (fu,, f-,,) is
uniquely determined by the pair (ue,,u; /U].), so it follows that

f,ul(zak) :f,uQ(Zak), z,k eC.

The Beltrami equations 0 fu; = 1j0f,; imply that

o 5f H1 o 5f p2
e
Ofun  Ofus
at all those points of I where 0f,, and Jf,, are nonzero. By Proposi-
tion 5.71 this is true almost everywhere. It follows that u; = pg almost

everywhere in D, and since

251

N e VN el
Tl P T
we see that also o1 = 09 almost everywhere in D. O

We now focus on proving Proposition 5.69. Due to Proposition 5.39, the
solutions u,; satisfy the 0y equations

3,;u(,j(z, )= —ing( . )m
Also, from the fact that A,, = A,, and from Proposition 5.41 we know that
To (k) = 75, (k), ke C.
Let 7(k) := 75,(k) = 74,(k). It follows that for fixed z € C, both u,,(z, -)

and ug,(z, -) are solutions of the equation

Oru(k) = —it(k)u(k).
If both the coefficient 7 and the solution u (or the function e~**u) would
have suitable decay properties as k — oo, solutions to this equation would
be unique and one would obtain that u,, = u,, as required. (Lemma 5.27
is one example of such a uniqueness result.)

It turns out that when the conductivities are only bounded and mea-
surable, one cannot expect any decay with respect to k in the solutions u,-.
However, one can prove that at least e*““ug(z, k) does not grow exponen-
tially in k. The proof is deferred to the next section.
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Proposition 5.72. We have
Ug (2, k) = %o (2:k)
where, for fized k € C, one has 0,(-,k) € VVZIOf(RQ) for some p > 2 and
do(2, k) = ikz +vi(z), wvp(z) = 0 as z — oo.
Also, for fizred z € C, the function §,(z, -) is C* and
do(2, k) = ikz + ke, (k), e.(k) — 0 as k— oo.
Not discouraged by the lack of decay with respect to k in the solution

Uy, we will try to exploit the decay in its logarithm d,. The 0} equations
(5.9) for uy; imply the following nonlinear equations for d,;:

Oglo, (2, k) = —ir (k)eP7s )0 (=)

_ —iT(k‘)eﬁi Im(éo—j (2,k)) )

This shows that we have two families of solutions {d,;(z, - )}.ec to the same
nonlinear 9d; equation. Moreover, the two families have the same asymptotics
as k — oo by Proposition 5.72. This turns out to be sufficient for uniqueness.

Proof of Proposition 5.69. To have u,, (2, k) = uy,(z,k) for all z,k € C,
it is enough to show that
05, (2, k) = 00, (2,k), 2,k €C.
We generalize the setup a little bit, and consider the function
Fi(z,w) := 6o, (2, k) — 0py(w, k), z,w,k € C.
It is enough to prove that Fj vanishes on the diagonal for any k.

If k£ =0, we know by Proposition 5.25 that fi,(z,0) = 1. This implies
that us(z,0) = 1, so the logarithm satisfies d,(z,0) = 0. This proves that

Fo(z,2) =0, zeC.
Let now kg # 0, and suppose that zy € C is fixed. We do the proof that
Fi,(20,20) = 0 in two steps. The first step is to show that
Fy, (20, w0) =0 for some wy € C.

To see this, it is enough to observe that by Proposition 5.72 and Lemma
5.56 the map w +— d,,(w, ko) is a surjective map from C to C. This shows
that there exists some wy € C such that d,,(wo, ko) = 04, (20, ko), which
gives (5.9).

The second step is to show that for any z,w € C, one has

Fio(z,0) =0 = z=w.
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Assume that Fj,(z,w) = 0, and note that the map k — Fj(z,w) satisfies
the 0f equation

a];Fk(Z, U)) _ —Z'T(k)(e_% Im (65 (2,k)) _ e—Zi Im(6oq (w,k)))
We now use the bound |7(k)| < 1 from Proposition 5.41 and the elementary
fact that
‘eis - eit| <|s—t|, s,teR.

Taking absolute values in the previous equation for Fj(z,w) yields

|05 Fi (2, w)| < 2[Im(bs, (2, k) — Im(do, (w, k)|
< 2| Fi(z,w)].

We also know from Proposition 5.72 that
Fi(z,w) =i(z —w)k + ké(k), (k) — 0 as k — oc.

If z # w, it follows from Lemma 5.57 that the map k — Fj(z,w) has only
one zero. However, we always have Fy(z,w) = 0, which contradicts the
assumption that Fy,(z,w) = 0 where kp # 0. It must follow that z = w,
finishing the proof of (5.9).

Finally, combining (5.9) and (5.9) yields Fj,(z0,20) = 0. Since kg # 0
and zg € C were arbitrary, this concludes the proof that F}, vanishes on the
diagonal. O

5.10. Subexponential growth

To complete the uniqueness result for bounded measurable conductivities,
it remains to prove Proposition 5.72 from the previous section concerning
subexponential growth of e ~***u,, with respect to k. To prove this, it will be
useful to go back to the Beltrami equation and the solutions f,,. This makes
it possible to make efficient use of the theory of quasiconformal mappings.
In the following we will use some facts from this theory without proof, but
we will give a precise reference each time we do so.

In order to pass from growth properties of solutions of Beltrami equa-
tions back to the conductivity equation, it is useful to generalize the setup
slightly. If A € 9D, we denote by fy, the solution of the Beltrami equation

Ofsn = A\idf, in R?
satisfying fi,(-,k) € W,22(R?) and

loc
Fau(z, k) = €M (1 + mau(z, k),
k

(2, k) = O(1/z) as z — .



5.10. Subexponential growth 199

Here i = (1—0)/(1+0) as before. Precisely the same proof as in Proposition
5.25 shows that such solutions exist, are unique, and satisfy n,(-,k) €
WHP(R?) for some p > 2. The following result states that the functions
e_isz)\u(z, k) have subexponential growth with respect to k.

Proposition 5.73. For fized z € C, we have
Frulz ) = o0
where ¢y, is C° in k and, for any k € C,
Oz, k) = 2 +v1(z, k), vi(-,k) € WHP(R?)
for some p > 2. For any z € C the function ¢y,(z, -) satisfies
Oru(z, k) =2+ €.(k), e.(k) = 0ask— oo.

After some work, Proposition 5.72 will now follow.

Proof of Proposition 5.72. We need to show that

u _eiszrv(z,k:)
o =

where
v(z,k) — 0 as z — oo, when k isfixed,
and

v(z,k) = |k|o(1) as k — oo, when z isfixed.

To warm up, let us show that u, never vanishes. We argue by contra-
diction and assume that us(zg, ko) = 0 for some zg, kg € C. Since

uq (20, ko) = Re(fu(20, ko)) + i Im(f— (20, ko))

it follows that f,(z0, ko) = it and f_,(20,k0) = s for some t,s € R. But
then

it—s
w+s

fu(z0, ko) — f—u(20, ko)
fﬂ(z()? /{?0) + f—u(ZO, ko) .

The last quantity is < 1 by (5.45). This is not possible, so u, must be
nonvanishing.

More generally, we show that in fact u, has a well-defined logarithm.
Write
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Uy = %(fﬁf_wf_u—f?)
= %(f;ﬂrf—u) <1+M>

Ju+ -
_ fu+fu< fu —f—u>
fu 2f, 1+f“+f

—1 -
:fu<1+7f“ f‘“) <1+7f“ f‘“).
Jut fu Jut fu
If D(z,7) is the open disc centered at z with radius 7, then by (5.45)

T Ju—F-u
+fu+f— e D(1,1), 1+f T, € D(1,1).

Consider the principal branch of the complex logarithm,
Log: C\ (—00,0] = {z € C; |Im(z)| < 7}.
Since z/w € C\ (—o0, 0] whenever Re(z), Re(w) > 0, we may define

—1 - hra—
dee) ()]
Jut fu Jut fu
Proposition 5.73 shows that f,(z,k) = e***#+) where 8(-, k) € W1P(R?)
for some p > 2, when k € C is fixed. We choose

0y (2, k) :==ikz + B(z,k) + g(z, k).

It follows that u, = e%. It is also clear that d, is C* in k, since this is true
for $ and g by Propositions 5.73 and 5.33.

Let now k£ € C be fixed, and consider the asymptotics as z — oco. Define
v(z, k) == B(z, k) + g(z, k).

Here B(-, k) € WYP(R?), and g( -, k) is in I/Vllgf(RQ) since it is the logarithm
of a I/Vli’f(RQ) function. By (5.45) we have

1

g = Log

g(z, k) =0(1) asz— oo.
This shows that v(-, k) € VVlO’f(RQ) with v(z, k) = o(1) as z — oo.
Finally, let z € C be fixed and consider the asymptotics as k — co. We
have
UU(Z, k‘) _ eiszrv(z,k)

and we need to show that
v(z,k) = |k|o,(1) as k — oc.

Here we write 0,(1) for any quantity converging to 0 as k — oo.
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Using that v(z, k) = B(z, k) + g(z, k), we have
[T (v)| < 8]+ |g] < [k[ 02(1) + 7 = [k[0z(1).
To bound Re(v), we note that

1 _ S
o= §(fu + fu + f—u - f—u)
which implies
: 1 __ S
el = eilkzuo = §(Mﬂ + e_kMﬂ + ]\4,‘u — e—kau)
and consequently, by the triangle inequality,
) — |e¥] < | M| + |M_| < elo: (),

This shows that
Re(v) < |k| 0(1).
It remains to prove that
Re(v) = —[k[o=(1),
or equivalently,

o~ klo= (1)

efzk:zuo >

This is the only point where we need to use the more general solutions f),
with A not equal to 1. We write

uazfu‘Ff—u<1+fu_f—u>:fu+f—u|:1+ th fu]
2 Jut F-u 2 Jut -
where t € R is chosen so that
ot — Ju +f*u.
Jut f-u
Therefore
| = 'M Ly tdu o
7 fu+ f-u
Here
'MM + M| ‘ = > e~Iklos(1)
o

since Re(M_,,/M,,) > 0 by Lemma 5.45 and by Proposition 5.73. The result
will follow if we can prove that

ztfﬂ f

ptJ—p

inf [1+e >e ~lklo= (1),
teR

To see the last inequality, note that

thll/ f— 2ft
Fut f—p fut i

1+e
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where the function

_ 1 ‘ ‘

fi = 2 [(1 + eZt)fu + (1 - eZt)f—u]
satisfies, by a direct computation, the equation

0 = e udfs.

The properties of fi, imply that fiis a Wli)’f(Rz) function satisfying f; =
e®*(1 4+ 0(1/z)) as z — oo. The uniqueness of complex geometrical optics
solutions, as discussed in the beginning of this section, shows that f; = fy,
for A = e’*. Consequently, by Proposition 5.73,
it fu = Fu 2M

fut T My + M-,
This concludes the proof. O

> o Iklo=(1)

1+e




Chapter 6

Partial Data

In §?7, we showed in dimensions n > 3 that if the boundary measurements
for two C? conductivities coincide on the whole boundary, then the conduc-
tivities are equal. Here we consider the case where measurements are made
only on part of the boundary.

The first result that we will prove is due to Isakov. It states that if
one knows the Dirichlet-to-Neumann map on a open subset I' C 92 for any
Dirichlet data supported in the same set, and if the inaccessible part I'g =
00\ T is part of a hyperplane, then this data determines the conductivity.

Theorem 6.1. Let 2 C R" be a bounded open set with smooth boundary,
where n > 3, and let 1 and Yo be two positive functions in C?(Q). Assume
that Q C {xy, > 0}, let Ty = 02 N {z, =0}, and let I' = OQ\ T'g. If

Ay flr = Ay fle for all f € HY?(9Q) with supp (f) C T,

then y1 = v2 in €.

The result follows quite easily from the full data results in 77 by us-
ing a reflection argument. We will also show a similar theorem where the
inaccessible set 'y is part of a sphere.

For more general domains, the first partial result was proved by Bukhgeim
and Uhlmann. It involves a unit vector o in R™ and the subset of the bound-
ary

MN_c={z2€d|a v(x)<e}

The theorem is as follows.
Theorem 6.2. Let 2 C R" be a bounded open set with smooth boundary,
where n > 3, and let 1 and o be two positive functions in C*(Q). If a € R™

203
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is a unit vector, if v1|loa = Y2laq, and if for some € > 0 one has

Ay floo-. =AMy floa . forall f e H'Y(09),
then v, = v2 in €.
The proof is based on complex geometrical optics solutions, but requires
new elements since we need some control of the solutions on parts of the
boundary. The main tool is a weighted norm estimate known as a Carleman

estimate. This estimate also gives rise to a new construction of complex
geometrical optics solutions, which does not involve Fourier analysis.

6.1. Reflection approach

As before, we will obtain the partial data result for the conductivity equation
by proving a uniqueness result for the Schrédinger equation.

Theorem 6.3 (Partial data for Schrodinger). Let Q C {z, > 0} be a
bounded open set with smooth boundary, let To = 0Q N {x, = 0}, and let
I'=00\Ty. Let q1,q2 € L>®(Q) be such that 0 is not a Dirichlet eigenvalue
for —=A +q; in §2. If one has

Ay flr=Apflr forall f € H1/2((9Q) with supp (f) C T,
then q1 = qo in €.

Theorem 6.1 is an immediate consequence of Theorem 6.3 and the unique
continuation result proved later in Theorem 6.19.
Proof of Theorem 6.1. Define ¢; = A(’y;/Z)/fy;/Q. By Theorem 2.74 the
Dirichlet problem for —A + ¢; in Q is well-posed, and the Dirichlet-to-
Neumann maps are related by
—1/2 ~1/2 1
Ay, f =1 / Ay (v 1)+ 3% Y(0u75) flog-

Recall from the boundary determination results, Theorems 3.3 and 3.17,
that the knowledge of A, on I" for any f supported in I' determines ~|r and
0,7y|r uniquely. The assumption

Ay flr = Ay, flr - for all f e HY2(89) with supp (f) C T,
therefore implies that
7lr =2lr,  dmlr = delr.
The expression for Ay, above shows that

A flr = Ag, flr for all f € HY?(09Q) with supp (f) C T.
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By Theorem 6.3, we have g1 = g2 in 2. Define ¢ = g1 = ¢o. Since
1/2, 1/2
qj = Ay; /73‘ , we have
(—A + q)ﬁ/2 =0 inQ.

We also have the boundary conditions

1/2 1/2 1/2 1/2
71/ Ir :’YQ/ Ir, 8V’Y1/ Ir :81/72/ Ir.

By Theorem 6.19, any two solutions of (—A + ¢)u = 0 having the same
Cauchy data on an open subset of the boundary must be equal in 2. This
proves that y; = 7s. O

We move to the proof of Theorem 6.3. In the present setting where the
inaccessible part of the boundary is part of the hyperplane {z,, = 0}, it is
natural to use the reflection which takes a complex vector z = (z1,...,2,) €
C™ to the vector

2 = (21,4 Zn—1, —2n)-

Proof of Theorem 6.3. Recall from Theorem 2.72 the integral identity

(Mg — Agy)(uilon), uzlon)an = /Q((h — q2)ujug dx

valid for any u; € HY(2) with (—A + ¢;)u; = 0 in . Assume that uq|gq is
supported in I'. In this case we know that

Ay (u1lan)|r = Ag, (ualan)lr,

and consequently (Ag, — Ag,)(uilpq) vanishes on I'. If also ug|pn is sup-
ported in I', the whole boundary integral is zero. Therefore, our partial
data assumption implies that

(6.1) /Q((h — q2)ujug dr =0

for any u; € H*(Q) with (—A + g;)u; = 0 in  and supp (u;]sq) C T
We now use the reflection idea and consider the open set
U=QUint(Ty) UQ*
where the interior of I'y is relative to {z,, = 0}, and
O ={z"; 2z € Q}.
We also define the even extensions of the potentials,
OIS R

These are L* functions in U.
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If ¢1, (2 € C" satisfy (j-(; = 0 with |(;| large enough, Theorem 4.3 shows
that there exist w; € H'(U) satisfying

(—A + qj)wj =0 inU,

having the form
wj = e (1 +4);)
where
C
151 < .
JINL2(U) |<j|
In fact, after extending g5 by zero to R" \ U, we obtain solutions of this type

in R" and the functions w; are obtained just by taking the restrictions to
U.

We now define functions u;(z) = w;(x) — wj(x) in the original domain
), where we write
fr(@) = f(a").
An easy computation shows that w; satisfies (—A + ¢;)u; = 0 in Q and

u; € HY(2). Since the set {x,, = 0} is invariant under reflection, we have
ujlr, = 0. Thus (6.1) is valid for these choices of u;.

We wish to compute the product ujus. Since
uj = e (14 1by) — €9 (14 45),
we have

uru = el DL ) (1 ) = T4 9] (14 0)
— DT ) (14 93) + DT (L )1+ )
We would like to arrange ujug to look like €€ for given ¢ € R™ when €]

are large. In particular, we do not want ujuo to grow exponentially with
respect to |(;|. It will be useful to choose (; so that

GG =0, G+G=1i, Re(({+¢)=Re(C+¢)=0.

Write £ = (¢/,&,) where &' = (&1,...,&,—1). We assume for the moment
that |£’| > 0. It will be convenient to use the reflection invariant unit vector

1 /
v = —(f ,O).
€|
Let v3 = e, be the nth coordinate vector, and choose some unit vector
vy € R™ such that

1)2-1)121)2-1)320.
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Then {v1,vs,v3} are orthogonal unit vectors (here we used that n > 3). If
7 > 0 is large, define the complex vectors

G=lely/r2 + s+ [(% €' +T£n) v+ (%s - T!ﬂ) vs} )
G=—lelyr+ qor i [(511- 760 o+ (56 71e]) o]

It is easy to check that (1-¢; = (o-Co = 0 and |¢1| = |G| = V2[€] /T2 + 1/4.

We also have
G+ G =i(|€]| v1 + &nvs) = i€
and, since v7 and vy are reflection invariant,
¢+ G =i(]¢| v +27|¢| v3),
G+ G =i(|¢| o1 — 27 |€| vg).

Thus (3 and (o satisfy all the properties mentioned above.

will <oy
L2(Q)

all terms involving the remainder terms 1); will be small as 7 — oco. By (6.1)

we have

0= /((h—QQ)UlUQ dr = /(ql_qQ)(ei:v{_eim-m(T)_eix-nz(T)+eix*-§) dx—i—o(l)
Q Q

Keeping ¢ fixed and using that Hiﬁj”LQ(Q) < C/7 and ‘

as T — oo, where n1(7) = |{'| vy + 27 || vg and no(7) = || v — 27 || vs.
Defining ¢(z) = q1(z) — g2(z) when z € Q and ¢(z) = 0 otherwise, we have

/Q g0 do = G(—;(r)).

Now ¢q € L*(R™), so §(n) — 0 as || — oo by the Riemann-Lebesgue lemma
(Theorem ?77). Since |n;(7)| — oo as 7 — oo, we have

lim [ ¢ () dz = 0.

T—00 Q
Therefore
[ @) eee= € o = tim [ (grmgo) (e Eoe =) dn —o,
Q T—00 Q

In the integral involving e’ ¢, we can make the change of variables z — z*
to obtain the following statement for even extensions of ¢; in the double
domain U:

/ (¢f — ¢5)e™ dx = 0.
U

Thus (¢§ — ¢5)(—€) = 0. This is true for any fixed £ € R™ with |¢'| > 0.
But since ¢f — ¢5 is compactly supported in R", its Fourier transform is
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continuous, and we have (¢§ —¢5)"(—¢) = 0 for any £ € R™. This shows that
@ = qo- U

Note that in the previous proof, one of the crucial points was the fact that
a solution of the Schrdodinger equation in the double domain QUint(I'g) UQ*
can be reflected from Q* to produce a solution of the Schrodinger equation
back in €. That is, the Schrodinger operator —A + ¢ should be preserved
under reflection. This is quite clear for the reflection (', z,) — (2, —x,),
but one can ask if there are other reflection operators that have this property.

This question can be answered by using some differential (or Riemann-
ian) geometry facts as in Chapter 77?. However, to keep things simple, we
will describe the argument in a self-contained way. Let F': U — V be a C*
bijective map between two open subsets of R™ (the map F' is our reflection
operator). We denote the Euclidean Laplacian in V' by

= —2‘
x>
j:18 J

Ae

Here e is the Euclidean metric, corresponding to the identity matrix e(z) =
I'=10;x]7)—,- We want to compute how A, transforms under the reflection
F. To do this, we will "pull back” quantities on V by the map F' into
quantities on U.

First, define the pullback of a function v € C°°(V') as the function
Fro(@) = (vo F)(x), @€ U.

Next, define the pullback of the Euclidean metric e on V as the matrix
function

F*e(x) = (DF(2))'DF(z), x€U.
Also, if g = [gjk(2)]} ,—; is a positive definite matrix function whose entries
are C'™ functions on U, we define the Laplace-Beltrami operator

12 e O . Ou -
Agu=1g|7* > o [Iglmgf’ka—%} . ue C®(U).
k=1

Here [gj’k]?,kzl is the inverse matrix of [g; ]} ;_;, and [g] = det[g; x].
The next problem shows that under a map F, the Euclidean Laplacian
A, transforms into the Laplace-Beltrami operator A px..

Exercise 6.4. Let F': U — V be a bijective C'*° map between open sets of
F. If v € C*°(V), show that

F*(Av)(z) = (Ap«F*v)(x), ze€U.
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Our question was to find those reflection operators F' such that the
Euclidean Schrédinger operator —A, + ¢ transforms into another Euclidean
Schrédinger operator —A.+§ under F'. This is true when F*e = e, or equiv-
alently when (DF)!DF is the identity matrix. The reflection F(x2/,z,) =
(', —x,) satisfies this property. However, we also know that it is possible
to convert conductivity operators v — div(yVv) into Schrédinger operators
by choosing v = v~1/24. Thus we could ask to find reflections F' such that
F*e = ce for some positive scalar function c. Using the definition of F*e
and taking determinants, the last condition is equivalent with

(DF(z))!DF(z) = det(DF(z))¥"I.

Any C® bijective map satisfying this equation is called a conformal trans-
formation.

It is a theorem of Liouville that any conformal transformation between
two open subsets of R™, n > 3, is obtained by composing rotations, transla-
tions, scalings, reflections (2, z,,) — (2/, —x,), and Kelvin transforms
F(z) = —, zecR"\{0}.

|z
In the same way that (2/,z,) — (2/,—x,) reflects across the hyperplane
{z,, = 0}, the Kelvin transform acts as a reflection across the unit sphere
{lz| = 1}. Tt also has the property that it maps hyperplanes and spheres in
R™\ {0} to hyperplanes and spheres.

Exercise 6.5. Show that F' maps the set {x € R"; 0 < |z| < 1} onto {z €
R™; |z| > 1} and preserves the set {|z| = 1}. Show also that F(F(x)) = =,
and that

Fre(z) = |z| ™ I.

Exercise 6.6. Show that F' maps the spherical set
{z = (@', 20) € R"; [2/[" + (20 — 1/2)* = (1/2)%, © # 0}
onto the hyperplane {(2/,z,); x, = 1}.

We now give the partial data results for the conductivity and Schrodinger
equations for the case where the inaccessible part of the boundary of part
of a sphere. The first theorem follows from the second one exactly as in the
case where part of the boundary is flat, so we will only prove the Schrédinger
case.

Theorem 6.7. Let 2 C R™ be a bounded open set with smooth boundary,
where n > 3, and let 1 and Yo be two positive functions in C?(2). Assume
that @ C B for some open ball B in R™, let I'y = 0Q N OB, and let I' =
ON\Ty. Assume also that OB\ O # 0. If

Ay flr = Ay flr for all f € HY?(9Q) with supp (f) C T,
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then y1 = y2 in €.

Theorem 6.8. Let 2 C R™ be a bounded open set with smooth boundary,
where n > 3, and let q1,q2 € L*(Q) be such that 0 is not a Dirichlet
eigenvalue of —A+q or —A+qo in Q. Assume that  C B for some open
ball B in R™, let Ty = 0Q N OB, and let T' = 90 \ T'y. Assume also that
OB\ O # 0. If

A flr = Ao flr for all f e HY2(0Q) with supp (f) C T,
then q1 = qo in €.

Proof. Since 9B\ 09 # (), there is some z¢ € OB with zg ¢ Q. Thus there
is a small ball centered at xy which does not intersect 2. We may choose
coordinates so that xg = 0 and B C {z,, > 0}. If B has radius r, it follows
that

B={z=(2,2,); {x'{Q + |z — 7“|2 < rz}.
For simplicity we will assume that » = 1/2 (the general case can be reduced
to this by scaling).

Let F(z) = z/|z[* be the Kelvin transform as above. Define Q =
F~1(Q), and note that Q is a bounded domain with C* boundary such
that F'~1(I'g) is contained in the hyperplane {(z,z,); 2, = 1} by Problem
6.6. If u € HY(Q) solves (—A¢ + q)u = 0 in €, then by Problem 6.4,
o= F*u € H(Q) solves

(—Ape + F*q)u =0 in Q.
Using Problem 6.5, we have

n
Apret = A -a,0 = |z |*" Zaj(]x]_2"+4 djv).
j=1

This looks like the conductivity operator div(yVv) with v(z) = |z 72",

The substitution @ = v~ 1/2¢ = |a:|"72 ¥ gives, as in Theorem 2.74, that
AF*@(‘x’n_Q v) = ’x‘n+2 (Ae =)o

where )

A(lz]*™"

ofwy = 20D
2]

However, since \x!z_" is harmonic when n > 3, we have ¢ = (0. Combining
these facts, we have seen that if u € H(Q) solves (—A. + q)u = 0 in Q,
then © = |z F*u € HY(Q) solves

(=Ae+ |z P F*q)o =0  inQ.
Tracing back the steps, we see that if ¥ solves the above equation, then
u= F*(|z|""20) solves (—A, 4+ q)u = 0 in Q (recall that F(F(z)) = z). It
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also follows that the Dirichlet problem for (—A.+¢)u = 0 in € is well-posed
if and only if the Dirichlet problem for the corresponding equation for v is
well-posed in €.

Denote by A, the DN map for the equation (— + ¢)u =0 in Q, and
by A the DN map for the equation (—A. + ¢)0 = 0 in Q. We will prove
that if

A flr = Ao fIr for all f € HY?(8Q) with supp (f) C T,
then
A =A *4F*q2f‘f for all f e HY/?(8Q) with supp (f) c T.

o 4P T IF = Ay

Here I' = F~1(T). Since IO\ T = F~1(T'y) is contained in the hyperplane
{z,, = 1} and since Q is contained in {x,, > 1}, this would imply by Theorem
6.3 that |z|* F*q; = |z|™* F*¢y in Q, and therefore ¢; = g2 in Q.

Let f € HY/2(89Q) with supp (f) C T, and let vj € H'(Q) solve
(—Ae + |CC|_4 F*qj‘)’[)j =0 in Q

with boundary condition 9;|,5 = f. Define u; = F*(|z|"~ 25;) € HY(Q), so
that (—Ae+g;)u; = 0in Q with u;laq = F*(Jz|" "2 ). Since supp (F*(|z["~* f)) C
I', the assumption on the DN maps A, and A,4, implies that

Aq1f‘F = quf‘f‘-
We now note that, by Theorem 2.72,

<(A|x‘74F*ql - ]\ 4F*q2)f f:>8ﬁ = /_ ‘x’_4 F*(ql - QQ)7~)17~)2 dx
Q

Changing variables z = F~!(y) and noting that |det D(F_l)(y){ = |y|7*"
the previous expression becomes

/ lyl* (a1 = a2) ) ly1" 7 wa () [y]" " ualy) [yl ™" dy = /Q((h — az)urup dy
QI - (IQ)f’ f>
This concludes the proof that /~X|$|74F*q1f]f = /~\‘$|74F*q2 f]f whenever supp (f) C

I. O
6.2. Carleman estimate approach

Again, we first consider the Schrédinger equation, (—A+q)u = 0 in 2, where
g € L>®(Q) and 2 C R™ is a bounded open set with smooth boundary.

Motivation. Recall from Theorem 7?77 cgo_solvability 777 that in
the construction of complex geometrical optics solutions, which depend on
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a large vector ( € C" satisfying ¢ - ( = 0, we needed to solve equations of
the form

(D*+2¢-D+qr=f inQ,
or written in another way,
eI (—A 4 q)eSTr = f in Q.

In particular, Theorem 7?77 cgo_solvability 7?7  shows the existence of
a solution and implies the estimate

C
7]l 2 (g < ﬁ £l 20 -

We write
1

where a and 8 are orthogonal unit vectors in R™, and h > 0 is a small
parameter. The estimate for » may be written as

HT||L2(Q) < Coh e%a'x(_A + q)ef%a-xr

L2(Q)

It is possible to view this as a uniqueness result: if the right hand side is
zero, then the solution 7 also vanishes. It turns out that such a uniqueness
result can be proved directly without Fourier analysis, and this is sufficient
to imply also existence of a solution.

Remark. We will systematically use a small parameter h instead of a large
parameter |(| (these are related by h = \T\/li) This is of course just a matter of
convention, but has the benefit of being consistent with semiclassical calculus
which is a well-developed theory for the analysis of certain asymptotic limits.
We will also arrange so that our basic partial derivatives will be hD; instead

of %. The usefulness of these choices will hopefully be evident below.

6.2.1. Carleman estimates for test functions. We begin with the sim-
plest Carleman estimate, which is valid for test functions and does not in-
volve boundary terms.

Theorem 6.9. (Carleman estimate) Let ¢ € L*°(S2), let o be a unit vector
in R™, and let p(x) = a - x. There exist constants C > 0 and hy > 0 such
that whenever 0 < h < hg, we have

< o/h(_ —p/h ().
[ull 20y < Ch He (—A+qe uHLQ(Q), u e CX(Q)
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We introduce some notation which will be used in the proof and also
later. If u,v € L?() we write

(u]v):/ﬂuvdx

lull = (ulu)? = ul| 20

Consider the semiclassical Laplacian
Py = —h*A = (hD)?
and the corresponding Schrodinger operator
P =h*~A+q)= Py + h’q
The operators conjugated with exponential weights will be denoted by
Py, = e?/h Pye=#/h
P, = e?/hpe=e/h — Py, + h%q

We will also need the concept of adjoints of differential operators. If

L= Z aq(x) D"

|la|<m

is a differential operator in Q, with a, € W!*>(Q) (that is, all partial
derivatives up to order || are in L*°(2)), then L* is the differential operator
which satisfies

(Lu|v) = (u|L*v), u,v € C°(Q)

For L of the above form, an integration by parts shows that

L*v = Z D%(ag(z)v)

la]<m

Proof of Theorem 6.9. Using the notation above, the desired estimate
can be written as

hlull < CllPaull,  uwe C(Q).
First consider the case ¢ = 0, that is, the estimate
hlull < C|Rogull,  ue CE(Q).
We need an explicit expression for P ,. On the level of operators, one has

e?/"hDje=?/" = hD; + id;p.
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Since p(z) = a - = where « is a unit vector, we obtain
n n
Py, = Z(e‘P/thje*“’/h)(e*"/thje*“"/h) = Z(hDj +iaj)?
j=1 j=1
= (hD)* =1+ 2ia - hD

The objective is to prove a positive lower bound for
||P0,gau‘|2 = (Po,pulPopu).

To this end, we decompose I}, in a way which is useful for determining
which parts in the inner product are positive and which may be negative.
Write

PO#P =A+iB

where A* = A and B* = B. Here, A and iB are the self-adjoint and
skew-adjoint parts of . Since

p&w — (elﬁ/hpoeﬂﬁ/h)* — e*sa/hpoesa/h =Py
= (hD)? =1 — 2iac - hD

we obtain A and B from the formulas (cf. the real and imaginary parts of a
complex number)

Py, + F}
A:w:(hpy_l
Py, — P}
(3

Now we have
HPO,wUH2 = (PopulPopu) = ((A +iB)ul(A+iB)u)
= (Au|Au) + (Bu|Bu) + i(Bu|Au) — i(Au|Bu)
= || Aul® + || Bu||* + (i[A, Blulu)
where [A, B] = AB — BA is the commutator of A and B. This argument

used integration by parts and the fact that A* = A and B* = B. There are
no boundary terms since u € C2°(£2).

The terms ||Au|? and ||Bul|* are nonnegative, so the only negative con-
tributions could come from the commutator term. But in our case A and
B are constant coefficient differential operators, and these operators always
satisfy

[A,B] =0
Therefore
2 2 2
[P0, pull™ = [[Aul]” + || Bul|
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By the Poincaré inequality (see [Ola])! In fact, if o € R™ is a unit vector,
then the proof given in [Ola] implies the following Poincaré inequality in the
unbounded strip S={z € R" |a<z-a<b }:

b—a .
[ull 25y < N3 oo Dull 2y, uw € CZ(5).

[Bull = 2h || - Dul[ = ch|[u],
where ¢ depends on 2. This shows that for any h > 0, one has
hlull < CllPgull,  uwe Q).
Finally, consider the case where ¢ may be nonzero. The last estimate

implies that for u € C°(Q2), one has

Wllull < C [ Pog] < C[(Poy + B2l +C [[12qu

< C|Poull + CR? ||l poo (g llul

Choose hq so that C [|g|[ ;. () ho = %, that is,

1

hy= =
2C (||l poe ()

Then, if 0 < h < hg,
1
hlull < CllPeull + S flull.
The last term may be absorbed in the left hand side, which completes the
proof. O

Exercise 6.10. (H! Carleman estimate) Let ¢(z) = a-z and let ¢ € L>().
Show that there are C' > 0 and hg > 0 such that for any hA with 0 < h < hy,
one has

Jull + [hDull < Chl|e/™(=A + gy, we @),

Exercise 6.11. (Large first order perturbations) Let p(z) = a - x, let A =
(A1,...,Apy) € L>®(Q; R™) be a vector field, and let ¢ € L*°(£2). Show that
there are C' > 0 and hg > 0 such that for any h with 0 < h < hg, one has

[ull + [nDul| < Ch

fIM(—A+ AV + q)e*@/huH . ueC(Q).

(Hint: use the convexified weight ¢, = ¢ + 2%2, where € > 0 is small but
fixed.)

11
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6.2.2. Complex geometrical optics solutions. Here, we show how the
Carleman estimate gives a new method for constructing complex geometrical
optics solutions. We first establish an existence result for an inhomogeneous
equation, analogous to Theorem 777 cgo_solvability 777

Theorem 6.12. Let ¢ € L>®(Q), let a be a unit vector in R™, and let
p(x) = a-x. There exist constants C > 0 and hg > 0 such that whenever
0 < h < hg, the equation

M= A+ Qe ?hr=f inQ
has a solution r € L?(Q) for any f € L?(Q), satisfying
17l 20y < CR Il L2 (0

Remark. With some knowledge of unbounded operators on Hilbert space,
the proof is immediate. Consider P} : L*(€2) — L*(2) with domain C2°(Q).
It is a general fact that

T injective

range of T Closed} = surjective

Since the Carleman estimate is valid for P} one obtains injectivity and closed
range for P7, and thus solvability for F,. Below we give a direct proof based
on duality and the Hahn-Banach theorem, and also obtain the norm bound.

Proof of Theorem 6.12. Note that P; =Py o+ h2g. If hg is as in The-
orem 6.9, for h < hg we have

C i
lull < = [Pzl

, ue CF(Q)

Let D = P;CZ°(22) be a subspace of L?(9), and consider the linear func-
tional

L:D—C, L(PJv)=(v[f), forveCF()
This is well defined since any element of D has a unique representation

as Pyv with v € C2°(Q), by the Carleman estimate. Also, the Carleman
estimate implies

C
L(Po)| < [lollIfl < = 1] P5ol]

Thus L is a bounded linear functional on D.

The Hahn-Banach theorem ensures that there is a bounded linear func-
tional L : L*(Q) — C satisfying L|p = L and HLH < Ch7Y|f|l. By the

Riesz representation theorem, there is # € L?(f2) such that

L(w) = (w]7), we L*(9),
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and ||F| < Ch71||f||. Then, for v € C(Q), by the definition of weak

derivatives we have

~

(v|Pp7) = (PyulF) = L(Pyv) = L(Fjv) = (vlf),
which shows that P,7 = f in the weak sense.

Finally, set » = h%F. This satisfies e*"/h(—A + q)eﬂ"/hr = fin Q, and
7]l < Ch[f]- 0

We now give a construction of complex geometrical optics solutions to
the equation (—A + ¢)u = 0 in 2, based on Theorem 6.12. This is slightly
more general than the discussion in Chapter 3, and is analogous to the
WKB construction used in finding geometrical optics solutions for the wave
equation.

Our solutions are of the form
(6.2) u = ek (PT) (a+r).
Here h > 0 is small and ¢(z) = a - x as before, 9 is a real valued phase

function, a is a complex amplitude, and r is a correction term which is small
when h is small.

Writing p = ¢ + it for the complex phase, using the formula
e?’"hDjeP" = hD; +id;p

which is valid for operators, and inserting (6.2) in the equation, we have

(A +qu=0
& e?/"M((hD)? + h2q)e " (a+7) =0
& /M ((hD)? + h2q)e /"y = —((hD + iVp)? + h%q)a

The last equation may be written as
eeo/h(_A + q)efeo/h(efiw/hr) =f
where
f= —e—“”/h( —h2(Vp)? +h 2V V+ Apl + (A + q>)a-

Now, Theorem 6.12 ensures that one can find a correction term r satisfy-
ing ||7]] < Ch, thus showing the existence of complex geometrical optics
solutions, provided that

Ifll<cC

with C independent of h. Looking at the expression for f, we see that it is
enough to choose 1 and a in such a way that

(Vp)? =0
2Vp-Va+ (Ap)a=0
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Since p(z) = a-x with a a unit vector, expanding the square in (Vp)? =
0 gives the following equations for :

VY| =1,  «-Vi=0.

This is an eikonal equation (a certain nonlinear first order PDE) for 1. We
obtain one solution by choosing 1(z) = -z where 8 € R™ is a unit vector
satisfying « - 8 = 0. It would be possible to use other solutions v, but this
choice is close to the discussion in Chapter 7?77 777

If ¢)(x) = B - x, then the second equation becomes
(a+ip)-Va=0.

This is a complex transport equation (a first order linear equation) for a,
analogous to the equation for @ in Theorem 777 thm:cgo_construction
7?7 . One solution is given by a = 1. Again, other choices would be
possible.

This ends the construction of complex geometrical optics solutions based
on Carleman estimates. There is one additional difference with the analo-
gous result in Theorem 77?7 thm:cgo_construction 7?77 : the correction
term 7 given by this argument is only in L?(£2), not in H1(£2). The same is
true for the solution u. One can in fact obtain r and u in H'(2) (and even
in H2(Q)), but this requires a slightly stronger Carleman estimate and some
additional work. Some details for this were given 77?7 in the exercises
and lectures 777

6.2.3. Carleman estimates with boundary terms. We will continue
by deriving a Carleman estimate for functions which vanish at the boundary
but are not compactly supported. The estimate will include terms involving
the normal derivative. We will use the notation

(u|v)sn :/ uv dS
o
&/U =Vu- l/|aQ

and

00 =00:(0) ={2€dQ| +a-v(x)>0}

Theorem 6.13. (Carleman estimate with boundary terms) Let g € L*°(2),
let « be a unit vector in R™, and let o(x) = a - x. There exist constants
C > 0 and hg > 0 such that whenever 0 < h < hg, we have

— h((a - )duldu)aa_ + l|ullfz g

< Ch?

e/h(_A o/ h d,u|0
Mt gl Ch((a v)duldu)on,

for any u € C*°(2) with ulpg = 0.
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Note that the sign of a-v on 94 ensures that all terms in the Carleman
estimate are nonnegative.

Proof. We first claim that
(6.3) ch? |Jul|* — 2h3((a - 1), uld,u)aq < || Poyull®

for u € C°(2) with u|sq = 0. It is easy to see that this implies the desired
estimate in the case ¢ = 0.

As in the proof of Theorem 6.9, we decompose
Py, =A+iB
where A = (hD)? — 1 and B = 2a - hD, and A* = A, B* = B. Then
1Po,pull® = (Popul Popu) = (A + iB)ul(A +iB)u)
= ||Aul]® + || Bu||* + i(Bu| Au) — i(Au| Bu)

We wish to integrate by parts to obtain the commutator term involving
i[A, B], but this time boundary terms will arise. We have

i(Bul(hD)*u) = > i(Bu|(hD;)*u)
j=1

& h
= [i(Bu];thDju)ag +i(hD; BulhDju)
Jj=1

= h
= —2h%(a - Vuldu)on + Y {i(hDjBubl/ju)aQ + i((hDj)QBu|u)]
j=1

But u|gn = 0, so the boundary term involving %Vju is zero. For the first
boundary term we use the decomposition
vu|8§2 = (al/u)y + (vu)tan

where (Vu)ian := Vu — (Vu - v)r]gq is the tangential part of Vu, which
vanishes since u|gpg = 0. By these facts, we obtain

i(Bu|Au) = i(ABulu) — 2h3((a - 1), u|0,u) a0
Similarly, using that u|sg = 0,
i(Au|Bu) = i(Au|2a - %I/u)ag + i(BAulu)
= i(BAuu)
We have proved that
1Po.gull® = (| Aull® + | Bull* + (i[A, Blulu) — 2h*((a - )y uldyu) a0
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Again, since A and B are constant coefficient operators, we have [A, B] =
AB — BA = 0. The Poincaré inequality gives ||Bu|| > ch ||u||, which proves
(6.3).

Writing (6.3) in a different form, we have
— 2h((a - v)Oyuldyu)aq_ + cllul)?
< 2 Hev/h(—A)ew/huHQ + 2h((a - 1)Dyul By,
Adding a potential, it follows that
— 2h((a - v)dyuldyu)aq_ + clull?

2
< B2 e“’/h(—A+q)e*¢/huH + 12 (gl 2 1l + 20((er - 1), ulBu) o

Choosing h small enough (depending on [|¢|| 1o (q)), the term involving [ w|?
on the right can be absorbed to the left hand side. This concludes the
proof. O

Exercise 6.14. (Solvability with vanishing data on part of boundary) Show
that there are C' > 0 and hy > 0 such that whenever 0 < h < hg, the
equation

r=0 on 004

has a solution r € L%(Q) for any f € L*(Q), with |7|| < Ch||f||. (Hint: use
test functions which vanish, along with their normal derivative, on suitable
parts of the boundary.)

{e‘p/h(—A + q)e‘“"/hr =f inQ

6.3. Uniqueness with partial data

Let ©2 be a bounded open set in R™ with smooth boundary, where n > 3. If
a € R™, recall the subsets of the boundary

0 ={2cd| ta v(z)>0}
M _={zed|av)<e}

Also, let 9Q4 . = { = € 00 | a-v(z) >¢e }. We first consider a partial data
uniqueness result for the Schrodinger equation.

Theorem 6.15. Let g1 and g2 be two functions in L>°(Q2) such that the
Dirichlet problems for —A + g1 and —A + qo are well-posed. If o is a unit
vector in R™ and if

A floa_ . = Agfloa_.  for all f € HY?(0Q)
then q1 = qo in €.
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Given this result, it is easy to prove the corresponding theorem for the
conductivity equation.

Proof that Theorem 6.15 implies Theorem 6.2. Define ¢; = A\/fy—]/\/fy—j

By Lemma ??7? lemma:dn_conductivity_schrodinger 77?7 | we have

the relation ) 5
Ag, [ =1 A, (9 P+ 5%'_13—1“0 o0’

Since A, flaa_. = Ay, flaa_ . for all f, boundary determination results (see

[Ola]) imply that

il — | %‘ _ O
1100 ¢ 2000-> 5 7100- = 5 "0

AV _AVEE g
VI VR

Now also 71 |aa = v2]a0, so the arguments in Section 7?7 sec:uniqueness_reduction
7?7  imply that 73 = v in Q. O

We proceed to the proof of Theorem 6.15. The main tool is the Carleman
estimate in Theorem 6.13, which will be applied with the weight —¢ instead
of . The estimate then has the form

h((a - v)Dyuldyu)an, + llullFagq)

< Ch?||e /M (=A + q)e/M

2
HLQ(Q) - Ch((a . V)(?,,u|(9,,u)597

with « € C®(Q) and ulpg = 0. Choosing v = e¥/"u and noting that
v]go = 0, this may be written as

(6.4)

h ((o- V)e_“"/h&,v|e_‘p/h&,v)ag+ + i

e_‘p/hv‘

L)

< Ch? He*“’/h(—A + q)v‘ ;(Q)

— Ch((o- y)e**"/hayv|e*“’/hayv)897

This last estimate is valid for all v € H? N H}(Q), which follows by an
approximation argument (or can be proved directly).

Proof of Theorem 6.15. Recall from Lemma ?77 lemma:identity_schrodinger
7?7 that

(6.5) /Q(ql — g)urug dz = (Mg, — Agy)(u1]aq) , uzlon)

whenever u; € H1(Q) are solutions of (—A + ¢;)u; = 0 in Q. By the
assumption on the DN maps, the boundary integral is really over 0€2, .. If
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further u; € H%(Q2), then

Ag, (u1lon) = duuilon
since Vuy; € HY(Q) and d,u1]gq = (tr Vuy) - v|oq € HY/2(99Q). Also,

Ay, (ui]on) = Oulialaq,

where U9 solves
{(—A+q2)a2 =0 inQ

g = u; on Jf2

We have iy € H?(2) since uj|aq € H*?(0S). Therefore, (6.5) implies
/ (1 — @)uug dr = / Oy (uy — tg)ug dS
Q BQ+,E

for any u; € H?(Q) which solve (—A + gj)u; = 0 in Q.

Given the unit vector a € R”, let £ € R™ be a vector orthogonal to «,
and let § € R™ be a unit vector such that {«, 3,£} is an orthogonal triplet.
Write p(x) = a-z and ¢(x) = -2. Theorem ??? thm:cgo_construction
7?77  ensures that there exist CGO solutions to (—A + g;j)u; = 0 of the
form

Uy = 6%(4,04%7,[))6@15(1 + Tl)
up = e_%(“"”w)(l +7r9),
where ||r;]] < Ch, ||[Vrj|| < C, and u; € H*(2) (the part that r; € H?(Q)

77?7 was in the exercises 777 ). Then, writing u = u; — Uy €
H?N H(Q), we have

(6.6) / emé(ql —q)(L+7r +re+rire)de = / (Opu)ug dS.
Q O

By the estimates for r;, the limit as A — 0 of the left hand side is fQ e (g —
g2) dx. We wish to show that the right hand side converges to zero as h — 0.

By Cauchy—Schwarz, one has
(6.7)

‘/89 (Opu)uz dS"2 = ‘/69 e=%/M (9, u)e? Muy dS‘Q
+ie +ie

< </BQ+ ‘e—w/hayuf dS> (/8Q+ ‘eso/hqu dS).

To use the Carleman estimate, we note that ¢ < ov- v on 9Q, ., By (6.4)
applied to u and with potential g2, and using that d,ulpn_. = 0 by the
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assumption on DN maps, we obtain for small A that

/ ‘e_%’/hayur < l/ (- v) ‘e_%’/h&,ur ds
BQ+,5 € 8Q+,E
< éCh‘ e ?/M(—A + Q2)U‘ ;(Q)

The reason for choosing the potential g, is that
(A +@)u=(-A+q@)u = (g2 — q)u

Thus, the solution 9 goes away, and we are left with an expression involving
only u; for which we know exact asymptotics. We have

2 1 ‘ ‘ 2
/ ‘eﬂp/hayu‘ < —ChH(qQ—Q1)€Zw/hew£(1+7°1)‘
I € L)
This takes care of the first term on the right hand side of (6.7). For the
other term we compute

2
/ e/ | as = 1+ 1of? dS
0y . 0y .

Ch

1
< 5/ (1+73)dS < C(1+ |Irall72(50))
0y .
By the trace theorem, [[roll;290) < C'llr2llgiq) < €. Combining these
estimates, we have for small h that

( /8 Q+7E(0Vu)uQ ds( < cvh.

Taking the limit as h — 0 in (6.6), we are left with

(6.8) /Qeixf(ql —q2)dx = 0.

This is true for all £ € R™ orthogonal to a. However, since the DN maps
agree on 02_ .(«a) for a fixed constant ¢ > 0, they also agree on 9Q_ ./(a)
for o sufficiently close to o on the unit sphere and for some smaller constant
¢’. Thus, in particular, (6.8) holds for £ in an open cone in R™. Writing
q for the function which is equal to g1 — g2 in €2 and which is zero outside
of €2, this implies that the Fourier transform of ¢ vanishes in an open set.
But since ¢ is compactly supported, the Fourier transform is analytic by the
Paley—Wiener theorem, and this implies that ¢ = 0. We have proved that

q1 = qo. U

Exercise 6.16. Let f : Q — C be continuous, where Q C R” is bounded.
Show that there is a modulus of continuity w such that |f(z) — f(y)| <
w(|z = yl).

Exercise 6.17. Assuming the claim in Problem 6.17, determine A, f.
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Exercise 6.18. Let v = 1 in the unit disc D € R2. Show that the solution
in H'(D) to V- yVu = 0 in D, with u|gp = f € H'/?(dD), is given by
o
u(rew) = Z r‘k‘f(k)eike

k=—00

Below, ¢ € L*°(Q2), and ¢(z) = o - © where « is a unit vector in R™.

6.4. Unique continuation

In this section we prove the unique continuation result required in the proof
of Theorem 6.1. The uniqueness results below are true for rather general
elliptic equations, but for simplicity we restrict our attention to solutions of
the Schrodinger equation (—A + ¢)u = 0.

Theorem 6.19. (Unique continuation from local Cauchy data) Let @ C R™
be a bounded connected open set with smooth boundary, and let ¢ € L>(£2).
Assume that T is a nonempty open subset of OQ. If u € H?(Q) satisfies

(—A+q@u=0 in

and
u|p = 8,/u|[‘ = 0,
then u = 0 in Q.

As an immediate corollary, if two solutions to the Schrodinger equation
(=A+ q)u = 0 have the same Cauchy data on an open subset of the bound-
ary, then the solutions are identical in the whole domain. This is an instance
of the unique continuation principle for elliptic equations. We also state two
closely related variants. The first one is called weak unique continuation and
it concerns uniqueness of solutions which vanish in some ball. (One also has
strong unique continuation meaning that any solution vanishing to infinite
order at a point in a suitable sense must vanish everywhere, but we will not
need this.)

Theorem 6.20. (Weak unique continuation) Let Q@ C R™ be a connected
bounded open set, and let ¢ € L>(Q). If u € H*(Q) satisfies

(A4 qu=0 in

and
u = 0 in some ball B contained in S,

then u = 0 in €.

The next variant states that a solution to a Schrodinger equation that
vanishes on one side of a hypersurface must vanish also on the other side.
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Theorem 6.21. (Unique continuation across a hypersurface) Let  C R"
be an open set, and let ¢ € L*>(). Suppose that S is a C* hypersurface
such that Q@ = S US U S_ where S4 and S_ denote the two sides of S.
If 1o € S and if V is an open neighborhood of xq¢ in Q, and if u € H*(V)
satisfies
(—A4+qu=0 inV
and
u=20 mn VNS,

then u = 0 in some neighborhood of xg.

We will in fact prove Theorem 6.21 and deduce the other unique con-
tinuation results from that. The standard tool in the proof is a Carleman
estimate. Recall first the simple Carleman estimate from Theorem 6.9, stat-
ing that whenever ¢ is a linear function and h > 0 is sufficiently small we
have

< Ch

., ueCX(Q).
L2(Q)

L2(Q)

e“"/hu‘

eI (—A + q)u‘

This is already a sort of uniqueness statement: it implies that any solution
u € C(Q) of the equation (—A + ¢)u = 0 in ©Q must be identically zero
in the whole domain. To obtain Theorem 6.21 we will need a Carleman
estimate suitable for proving local uniqueness of solutions, and for this it
will be useful to consider more general weight functions than linear ones.

We begin by recalling some notation from the proof of Theorem 6.9. Let
(ulv) be the inner product in L?(2) and ||u|| the corresponding norm, and
let Py = (hD)? be the semiclassical Laplacian. If 1 € C°°() is a real valued
function, we define the conjugated Laplacian

P()’w = ew/hPoe_w/h.
We also write ¢ for the Hessian matrix
Y () = [0, V()] =1

The following is an analogue of Theorem 6.9 for a general weight func-
tion. The point is that a Carleman estimate of the type || Py pul| > ch||ul|
may follow if the weight v is chosen so that (i[A, Blu|u) is at least nonnega-
tive. In the case when 1 was a linear function, both A and B were constant
coefficient operators and the commutator i[A, B] was identically zero. How-
ever, if ¢ is convex (meaning that the Hessian " is positive definite) one
obtains a better lower bound.

Theorem 6.22. (Carleman estimate with general weight) Let @ C R™ be a

bounded open set and let 1 € C*°(X2). Then
Pyy=A+iB
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where A and B are the formally self-adjoint operators

A= (hD)* - |Vy|?,
B =V ohD +hD o Vip.

If u e CX(Q2) one has
1Popul® = || Aull” + | Bul® + (i[A, Blu, u)
where the commutator i[A, B] satisfies

(i[A, Blu,u) = 4h(y" hDu, hDu) + 4h((4"" V1) - Vip)u, u) — h3((A%)u, u).

Proof. The first step is to decompose F 4 into self-adjoint and skew-adjoint
parts as

Po,w =A+1iB
where A and B are the formally self-adjoint operators

Py + PF
A — 0,9 0,9

2 )
5 Poy — By
N 2 '
We have
Poy=> (e""hDje ¥/M? = " (hDj+i0j1))* = (hD)*—| V1| +iVipohD+ih DoV,
j=1 j=1
and

By = (V" Pye VM)t = e/t pyet/t = (hD)?—|Vip|*~iVepoh D—ih DoV .
The required expressions for A and B follow.
If u € C°(Q) we compute
1Pogull® = ((A+iB)ul(A +iB)u) = || Aul® + [|Bu||* + (i[A, Blu|u).
It remains to compute the commutator:
ilA, Blu = h[((hD)* = [Vo[") 2V - Vu + (A¢)u)
= 2V V + AY)((hD)*u = [V u)]
= h[2V(hD)*¢ - Vu + 4hDOy1p - hDOyu + ((hD)* Avp)u
+ 2hDAY - hDu + 2V - V(|V|*)u]
= h[4(Y' VY - V) u — 4h*0jp0ju — 4h*VAY - Vu
— R*(A%Y)u].



6.4. Unique continuation 227

Integrating by parts once, using that u|gg = 0, yields
(i[A, Blu,u) = 4h* (4" Vu, Vu) + 4h(("" V9 - Vp)u, u)
— 3 (A%)u, u).
O

The next result shows that if one starts with any function ¢ with nonva-
nishing gradient, the convexified weight function 1) = e*? for A sufficiently
large will have a good Carleman estimate.

Theorem 6.23. (Carleman estimate with weight e*?) Let Q C R™ be a

bounded open set, let ¢ € L*(S2), and assume that p € C*(Q2) satisfies
@w>0and Vi #£0 in Q. Let

) = e,

There exist Cy, Ao, hg > 0 such that whenever A > Ag and 0 < h < hg, one
has

M2 |ul| + X ||hDul|| < Coh®/?

eV (—A + q)e_WhuH , u e H?

comp

(62).

Proof. In the following, the positive constants ¢ and C are always indepen-
dent of A, h and u and they may change from line to line. (We understand
that c is small and C' may be large.) Since 1) = ¥, we have

Vi =AMV, ¢ = NeMVp Ve + Aey”

where V¢ ® Vo denotes the matrix [0;p0k¢]} ;. Assuming that A > 1,
we also have

|A%p| < CAtM.
By Theorem 6.22, we have

1Po.ull” = | Aull® + || Bul* + (i[A, Blu, u)
where
(i[A, Blu,u) = 4h(" hDu, hDu) + 4h((¢"" V1 - Vip)u, u) — h3((A*))u, u)

= AWM (€ Vo[ u, u) + 4N} (€22 (¢" Vo - Vio)u,u) — hP((A%Y)u, u)

+ 4N} (M Vo - hDu, Vi - hDu) + 4h\ (e " hDu, hDu).

Consequently
(i[A, Blu,u) > 4hX3 (2 [N |[Vo|* — ¢V - Volu, u) — Ch3 A (32 u, u)
— ChA\(e*hDu, hDu).
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We used that 1 < e and that (e**V - hDu, Vi - hDu) > 0. Now choose
) so large that A |[Ve|! — ¢V - Vo > A[Ve|! /2in Q (and A > 1), or

1 )
A > max 1,28upw .
z€Q ‘th‘

This is possible since V¢ is nonvanishing in Q. If h is chosen sufficiently
small (independent of \), it follows that

(i[A, Blu,u) > chA*(e**u, u) — ChA(e* hDu, hDu).
We have proved the inequality
| Poypul® > ||Aull® + | Bu||® + chA* (€32 u, u) — ChA(eXhDu, hDu).

The last negative term can be absorbed in the positive term || Aul|? as follows.
The argument is elementary but slightly tricky. Write

(e hDu, hDu) = (e*?(hD)?u,u) + (hD(e*?) - hDu,u)
= (M Au,u) + (e |V [2 u,u) — ihA(eN Vi - hDu, u)
= (Au, e*u) + X2 (e3¢ [V|* u,u) — ihA(e¥ Vo - hDu, ).

By Young’s inequality we have (Au,e*u) < 3 | Aul|* + g He’\*"uHQ where
6 > 0 is a number to be determined later. We obtain

2
< 6)‘“"uH + C’)\Z(e?’)“pu, u) + ChA

1
(e’ hDu, hDu) < = || Aul]® + g

eA‘p/QhDuH

M/ 2u” .
Multiplying by ¢ and rearranging, we have

2 2
| Aul|* > 6(e**hDu, hDu) — % 6)‘“"uH — CON2(ePM¥u, u)

— ChAé

e>‘“"/2hDuH

v/ 2uH .
Combining the above inequalities gives that
2

0
| Po.yul®> > (X hDu, hDu) — 2(63/\«?%@ — OS2 (P, )

— ChAé

eNP/2 hDuH

eA‘p/QuH + ch A (e u, u) — ChA(e*hDu, hDu).

We used that 1 < e’ and || Bu||* > 0.

The idea is to choose  so that the last expression is positive. By inspec-
tion, we arrive at the choice
§ = eh\?
where ¢ is a fixed constant independent of h and A. If ¢ is chosen sufficiently
small, it holds that

HPO,wUHQ > chA (3N u, u)+(eA—C)hA (e hDu, hDu)—Ceh?\3 HeA“"ﬁhDuH Hewﬁu” .
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Choosing A large enough (only depending on e and C') gives
HPO,wUHQ > chA (3N u, u)+-chA? (e hDu, hDu)—Ceh?\3 HeA“"ﬁhDuH He)‘“’/QuH .

Now

23 “6A¢/2hDu“ Heg)‘“"ﬂu

‘ < M (eMu,u) + N2(e2hDu, hDu).
If h is sufficiently small depending on C and &, we have
HP(wuHQ > chA (€3N, u) + ch 2 (M hDu, hDu)
Since e*? > 1, this implies
WA [|ull + hX? [|hDul|* < C || Pogul?
and consequently
W [l + MR < O |9 A)e |
Adding the potential ¢ gives
X2l + A [hDull® < CHY?

A q)e*WhuH OB |ful].

Choosing h so small that Ch3/? < 1/2 and using that A\ > 1 gives the re-
quired estimate for u € C2°(2). The same estimate is true for v € H2,,, ()
since any such function can be approximated in the H2(Q) norm by C2°(Q)
functions. g

We move now to the proof of unique continuation across a hypersurface.
To obtain some intuition into the proof, it is useful to stare at Figure 777
and keep in mind the special case where S is the hypersurface {z, = 0}
and p(z) = z,. The ingenious idea of forcing the solution to vanish in a
neighborhood of g by using a L? estimate with slightly bent exponential
weights is originally due to Carleman.

Proof of Theorem 6.21. Let xg € S and let V be a neighborhood of xg in
Q. The statement is local, so we may assume that V' is a small ball centered
at xo and that there is a real valued function ¢ € C*°(V), with ¢ # 0in V,
such that

SNV ={z e V; p(x) = ¢(z0)},
SNVi={zeV;p(x)>p(xo)},
SOV ={zeV; o) < plzo)}.
In fact, ¢ is just a defining function for the hypersurface S, given near xg
by (2, 2,) = z, — g(2’) if S is locally the graph (2, g(2’)). By adding

a constant we may assume that ¢ > 0 in V. Also, write {¢ = ¢(z¢)} for
SNV, {e > p(xg)} for SNV, and {p < p(zg)} for SNV_.
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Assume that v € H?(V) satisfies (A 4+ ¢)u = 0in V and u = 0 in
{¢ > p(z0)}. We need to show that u vanishes in some neighborhood of
xg. This will be done by applying a Carleman estimate to xu for a suitable
cutoff function x € C°(V). Given ¢, we have seen that the function

Y= e
for X large admits a good Carleman estimate and also satisfies

{ =2(0)} ={p=w(@0)}, {¥>v(x0)}={p >0} {¥<¥(x0)}={p <p(z0)}

However, to obtain the conclusion that « = 0 near zy we need to bend the
weights a little bit. Define

- 1
p(x) = o) + B & — of*.

Then V@(z) = Vo(x) + x — xo, and by shrinking V' if necessary we have
V@ #0in V. Also ¢ > 0, and by Theorem 6.23 the weight

)= e

admits for h small (and for X\ fixed but sufficiently large) the Carleman
estimate

o]l + [RDv|| < CH3/? He@/h(—A n q)e*@f?/%H . wveH?

Let V/ be an open ball centered at zg and L strictly contained inside V/,
and choose x € C2°(V) so that x = 1 near V. The Carleman estimate

applied to v = e¥/ hyu implies

e@z’/hqu + e@z’/hthuH
= e@z’/hqu + HhD(eiZ/hxu) — hD(eth)uH
< e@z’/hqu + HhD(eiZ/hxu)H +C HethUH +h ewh(VX)uH

< CR3? Heﬁ/h(—A + q)(xu)H +h He@@/h(vx)uH

< Cn3? Heiﬁ/hx(_A 4 q)uH L Op32

ei’/h[A, X]u” +h Hewh(VX)uH .

Since (—A + q)u = 0 in V, the first term on the right vanishes. Also, the
properties of x and the fact that v = 0 in {¢p > ¥(z9)} show that the
functions [A, x]u and (Vx)u are supported in the set

W= (VAV)N{¥ < (o)}
Using that 1) < ¢ in V' \ {zo}, we can find & > 0 so that
W C{zxeV;d(x) <(xg) —e}.
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_ Choose some small ball B centered at zp and contained in VI\{Y <
¥(xg) — €}. The previous inequality implies
ewhu‘ < Ch ewhu‘
L*(B)
But now 1 > 1(z¢) — € in B and ¢ < ¥(zg) — € in W. This shows that
(
e

VE)= M uf| 2 gy < Che@E = ]l o 4y -

L2(w)

Canceling the exponentials and letting h — 0 we see that v = 0 in B, and
so u indeed vanishes in a neighborhood of x. O

We can now prove the other unique continuation statements. Weak
unique continuation follows easily from Theorem 6.21 by using a connected-
ness argument. We first prove a special case.

Theorem 6.24. (Weak unique continuation for concentric balls) Let B =
B(zo, R) be an open ball in R™, and let ¢ € L°°(B). If u € H?(B) satisfies

(—A+qu=0 in B
and
u =0 in some ball B(xq,ry) with 1o < R,
then uw =0 in B.

Proof. Let

I={re(0,R); u=0in B(zg,7)}.
By assumption, [ is nonempty. It is closed in (0, R) since whenever u van-
ishes on B(z,r;) and r; — r, then u vanishes on B(xzg,r). We will show
that I is open, which implies I = (0, R) by connectedness and therefore
proves the result.

Supposer € I, sou = 0in B(zg,r). Let S be the hypersurface 0B(zg, r).
We know that u = 0 on one side of this hypersurface. Now Theorem 6.21
implies that for any z € S, there is some open ball B(z,r,) contained in B
so that u vanishes in B(z,r,). Define the open set

U = B(xg,r)U <U B(z,rz)> .

z€S

The distance between the compact set S and the closed set B(xg, R) \ U is
positive. In particular, there is some € > 0 such that u = 0 in B(xg,r + ¢).
This shows that I is open. O

Proof of Theorem 6.20. Suppose u € H?(Q) satisfies (—A + ¢)u = 0 in
Q) and uw = 0 in some open ball contained in 2. Set

A ={z € Q; u=0 in some neighborhood of z in Q}.
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By assumption, A is a nonempty open subset of 2. We will show that it is
also closed. This implies by connectedness that A = €2, so indeed u vanishes
in € as required.

Suppose on the contrary that A is not closed as a subset of €). Then
there is some point zy on the boundary of A relative to €2, for which zy ¢ A.
Choose 19 > 0 so that B(zg,r9) C 2 and choose some point y € B(zg,70/4)
with y € A. Since y € A, we know that u vanishes on some ball B(y, s¢) with
so < 19/2. By Theorem 6.24, we see that u vanishes in the ball B(y,r9/2) C
Q. But 29 € B(y,r0/2), so u vanishes near xy. This contradicts the fact
that xo ¢ A. O

In turn, unique continuation from Cauchy data on a subset follows from
weak unique continuation upon extending the domain slightly near the set
where the Cauchy data vanishes.

Proof of Theorem 6.19. Assume that u € H?(Q2), (A + ¢)u = 0 in
Q, and ulp = dyulr = 0. Choose some zy € T', and choose coordinates
x = (2/,x,) so that xp = 0 and for some r > 0,
QN B0,7)={z € B0,r); x, > g(z')}
where ¢ : R"™! — R is a C™ function. We extend the domain near xy by
choosing 1 € C2°(R" 1) with ¢ = 0 for |2’| > r/2 and ¢ = 1 for |2/| < r/4,
and by letting
Q=QuU{z € B(0,r); 2, > g(z') — ep(2')}.

Here & > 0 is chosen so small that {(2', z,,); |2'| < 7/2, 2, = g(a') —eyp(2') }
is contained in B(0,7). Then Q is a bounded connected open set with C*°
boundary.

Define the function

_ Ju(x) ifreQ,
U= itreara

Then il € H?(Q2) and 11|Q\Q € H2(Q\ Q). Since ulr = d,ulr = 0, we also
have that the traces of @ and 0, on the interface 9Q \ dQ vanish when
taken both from inside and outside (2.

It follows from Theorem ??? that @ € H?(Q). Defining G(z) = ¢(z) for
z € Qand §(z) = 0 for Q\ Q, one also gets that (—A 4 §)@ = 0 almost
everywhere in Q. But @ = 0 in some open ball contained in \ Q, so we

know from Theorem 6.20 that @ = 0 in the connected domain €2. Thus also
u=20. |



Chapter 7

Scattering Theory

This chapter has two main parts. In the first, up to and including §7.3, we
give a brief description of scattering theory for a Schrodinger operator. In
the second, §7.4, we prove that the scattering amplitude of a Schrédinger
operator uniquely determines its potential.

First, fix A > 0 and note that, for each w € S® !, the function
wo(x’w) _ ei Az-w

obeys
Hotho = (=A = A)tpo(w) =0

The functions 1g(-,w) are the “eigenfunctions” of —A with eigenvalue A,
and are parametrized by the unit sphere S®~! in R™. The corresponding
solution of the time—dependent Schrédinger equation i%w = — A1), namely
Y(x,t) = e_l)‘te“/xx"”, has phase velocity v Aw. That is, if you move with
z(t) = £(0) + VAwt, you always sce the same value of v (z,t). We think of
Yo(x,w) as an incoming wave in direction w.

If we consider the perturbed operator
Hypg = (A= A+ q)g =0

— we shall assume that ¢ is bounded and compactly supported in R"—
then, as we will demonstrate in §7.2, the eigenfunctions v,(x,w) are also
parametrized by the sphere. They are unique if we insist that they have the
form

Y(r,w) = VAT 1o (z,w)
with the conditions that ¢4 (-, w) € L2 for some § < —3 and that ¢4 (-, w) is
outgoing. In §77, we defined, for any —oo < § < o0, Lg to be the completion

233
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of C§°(R™) with respect to the norm

5 1/2
Jull 2 = (/Rn (14 |2*)°ul? dn:c>

There are several equivalent definitions of outgoing. The one we shall use
is that ¢, is in the range of a certain linear operator, Gg, which we will
introduce in the next section. In Corollary 7.19, we shall show that, asymp-
totically for large |z,

() by = Ve g YO0 Al o5

i
where 0 = ﬁ We think of the first term as an incoming wave in direction w
and of the second term as an outgoing radially expanding wave that arises
when the incoming wave scatters off of the potential q. The amplitude,
aq(\/X, 0,w), of this outgoing wave depends on the direction of view, 6, and
is called the scattering amplitude. We saw a similar setup in §77.3.

7.1. Outgoing Solutions to (—A — Nu = f

Our first step (Theorem 7.1 and Proposition 7.2) is to solve the constant
coeflicient equation

(7.2) (-A-Nu=felLi ¢&>1
by employing the Fourier transform and simply writing
i f (k)
k p—

If Im A # 0, the denominator does not vanish and 4 is an unambiguously
defined element of L? with

1 R 1 A 1
|ull L2 @ny = WHUHLQ(R”) < m”f”ﬂ(w) = m“f\\ﬂ(w)

For real nonzero A we shall define the unique outgoing solution to (7.2) by
i - fR)

7.3 k) =lim ——>——

(7:3) k) =lim o=y

Letting € increase to zero in (7.3) would define the unique incoming solution
o (7.2). We will not need to consider incoming solutions. We begin with

Theorem 7.1. Let A € C\RT, [\| > € >0, > 3 and n > 2. There exists
a unique weak solution u € L* ;(R™) to

(7.4) (A —Nu = f € L}(R")
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Moreover, there is a constant C = C(n,0d,€) such that

(75) e, < iz
We shall denote the solution operator to (7.4) by
u=Go(A)f
In order to extend Gp(A) to nonzero real values of A we shall prove
Proposition 7.2. For every f € L3(R") and g € L3(R™), the map
A= (Go(N) S, 9)

has unique limiting values as A approaches the real axis from above. Use
Os s to denote the Banach space of bounded linear operators from Lg to
L2_5. Then Go(X) extends to a weakly continuous O _s—valued function of
AonImA>0.

Definition 7.3. For A € RT\{0} and f € L2, define
Go()\)f = liﬁ]l Go()\ + Ze)f

to be the outgoing solution to (7.2). A function u € L3(R") is said to be
outgoing if it belongs to the range of Gy(\).

Proof of Theorem 7.1. Let u and f obey (7.4). Then
(I = Na(k) = f(k)

and as the denominator does not vanish

oy f(k)
u(k)—m

and is therefore unique.

We now define a smooth partition of unity X2(k,)), XZ(k,\), ---,
X2(k,\) with Xy supported away from |k| = \/|A[, the other X;’s sup-

|2
ported near |k| = /|A| and, for 1 < j <mn, '(Z‘L > 5- on the support of X.

To do so, let )z((k:), ce )z((k:) be non-negative smooth functions which take
0 n
values in [0, 1] and satisfy
~ 0 <K<
2 = IR =3
X (k) = 1
0 1 |k[< gorlkl>2
and, for =1, ..., n,
> L[k
n

0 L [k[?
X (k) =
J 0 |k3]’|2 < %|k‘|2
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Let
Ko(k2) = X (k/V/IN])
X;(kA) = (1— Xo(k,)\)))j((k) forj=1, ..., n
and, finally, define
X (k, \)

Xi(k,A) = for k=0,

VoK, 2)2

so that
n
> O XF (kN =1
=0
For any 0 # k € R", we must have |k;|> > 1|k|? for at least one 1 < j <n

so that > 7, )z((k:)2 > 1 for all k # 0 and
j

S X0k 0?2 > Xo(k, V)2 + (1= Xo(k, V)2 >
j=0

I

Combining this with
sup |DY'Dy ~j(k,)\)\ < o0

[A[>e
keR™
0<j<n
yields that, for |A| > e,
(7.6) DY DXk, \)| < Cla,m,e)
We now write
(7.7) (GoN ) =aof +>_ aym;f
j=1
with
Xo
7.8 = —
(7.8) q0 k2 — X
X
7.9 ¢ = —2>— forj=1,---,n
79 Tk + VA
X
(7.10) m; = —-7>— forj=1,---.n
Tk = VA

where we choose VA to have positive imaginary part. In the remainder of
the proof, we shall assume that Re v/ is also nonnegative (as is the case for
ImA > 0), so that the magnitude of the denominator in (7.9) is bounded
below by 1/|\| > /e for all k € R” and |\| > . On the other hand, |k| may
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get arbitrarily close to v/A and the denominator in (7.10) is not bounded
away from zero. If Rev/\ is negative (as is the case for ImA < 0), we
interchange the definitions of the ¢; and the m;. It follows from (7.6), (7.8),
and (7.9) that, for || > ¢,

C(m,ae)

VIA

with a new constant C(«,m,€). By Lemmas ?? and (when § is not an
integer) 77,

[DX' Diqj (K, A)| <

A C(0,¢€), »
16 f || o (rry < ﬁﬂfﬂm(ﬂm

for any § and 0 < ¢ <n. Therefore the operators

A

Qi: fr (af)

satisfy the estimate

' C(d,€)
1011 < <271

Moreover, the norms of the derivatives of the operators (Q; with respect to A
are also bounded, so that the Q; are continuous functions of A in the uniform
operator topology. The estimate (7.5), as well as Proposition 7.2, will now
follow from the following estimate of the operators

Mj: f = (myfy)Y
combined with Problem 7.7. U
Lemma 7.4. Let § > 3, |\| >e>0. Forall1<i<n,
IMif 2. < Cle,) 1]l
Moreover, for f,g € L?;, the map
A= (Mif,g)

has unique limiting values as X approaches the real axis from above.

Proof. We will prove the lemma for M;. Let n = ¢ (k) define the change of
coordinates

m = k|
n; = k; forj=2,...,n
By construction the Jacobian, Dy = %, is bounded and bounded away

from zero on an open set ) containing the support of X;. Let X; be a C™
function, taking values in [0, 1], that is supported in  and is identically
one on the support of X;. By Lemma ?? and Lemma ?? (when § is not an
integer) u — ®u = (Xu)otp~! and u — du = ()1(3_112;)01#—1 are bounded maps
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on H?(R™) with operator norms depending only on ¢ and e. Furthermore
these operators are norm continuous in A. (They depend on A only through
X and X;.) Since

_ [ E®) a0 Lk
_ / ﬁmmw (;lﬂ];n
i T 1 d"n

= [ ——X1(@ ') f @ ) X1 (v (n)g (¥~ (n))

— (DY)(~t(n)) (2m)"
_ [ _GhHm @ L

= [ = RN @0 55

_ <N1(§>f)vj (q)g)v> where Nif = <#>

it suffices to prove that

(7.11) [(Nif.9) | < CG.ON 12l 2

and that (V1 f,g) converges as A approaches the real axis from above. Now,
by Problem 7.5, N can be also expressed as
(7.12)

Tl
Nyf(xq,2') = z/ elﬁ(wl_yl)f(yl,x') dyy with z' e R"1

—00

Because ImvA > 0 and z; — 31 > 0 on the domain of integration, the
exponential in (7.12) is uniformly bounded. Fixing 2’ for the moment and
applying the Cauchy-Schwartz inequality in R!, we see that, since § > %,

xr1 75 o 5
Mafna)P < [ ) [ 18P )
< OOy
so that
°° -5
Hle(Wx,)H%gé(Rl) gC(é)/ (14 2%) "day Hf(-,xl)Hig(Rl)

The integral C(8) = C(9) [+ x%)_éd:vl is finite as long as § > 3. Since,
for 6 > 0,

—0 —0
(IT+ai+2P) " <1+

) )
(I+af+ 12" > 1+
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we have that

—0
Hle“%z’_a(R") :/ dxl/R » (1+ a7 +[2'[*) [ NLf (21, 2")
/ . / d$1 1+x1) 6’N1f(.%'1’1'/)‘2

da’ [N f(- 2

IN

)HL? (Rl)

n,

Il
\

IN
Qz

@ [ o [~ de el

IN

(5) / da’ / dry (1422 + 2/ a1, 2")
Rn—1 —00

which implies (7.11). Finally, the existence of limiting values of

(N\fg) = i / / VA=) £ ) gla) dyrd™u

as Im A decreases to zero follows from the dominated convergence theorem
and the existence of pointwise limits for the function eVA@1—y1),

This, together with Problem 7.7, completes the proof of the lemma,
Theorem 7.1 and Proposition 7.2. U

Exercise 7.5. Let A € C\ R* and choose Im v/A > 0. Define the map
N : L*(R") — L*(R™)

V
f
Ny f= | —2
= MNf <771—\/X>

Prove that
x1
Nyf(xq,2') = z/ ezﬁ(xl*yl)f(yl,x/) dyy with ' e R*!
—00

Exercise 7.6. Let A >0, 0 > 3 and f € LZ(R").

Au = f. In other words, prove that u = Go(\)f obeys ((=A — N)g,u) =

(a) Prove that Gp(\)f is a weak solution of the differential equation (—A —
(g, f) for all g € S(R™).

(b) Prove that if u is a weak solution of the differential equation (—A—A)u =
f and if w is in the range of Go(A), then u = Go(\)f.

Exercise 7.7. Let By, By and B3 be Banach spaces with B3 the dual space to
Bs. Let {fi}ien C B1 and {g;}ieny C Bs be (strongly) convergent sequences
and let A; : By — Bs be a sequence of operators with uniformly bounded
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operator norms that converges weakly in the sense that lim; o, (A4;f, g) ex-
ists for each f € By and g € Bs. Here (A;f, g) means the value of g, viewed
as an element of B;, at A;f € Ba. Prove that lim;_,~ (A fi, g;) converges.

In §7.2 we shall make use of the following lemma. Before stating the
lemma we define

My={keR"|k-k—XA=0}
Lemma 7.8. Let A >0 and f € LE(R") with § > 1. Then

(7.13) Im . (GoN)f) () f(z) d"x = Sntions 1\[/

where dSﬁ(w) is the surface measure on the sphere My of radius v/ .

w)|*dS, /5 (w)

Proof. We apply the Plancherel theorem (?? b) to

. 7 .
(Cold+i0f, Nz ava) = 3 g0 P incer g

so that

, F(k)|2e d"k
m<aou+ze>f,f>=/w(k_,Lffi‘)QHQ(% o | /M2 S +62 4, () dp

= OO—F(p)e wihnere 2
[ e e Pl - <2w>"/Mp2' (@) dS, ()

Now make the change of variables p> — A = et. This gives

m (Go(A +ie) f, f) = //\/ tgf)l dt where F.(t) = 21p}7“(p)|pm

Since f € L%(R™), we have that fe H°(R™). Applying Lemma ?? and
Problem ??, in p,w coordinates, yields that F'(p) is uniformly bounded and
continuous. Hence

~)/(26) /2 =
lim Fe®) 41 — tim AT R "
€10 ) _x/e t-+1 €10 Jg (p2 = N\)? + 2
and, by the Lebesgue dominated convergence theorem,
& F (¢ * F
lim o ®) g — 20( ) gt
el0 —\/(2€) t-+1 t +1
Hence
F(V) /°° 1 T / .
m{(Go(N) f, f) = dt = w)|* dS s(w
oW N = [ = g [ s s

O
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The following theorem, originally due to Rellich, will play an impor-
tant role both in proving the existence of eigenfunctions of H, and in our
treatment of the inverse scattering problem in §7.4.

Theorem 7.9 (_Rellich Uniqueness Theorem). Let A > 0, R > 0 and f € L2,
with supp f C Bg, the closed ball of radius R. The following are equivalent.

()Go(A) f € L2 for some pn > —3

(i) fn f ()3P0 (2, w) d"x =0 for all w € S™!
(iii)supp (Go(N) f) C Br

Proof. We shall show that (i) = (ii) = (iii) = (i).

(i) = (i) Suppose first that (ii) is false. That is, there exists kg € M)
such that f(ko) # 0. As Go(\) commutes with rotations, we may assume
that kg = (\/X,O, -++,0). Let U be an open neighbourhood of kg in R™ that
is sufficiently small that it does not intersect the support of any X;(k) with
0<j<n,j# 1 The X,’s were defined in the proof of Theorem 7.1. Let
Xu be a C* function that takes values in [0, 1], is one on a neighbourhood
of ko and is supported in . In the notation of (7.7)

Xu (k) (Go(N) £) (k) = xu(k)go (k) £ (k)+ Y xuu(k)g; (k)ym; (k) f (k) = xau (k) a1 (k) f (k)ma (k)
j=1

Now, if (i) is true, (Go(X)f)(k) € H*(R™) so that,
xu(k)ai (k) f (k)i (k) € HH(R")

Since we are assuming that f has compact support, f and hence ¢ f is C*°
in Y. Furthermore we are free to choose U small enough that ¢; f is bounded
away from zero on U. Hence (xzymy) o ~!, which is the product of qu and
1
Xuqifmy composed with 1!, is still in H*(R"). Denote by ¢ the inverse
Fourier transform of yz;01¢~! and observe that the inverse Fourier transform
of mjoy~™! = ﬁx is —id(z") ei\/X“H(:Ul) where H is the one dimensional
—

Heaviside function and §(z’) is the n — 1 dimensional delta function. We
have now shown that, under the assumptions that (ii) is false and (i) is true,
the inverse Fourier transform of (Xuml) o1, namely

(7.14) —i / VNOTIDF () — y1)¢ (31, 27) i

is in L2. But (1 +%)" is not in L'(R) for any s > —1. So, by Problem

7.10, the function of (7.14) is not in L2 for any s > —3, contradicting our
initial hypothesis and proving the implication (i) = (ii). (#) = (iit) For
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any function f, which is supported is supported inside the ball of radius R,

and any k € C",

fk)] = < HMH | f ()] dhe
Br

/ e R f(x) dx

Br

If f is C'°°, then the usual integration by parts game gives that

(7.15)

; Cn R| Tm k|
P —

for all N € N. In fact, according to the Paley-Wiener theorem, Problem
B.13, a function f is C* and supported in Bp if and only if f(k) extends
to a holomorphic function on C™ which obeys (7.15).

Start by assuming that f is C°°. We claim first that f restricted to
the complex manifold ./\/l§ = { ¢ ‘ C-¢C= A } is identically zero. To see
this consider the power series expansion of f| ME Dear ¢ = (VX,0,...,0).

Let Z: (C2y...,Cn). Now, g(z) = f(wA-Z-Z,Z) is holomorphic in a

neighborhood of zero and, by hypothesis (ii), vanishes whenever E is real.
Hence all the coefficients in the power series expansion of g are zero. Thus,
g and, since Mg\: is connected by Problem 7.11, f| MG, are identically zero.

Now consider @ = (Go()\) f )A, which automatically extends to ¢ € C* via

(7.16) a(¢) =

By the Cauchy integral formula

(7.17) 1£(C) On__critmg] dist (¢, M)

< — 2V
= T

within a distance one, for example, of ./\/l§ If |¢-¢] > %, then, choosing

- to have non—negative real part, we have that VA s on M so that
V¢ A

m—ﬁ‘m: ¢ ¢-A
V¢ VLT T+ V)

A
dist(C, M5) < \q—%c\ - |
On the other hand, if | - (| < %, then

- Adist(¢, M)
2 VA

since (\/X, 0,---,0) € ./\/lg. In both cases there is a A—dependent constant
D so that

A
c-c=A=3

2
1L 1+

(7.18) [CC—A = " dist(C, MS)

4=

V2
By

1C1¢¢=A
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so that (7.16) can have no poles. Hence 4(() is holomorphic and satisfies a
bound of the form (7.15), so that the Paley-Wiener theorem implies (iii).

Now we extend to a general f € L? that is supported in Br. Let ¢ be a
nonnegative C§° function that is supported in the unit ball B, and has total
mass one. That is, [¢(z) d"a = 1. Set, for each € > 0, p.(z) = Lo (%)
and f. = ¢, * f. Then f. is C* and is supported in Bry.. Since fe(kz) =
@.(k)f(k), f. satisfies condition (ii). So by the part of (ii)= (iii) that
we have already proven, u. = Go())f- also vanishes outside of Br,.. Since
convolution with ¢, commutes with application of the Laplacian, u. = ¢ *u
where u = Go(\)f. Since u. converges to u, locally in L2 as e — 0, u
vanishes outside of B R+te for all € > 0. This is all we need.

(iii) = (i) Since f vanishes outside Bpg it is in L} for any § > 1. By

Proposition 7.2, Go(A)f € L%, so that the restriction of Go(\)f to any

bounded set is in L. Since we are assuming that Go(\)f vanishes outside
of Bp, it is itself in L?(R™).

O
Exercise 7.10. Let
CR H
be the Heavyside step function.
(a) Let C e S(R) obey {(a = [e7"*((x) dz # 0 for some o € R. Prove

that z(z) = [e " H(z — )C( ) dy is not in L2(R) for any s > —1.

(b) Let ¢ € S(R™) obey fe*mmlg“(xl,O)Adx = Jrna Cla k) é:r K £ 0 for
some a € R. Prove that z(z1,2') = [ e " H (21 —y1)((y1,2’) dy; is not in

L2(R™) for any s > —1.

Exercise 7.11. Prove that if A £ 0, then M‘E is a smooth connected man-
ifold.

We shall need one more estimate and its corollary in the next section.

Proposition 7.12 ([Ho, Vol 2, Proposition 14.7.1]). Let A\, > 0 and let u
be a compactly supported L? function with (—A — X)u € L2(R"), then

(7.19) zAT/ ]u\Q\x]Td"mg/ (=2 = NuPle+ ds
R» R»

Proof. In polar coordinates

9?2 n—109 1
_A_A__W_TE_T_?AS_A
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where A, is the Laplacian on the unit sphere. If we set r» = ef, then % =
e*t% and
0? 0
=2t 2t
—A—-X=e (—ﬁ—(n—Q)E—AS—)\e )
Letting

v(t,w) = e(#Tnfl)tu(etw)

the integrand of the right hand side of (7.19) becomes

2
|(—A _ )\)u|2|x|2+T — €(2+T)t{€_2t( _ % _ (TL _ 2)% — A, — )\62t) (ei(T;nil)tv(t,w)) |2
2
= 6(2+’r)t‘67(7—§n+1)t( — % — (TL — 2 — T —"N —|— 2)% — As —|— ‘U/ - Ath)/U(t, W)|2
n 02 0 2
=e t‘(— @—FTE —AS—{—,u—)\th)v(t,w)‘

=e ™|(L1 + Lg)v(t,w)‘2
where = (n —2)(52 — 1) — (52 — 1)2 is a real number and
82

— 2t
Ll——@—F/L—AS—)\B
0
Ly=1%
2T o

Since d"z = r"~! drdw = e dtdw, the right hand side of (7.19) becomes
M = //\le +L2v]2 dtdw = Hle—i—LgvH2

Since
LiLy + L5Ly = LiLy — LyLy = 2\1e?
we have
M = ||Lyo||* + || Lov||* + (v, (LfLa + L3L1)v)
> (1), (LTLQ + L;Ll)?})

= 2)\7/62t\v\2dtdw

= 2)\T/|u|2|x|7d”:c
(]

Corollary 7.13. Let p > —%, A > 0 and ¢ € L*(R™). Suppose that
u € Li(R") is outgoing (i.e. w € Range(Go(N))) and is a weak solution of

(FA=A+qu=0
If q has compact support, then u = 0.
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Proof. Pick and § > % Since ¢ is of compact support, qu € L?, and u is
a weak solution of (—A — A)u = —qu. By Problem 7.6, u = Go(\)f with
f = —qu. Applying Theorem 7.9 with f = —qu, we conclude that u has
compact support and is in L2. Since (—A — A\)u = —qu is also in L? (7.19)
applies and yields

1 ~ n(|[?]g[?
/ |u|2|x|7d:c < — |qu|2|x|2+Td:c < SUPgzeRr (|£C| |Q| )/ |u|2|$|7d£ﬂ
Rn 2\T Rn 2\T Rn

2 2
Sllpw%w < 1 implies that

/ (2 |a]"dz = 0
RTL

so that u = 0. O

Choosing 7 large enough that
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Theorem 7.14. Let \,R > 0 and § > 3. Let f € L? and q¢ € L>°(R")
with suppq C Bpr. Then there exists a unique LQ_(S outgoing (i.e. u €
Range(Go(X))) weak solution u = Gg4(\)f to

(7.20) (A= A+qu=f
Moreover, we have the formulas

(7.21) Ga(N) = Go(N) (1 + gGo(N) ™
(7.22) Ga(N) = (14 Go(N)g) " Go(N)

Proof. A function v € L? 5 is outgoing if and only if there is a v € Lg such
that u = Go(A)v. By Problem 7.6, the (weak) equation (7.20) for outgoing
u is thus equivalent to the equation

(14 qGo(N\)v = f
for v. So we must establish the invertability of
(7.23) (1+¢Go(N) : L — L
to prove (7.21). Then (7.22) will follow from writing (7.20) as
(A =N (1 +Go(Ng)u=f

and observing that (]1—|—G0()\)q) : L? 5 — L? 5 has a bounded inverse because
it is the Banach space adjoint'Let X and Y be Banach spaces and X* and
Y™ be their respective dual spaces. If T is a bounded linear operator from X
to Y, then the Banach space adjoint of T', denoted T” is the bounded linear
operator from Y* to X* defined by (77¢)(x) = ¢(Tz) for all £ € Y* and
x € X. In the current application, we have X =Y = Lg(R"), X =YY"=

L)
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L? 5(R™) and £(z) = [g. £(y)z(y)d™y. In this case, the Banach space adjoint
is the “L?-adjoint without the complex conjugate”. of (]l + qGO()\)).
It remains to establish the invertability of (7.23). We need one additional
estimate for Go(A). If
(FA=XNw=g
then, by Theorem 7.1,

| = Awlgz, < Muwlzz, +lgllzz, < (©VA+ Dl

Let x(x) be a smooth cutoff function which is one on the support of ¢ and
is supported inside the ball of radius R. If {f;} is a bounded sequence in
LZ(R™), then both {xGo(\) fi} and {—AxGo()) fi} are bounded sequences in
L% 4(R™). So {xGo()\)fi} is a bounded sequence in H3(Bp) and, by Rellich’s
Theorem (Problem ??), has a subsequence that converges in L?(Bpr) and
hence in L?(R™). Therefore

XGo(A) : L(R™) — LF(R")
is a compact operator (see Definition A.56). Since multiplication by ¢ is a

bounded operator, ¢Go(A) = gxGo(A) is also compact, by Proposition 77.
For large A, it follows from (7.5) that

laGoIl < |1+ ) a(@) | o I Go ]
< 1+ 2@l =

VA

so that 1 + ¢Go(\) is invertible for A sufficiently large. By the Fredholm
Alternative (Proposition A.70), to the prove bounded invertability of 1 +
qGo(X) at any A\ we need only prove that the kernel is empty. This can be
seen as follows:

Suppose that
f+4aGo(N)f =0
then

(7.24) (£, GoN)f) = = (aGo (M) f, Go(M) f)
and, because the right hand side of (7.24) is real, we may conclude via (7.13)
that f‘MA = 0. According to Theorem 7.9, u = Gy(A\)f is a compactly

supported and hence L? solution to (—A — A\)u = f = —qu. Hence u = 0 by
Corollary 7.13. By Problem 7.6, f = 0 as well and the theorem is proved. [

The existence of the generalized eigenfunctions for H, now follows easily.
We have
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Corollary 7.15. Let A > 0 and w € S"~!. Let ¢ € L* be of compact sup-
port. There exists a unique A\—outgoing eigenfunction for H, in the direction
w. That is, there exists a unique Vq(X\, z,w) satisfying

(FA=A+q)Ypy =0
of the form

wq = ¢0()\7an) + @q()‘7x7w)
1
2

(7'25) ¢q(>" : ’w) = (]l - Gq(A)Q)wO(Aa : ’w)

and

such that @q(X, -,w) € Li, for all p < —5, and is A—outgoing. Moreover,

,l/}q()V : 7w) = wO()V : 7w) - GO()‘)q,l/}q()‘a : 7w)
Proof. In terms of ¢,, the equation (—A — X+ ¢)yy, =0 is

(7.26) (“A=X+q)ps = —q¥o

By Theorem 7.14, this equation has a unique outgoing solution and that
solution is

(7.27) g = =GN (g (N, -, w))
Rewriting (7.26) as
(A =Ny = —qh0 — apq = —qibq

yields the last claim. O

Our next step is to extend Theorem 7.9 to H,. We prove

Theorem 7.16. Let A > 0, R > 0 and f € L?, with supp f C Br and
suppq C Br. The following are equivalent

(i)Gg(\) f € L2 for some i > —3
(i) [ [(2)00g(\, 2,0) d*z = 0 for all w € S™!
(iii)supp (Gg(A)f) C Br
Proof. We first note, from (7.22), that

(1 4+ Go(N)g) G\ f = Go(N\) f
so that

(7.28) Gq(N)f = GoN) (1 = qGy(N) f = Go(N)F
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where F' = (1 — qG4(\)) f. If (i) is satisfied, then Theorem 7.9 yields
0= F(z)o(z,w) d"x
R
— [ (- G0 N@nlew) d's
= [ 5[ GiNd)un) ()

= . [(@)Yg(\, z,w) d"x

which proves that (i) = (ii).
The previous calculation along with Theorem 7.9 implies that
supp (Go(A)F) C Br

which, in view of (7.28), shows that (ii) = (iii). As before, (iii) = (i) is
trivial. O

7.3. Asymptotics and the Scattering Amplitude

Let G4(A, z,y) denote the outgoing Green’s kernel defined by
(G f)(z) = A Gg(A\z,y)f(y) dy
It is, for each fixed y, the solution of
(7.29) (=As +q(x) = NG\, 2, y) = 6(z —y)
subject to the Sommerfeld radiation condition (see (1.9))
9
or

Gy — VG, = o< 171 > as |z| — oo

rE

The “unperturbed” outgoing Green’s kernel Gy(\, z,y) can be computed
using

etk (z—y) A"k
Go(\ — 1
ohz,y) =l | K2 — () + ie) (2m)"

Lemma 7.17. If A > 0, then

1 VA n=2 (]
Go(A,x,y):Z(m) 2 H%(\/X\x—y\)

where H,El)(z) = Jy(2) +iY,(2) is a Hankel function. In particular, for
n =23,

ei\/X|a:—y|

Go(A,z,y) = P
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Asymptotically, for large r,

1 \/X n=1 . n—3 1
G )\71.7 — - (YT N2 el(ﬁ\l‘*y\*Tﬂ) + o|l——M
of Y) 2\/X(27T|$—y|) (’x—y‘nT_l_1>

Proof. By rotation invariance, we may assume, without loss of generality,
that z —y = (|z — y|,0,--- ,0). By scaling k — v\,

n ikl\/x\x—y\ n n ikir n
Go(A,z,y) zlim)\zl/ < A :1im)\21/ e __d"k
€l0 R™ |k:|2—1—’L€/)\ (277)" €0 . |k|2—1—26 (271')"

where 7 = VA |z — y|. By residues

etkar dkq 1 e—rw/pQ—l—ie e—rw/pQ—l—ie
= 2mi— =
/Rk%Jr 27 2i\/p? — 1 —ie  24/p? — 1 — ie

where p = (kg, -+ , k,) and y/p? — 1 — ie denotes the square root with pos-
itive real part. The corresponding imaginary part is negative. As /p? —1

p2—1—ie 21

has an integrable, square root, singularity at |p| = 1 and e rVpi-l decays
exponentially quickly for large |p|, the Lebesgue dominated convergence the-
orem gives

efr\/prl dnflp
Rn—1 4 /p2 —1 (27T)n_1

Now 4/p? — 1 is positive for |p| > 1 and is ¢ times a negative number when
Ip| < 1. Going to spherical coordinates in R"~!

GO()‘axay) = %)‘%_1

_ 2_
anl n_q e’} e~ TVP 1
2

Go(A = - v
oAz y) = 5y ; po— p"dp
where ,,, = Ig(”Tm//;) denotes the surface area of a unit sphere in R™. For p >
1, make the change of variables p = cosh 7, \/p12—1dp = ——sinhrdr =dr
00 =T p2—1 00 )
pn72dp — / e*TSlnhT COShniQ’T dr
1 p?—1 0

For 0 < p < 1, make the change of variables p = sina, y/p? — 1 = —icos «,
dp = cos a da

jus

1 —ry/p2—-1 5

€ r n72d . 2 ircosa _:.n—2 d

— p =1 e sin” “« do
0 Vp2-1 0
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Poisson’s integral representation [MO, Third Chapter, §5] for the Bessel
functions of the first and second kind are (for v > —% and Rez > 0)

2(3)” 2
Ju(2) = #L%) /02 cos (2 cosa) sin® o do
Y, (2) = L [/’2’ sin (2 cos ) sin® a do — /00 e #SIhT ogh2V dT:|
Val(v+3) Lo 0

The Hankel function
HWM (1) = J,(r) 4+ iY,, (1)

2(%)V 2 ir cos . 2V . o —rsinh T 2v
= — e sin“’ o dov — i e cosh®’ T dr
VaT(v+3) LJo 0

_ 2(%)1/ |:_7:/OO e’ p271 pn_de:|
VAT(v +3) 0 p?—1

with v = ”772 Thus

i VA

n—2
- - - 2 H(l) _

Internal remark 6. Now making the change of variables s = p> — 1,

Go(\ z,y) = ! A%—l/oo Wﬁ( +1)"77d
olA T, Y _Qnﬂ.(n—l)/QF(nT—l) s s s

For s > 0, we make the change of variables t = /s

00 ,—1v/s 0o
e n—3 n—3
(s+1) 2 ds:2/ e " (t2 4+ 1) 2 dt
/o Vs 0

and for s < 0, we make the change of variables \/s = —it

Oe_r\/g n—3 1- n—3
s+1 2d5:2i/ e -2 dt

In particular

so that, for n =3,
ei\/xkrfy'

Go(\,,y) = prpe—

We already saw the n = 3 case in Problem 1.20.
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Asymptotically, for large r,

[ 2 ; 1 1
Hl(,l)(\/X ): Tel(ﬁrfyzwfiw) +O(m)
T T

This is formula (9.2.3) in [AS]. So

i, VA =2 2 : w1 1
G )\,-T, = —(—) 2 762(\/X|m*y|*zﬂ'+gﬂ) + 9]

L VA )7 i o L)

e o -y

O

Internal remark 7. Alternatively, we can observe that, by rotation invari-
ance Gy depends on x and y only through r = |z — y| and obeys, for r > 0,
0? n—10

—+ ——+ )G

or? + r Or +A)Go

This, up to a change of variables, Bessel’s equation. It’s general solution
may be found choosinga=n—1,b= X\, d=2 and c = 0, and consequently,
a:V:—"T_Q,ﬂzx/Xcmd’yzl n

0=(-A-XNGo=—(

Exercise 7.18. Let 3,7 > 0. Prove that Z,(z) obeys Bessel’s equation

m2y”+my’ + (mQ _ VQ)y =0

if and only if y(z) = x*Z,(Bx7) obeys

2?y" + axy + (bzd + ¢)y =0
with
_l-a g _2vh _d =2 ey
‘T T 772 "TaViT ‘

The general solution of the Bessel equation of order v is ¢J,(x)+dY,(x)
where J, and Y, are Bessel functions of the first and second kind, respec-
tively. For our purposes, it is more convenient to use the Hankel functions

HY(2) = Jy(2) +iYy(x)  HP(x) = Jy(2) Y, ()
as a basis for the space of solutions. So far, we know that
1 1
—2 H%(\/X lz—y|)+dpy———= H%(\/X lz—y|)

|z —y|T |z —y| ™2

GO()‘a z, y) = Cp,\
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for some constants c, x and d,, . Asymptotically, for large r,

2 ; 1 1 1
H(l) \r) = z(\/Xr—er——ﬂ) O——
D) = [ e T+ 0(5n)

2 1
HP (VA7) = —
v ( ) v\ 743/2)
These are formulae (9.2.3) and (9.2.4) in [AS]. To satisfy the Sommerfeld
radiation condition we need to choose dy, x = 0. The coefficient c,, » is chosen
to give a unit delta function at the origin, or, equivalently, to give the correct
coefficient in the asymptotic behaviour for large |x — y|.

_i(\/XT‘—%VT(—%ﬂ’) + O(

(&

Corollary 7.19. Let A > 0 and w € S"'. Let ¢ € L™ be of compact
support.

(a) There is a C* function aq(\/x, <,w) : S"Y — C such that, asymptoti-
cally for large |x|,

n—1

x| 2
where 6 = ﬁ ?77? Regularity in A\, w? 777
(b) There is a constant C s such that
e _n-1
G(I(Aaxay) :C\F)\,nﬁwq()‘aya__)_FO(kd 2 1)

X
lz|"z ||

Proof. (a) Rewriting the last conclusion of Corollary 7.15 in terms of the
Green’s kernel gives the Lipman—Schwinger equation (see (1.10))

(730)  g(haw) = VAT / oA 2,9) a(y)g(N, y,w) 'y

For y in the support of ¢ and large |z|,

2 2 2 2 0y v 1
(x—y)* =z —2xy+y° ==z (1—2W+ﬁ) = |z—y| = \x!—@-y—i—O(m)
so that

_ L VA (al-0) 1
(7.31) Golha:4) = Cni oy € + O(I:clnf)

Substituting this into (7.30), defining
(V3 0.0) = ~Cyx, [ €A gl Opw) 'y

and noting that 1), is locally L? and hence locally L' gives part (a).
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(b) By (7.21),
Gy = (1-Guq)Gy

From (7.31)

PRAVANEY] 1

GO()\,y,x)zGo()\,xay) C\/Xn‘ ’" 11/10( ) +O(’ ‘L)
x| 2
so that, by (7.25)
Gq()\,x,y) — Gq()\’y’x) = Cﬁ,n] |L*1 (]]- — qu)¢0( . 9) + O(| |+)
x| 2
etV z| 1
= Oz Yl ~0) + 0(—|nﬂ)

Internal remark 8. In the y variable, q0<++1) is of compact support
2

xT

Edhen

and L with L* norm O< pxan > Consequently G4q0O (‘ ‘n+1 ) 18 LZ_(; and

|72

hence locally L? in y
O

7.4. Inverse Scattering at Fixed Energy

Let n >3 and q € L°(R™) be supported in Br ={ x € R" | |z| <R }. Let
AeR\{0} andw € "t = {z €R" | |z| =1 }. In the stationary approach
to scattering theory by a potential [RSS3, §XI.6] one shows that there exists
a unique outgoing solution q(X\, z,w) of

(7.32) Loy = (= A+ q— )Y\ z,w) =0

of the form

(7.33) Y\ z,w) = M 4 7“‘1’(7;9_’1@ ¢l L O ()" )
xrl 2

where 6 = ﬁ We have done this, but with X replaced by v/, in Corollaries
7.15 and 7.19.

Definition 7.20. The function a4(),0,w) in (7.33) is called the scattering
amplitude. The function 1,(\, z,w) is called an outgoing eigenfunction.

The scattering amplitude measures, roughly speaking, the amplitude, mea-
sured in the direction 6 = ‘—z‘, of a spherical wave produced by the potential

q when it interacts with plane waves of energy A\> moving in the direction w.

We discussed a classical analog of this picture in §27.3. In particular (7.33)
is the analog for the Schrédinger equation of (1.11).
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We now fix \g € R\{0}. The subject of inverse scattering at fized energy
1s the study of the invertibility of the map

(734) qt— “4)\0 (q) = aq(AOa T )

Nowikov [No] proved that Ay, is injective. Several approachs [No,Ra, W]
have been used to prove this result and various extensions. In this section
we outline a proof that reduces the problem to proving the injectivity of the
Dirichlet-to-Neumann map A,_ A2 acting on a large ball.

Theorem 7.21. Let n > 3 and q1,q2 € L*™°(R™) both be supported in Bpg.
Assume that

-/4)\0 (QI) = A)\O (QQ)
Then

(7.35) E(u1,uz) = / (g1 — @)urug d"z =0
Br

for all u; € H?(BRr) obeying
(7.36) (—A+qa—N)ur=0 (—A+g—N)uz=0
Consequently g1 = qo.

By the divergence theorem, for all u; obeying (7.36),
(7.37)

E(uj,ug) = /B ((Aul)u_g - ul(A—UQ)) d'z = /B V- ((Vul)u_g - ul(V—UQ)) d"x

R
N 3U1_ 8UQ
_/(93R(87“UQ ular)dS

where dS denotes the surface measure on OBg. Note, in particular, that the
outgoing eigenfunctions g, satisfy (7.36). We first show

Lemma 7.22. Under the hypotheses of Theorem 7.21,
E (g, (Mo, -, w), ¥g, (Ao, +,w)) =0 for allw e S™ 1

Lemma 7.23. Let ¢ € L®(R") be supported in the closed ball Br: C Br
and define

E= span{ Pe( Ao, -, w) | we st }
Then & is dense in
N(Lg)={ue H*Bg) | (-A+q—X)u=0}
with respect to the H*(Bg:) topology.

These two lemmata imply (7.35). That g1 = g2 then follows by applying
the portion of the proof of Theorem 4.12 that starts with (4.14).
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Internal remark 9. (4.14) applies to all H' solutions. But the special
solutions used later in the proof were all H?.

Proof of Lemma 7.22. Since a4, (Ao, 0, w) = ag, (Ao, 0, w) for all § and w,
it follows from (7.33) that

n—1
Tzz)(h ()\o,x,w) - T/)qQ ()\o,x,w) = O(|x 7771)
is in L2(R"). We also have that
(_A_)\g) (wa ()\0’ ’ ’w)_wQQ ()‘07 ' 7w)) = _qleI ()\07 ' 7w)+QQ¢q2()‘07 ' 7w)

is supported in Bg. By (7.27) and (7.21), both ¢, (Ao, Sw)— e =12
are Gp(A3)-outgoing so that ¥y, (Ao, -, w) — g, (Ao, -,w) is as well. Hence,
by the Rellich uniqueness theorem (Theorem 7.9) with f = —qi1¢q, + q2¥g,,

g (A0, T, w) — Ygy (Ao, z,w) =0 for all |x| > R

Let x(z) be a smooth cutoff function which is one on a neighbourhood of
0Bpr and is supported inside Bag \ B1 . Then, as we saw in the proof of
2

Theorem 7.14, xtg, (Ao, -, w) € HOQ(BQR\B%R) and hence %X¢qj(A0, S w) €
H(Bagr \ BlR) for j = 1,2. So by the restriction to the boundary theorem

(Theorem ?77)

Tzz)q1 ()‘0’ . aw)‘aBR = T;Z)qz()‘(]a : ,w)|aBR
0 0
Ewm()‘m : ’w)‘aBR = qug()‘m : ’w)‘aBR
1
as elements of H2(0Br) C L?>(0Bgr). So the Lemma follows from (7.37). [

Proof of Lemma 7.23. First we prove that £ is dense in N(L,) with re-
spect to the L?(Bg) topology. To do so it suffices to prove that if f € N(L,)
obeys

(7.38) f(@)¥g(No,z,w) d"x =0 for all w € S™!
Br
then f must vanish. Define
(7.39) wiw) = | Golhoz,9)f (y) d"y
R

Then, by (7.29),
—Aw — Agw = XxBpf —qw
vanishes outside Br and, by Corollary 7?7 and (7.38),

w(z) = O(]w JLT?I*I)
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is in L2(R™). As xp,f — qw is also in L?(R"), we have that, as in the proof
of Theorem 7.14, w € H?(Byg). By the Rellich uniqueness theorem, we
obtain that w vanishes outside Br and therefore

ow

(7.40) w{aBR = E{BR

=0
Now using the divergence theorem and (—A + g — )\%)w = xBpf we have
[P ae= [ f@-a+q- e

Br Br

:/BRw(m) (—A+q =) f(z) d"x—/ <awf_w6_f> as

OBRr E 8r

Since ¢ is real-valued and f € N(L,), we have that (—A +¢—M\3)f =0 in
Bpg and conclude that f = 0.

Now we finish the proof by showing density in H?(Bpg/). By the interior
regularity Proposition 7?7, with v = 1 and ¢ = 2, there is a constant C' =
C(R, R') such that
(7.41)

lulliz2(3,) < C (Il = Dl + [l 2 )
< C(I=2+g = W)ullzzsg + @ = Nl 2 + lullz2 o))
< ' (Il=2 + g = N)ull 2 + lull 2 5

for all u € H*(Bg). Now let f € N(L,). We already know that there exists
a sequence {f;}jen C & such that

lim |[f - f; -
Jim Lf = Fillacsr) =0
Then from (7.41) we conclude that
lim ||f — f; -
jggo\lf filla2Bg) =0

concluding the proof of Lemma 7.23. U



Appendixz A

Functional Analysis

In this appendiz we provide a summary (mostly without proofs) of the most
basic definitions and results concerning Banach and Hilbert spaces (§A.1)
and bounded operators (§A.2). We also develop (with proofs) the most basic
results concerning compact operators (§A.3).

A.1. Banach and Hilbert Spaces

Definition A.1 (Vector Space). A vector space over C is a set )V equipped
with two operations,

(v,w) eV xV—v+weV (,v) eCxVi—aveV

called addition and scalar multiplication, respectively, that obey the follow-
ing axioms.

Additive Axioms:
There is an element 0 € V and, for each x € V there is an element
—x € V such that, for all x,y,z €V,
1) x+y=y+x
(2) x+y)+tz=x+(y +2)
B)0+x=x+0=x
(4) (—x) +x =X+ (-x) =0
Multiplicative Axioms:
For every x € V and «, 8 € C,
(5) 0x=0
(6) Ix=x
(7) (af)x = a(fx)

257
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Distributive Axioms:

For every x,y € V and o, 3 € C,

(8) a(x+y) = ax + ay

(9) (a -+ A)x = ax + Bx
Definition A.2 (Subspace). A subset W of a vector space V is called a
linear subspace of V if it is closed under addition and scalar multiplication.
That is, if x+y € W and ax € W for all x,y € W and all a € C. Then W
is itself a vector space over C.

Definition A.3 (Inner Product).
(a) An inner product on a vector space V is a function

(x,y) eVx Vi (x,y)eC
that obeys

(1) (ax,z) = a(x,z), (x+Yy,2z) = (x,2) + (y,2z) (linearity in the first
argument)

(2) (x,y) = {y,%) (conjugate symmetry)
(3) (x,x) > 0 if x # 0 (positive—definiteness)

for all x,y,z €V and o € C.

(b) Two vectors x and y are said to be orthogonal with respect to the inner
product (-, -) if (x,y) = 0.

(¢c) We'll use the terms “inner product space” or “pre-Hilbert space” to
mean a vector space over C equipped with an inner product.

Definition A.4 (Norm).
(a) A norm on a vector space V is a function x € V — ||x|| € [0,00) that
obeys

(1)

(2) llax|| = laf[Ix|

@3) [x+yl <l + [yl
for all x,y € V and o € C.

|Ix|| = 0 if and only if x = 0.

(b) A sequence {V"}neN C V is said to be Cauchy with respect to the norm
- if
Ve>0 INeN st. mn>N = ||[v, — vl <e

(c) A sequence {V"}neN C V is said to converge to v in the norm || - || if

Ve>0 INeN st. n>N = |v,— V| <e¢
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(d) A normed vector space is said to be complete if every Cauchy sequence
converges.

(e) A subset D of a normed vector space V is said to be densein V if D =V,
where D is the closure of D. That is, if every element of V is a limit of a
sequence of elements of D.

Theorem A.5. Let { -, -) be an inner product on a vector space V and set

IIx|| = /(x,%x) for all x € V.

(a) The inner product is sesquilinear. That is,
(ax+ By, z) = a(x,z) + By, 2z)
(x,ay + fz) =a(x,y) + B (x,2)

for allx,y,z €V and o, € C.!

(b) x| is a norm.

(¢) The inner product and associated norm obeys
(1) (Cauchy-Schwarz inequality) | (x,y) | < [Ix|| [ly||
(2) (Parallelogram law) ||jx + yl||* + [x — y||* = 2[|x||* + 2[|y|*
(3) (Polarization identities)

(x,¥)

= gl +yl? = IxI? = Iyl*} + g {llx +ayl* — IIxI* = [ly]*}

= HIx+yI? = lx=yl?} + g {lIx +ayl* - x —dyl*}
forallx,y €V

Proof. (a) is obvious.
(b) See [RS, Theorem I1.2] or [Co, Corollary 1.5].
(c) (1) See [RS, Corollary to Theorem II.1] or [Co, paragraph 1.4].
(c) (2) and (3) are obvious.
(]

Lemma A.6. Let | - || be a norm on a vector space V. There exists an
inner product ( -, - ) on 'V such that

(x,x) = ||x|? forallx eV

if and only if || - || obeys the parallelogram law.

1Physicists and mathematical physicists tend to use the convention that inner products are
linear in the second argument and conjugate linear in the first.
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Proof. This is Excercise A.7, below. O
Exercise A.7. Let | - || be a norm on a vector space V. Prove that there
exists an inner product ( -, - ) on V such that

(x,x) = ||x|? forall x e V
if and only if || - || obeys the parallelogram law.

Definition A.8 (Banach Space).
(a) A Banach space is a complete normed vector space.

(b) Two Banach spaces By and By are said to be isometric if there exists a
map U : By — By that is
(1) linear (meaning that U(ax+fy) = aU(x)+pU(y) for all x,y € B;
and «, 5 € C)
(2) surjective (also called onto )
(3) isometric (meaning that |[Ux||g, = ||x||p, for all x € By). This
implies that U is injective (also called 1-1).

Definition A.9 (Hilbert Space).
(a) A Hilbert space H is a complex inner product space that is complete
under the associated norm.

(b) Two Hilbert spaces H1, Ho are said to be isomorphic (denoted H; = Hs)
if there exists a map U : H1 — Hso that is

(1) linear
(2) onto

(3) inner product preserving (meaning that (Ux, Uy),,, = (X,y)4, for
all x,y € H1)

Such a map, U, is called unitary.
Theorem A.10 (Completion). If (V, (-, >V) is any inner product space,
< .

then there exists a Hilbert space (7—[, S >7—L) and a map U :V — H such
that

(1) U is 1-1,
(2) U is linear,
(3) (Ux,Uy)y = (x,y)y for all x,y €V and
(4) UW) = { Ux | x € V } is dense in H. If V is complete, then
UV) =H.
H is called the completion of V.

Proof. See [RS, Theorem 1.3 and Problem 1 of Chapter II]. O
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Example A.11.
(a) C" = {x = (z1, - xy) ‘ z1,- -2, € C } together with the inner product
n

(x,y) = > x4y is a Hilbert space.
(=1

(b) If 1 < p < oo, then 7 = { (@n)nen | Yooy [2n|P < 00 } together with

1/p
the norm H(xn)neNHp = [Zzozl |xn|p} is a Banach space. Here, and in

the next two examples, each entry z, in the sequence (x,)nen is to be a
complex number.

(c) 2 = { (zn)nen | Yooty |znl* < 0o } is a Hilbert space with the inner

product <($n)neN, (yn)n€N> = Zf{; Tn Yn-

(d) €° = { (zn)nen | sup|za| < 0o } and ¢g = { (Tp)nen | lim z, =0 }
n n—oo

are both Banach spaces with the norm H(xn)neNHoo = sup|zy,|.
n

(e) Let X be a metric space (or more generally a topological space) and
CX)={f:x—-C { f continuous, bounded }
Co(X) = { f:Xx—>C { f continuous, compact support }

If X is a subset of R™ or C" for some n € N, let
Coo(X)={ f: X = C| f continuous, lim f(z)=0 }

|z|—o0
Then C'(X) and Co(X') are Banach spaces with the norm || f|| = sup | f(z)].
zeX

Co(X) is a normed vector space, but need not be complete.

(f) Let 1 < p < 0. Let (X, M, ) be a measure space, with X a set, M a
o—algebra and p a measure. For p < oo, set

LP(X M, ) ={ ¢: X = C | ¢ M-measurable, [|p(z)[P du(z) < oo }

Il = [ [ et dutx)
For p = oo, set?
L2X,M,p) ={ ¢: X — C | ¢ M-measurable, ess sup |p(z)| < oo }
[plloc = ess sup [o(z)]

This is not quite a Banach space because any function ¢ that is zero al-
most everywhere has “norm” zero. So we define an equivalence relation on

] 1/p

2The essential supremum of ||, with respect to the measure p, is denoted ess sup, ¢ x |¢(z)|
and is defined to be inf{a > 0 | |¢(z)| < a almost everywhere with respect to p }.
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LP(X, M, ) b
p~Y = p=1 ae.
As usual, the equivalence class of p € LP(X, M, ) is
[l ={vell (X, Mp|¢v~¢}
Then
LP(X, M) ={ [¢] | ¢ € LA(X, M, p) }
is a Banach space with
[+ W =le+v]  algl=lag] ¢l = el
for all o, € LP(X, M,p) and a € C, and L?(X, M, ) is a Hilbert space

with inner product

(e 1)) = [ @) @) du(x)
for all ¢,v € L2(X, M, ). Tt is standard to write ¢ in place of [¢].

(g) Let D be an open subset of C. Then
A%(D) = {¢:D=>C { ¢ analytic, [,|o(x +iy)|* dvdy < oo }

is a Hilbert space with the inner product

(o, ) = /D (@ + iy) D@ T 7) dady

(h) Let ¢ > 0 be an integer and €2 be an open subset of R™ for some n € N. If
a=(ay, - ,a,) € Nj, where Ny = {0} UN, we shall use 0%p(x) to denote
01 1 oen

the partial derivative F—=y - - F.owp(x). The order of this partial derivative
1 n

is |a] = a3 + -+ + ay,. Define
1/2
lelluoy ={ X [ oot o}
|or| <2

for each ¢ € C*(R2) for which the right hand side is finite. The Sobolev space
H*(Q) is the completion of the vector space { ¢ € C*(Q) | el ey < oo }
equipped with the inner product

SD, H{ Q) Z /6@ 8ar¢) )
la|<e

Similarly, H§(€2) is the completion of C§°(€2).
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Theorem A.12. Let —co < a <b< oo and1l <p < oo. The following sets
of functions are dense in Lp([a, b])

(a) simple functions (functions of the form Z?Zl ajxg;(x) with n € N and
the sets E; measurable)

(b) step functions (functions of the form 377_; ajxp;(x) withn € N and the
sets E; intervals)

(¢) continuous functions that vanish at a and b

(d) periodic C*° functions of period b — a

(e) C* functions that are supported in (a,b)

Here xg(x) denotes the characteristic function of the set E.

Proof. See Exercises A.13 and A.14, below. (|

Exercise A.13. Let ¢ > 0 and —co < a < b < co. Let m be Lebesgue
measure and f : [a,b] — R be a Lebesgue-measurable function.

(a) Prove that there exists an M € [0, 00) such that

m{ x € la,b] | [f(z)| > M } <e
(b) Assume that f : [a,b] — [c, C]. Prove that there exists a simple function
s such that ¢ < s(z) < C and |f(z) — s(z)| < € for all z € [a,b]. A simple

function is, by definition, of the form Z;‘L:1 ajXg,(z) with n € N and the
sets F; measurable.

(c) Let s : [a,b] — [¢, C] be a simple function. Prove that there exists a step
function g : [a,b] — [c, C] such that the measure

m{ z € [a,b] | s(x) #g(x) } <e
A step function is, by definition, of the form > | a;x g, (z) with n € N and
the sets E; intervals.

(d) Let g : [a,b] — [c,C] be a step function. Prove that there exists a
continuous function h : [a,b] — [c, C] such that h(a) = h(b) = 0 and

m{ z € [a,b] | g(x) #h(z) } <e

Exercise A.14. Let —c0o < a < b < oo and 1 < p < co. Prove that the
following sets of functions are dense in LP([a,b]).

(a) simple functions

(b) step functions

(c) continuous functions that vanish at a and b
(

d) periodic C*° functions of period b — a
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(e) C* functions that are supported in (a,b)

Definition A.15 (Basis). Let B be a Banach space and H a Hilbert space.

(a) A subset S of H is an orthonormal subset if each vector in S is of length
one and each pair of distinct vectors in S is orthogonal.

(b) An orthonormal basis (or complete orthonormal system) for H is an or-
thonormal subset of H, which is maximal in the sense that it is not properly
contained in any other orthonormal subset of .

(c) A Schauder basis for B is a sequence {en} of elements of B such

neN
that for each v € B there is a unique sequence {an} C C such that

v= 7 aney,.

neN

(d) An algebraic basis (or Hamel basis) for B is a subset S C B such that
each x € B has a unique representation as a finite linear combination of
elements of §. This is the case if and only if every finite subset of S is
linearly independent and each x € B has some representation as a finite
linear combination of elements of S.

Theorem A.16. Every Hilbert space has an orthonormal basis.

Proof. See [RS, Theorem II.5] or [Co, Proposition 4.2]. O

Theorem A.17. Every vector space has an algebraic basis.

Proof. This is Exercise A.19, below. O

Theorem A.18. Let {ei}z‘ez be an orthonormal basis for the Hilbert space
H. Then, for each x € H, { 1€T ‘ (ej,x) #0 } is countable® and
x=Y (xe)e [x[P=D|(xe)f
icT icT
(The right hand sides converge independent of order.)

Conversely, if {Ci}z‘ez C C and Y ;c7|cil* < oo, then > ;o7 cie; con-
verges to an element of H.

Proof. See [RS, Theorem II.6] or [Co, Theorem 4.13]. O

Exercise A.19. Prove that every vector space has an algebraic basis.

Hint: Use Zorn’s Lemma (which is equivalent to the axiom of choice). It
says that if a nonempty set &

(1) is partially ordered and

3We'll include finite in countable.
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(2) has the property that every linearly ordered subset has an upper
bound

then & has a maximal element.

Exercise A.20. Prove that B = {e,(z) = \/LZ—Wem“”}neZ is an orthonormal
basis for L*([0, 27]).

Definition A.21 (Separable). A metric space is said to be separable if it
has a countable dense subset.

Lemma A.22. A metric space (./\/l,d) fails to be separable if and only if
there is an € > 0 and an uncountable subset {mi}z‘ez C with d(m;, m;) > ¢
foralli,j € T withi#j.

Proof. This is Exercise A.23, below. O

Exercise A.23. Prove that a metric space (./\/l,d) fails to be separable if
and only if there is an € > 0 and an uncountable subset {ml}z ez C M with
d(m;, mj;) > ¢ for all i, j € T with i # j.

Theorem A.24. Let H be a Hilbert space.

(a) H is separable if and only if it has a countable orthonormal basis.
(b) If dim'H = n € N, then H = C™.

(c) If H is separable but is not of finite dimension, then H = (2.

Proof. See [RS, Theorem I1.7] or [Co, Theorem 5.4 and Corollary 5.5] O
Example A.25.

(a) As L?([0,27]) has a countable, orthonormal basis, it is separable and
isomorphic to ¢2.
(b) £ is not separable. To see this define, for each subset S C N,
2 = (@) ey € £
by

205 1 ifnesS
" 0 ifn¢gsS

This is an uncountable family of elements of £ with [|2(%) — 2D =1
for all distinct subsets S, T" of N.

Definition A.26 (Orthogonal Complement). The orthogonal complement,
ML, of any subset M of a Hilbert space #, is defined to be

Mt={yeH| (x,;y)=0forallxe M }
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Theorem A.27. Let M be a linear subspace of a Hilbert space H. Then
(a) M* is a closed linear subspace of H.

(b) MM+ = {0}

(c) (./\/IL)l = M (the closure of M)

Proof. See [RS, Problem 6 of Chapter 2] and [Co, Corollary 2.9]. O

Theorem A.28 (Projection). Let M be a closed linear subspace of a Hilbert

space H. Then each x € H has a unique representation x = xI + x+ with
xl e M and x+ e M.

Proof. See [RS, Theorem I1.3] or [Co, Theorem 2.6]. O

A.2. Bounded Linear Operators

Definition A.29 (Linear Operator). Let 5, B be Banach spaces and H, H
be Hilbert spaces.

(a) Let D be a linear subspace of B. A map A : D — B is called a linear
operator if it obeys

A(ax + By) = aA(x) + A(y) for all a,8 € C and x,y € D

One usually denotes the image of x under A as Ax, rather than A(x). The
set D is called the domain of A and is generally denoted D(A). One often

calls A a “linear operator on B” even when its domain is a proper subset of
B.

(b) A linear operator A : D — B is said to be bounded if

Ax|| 5
(A1) 1Al = sup 12¥lls _
0#£x€D x5

sup || Ax]|;5

xeD

lIxllp=1

is finite. The set of all bounded, linear operators defined on B and taking
values in B is denoted £(B,B). With the norm (A.1), it is itself a Banach
space. The set of all bounded, linear operators defined on B and taking

values in B is denoted L(B).

(¢c) A linear functional on B is a linear operator f : B — C. A bounded linear
functional on B is a linear operator f : B — C for which

wp G0

ozxeB |[X[|5
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is finite.

(d) The dual space of a Banach space B is the space B’ of all bounded linear
functionals on B. The dual space is itself a Banach space.

(e) Let T : D(T) € H — H be a linear operator. Denote

DT )={peH|AneH st. (p,T)7= 1)y ¥ eDT)}

If ¢ € D(T*) the corresponding 7 is denoted T*p. Thus T*¢ is the unique
vector in ‘H such that

(0. )z = (T"p, )y, forally € D(T)
The operator T* is called the adjoint of T

Proposition A.30. The normed vector space £L(B, B), with the norm (A.1),
1s a Banach space.

Proof. See [RS, Theorem III.2]. O

Lemma A.31. Let H be an infinite dimensional Hilbert space. Then there
is a linear operator W : H — H which is defined on all of H, but is not
bounded.

Proof. This is Exercise A.32, below. O

Exercise A.32. Let H be an infinite dimensional Hilbert space. Construct
a linear operator W : ‘H — H which is defined on all of H, but is not
bounded. (Hint: use an algebraic basis.)

Example A.33. (a) Matrices: Let n € N. An n x n matrix [M, ;]
is naturally associated to the operator M : C" — C" determined by

1<i,j<n

n
(Mx); = M,z
j=1

The adjoint operator is associated to the matrix [M Fo=M;;

i,j ]lgi,jgn'

(b) Multiplication Operators: Let 1 < p < oco. Let (X, M, u) be a measure
space and let f : X — C be measurable. If the essential supremum of f is
finite, then

My« LP(X, M, 1) — LP(X, M, 1)
p(x) = (fo)(z) = f(z) ()
is a bounded linear operator with ||[M¢| = ess sup|f(z)|. On the other
X

re
hand, if the essential supremum of f is infinite, then M will not be defined
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on all of LP(X, M, 11) (as a map into LP(X, M, u)) and will not be bounded

(as a map into LP(X, M, p)). In the case p =2, M7 = M.

(¢) Projection Operators: Let H be Hilbert space and let M be a nonempty,
closed, linear subspace of H. Define the map P : H — H by

Px = x|

where x = x* + xIl is the decomposition of Theorem A.28.a It is a bounded
linear operator with ||P|| = 1, called the orthogonal projection on M. It
obeys

pP=p P*=P
where P* is the adjoint of P. We'll see, in Lemma A.35 below, that con-

versely, if P :H — H is a bounded linear operator that obeys P2 P and
P* = P, then P is orthogonal projection on M = range(P).

(d) Integral Operators: Let (X, M, u) and (Y, N,v) be measure spaces and
T: X xY — C be a function that is measurable with respect to M @ N.
Let 1 <p < oo and ¢ € LP(Y,N,v). Define, for each 2z € X for which the
function y — T'(z,y)¢(y) is in LY (Y,N,v),

(A.2) (T)(x) = YT(w,y)SD(y) dv(y)

(1) I

—esssup/]Txy\du y) <
reX

—esssup/ |T(x,y)| du(x)<
yey

then (A.2) is a bounded operator T' : LP(Y,N,v) — LP(X, M, )
101

17 =
with norm ||T']] < M; P MY.
(2) If the Hilbert—Schmidt norm

< o0

) 1/2
s = [ [ TP dox o)
X

then (A.2) is a bounded operator T : L2(Y,N,v) — L*(X, M, u)
with norm [|T|| < ||T||m.s.-

In the case p = 2,




A.2. Bounded Linear Operators 269

(e) Differential Operators: Let 2 be an open subset of R™ for some n € N.
Recall that if o = (o, -+, o) € Nij, where Ng = {0} UN, we use 0%u(x)
to denote the partial derivative 2 0% cu(z) and o] = a1 4 -+, to

T G
denote the order of this partial derivative. For any finite subset Z C Nfj and
any family { Qe (x)}a T of bounded, measurable functions on €2 the map

(@) = ) aa(w) 8%p(x)

acl

is a linear map on C°°(2) C L?(Q2). But it is not bounded as a map from
L2(Q) to L().

Exercise A.34. Let (X, M, u) and (Y, N, v) be o—finite measure spaces and
T:X xY — C be a function that is measurable with respect to M @ N.

(a) Assume that

My = ess sup/ |T(x,y)| dv(y) < oo
zeX Y

My = ess sup/ |T(z,y)| du(x)< oo
yey X
Let 1 < p < co. Prove that

(Te)(x) = /Y T, 9)0() dvly)

defines a bounded operator T' : LP(Y,N,v) — LP(X, M,pn) with norm
11

1—= =
T < M, My

(b) Assume that

) 1/2
s = [ [ 17 dpxv @] " <o
X

Prove that (T¢)(z) = [, T(z,y)¢(y) dv(y) defines a bounded operator from
LYY, N,v) to L*(X, M, p) with norm ||T|| < ||T||ms..
Lemma A.35. Let H be a Hilbert space. Let P : H — H be a bounded

operator that obeys
PP=P P*=P
Then P is orthogonal projection on the range of P.

Proof. This is Exercise A.36, below. O

Exercise A.36. Let H be a Hilbert space. Let P : H — H be a bounded
linear operator that obeys

Pl=p pP*=pr

Prove that P is orthogonal projection on the range of P.
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Lemma A.37. Let E and F be orthogonal projections onto closed subspaces
of a Hilbert space H. Then E + F' is again an orthogonal projection if and
only if EF = FE = 0.

Proof. This is Exercise A.38, below. O

Exercise A.38. Let F and F' be orthogonal projections onto closed sub-
spaces of a Hilbert space H. Prove that E 4+ F' is again an orthogonal
projection if and only if EF = FE = (0. What is the geometric significance
of the condition FF = FE =07

Theorem A.39. Let V and V be normed vector spaces and let T :V — V
be a linear operator. The following are equivalent.
(1) T is continuous at every x € V.

(2) T is continuous at one xg € V.

(3) T is bounded.

Proof. The proof is trivial. O

Theorem A.40. Let B be a Banach space.

(a) Let S be a subspace of B and \ € S'. Then there is a A € B' such that
IAllg = || Allsr and A(x) = A(x) for allx € S.

(b) Let x € B. There is a nonzero A € B' such that |A(x)| = || Al [|x]|5.

(c) Let Y be a subspace of B and x € B with the distance from x to Y being
d. There is a A € B’ such that ||A|lg < 1, A(x) = d and A(y) = 0 for all
y e

(d) Let x € B. Then
Ixllz = sup |A(x)]

AeB’
IAllgr=1

Proof. Part (a) is [RS, Corollary 1 of Theorem III.6 (the Hahn-Banach
theorem)|. The other parts follow easily from part (a) and, in the case of
part (d), the definition of ||A]|g and part (b). O

Theorem A.41 (The B.L.T. Theorem). Let V be a dense linear subspace
of a Banach space B. Let B be a second Banach space and T : V — B be
a bounded linear operator. Then there is a unique bounded linear operator
T : B — B such that Tx = Tx for all x € V. Furthermore ||T| = ||T].

Proof. See [RS, Theorem 1.7]. O
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Example A.42. We define the Fourier transform as a unitary operator
F: L*(R) — L?(R). To start we define Schwartz space to be
SR)={¢:R—=>C|pis C®, [|¢|lnm < oo for all integers n,m >0 }

where [|¢||n,m = sup,cr ‘x"fil:—rf(m)‘. Next we define the Fourier transform

and inverse Fourier transform on S(R) by

b0 = [ et

—00
~ S .
i) =3 [ e as
—00
and verify that the linear operators ¢ — ¢ and 9 — 9 each map S (R) into
(in fact onto) S(R) and are inverses of each other and obey

| @ e =k [ e©d a

—00 —0o0
for all ¢,1¢ € S(R). Then the B.L.T. theorem provides us with the unique
bounded extension of the map ¢ — ¢ to L2(R), which we call . For the
details, see Appendix B.

Theorem A.43 (Riesz Representation Theorem). Let H be a Hilbert space
and X € H* be a bounded linear functional on H. Then there is a unique
Y € H such that

Ax) = (x,¥x)
for all x € H. Furthermore ||A||3+ = ||lyallx-

Proof. See [RS, Theorem II.4] or [Co, Theorem 3.4]. O
Corollary A.44. Let B: H X H — C and C > 0 obey

(1) B(ax + py,z) = aB(x,z) + fB(y, z)

(2) B(x,ay + Bz) = aB(x,y) + BB(x,z)

(3) |B(x,y)| < ClIx| |yl
forallx,y,z € H and o, B € C. Then there is a unique A € L(H) such that
B(x,y) = (Ax,y) for all x,y € H. Furthermore || Al < C.

Corollary A.45. Let H and H be Hilbert spaces and T : H — H be a
bounded linear operator. Then the adjoint T of T' is a bounded linear op-
erator defined on all of H.

Proof. This is Exercise A.46, below. O

Exercise A.46. Let H and H be Hilbert spaces and T : H — H be a
bounded linear operator. Prove that the adjoint, T*, of T is a bounded
linear operator defined on all of H.
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Definition A.47 (Operator Topologies). Let B and B be Banach spaces.
Let T : B — B and, for each n € N, T;, : B — B be bounded linear operators.

(a) The sequence of {Tn}n N of operators is said to converge uniformly or
in norm to T if

lim ||T — T,|| = 0
n—oo

b) The sequence of {7, of operators is said to converge strongly to T
neN
if
lim [|Tx — Tpx|3=0 for each x € B
n—oo

(c) The sequence of {Tn}n cny Of operators is said to converge weakly to T' if
lim E(Tnx) = E(Tx) for each x € B and each ¢ € B’
n—oo

In the event that B is a Hilbert space, this is equivalent to
lim (T,x,y)5 = (IX,y)5 for each x € B and each y € B
n—oo
Remark A.48 (Operator Topologies). Since
(T = T)x) | < [l [|(Tn = T)x|[ 5

and
(T = T)x|| 5 < 1T = Tl Ix]15
we have

norm convergence — StI‘ODg convergence —> weak convergence

In general the other implications are false, unless B and B are finite dimen-
sional. This is illustrated by the following

Example A.49 (Operator Topologies). Let B = B = (2.

(a) Let
n places
——
Pn(x17x27x3 o ‘) = (0’ T 707xn+17xn+2’xn+3’ o ‘)
be projection on the orthogonal complement of the first n components. Then
for each fixed x € £2, lim,_,o0 P,x = 0 so that P, converges strongly to 0

as n — oo. But, for any n > m,

m places
——
(Pn_Pm)(xlyx%x?)"') - (07 7O7xm+1axm+27"' 71.77,707“')
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so that there is a vector x € ¢? with (P, — P,,)x = x. Consequently
|P, — Ppn| = 1 and the sequence {P”}neN is not Cauchy and does not
converge in norm.

(b) Let

n places
——
Rn($1,x279ﬂ3"') — (0’... 70795173527953’...)

be right shift by n places. For any x,y € ¢?

[(Rux,y) | = | (Rux, Pay) | < [|Rox|| | Payll = [Ix]| | Pay ]| =0
So Ry, converges weakly to zero as n — oco. On the other hand, || R, x| = ||x]|
for all n € N and x € £2. So the R,, does not converge strongly or in norm.

(If R, did converge either strongly or in norm to some R, the fact that
weakly

R, — 0 would force R = 0.)

Theorem A.50 (Neumann Expansion). Let T' be a bounded linear operator
on the Banach space B whose operator norm ||T'|| < 1. Then 1—T is bijective
and has a bounded inverse and furthermore

-n =3 a-n sty Jo-nT -1 <y

The series Y .- T™ converges in norm.

Theorem A.51 (Adjoints). Let H be a Hilbert space and S,T € L(H).

(a) The map A — A* is a conjugate linear isometric isomorphism of L(H)
onto L(H). In particular

(@A +BB) =aA" +BB* |4l =|A]
for all A, B € L(H) and all o, B € C.
(b) (TS)* = S*T*
(c) (T*)" =T
(d) If T has a bounded inverse, then T* has a bounded inverse and (T*)™" =
(1)

(e) The map A — A* is continuous in the weak and uniform topologies. That
is, if {A"}neN converges to A weakly (in norm), then {A;}neN converges to
A* weakly (in norm). The map A — A*is continuous in the strong topology
if and only if H is finite dimensional.

() 7T = ||T*
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(g) If T =T*, then ||T| = sup{ [ (Tx,x) | { x€eH, ||x[|=1 }

Proof. See [RS, Theorem VI.3] and Example A.54 and Proposition A.52,
below, or [Co, Propositions 2,6, 2.7, 2.13]. O

Proposition A.52. Let H be a Hilbert space and T : H — H be a bounded
linear operator.

(a) We have
_ (Tx)
ITIl = sup iy
x,y#0

(b) Assume in addition that T'=T*. Then

— ey KTxX)|
x#0
Proof. This is Exercise A.53, below. O

Exercise A.53. Let H be a Hilbert space and T : H — H be a bounded
linear operator.

(a) Prove that

o LT
1Tl = sup vy

x,y#0

(b) Assume in addition that T'= T™*. Prove that

HTH = bup ‘<HXHX>‘

x#O

(c¢) Find an example which shows that the equation of part (b) can fail if
T 4T,

Example A.54. Let H = ¢? and define the right and left shift operators by

L(.%'l,.%'g,.%'g,"') - (1'2,.%'3,"')

R(x17x27x37 o ) = (07'7;17'7;27'7;37' : )

First observe that ||L|| = ||R|| =1 and that

[e.e] o0
(Lx,y) ZLXJyj ij+1yj szyz 1—2% (Ry): = (x, Ry)
j=1 J=1
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so that L* = R and R* = L. Next observe that, for each n € N and x € ¢2,
o
1L = S ol 220
m=n+1

9]
IR x* = > Jeml* = [
m=1

Thus, as n — oo, L™ converges strongly to zero, but L™" = R™ does not
converge strongly to anything. On the other hand, L™* does converge weakly
to zero since, for all x,y € ¢2,

[(R'x.y) | = (L%, y) [ = | (x, L") | < [Ix] [ L ]| === 0

Theorem A.55 (Principle of Uniform Boundedness etc.). Unless otherwise

stated, X and ) are Banach spaces andT : X — Y is linear and has domain
X.

(a) T is bounded if and only if
T HyeY|lyly<i}={xex||Tx]|y<1}

has nonempty interior. (X,Y need not be complete.)

(b) Principle of Uniform Boundedness: Let F C L(X,)).
If, for each x € X, { |Tx|| | T € F }is bounded,
then {|IT|| | T € F }is bounded,
(Y need not be complete.)
(c) If B: X x )Y — C is bilinear and continuous in each variable separately
(i.e. B(x,y) is continuous in x for each fized y and vice versa), then B(x,y)

is jointly continuous (i.e. if lim, 00X, = 0 and lim, o0y, = 0, then
limy, 00 B(Xnayn) = O)

(d) Open Mapping Theorem: If T € L(X,)) is surjective (i.e. onto) and if
O is an open subset of X, then TO = { Tx ‘ xeO } is an open subset of
V.

(e) Inverse Mapping Theorem: If T' € L(X,)) is bijective (i.e. 1-1 and
onto), then T~ is bounded.

(f) Closed Graph Theorem: The graph of T is defined to be
T ={(xy)eXx)Y|y=Tx}

Then
T is bounded <= T'(T) is closed
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In other words, T is bounded if and only if
lim x, =%, lim Tx, =y —= y=T1Tx
n—oo

n—o0

(g9) Hellinger—Toeplitz Theorem: Let T be an everywhere defined linear oper-
ator on H that obeys (x,Ty) = (Tx,y) for allx,y € H. Then T is bounded.

Proof. (a) See Proposition at the beginning of [RS, §IIL.5].
b) See [RS, Theorem II1.9] or [Co, Theorem 14.1].

¢) See the Corollary to [RS, Theorem III1.9)].

e) See [RS, Theorem III.11] or [Co, Theorem 12.5].

(
(
(d) See [RS, Theorem II1.10] or [Co, Theorem 12.1].
(
(f) See [RS, Theorem III.12] or [Co, Theorem 12.6].
(

g) See the Corollary to [RS, Theorem III.12]. O

A.3. Compact Operators

In this section we provide an introduction to compact linear operators on
Banach and Hilbert spaces. These operators behave very much like familiar
finite dimensional matrices, without necessarily having finite rank. For more
thorough treatments, see [RS, §VL.5, VI.6] orY].

Definition A.56. Let X and ) be Banach spaces. A linear operator
C: X — Y issaid to be compact if for each bounded sequence {z;};eny C X,
there is a subsequence of {Cx;};en that is convergent.

Example A.57. Let a < band c < d. If C : [¢,d] X [a,b] — C is continuous,
then the integral operator

b
(Chw) = / Cly, 2)f () da

is compact as an operator from X = Cla,b], the space of continuous func-
tions on [a, b] with supremum norm, to Y = C|c, d].

Exercise A.58. Use the Arzela—Ascoli theorem ([RS, Theorem 1.28] or
[Co, Theorem 3.8]) to prove that the operator C' of Example A.57 is com-
pact.
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Example A.59 (Hilbert-Schmidt Operators). Let (X, u) and (Y,v) be
measure spaces and let k(x,y) be a measurable function on X x Y with

/X k)P due)iv ) <

Then
(K f)(x) = /Y k(e 9)/ (4) dv(y)

is a compact map from L?(Y,dv) to L?(X,du). Such an operator is called
Hilbert—Schmidt.

Proof. Let {fi}ien be a bounded sequence in L?(Y,dv). By part (c) of
Exercise A.60, below, {fi}ien has a weakly convergent subsequence. By
throwing away all but this subsequence, we may assume that {f;}ien con-
verges weakly to f € L2(Y,dv).

We now show that {K f;};en converges strongly to Kf € L*(X,dpu).
Since [y .y [k(z,y)|* du(z)dv(y) < oo we have that [, [k(z,y)|* dv(y) < o
for almost every « € X. For any such x € X,

zlggo Yk;(x’y)fl-(y) dv(y) = Zlgélo <fz‘, k(x, - )>L2(Y,du)

= <f7 /{?(1', ’ )>L2(Y,du)
_ / k(. y) £ (y) dv(y)
Y

Furthermore, by Cauchy—Schwarz,

(K £:)()] < /Y k(s ) fi(y)]| dv(y)

< HfiHL2(Y,du)\//Y |k(x,y)|2 dv(y)

< Slz}PHfz‘HLQ(Y,du)\//Y |k‘(ﬂf,y)|2 dv(y) = H(x)

Thus we have shown that (K f;)(x) converges pointwise to (K f)(x) for al-
most every x and is bounded, for all ¢ by the function H(x) which is square
integrable with respect to du(z). Thus, by the Lebesgue dominated conver-
gence theorem,

i [KF = K £l = i [ (7)) = (5)@) dute) =0

O
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Exercise A.60. Let H be a Hilbert Space. A sequence {f;}ieny C H is said
to converge weakly to f € H if

lim (fi, 9) = (£, 9)
1—00
for all g € H.
(a) Give an example of a sequence that converges weakly but not strongly.

(b) Prove that if {f;};en converges weakly to f, then || f|| < liminf; , || fi]-
Prove that if {f;};cny converges weakly to f and || f|| = lim;—« || fi]|, then
{fi}ien converges strongly to f.

(c) Prove that H is weakly sequentially compact. That is, every bounded
sequence in H has a weakly convergent subsequence.

Example A.61 (Nuclear Operators). Let X and ) be Banach spaces and
denote by X’ the dual space of X. That is, the space of bounded linear
functionals on X. If {z}},cy is a bounded sequence in X', {y;}ien is a
bounded sequence in ) and {c;}ien is a set of complex numbers obeying
> leil < oo, then

(e}

Kz = Zci i(z) yi

=1

is called a nuclear operator from X to ). Since
o o
> leil @) yilly < llzlla sup [[yilly sup 2]l > leil
i=1 ! ! i=1

the series defining Kx converges strongly and K is a bounded operator of
norm at most sup; ||yilly, sup; [|23]] v 2524 leil-

Exercise A.62. Prove that any nuclear operator is compact.

Proposition A.63. Let X, Y and Z be Banach spaces.
(a) If C : X — Y is a compact operator, then C is a bounded operator.

(b) If C1,Cy : X — Y are compact operators and aj,as € C, then the
operator a1 Cy + anCy is compact.

(c) If C : X — Y is a compact operator and By : Z — X and By : Y — Z
are bounded operators, then C By and ByC are compact.

(d) Let, for each i € N, C; : X — Y be a compact operator. If the C;’s
converge in operator norm to an operator C': X — Y, then C is compact.
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Proof. Let {z;};en be a bounded sequence in X.
(a) This is Exercise A.64, below.

(b) Since C} is compact, there is a subsequence {xii}éeN such that Cyx;,

converges in ). Since Cs is compact, there is a subsequence {xizm}m N
of the bounded sequence {xw} eN such that Cﬂizm converges in ). Then

alClxi[m + agngiem also converges in ).

(c) Let {z; }ien be a bounded sequence in Z. Since By is bounded, { By z; }ien
is a bounded sequence in X. Since C is compact, there is a subsequence
{BXZif}ZEN such that CBxz;, converges in ).

Since C is compact, there is a subsequence {x”} 0N such that Cx;,
converges in ). Since C'y is bounded, ByCx;, converges in ).

(d) Let {z;}en be a bounded sequence in X and set
X = sup ||z
j

For each fixed ¢ € N, {Cl-xj}j N has a convergent subsequence, since Cj
is compact by hypothesis. By taking subsequences of subsequences and
using the diagonal trick, we can find a subsequence {z;,}sen such that
limy_, o Cjz;, exists for each i € N. It suffices for us to prove that {Cx;, }ren
is Cauchy. Let € > 0. Since the C;’s converge in operator norm to C, there
is an I € N such that ||C — Ci|| < 5% for all i > I. Since {Crxj, }ren is
Cauchy, there is an L € N such that HC’IQJJ-Z —C’[ﬂzijy < g forall £,m > L.
Hence if /,m > L, then

Gy, = Caj, |, < € = Cra |, + [|Cres, = Cray |,
+[Crj, = Caj|,
< X||C = Crl| + ||Crzj, — CijmHy +X|cr =
< X35 +5+X5%
=c
O
Exercise A.64. Prove that compact operators are necessarily bounded.

Proposition A.65. Let X and )Y be Banach spaces. Denote by X' and )’
their dual spaces. That is, X' (resp. Y') is the Banach space of bounded
linear functionals on X (resp. V). The adjoint, C* : Y — X', of a bounded
operator C': X — Y 1is determined by

(C*n)(x) =n(Cx) forallne ) andz € X
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A bounded operator C : X — Y is compact if and only if C* is compact.

Proof. First assume that C' is compact. Let {n;};en be a bounded subset
of V' and set

Y = sup ||ni],
KA

Let B={x € X |||, <1} be the unit ball in X. Since C is compact,
CB, which is the closure of { Cz € X | ||lz]|,, <1 }, is a compact subset
of Y. We shall apply Arzela—Ascoli ([RS, Theorem 1.28] or [Co, Theorem
3.8]) to the sequence of functions

fi:yeCBwni(y) €C
Since

|fi)] <Y'|lylly, < Y'IC)]
the sequence is uniformly bounded. Since

|fily) = Hi@)] < Y'lly -l

it is equicontinuous. So, by Arzela—Ascoli, there is a subsequence f;, that
converges uniformly on C'B. Since

1C"ni = C™njll o = sup [(Cmi)(@) — (Cny)(x)| = sup |n:(C) — n;(C)]

= sup |fi(C’x) — fj(C'x)‘ = sup ‘fz(?/) - fj(y)‘
zeB yeCB

the sequence {C*n;, }ren is Cauchy in X”.

Conversely, assume that C* is compact. Let {x;};cn be a bounded se-
quence in X. By the implication that we have already proven, the adjoint,
C** . X" — )", of C* is compact. We may naturally view X as a closed
subspace of X" and ) as a closed subspace of }". So we may view {z; };en as
a bounded sequence in X”. Then {C**z;};en has a subsequence {C**z;, }ren
that converges in ). For any n € )’ and x € X (we'll write X for x, when
we want to think of it as an element of X”),

(C*™X)(n) = X(C*n) by the definition of “adjoint”
= (C*n)(x) by the identification of X with a subset of X"
=n(Cx) by the definition of “adjoint”

Thus C**z € V" is Cx € Y, viewed as an element of V" and {Cx;, }ren
converges in ). O

It is the spectral properties of compact operators that make them act very
much like matrices. Perhaps it is more appropriate to say that the spectral
properties of noncompact operators are often very different from those of
matrices. A simple, yet typical, example of this is given in Exercise A.68,
below. We start with careful definitions of “eigenvalue” like terms. For a
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thorough, but still readable, treatment of the spectral theory of self-adjoint
operators on Hilbert spaces, see [RS].

Definition A.66. Let X be a Banach space and B : X — X be a linear
operator defined on X.

(a) The number A € C is said to be in the resolvent set of B if the operator
B — A1 is bijective (one-to—one and onto) with bounded inverse. We shall
use p(B) to denote the resolvent set of B.

(b) The number A € C is said to be in the spectrum of B if it is not in the
resolvent set of B. We write o(B) = C \ p(B).

(¢) The number A € C is said to be an eigenvalue of B if there is a nonzero
vector x € X, called an eigenvector corresponding to A, such that Bx = Ax.
The set of all eigenvalues of B is called the point spectrum of B.

Proposition A.67. Let X be a Banach space and B : X — X be a linear
operator defined on X.

(a) IT I\ > |B], then A € p(B).
(b) p(B) is an open subset of C.
(c) If X is an eigenvalue of B, then X € o(B).

Proof. (a) Since @ < 1, the series —% Yoo (%)m converges in operator
norm to a bounded operator R on X. As

(B-A)R=R(B-A)=->_ (&)™ + 3 (&)" =1

R=(B—A1)"" and A € p(B).

(b) Let pu € p(B) and denote by (B — ,u]l)_1 the inverse of B — ul. By
hypothesis, this inverse is a bounded operator on X. If

A =ul < [[(B-u1)”|

then the series (B— 1) ! S o(u=A)"(B—pl) ~™ converges in operator
norm to a bounded operator R on X. As

(B=A)R=R(B—-\)=R(B—pul)+(u—-MNR

=3 (=N (B-p) "> (= NN (B - 1)
m=0
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R is the operator inverse of (B — A1) and X € p(B). This shows that
{xec|a—p <|[(B-p1)"| } coB)
and that p(B) is open.

(c) If A is an eigenvalue of B, then B — A1 has a nontrivial kernel, namely
all of the eigenvectors corresponding to A\. Thus \ ¢ p(B). O

The next example shows that, for operators acting on infinite dimen-
sional spaces, even nice operators, the bulk of the spectrum need not consist
of eigenvalues.

Exercise A.68. Let H = L?(X,u) for some measure space (X, u). Let
f: X — C be a bounded measurable function on X. Let A be the bounded
linear operator on H given by multiplication by f(z).

(a) Prove that X € o(A) if and only if
Ve>0 p{zeX||f(x)—A<e}>0

(b) Prove that A is an eigenvalue of A if and only if
p{rzeX | flx)y=Xx}>0

(c) Let X be the open interval (0,1), u be Lebesgue measure on (0, 1) and
f(x) = z. Find the spectrum of A, the operator on H given by multiplication
by . Also find all of the eigenvalues of A.

We next prove that if C is a compact operator, then o(C)\ {0} consists
only eigenvalues of finite multiplicity. If there are infinitely many different
etgenvalues, they must converge to zero. We first need the following technical
lemma.

Lemma A.69. Let X be a Banach space and B : X — X be a compact
operator. If A is a nonzero complex number, then the range of C — A1 is a
closed linear subspace of X .

Proof. Denote by R and K the range and kernel, respectively, of C—A1. Let
y € R and let {z,, }nen be a sequence in X such that (C' — AL)x,, converges
to y. Denote by p, the distance from z, to K. For each n € N, there is a
zn € K such that p, < ||z, — 25| < pn + % Then &, = x, — 2, obeys

lim (C — A1)Z, = lim (C — A1)z, =y

n—oo n—oo

We first consider the case that {p,}nen is bounded. Then the se-

quence {Z, }nen is bounded, and, since C' is compact, there is a subsequence
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{Zn, }ren such that CZ,, converges in X, say to §. Then
Tny = %[Ciw - (C - )‘]l)jne]
converges in X to z = %(g] —y). Since C is bounded, § = Cx and y =
(C=Al)z eR.
Finally, we consider the case that {p,}nen is not bounded. Then, pos-

sibly restricting to a subsequence, we may assume that lim, ., p, = o0.

As the sequence {%}n N 18 bounded and C is still compact, there is a

subsequence {”x T }ZGN such that C”:;ﬁ converges in X, say to Z. As
Jim (C = A2 = gy =0
we have
Iy 1 g (v Ing 1 _ 2
Jim gy = 3 I Oy = (C =AY g =3
and hence

(C—= A1)z =X lim (C — AL) 22 = 0
n—00 25l
In other words, z € K. This provides a Contradlctlon since I, is a dis-

tance p, from K so that oy 1S 2 distance g 2 anrl/n from KC. As

. on Tn,
lim,, a0 Py 1, Ten T cannot converge to a point of K. U

Proposition A.70 (The Fredholm Alternative). Let C : X — X be a
compact operator on the Banach space X. If X is a nonzero complex number,
then either X\ is an eigenvalue of C or X € p(C).

Proof. Suppose that A is not an eigenvalue of C. Then, by definition,
C — Al is one-to—one. By lemma A.69, the range of C' — A1 is closed. We
now claim that the range of C'— A1 is all of X. If not, X} = (C' — A1)X
is a proper closed subspace of X. Since the restriction of C to Xj is still
compact, Xo = (C'—A1)AX] is a closed subspace of X;. If X were not a proper
subspace of X, then for each z € X'\ Xy, there would be a vector 2/ € X}
with (C'— A1)z’ = (C — A1)z and this would contradict the assumption that
C' — A1 is one-to—one. Thus Xy = (C — A1)A] is a proper closed subspace
of X;. Continuing in this way, we can generate a sequence {X,}nen of
subspaces of X with X, 11 = (C' —A1)A&,, and &),41 a proper closed subspace
of X,,. By Exercise A.71, below, there is, for each n € N, a unit vector
ZTp € X \ Xpy1 whose distance from X, 11 is at least % If n > m,

%(Cwm — an) = Zm — Tm
with
T = —%(C—)\]l)xm—i—%(jxn = —%(C )\]l)xm—i— (C=AD)zy+x), € Xt
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Hence ||Czy, — Cxy|| > % for all n > m and {Cxz,},eny may not contain
any convergent subsequence, contradicting the compactness of C.

So C'— Al is both one—to—one and onto. The boundedness of the inverse
map is an immediate consequence of the inverse mapping theorem (part (e)
of Theorem A.55), But it is also easy to prove boundedness directly and
we do that now. If (C — )\]l)fl is not bounded, there is a sequence of unit
vectors x, € X such that

lim [[(C'=AL)zn|[ =0 = lim (C'—AL)z, =0

n—oo

Since C is compact, there is a subsequence {xnm}m N such that Cx,,,
converges, say to y. But then

lim z,, = lim +Cz,, — lim +(C —Al)z,, =%

and
Cy=XC lim z,,6 =My
m—r0o0
As ||ly|l = |A| # 0, this contradicts the assumption that A is not an eigenvalue

Exercise A.71. Let X be a Banach space and ) a proper closed subspace
of X. Let 0 < p < 1. Prove that there is a unit vector x € X\ ) whose
distance from Y is at least p.

Exercise A.72. Let X be an infinite dimensional Banach space. Prove that
the identity operator on X is not compact.

Proposition A.73 (The Spectrum of Compact Operators). Let C' : X — X
be a compact operator on the Banach space X. The spectrum of C consists
of at most countably many points. For any e >0, { A € o(C) ‘ Al >e } is
finite. If 0 £ X € o(C), then X is an eigenvalue of C' of finite multiplicity.

Proof. We have already proven, in Proposition A.70, that any nonzero num-
ber in the spectrum of C is an eigenvalue and we have also already proven,
in Proposition A.67, that o(C) c { A € C | [A\| < [|C|| }. Since eigen-
vectors corresponding to different eigenvalues are necessarily independent,
it suffices to prove that there cannot exist a sequence {z,},en of indepen-
dent eigenvectors of C' whose corresponding eigenvalues {\, }nen converge
to A #£ 0.

Denote by A, the span of {x1, z9, --- , x,}. By Exercise A.71, there
is, for each n > 2, a unit vector y, € X, whose distance from X,,_ is at
least % Ifn>m,

%Cyn - ﬁcym =Yn — gn
with
gn = _ﬁ(c - )‘n]l)yn + ﬁcym € Xn—l
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since (C — )\n]l)/\,’n C X,_1 and CAX,,, C X, C X,,_1. Hence
HiC’yn — ﬁC’ymH > % forall n >m

By assumption lim, ,,, A, = A # 0, so that HCyn — CymH > % for all
n > m sufficiently large. Thus {Cy,}nen may not contain any convergent
subsequence, contradicting the compactness of C. U

Exercise A.74. Let X be an infinite dimensional Banach space and let
C : X — X a compact operator. Prove that 0 € o(C).

Exercise A.75. Let H be a separable Hilbert space and let {e,},en be an
orthonormal basis for H. Let {u,}nen be any sequence of complex numbers
that converges to 0. Prove that the operator defined by

00 00
C( z CVnen) = z HnQn€nii
n=1

n=1

is compact and has o(C) = {0}.






Appendix B

The Fourier
Transform and
Tempered
Distributions

In this appendiz, we provide a summary of the most basic definitions and
results concerning the Fourier transform

fo = [ s a

and tempered distributions. For a more extensive treatment of Fourier trans-
forms, see, for example, RS2, §IX.1]. For a more extensive treatment
of tempered distributions see, for erample, [RS, §V.3]. We shall use the
standard multi-index notation that if « = (aq,--- ,ay) € N, where Ny =
{O}UN;, then x® denotes x* - - - x2™ and 0*u(x) denotes the partial derivative
01 9on

T am—%nu(x) The order of this partial derivative is |a] = a1+ -+ .

B.1. Schwartz Space

Definition B.1. (a) Schwartz space is the vector space

S(R") = { u e C*(R") | sup |(1 + |:c|m)8au(x)| < ooV meNy,aeNy }
TeR™

of all C* functions on R™ all of whose derivatives (including the function
itself) decay faster than any polynomial at infinity.

287
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(b) Define, for each a, 5 € Njj and each ¢ € S(R")
lella,s = sup |220%p(x)|
reR?
Then

(D) llellaps =0
(2) llaglla,s = lal [#lla.s
@) Mo +dllas < lellas + [¥llas

for all p,1 € S(R™) and a € C. These are precisely the defining conditions
for || - |la,3 to be a semi-norm. In order for || - [/4,3 to be a norm it must
also obey ||¢|la.s =0 <= ¢ = 0. This is the case if and only if |3| = 0. If
|B] # 0 the constant function ¢(x) =1 has ||¢||4,g = 0.

Example B.2.

(a) For any polynomial P(z), the function ¢(z) = P(x)e 1 is in Schwartz
space. This is because, firstly, for any «, 8 € Ny, 2%9% is again a polynomial
times e~ 12l and, secondly,

1 1
B.1 e lel® = <
(B-1) elel® =1 4 [af? + glalt 4+ Sl

for every p € N. Consequently, 229y is bounded.

(b) If ¢ is C*°(R™) and of compact support then ¢ € S(R™). One such
function, with n =1, is

(@) 0 if || > 1

Xr) = 1 1

7 e TP T if—l<a<l

The heart of the proof that this function really is C* at x = +1 is the
1

observation that, for any p > 0, lim —-e > = 0, which follows immediately
y

—0 ‘y|p
from (B.1) with z = é

Next, we introduce a metric on S(R™) which is chosen so that ¢ and
Y are close together if and only if || — ¥||ag is small for every o, B. The
details are given in the following

Theorem B.3. Define d:S(R") x S(R") - R by

_taf=18]_lle = Yllas
d(p, ) = Z o—lal=[g] ¥ — Vil
o T+ T = 6l

Then

(a) d(p,v) is well-defined for all ,v € S(R™) and is a metric.
(b) With this metric, S(R™) is a complete metric space.
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(c) In this metric ¢ = lim @y, if and only if lim ||pr —¢lla,s = 0 for every
k—o0 k—o0 ’
a, B € Nj.

Proof. (a) Toprovethat > 2-lel=IAl Ae=vlles i well-defined it suffices

o, fENg I+le—Ylla,s
to observe, firstly, that HAA < 1 for every A > 0 and, secondly, that
0 > 2n
S kel = [ZQ—K}
a,BENE =0

converges because the geometric series converges.

e The metric axiom d(¢,1) > 0 is obvious.

e The metric axiom that d(p,1) =0 = ¢ = 1) is obvious because

d(p,1) = 0 forces the « = f = 0 term in its definition, namely
lle—£ll0.0
1+{le—llo,0

numerator [|¢ — |00 = sup,ern |©(z) — 9 (z)| is zero.

e The metric axiom d(p,v) = d(1, ¢) is obvious.

, to vanish. And that first term is zero if and only if its

e The triangle inequality follows from

lp =Yllas . _llp—Cllas 1€ — Pllas
L+llo=dllaps = 1+l —Cllas 1+ = %lags
which is proven as follows. We supress the subscripts «, 5. Because

[
1+J:_1_

H—Lm is an increasing function of x
le=tll  ~ _lle=Cl+lIc=2]l
I+[lo=¢ll = 1+[le—=ClI+IIC—ll

S P N 1)
T le—CT+ =0T + THle—CT+Ic=oT

le=cll 4 Il
fle=Cll 7 1+Ic=vll

IN

(c) For the “only if” part, assume that ¢ = klim o and let a, 8 € Ng. Then
— 00

lo = erllas o= ¢nllas
L+ llo = @rlla,s koo 1+ [l — prlla,s

Forany0<6<%andx>0,

d(ep, pr) > 2711711

s <e = r<e(l+r) = rv-—ex<e = r<1-<2%

Hence limy_0 || — ¥k|la,s = 0 too.

For the “if” part assume that klim lox — @lla,sg = 0 for every a, 8 € No.
—00
We must prove that, as a consequence, p = klim wg. The idea is that, in
—00

the definition of d(y, 1)), the sum of all terms with || or |g| large is small,
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regardless of what ¢ and v are. Precisely, write ¢, = ¢ — ¢ and note that,
for every M € N

[0 rlzz)k‘ o,
d(r, @) = Z g-lal-1g| _¥Pkllas k]l a,8

aﬁeN" 1 + ||’11Z)kHOC,B
00
_ Y gk [¥xllas S glalls 19k |8
a,BENg 1 + HwkHayﬁ a’BeNg 1 + HwkHa,ﬁ
la],[B[<Mn || or |B|>Mn
[Pkl S
< 9—lel=18 I 9—lel=18
Q%S 1+ {9k la.s ag;;g
laf,|B[<Mn || or |B|>Mn
< Z 92— lal—|8| _I*PElla,B ”wkHa,ﬁ + 2n{ i 2—m}{ i 2—m}2n_1
o BEN" 1 + HwkHaﬁ m=M+1 m=0
le, \5\<Mﬂ
1
= 2_‘0‘|_‘6|M + Qn{_}{Q}Zn—l
aﬁ%n 1+ [[¢kllo 2M
la],|B]|<Mn

W and hence

Qn{ e I S
For each a,f € Ny, klingo\|¢k||a75 = 0 so that there is a K, g for which
k> Ko p implies |[r]|a,s < gzegr- Set
K:max{ Koz ‘ a, B €Ny, |a,|8] <M }

Let € > 0 and choose M so that 2M

If £ > K, then
—|a|— HT/%”aﬁ 1 2n—1
d(pr, @) < prlel—lel el i on{ L2y
2 R
lal,|BI<Mn
i X
OC,BENO
=

(b) Let {gpk} be a Cauchy sequence with respect to the metric d. Then,
as in part (c), for each o, € Ny, lim H(pk — QO = 0. In particu-
e k' — 00 af

lar, lim H(pk — cpk/| = 0, so that the sequence {cpk} is Cauchy in the
o0

kok!— 0,0
set, C(R™), of all bounded, continuous functions on R™ equipped with the
uniform metric. Since C(R™) is complete, there exists a continuous func-
tion ¢ such that {gpk} converges uniformly to ¢. As well, for each 5 € Ny,
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lim HSDk — ko = 0 so that the sequence {a%k} of B derivatives is
k,k'—o00 )

Cauchy in C(R™) and there exists a continuous function ¢z such that {35 <pk}
converges uniformly to ¢g. This ensures that ¢ is C°° with P = pg for
each 3 € Ny. Finally, we have that, for each a,3 € Ny, there is a K, 3
such that ‘xaaﬁgok(x) - xa(?ﬁ(pk/(xﬂ <eforall k,k > K, and all z € R™.

Consequently, if £ > K, g,
lox = ¢llo5 = sup [ (07 pi() = 9%(x))]
= sup lim [2%]|07¢x(x) — 0%pp ()]
rER™ k' — o0

< supe=c¢
reR™

So, by part (c), {cpk} converges to ¢ with respect to the metric d. U
Lemma B.4. Let ¢,¢ € S(R™). Then

(a) ap+ by € S(R™) for all a,b € C and

(b) e € S(R™) for all v € Ny and

(c) ¢ € S(R™) for all C* functions ¢ that are polynomially bounded and
have polynomially bounded derivatives and

(d) the convolution (¢ * ¥)(x) = [pn (y)¢(x —y) d"y € S(R™).

Proof. These are all pretty obvious. Parts (a) and (b) are immediate con-
sequences of the bounds

llae + biblla,g < lal[|@lla,s + 1B [[¥]la,s
107¢lla = lllla,s+4
which are true for all a, 5,7 € Ny and a,b € C.
For part (c), let o, 8 € Nj. By hypothesis, there is an L € N such that
[Za/eNg ‘xal }713&( is uniformly bounded for all 3/ < 8. (Here, 5’ < 3

lo/|<L

means that B; < pj for each 1 < j < n. Also recall that, when o' is the zero
vector, 2% = 1.) By the product rule
(96(@0 — Z (gl) aﬁ—ﬁ/@ aB,C

B’ eNg
B'<B

n i!
where (g,) =1Ii W, and part (c) follows from

leclos < > (M| X 1=

1" n

of B! eNT o'’ eNg
0 "<y,

lo/|<L, B'<B lo®l<

]| gy I

The proof of part (d) is similar to that of part (c) but uses that
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11
o the function [Z olenn |y~ ‘] € L'(R") and

la/|<n+1

o |z < Y ($) ly (@ —y)* ]

o’ eNg

o/ <a
o All derivatives of ¢(y)i(z — y) with respect to x are absolutely integrable
with respect to y, so that we are allowed to move derivatives with respect
to « inside the integral [z, o(y)¥(x —y) d"y. O

B.2. The Fourier Transform

Definition B.5. The Fourier transform f(£) of a function f € S(R") is
defined by

(B.22) fo = [ e a

Since f(x), and hence e~%* f(z ), is a continuous function of x which is

bounded by a constant times T2 the integral exists and f (&) is a well-

1+\
defined complex number for each £ € R™. We shall show in Theorem B.9,
below that the map f +— f is a continuous, linear map from S(R") to S(R")
and furthermore that this map is one-to—one and onto with the inverse map

being the inverse Fourier transform given by

(B:2b) o) = [ €g(e) s

The computational properties of the Fourier transform are given in
Theorem B.6. Let f,g € S(R") and a, 3 € C. Then
(a) The Fourier transform of af(z)+bg(z) is af(€) + by(€).
(b) If B € Ny, then the Fourier transform of 0°f(z) is iF1EPf(¢).

(¢) The Fourier transform, f(f), of f(x) is infinitely differentiable and, for
each B € Ny, g%,f(g) is the Fourier transform of (—i)PlzP f(z).

(d) Leta € R"™. The Fourier transform of the translated function (To f)(x) =
fl@—a) is e f(€).

(e) The Fourier transform of flz) = e #1245 f(e) = (27T)n/26_‘5‘2/2.

1) oo F@TE s = foo FOTE

(9) The Fourier transform of the convolution h = f x g is h(g) = f(g)g(g)

Proof. (a) is obvious.
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(b) By induction, it suffices to prove the case |3| = 1. We do so for n = 1.
By integration by parts, the Fourier transform of the first derivative f’(x)
is

| eEr@dn=— [ ke ) w—ie [~ o)
_iefe)

The boundary terms vanished because lim e %% f(z) = lim e %% f(z) =0
T—00 T——00

(c) Again, by induction, it suffices to prove the case || = 1. Again, we do
so for n = 1.

/O =t [ @ dr= [ Gl w) d
= /00 (—iz)e % f(z) dx

—00
is indeed —i times the Fourier transform of = f(z). The second equality, in

which the derivative with respect to £ was moved past the integral sign is
justified by Problem B.7, below.

(d) is obvious — just make the change of variables 2’ = x — a in the integral
defining the Fourier transform of T, f.

(e) Since the integral defining f (&) factorizes, it suffices to condsider n = 1.
By part (c) of this Theorem, j—gf(g) is the Fourier transform of —ix f(x) =

—ige /2 = ig—me*lﬁ/? = if’(x). Thus by parts (a) and (b) of this Theorem,
4f(€) = —&£(€) and
A 2 2 ~ ~
G{f(©e 7} = L) +Ef(©)) =
for all ¢ € R. Consequently f (5)652/ 2 must be some constant, independent

of £. Hence to determine f(£) we need only to determine the value of
that constant, which we may do by computing f(f)6§2/2‘£:0 = f(0). Since

F(0) = [ e**/2 dx > 0, it is determined by

oo

0o 2 ) )
£(0)* = [/ e 2 d:l?] = [/ e /2 dm} [/ e Y’/ dm}
:// e~ @2 pdy
R2

Changing to polar coordinates,

/dr 7"/ g e " /2—277/drre_r2/2:277[—6_7"2/2}30:277
0
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Thus f(0) = 27 which tells us that f(¢)et”/2 = /27 and hence that
f(€) = V2me /2 for all €.

f) By the definition in (B.2a),

/ FOTE s = [ % [ e e i€25) 50

The last equality uses Theorem B.9, below.

(g) By the definition in (B.2a) and Lemma B.4.d,
h(¢) = / d"z e Th(x / d"x / dy e 8V f(y) e TV gz — y)
Rn n n

d"y e Y f(y) / d"z eiig'(xfy)g(x ) by Fubini

n

I
T

d™y e_ig'yf(y) / d"z’ e_ig'x/g(a:') with 2’ =2 —y

Rn

() 9(€)

I
=,

O

Exercise B.7. Let f : (—00,00) X [¢,d] — C be continuous. Assume that
91 exists and is continuous and that there is a constant C such that

9y
0 0 0 —y’
@yl L@y < and  [E(ay) - Ly)] < L

for all —oo <z < o0 and ¢ < y,y’ < d. Prove that g(y) = f_oo flx,y) dx is

differentiable with ¢'(y) = [ gg (z,y) dz.

Exercise B.8. Let f € S(R"). Set
r(z) = f(=z)  oz) = f(=)

Prove that

Theorem B.9. The maps

f(z) € SR > f(€) = / T f(z)
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are one-to—one, continuous, linear maps from S(R™) onto S(R™) and are
inverses of each other.

Proof. That f is linear in f was Theorem B.6.a.

We now assume that f € S(R") and prove that (&) € S(R™). For simplicity
of notation, we assume that n = 1. Let «, 8 be nonnegative integers. By
parts (b) and (c) of Theorem B.6 followed by the product rule, 50‘%]’(5) is

the Fourier transform of

min{a,8}
(—)* = [(—i2)* f(@)] = (=)™ Y7 () () (T f (@)
=0
min{«,B} '
_ (_i)a-i—ﬁ Z (a) (5[3( B Kfoz ﬁ)( )
=0
Hence
R o ad ;
17 ()llas = sup [¢ G5 /(0
00 . min{«,B} p o »
=sp [ Y (e
min{a,8}
<Y Oty [ e )
=0
(B3) min{a,8} ' 00
= > Oikm [l e 0a) e
=0 o
min{a,8}
< S @@ lo—cae+ 1l um}/ L dy
{=0
min{a,8}
= > ()l ls—ra—e+ 1 fllp-rr20-}
=0

Since f € S(R), the right hand side is finite. The corresponding argument
for general n proves that, when f € S(R"), || f||q,p is finite for all o, B € N,
so that f € S(R™).

It also proves that the map f — f is continuous, since if the sequence
{f;j}jen converges to f in S(R™), then replacing f by f — f; in (B.3), or its
analog for general n, shows that ||f — f gHa 3 converges to zero as j — 0o,
for all o, 8 € NI So {f;}jen converges to f in S(R) too.



296 B. The Fourier Transform and Tempered Distributions

The proof that the map g(§) — g(z) is a continuous, linear map from S(R")
into S(R™) is similar.

We now assume that f(z) € S(R™) and prove that the inverse Fourier trans-
form of f(¢§) is f(x). In symbols, we prove that

(B.4) f@) = [ ee=te)

We first prove the (z = 0, n = 1) special case that

(B.5) / fe

Write

(f(x) = F(0)e* /) if 2 #0
'(0) ifx=0
By Problem B.10, below, the function h € S(R). So, by parts (e) and (c) of
Theorem B.6,

f(z) = f(O)e_xQ/Q—i—xh(x) where h(z) = {;lﬁ_c

F(&) = V2rf(0)e /% 4 ideh(&)

R a= [T e [ i g

— 00

and

The first term
)
oo / e /2 de = £(0)

by the computation at the end of the proof of Theorem B.6.e. The second
term is 2 times

&|&

o] B
/ h(¢) d¢ = lim dh(€) d¢ = lim [A(B)—h(—A)] =0

—00 A,B—oo J_ 4 A,B—o0

Here we have used the fundamental theorem of calculus and the decay at
+00 which follows from the fact that h € S (R), which, in turn, follows from
h € S(R). This completes the proof of (B.5). The proof of the analog
of (B.5) for general n is similar. Replacing f by T, f and using f(x) =

(T-of)(0) and T, J(€) = €57 f(€) gives (B.4).
The proof that
(B6) 96 = [ o) dva

is similar. The formulae (B.4) and (B.6) show that the maps f(z) — f(¢)
and ¢g(§) — g(x) are onto S(R) and are inverses of each other. O



B.2. The Fourier Transform 297

Exercise B.10. Let f € S(R) and define

L(f(x) - e=/2) if x
h(z) = {xl(f( )= SO w0
1/(0) ifx=0

Prove that h € S(R).

Theorem B.11. The Fourier transform (B.2a) has a unique continuous
extension to L2(R"). The inverse Fourier transform (B.2b) has unique con-
tinuous extension to L2(R™). The two extensions are inverses of each other.

Proof. This is an immediate consequence of the B.L.T. Theorem A.41,
Theorem B.9, Theorem B.6.f (which implies that the Fourier and inverse
Fourier tranforms are bounded operators with respect to the L?(R™) norm)
and a simple extension of Problem A.14 (which implies that S(R™) is dense
in L2(R™)). O

Lemma B.12 (the Riemann-Lebesgue lemma). The Fourier transform
(B.2a) extends uniquely to a bounded map from L'(R™) to Cuo(R™), the
space of continuous functions on R™ that vanish at infinity.

Proof. By Theorem B.9, the Fourier transform maps S(R™), which is dense
in L'(R™) (by a simple extension of Problem A.14), into S(R™) C Ca(R™).
It now suffices to observe that

[ fllzoe ey < I fllLrmn)
and apply the B.L.T. Theorem A.41. O
Exercise B.13. The goal of this problem is to prove the Paley—Wiener
theorem, which says that a function f is C*° and supported in the closed

ball By = { 2 € R" | || < R } if and only if f(€) extends to a holomorphic
function on C™ which obeys

(B.7) 7)) < 52mwe™™ forall N eN

(a) Let f € C3°(R™) be supported in Bp. Prove that f(£) extends to a
holomorphic function on C™ and that, for each N € N, there is a constant

Cn such that (B.7) holds.

(b) Assume that the Fourier transform f(¢) of a function f(z) extends to a
holomorphic function on C™ and that, for each N € N, there is a constant
Cn such that (B.7) holds. Let n € R™. Prove that

fa) = e [ e fiein) o

(c) Prove that, under the hypotheses of part (b), f(x) is supported in Bgp.
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B.3. Tempered Distributions

The theory of tempered distributions allows us to give a rigorous meaning
to the Dirac delta function. It is “defined”, on a handwaving level, by the
properties that

(1) §(x) = 0 except when z =0
(2) 6(0) is “so infinite” that
(3) the area under its graph is one.

Still on o handwaving level, if f is any continuous function, then the func-
tions f(x)d(z) and f(0)6(x) are the same since they are both zero for every
x # 0. Consequently

®8) [ s@se= [ 0@ de = 10) [ s@yds = 5(0)

That ffooo f(@)d(z)dz = f(0) is by far the most important property of the
Dirac delta function. But there is no Riemann integrable function 6(x) that
satisfies (B.8).

Exercise B.14. Prove that there is no Riemann integrable function §(x)
that satisfies (B.8).

The basic idea which allows us to make make rigorous sense of (B.8)
is to generalize the meaning of “a function on R”. We shall call the gen-
eralization a “tempered distribution on R”. Of course a function on R, in
the conventional sense, is a rule which assigns a number to each x € R.
A tempered distribution will be a rule which assigns a number to each nice
function on R. We will associate to the conventional function f : R — C
the tempered distribution which assigns to the nice function ¢(x) the num-
ber [*_ f(x)p(z) dz. The tempered distribution which corresponds to the
Dirac delta function will assign to p(x) the number ¢(0). The space of “nice
functions” used by tempered distributions is the Schwartz space of Definition
B.1.

Definition B.15 (Tempered Distributions). The space of all tempered dis-
tributions on R”, denoted S&’'(R™), is the dual space of S(R™). That is, it is
the set of all functions

f:S[RY) = C

that are linear and continuous. One usually denotes by (f, ) the value in
C that the distribution f € S’(R) assigns to ¢ € S(R™). In this notation,

o that f is linear means that (f,ap + b)) = a (f, o) +b(f,9) for all p,9 €
S(R™) and all a,b € C.
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o that f is continuous means that if ¢ = 1Lm ¢on in S(R™), then (f,¢) =
lim (f,n).

n—oo

Example B.16. (a) Here is the motivating example for the whole subject.
Let f : R™ — C be any function that is polynomially bounded (that is, there
is a polynomial P(z) such that |f(x)| < P(x) for all z € R™) and that is
Riemann integrable on [—M, M]™ for each M > 0. Then

frpeSRY) = (f,p) = - f(@)p(x) d*z

is a tempered distribution. The integral converges because every ¢ € S(R")
decays faster at infinity than one over any polynomial. See Problem B.17,
below. The linearity in ¢ of (f, ) is obvious. The continuity in ¢ of (f,¢)
follows easily from Problem B.17 (generalized to R™) and Theorem B.18,
below.

(b) The Dirac delta function, on R, and more generally the Dirac delta
function translated to b € R, are defined as tempered distributions by

(0,0) = #(0) {0 p) = (D)
Once again, the linearity in ¢ is obvious and the continuity in ¢ is easily

verified if one applies Theorem B.18.

(¢) The derivative of the Dirac delta function 4 is defined by

The reason for the name “derivative of the Dirac delta function” will be
given in the section on differentiation, later. See Definition B.21.

(d) The principal value of %, with z running over R, is defined by

<P%,gp> = lim £@) gy

x
€20+ J|z|>e

The first thing that we have to do is verify that the limit above actually
#(z)
T
on [—1,1] if ¢(0) # 0 (because, for = near zero, @ R~ @), but fol 1dx

and [°. L dz do not even exist as improper integrals:
-1z prop 2

exists. This is not a trivial statement, because not only is not integrable

1 1
%dx:hm %dx:hmlnl:oo
0 e—0+ J, e—04+ ¢

T

0 —€
L dr = lim Ldr= lim Ine = —o0
1 e—0+ 1 z e—0+
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Here is the verification that the limit defining <P%, go> exists

M —e
lim @ dr = lim {/ @dx —|—/ —“Omx) dm}
e—0+ |$|>6 e—0+ e Y

M,M'— 00

= lim
e—0+

xr
M, M’ — o0 { 1 —M -1

M -1
“O( z) dx—i—/ wa)dx—i—/ @dm}
1 —M’

The first integral converges because, by the mean value theorem, we have,
for some ¢ between x and —zx,

E
BN
B
<
S
+
\
L
bR
&
&
S
+
\
™
S
B
2
8
H—/

= lim
e—0+
M,M’' =00

‘ p(@)—p(—z)

xT

_ ‘Lp/(c) 2z

xT

The second and third integrals converge because, for || > 1

( )

< zlre@)] < el

These bounds give both that <P%, g0> is well-defined and
-1

1 fe'e)
\@w@uwmmAM+wm%'§MHmm/ L dz

—00

= 2[lello.x +2[ello

Linearity is again obvious. Continuity again follows by Theorem B.18, be-
low.

Exercise B.17. Let f : R — C be Riemann integrable on [—M, M| for all
M > 0 and obey the bound |f(z)| < P(z) for all z € R, where P(z) is the

polynomial P(x) = z*z ~N_ @mx™ and Ny are nonnegative integers.
(a) Prove that there is a constant C' > 0 such that
[f(2)|(1+2%) < O™ + |2+ 7F2)
for all x € R.
(b) Prove that

/ F@)e(@)] dr < 7C (@l o+ el +20)

—00

for all ¢ € S(R).
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Theorem B.18 (Continuity Test). A linear map
fropeSRY) = (fip)eC
1s continuous if and only if there are constants C > 0 and N € N such that

[(Fo ] <C Y llellags

a,BENT
lal,|BI<N

Proof. < : Assume that | (f, o) | <C Y |¢llap and that the sequence
a,BeENT

lal,|B|<N

{wk}keN converges to ¢ in S(R™). Then
[(F0) = o) | = [ (o= [ <C Y llo—grllag

a,BENy
lel,1BI<N

converges to zero as k — co. So f is continuous.

= : Assume that f € S'(R"). In particular f is continuous at ¢ = 0. Then
there is a 6 > 0 such that

d($,0) <5 = |(f,4)] <1
Choose N so that Z 9~ lel=I8l < g and consider any ¢ € S(R™) that

a,BENT
|| or |B|>N

obeys

Y IWllas <3

a,BENy
lel,|BI<N

For any such ¢ we have

d(,0)= Y o7l des < S g p 4 Y 27l

a,BeENy a,BENy a,BEN]
la],|B|<N la] or [B[>N
= d(¢,0) <6
= |[(f9)] <1

Consequently, for any 0 # ¢ € S(R"), setting

~1
¢=g[ 3 usoua/,ﬁ/] .

o ,B'ENG
lo/|,18|<N

we have

1
> Wlas= X 4 X leleww] lelas=3

«,BEND o,BEND of ,B'END
lal,|BISN lal,|B|I<N la/|,|8'|1<N
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and hence
(=3 X lelws] [0 <F E el
of ,B'eNg a,BENT
la/,|B"|<N lal,|BISN
as desired. O

B.4. Operations on Tempered Distributions

We now define a number of operations like, for example, addition and dif-
ferentiation, on tempered distributions. The motivation for all of these def-
initions comes from Ezample B.16.a with f € S(R™). Then we can view
f both as a conventional function and as a tempered distribution. We will
define each operation in such a way that when it is applied to f € S(R™),
viewed as a distribution, it yields the same answer as when the operation s
applied to f viewed as an ordinary function, with the result viewed as a dis-
tribution. As a trivial example, suppose that we wish to define multiplication
by 7. If f € S(R") is viewed as an ordinary function, applying the operation
of multiplication by 7 to it gives the ordinary function 7f. But 7f can again
be viewed as the distribution (Tf,p) = [Tf(z)p(x) d"z = 7(f,¢). So we
would define the operation of multiplication by 7 applied to any distribution
f as the distribution 7f defined by (Tf, o) = 7(f,¢).

Addition and Scalar Multiplication.

Motivation. If f,g € S(R") and a,b € C, then

| far@ +bg@) o) s = [ f@)pla) o +b [ gla)ole)
=a(f,¢) +b{g, )

Definition B.19. If f, g € §'(R") and a,b € C, then define af+bg € S'(R")
by

(af +bg,0) =a(f,¢) +b(g,p)

Theorem B.20. If f,g € S'(R") and a,b € C, then af + bg, defined above,
is a well-defined element of S'(R™). The operations of addition and scalar
multiplication so defined obey the usual vector space axioms of Definition

Al

Proof. Trivial. 0O
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Differentiation.
Motivation. If f € S(R

)
/OO fl(@)p(z) do = — /00 f(x) ¢ (z) dx (the boundary terms vanish)

More generally, if f € S(R"), and v € N,

/ (07 )(z) p(z) d"w = (1)1 A f(x) (07)(x) d"x
Definition B.21. If v € N2, we define the 7' derivative of f € S’(R") by
<57f’ 80> — (_1)\v\<f, 3VSD>
Since (|07¢lla,8 = [|¢l|a,8+~ the right hand side gives a well-defined element
of 8'(R™).

Remark B.22. Note that every derivative of every distribution always ex-
ists.

, then, by integration by parts,

Example B.23. The Heavyside unit function

H(z) 1 ifxz>0
xr) =
0 ifz<O

(on R) may also be viewed as the tempered distribution
o) = [~ ety
(in §'(R)) via Example B.16.a. The derivative of this distribution is
(H.9) == (Hs) == [ ) do = =[]} = 0l0) = (i)
Thus H’ is the Dirac delta function.

Fourier Transform.
Motivation. If f and ¢ are both in S(R™), then, writing ¢(§) = ¥(§)

(Fuoy= [ Fo)ete) ae = / F()0(®) e

= (2m)" f(x)(x) dz (by Theorem B.6.f and Theorem B.9)
R”

= [ fl)p(x) d"z
Rn
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Definition B.24. The Fourier transform of f € S’(R™) is the tempered
distribution defined by )

(fro)={1.2)
It is well-defined by Theorem B.9.

Example B.25. The Fourier transform of the Dirac delta function is given
by

e}

(3.0) = (5,4) = $(0) = / o(z) dr = (1,9)

—00

That is, § is the constant function 1.

Example B.26. The Fourier transform of the constant function 1, viewed
as a tempered distribution, is
o

(ig) = (1.9) = [ 9(6) de = 2mp(0)

—00

by (B.5). That is, the Fourier transform of the constant function 1 is 27d(&).



Bibliography

[BC2

(BU]

(€]

(CM]
[CF]

[Co]
(Ev]

M. Abramowitz and I. Stegun, handbook of Mathematical Functions, Dover, 1965.
R. Adams, Sobolev Spaces, Academic Press, 1975.

L. Ahlfors, Complex Analysis, McGraw—Hill, 1979.

L. Ahlfors, Quasiconformal Mappings, Van Nostrand, 1966.

G. Allessandrini, Stable determination of conductivity by boundary measurements,
App. Anal. 274 (1988), 153-172.

V. L. Arnold, Mathematical Methods of Classical Mechanics, Springer—Verlag, 1978.

S. R. Bell and S. G. Krantz, Smoothness to the Boundary of Conformal Maps,
Rocky Mountain J. Math. 17 (1987), 23-40.

R. Beals and R. Coifman, Multidimensional inverse scattering and nonlinear partial
differential equations, in F. Treves, editor, Pseudodifferential operators and applica-
tions, Proc. Sympos. Pur. Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985,
pp 45-70.

R. Beals and R. Coifman, The spectral problem for the Davey—Stewartson and Ishi-
mori hierarchies, in A. Degasperis, A. P. Fordy and M. Lakshmanan, editors, Non-
linear evolution equations: Integrability and spectral methods, Manchester Univer-
sity Press, 1988, pp 15-23.

R. Brown and G. Uhlmann, Uniqueness in the inverse conductivity problem for non—
smooth conductivities in two dimensions, Comm. Partial Differential Equations 22
(1997), 1009-1027.

A. P. Calder6n, On an inverse boundary value problem, Seminar on Numerical
Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matematica,
Rio de Janeiro, 1980, pp 65-73.

R. Coifman and Y. Meyer, Au dela des Opérateurs pseudo—differentiels, Astérisque,
vol. 57, Société Mathématique de France, 1978.

H. L. Cycon, R. G. Froese, W. Kirsch and B. Simon, Schriodinger Operators,
Springer—Verlag, 1987.

J. B. Conway, A Course in Functional Analysis, Springer—Verlag, 1990.
L. C. Evans, Partial Differential Equations, AMS, 1998.

305



306 Bibliography

[F] G. B. Folland, Real Analysis. Modern Techniques and their Applications, Wiley,
1999.

[Fa] L. Faddeev, Growing solutions of the Schrédinger equation, Dokl. Akad. Nauk.
SSSR, 165, (1965), 514-517 ( translation in Sov. Phys. Dokl. 10, 1033]

[GT] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second
Order, Springer—Verlag, 1982.

[HL] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. I, Math.
Z. 27, 565-606 (1928).

[Ho] L. Hérmander, The Analysisof Linear Partial Differential Operators, Springer Ver-
lag, 1983.

[KV] R. Kohn and M. Vogelius, Determining conductivity by boundary measurements,
Comm. Pure Appl. Math 38 (1985), 643—667.

[M] J. W. Milnor, Topology from the Differentiable Viewpoint, University of Virginia
Press, 1965.

[MO] W. Magnus and F. Oberhettinger, Formulae and Theorems for the Functions of
Mathematical Physics, Chelsea, 1949.

[N1] A. Nachman, Reconstructions from boundary measurements, Annals of Math 128
(1988), 531-587.

[N2] A.Nachman, Global uniqueness for a two—dimensional inverse boundary value prob-
lem, Annals of Math 143 (1996), 71-96.

[No] R. G. Novikov, The inverse scattering problem at fized energy for the three—
dimensional Schrédinger equation with an exponentially decreasing potential, Com-
mun. Math. Phys 161 (1994), 561-595.

[Ola] P. Ola, Introduction to Electrical Impedance Tomography, lecture notes, http:/
/mathstat.helsinki.fi/kurssit /imptom/EITluennot.pdf.

[PT] J. Poschel and E. Trubowitz, Inverse Spectral Theory, Academic Press, 1987.

a . G. Ramm, Recovery of the potential from fized ener ata, Inverse Problems

R A. G. R R Ty h jal d gy d I Probl
4(1988), 877-886.

[RS] M. Reed and B. Simon, Methods of Modern Mathematical Physics, I: Functional
Analysis, Academic Press, 1972.

[RS2] M. Reed and B. Simon, Methods of Modern Mathematical Physics, II: Fourier Anal-
ysis, Self-Adjointness, Academic Press, 1975.

[RS3] M. Reed and B. Simon, Methods of Modern Mathematical Physics, II: Fourier Anal-
ysis, Scattering Theory, Academic Press, 1979.

[RS4] M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV: Analysis of
Operators, Academic Press, 1978.

. Weder, Global uniqueness at fized energy in multidimensional inverse scatterin

W] R. Weder, Global uni d gy 1 ltids jonal i ing
theory., Inverse Problems 7 (1991), 927-938.

[Y] K. Yoshida, Functional Analysis, Springer—Verlag, 1968.



