
The Calderón Problem — An

Introduction to Inverse Problems

Joel Feldman

Mikko Salo

Gunther Uhlmann

Department of Mathematics, University of British Columbia,
Vancouver, B.C. CANADA V6T 1Z2

E-mail address: feldman@math.ubc.ca

Department of Mathematics and Statistics, University of
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Preface

Inverse problems are those where from “external” observations of a hid-
den, “black box” system (a patient’s body, nontransparent industrial ob-
ject, Earth interior, etc.) one needs to recover the unknown parameters of
the system. Such problems lie at the heart of contemporary scientific in-
quiry and technological development. Applications include a vast variety of
medical as well as other (geophysical, industrial, radar, sonar) imaging tech-
niques, which are used for early detection of cancer and pulmonary edema,
location of oil and mineral deposits in the Earth’s interior, creation of as-
trophysical images from telescope data, finding cracks and interfaces within
materials, shape optimization, model identification in growth processes and
modeling in the life sciences among others. Most inverse problems arise from
a physical situation modeled by a partial differential equation. The inverse
problem is to determine coefficients of the equation given some information
about the solutions. Analysis of such problems brings together diverse areas
of mathematics such as complex analysis, differential geometry, harmonic
analysis, integral geometry, microlocal analysis, numerical analysis, opti-
mization, partial differential equations, probability etc. and is a fertile area
for interaction between pure and applied mathematics.

A prototypical example of an inverse boundary problem for an elliptic
equation is the by now classical Calderón problem, forming the basis of
Electrical Impedance Tomography (EIT). Calderón proposed the problem
in the mathematical literature in 1980. In EIT one attempts to determine
the electrical conductivity of a medium by making voltage and current mea-
surements at the boundary of the medium. The information is encoded in
the Dirichlet–to–Neumann (DN) map associated to the conductivity equa-
tion. EIT arises in several applications including geophysical prospection

xi



xii Preface

(the original motivation of Calderón) and in medical imaging. In the last 30
years or so there has been remarkable progress on this problem. This book
includes a thorough account of many of these developments. It is intended
for graduate students that have had a basic course in Real Analysis or its
equivalent.

We briefly summarize the contents of this book. In Chapter 1 we give a
motivation to Calderón’s inverse problem as well as an introduction to other
inverse problems like optical tomography and inverse scattering. Chapter
2 gives a precise formulation of Calderón’s problem. We also analyze the
linearized case at a constant conductivity, which is the case analyzed by
Calderón. Also in this chapter one can find the reduction of Calderón’s
problem to a study of the DN map associated to the Schrödinger equation.

In Chapter 3 we show that one can determine, in a stable fashion, the
conductivity at the boundary and the normal conductivity at the boundary
from the DN map. In Chapter 4 we construct complex geometrical optics
(CGO) solutions for the conductivity equation which have been the basis of
many developments in the theory of inverse boundary problems for elliptic
equations. We use these solutions to prove, in dimension greater than two,
uniqueness for C2 conductivities from the DN map, develop a reconstruc-
tion procedure of the conductivity from the DN map, and prove stability
estimates for the inverse problem.

The two dimensional case is considered in detail in Chapter 5. For po-
tentials in the class Cε, ε > 0, a new class of CGO solutions are constructed
that give uniqueness of the potential from the associated DN map for the
Schrödinger equation. This gives a similar result for C2+ε conductivities. We
also describe how to get a more general uniqueness result, just for bounded
measurable conductivities, using quasiconformal maps.

The results described in Chapters 4 and 5 concern the case when the DN
map is measured on the whole boundary. Chapter 6 describes several results
for the case when the measurements are made on part of the boundary. A
basic tool is to construct CGO solutions vanishing on an open subset of the
boundary. This is done in dimension three or greater for special geometries
using a reflection method and for some other cases using Carleman estimates.

The previous chapters have discussed isotropic conductivities, that is,
conductivities that do not depend on direction. There are several impor-
tant physical examples of anisotropic conductivities, including muscle tissue.
This case is analyzed in detail in Chapter 7 in two dimensions.

A topic that has received a lot of attention in recent years is the subject of
invisibility and cloaking. The method of transformation optics has been one
of the main proposed techniques to achieve, at least theoretically, invisibility.
This technique originated in the study of EIT and Calderón’s problem, in
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constructing examples of non-uniqueness for Calderón’s inverse problem.
This construction leads to degenerate anisotropic conductivities. We give
a detailed account of this in Chapter 8, together with other selected topics
related to the Calderón problem.

Finally in Chapter 9 we consider an application of the methods developed
in the previous chapters to inverse scattering at a fixed energy.





Chapter 1

Introduction

In this introduction we discuss a number of imaging methods for which the
Calderón problem is relevant. In each situation we have a medium whose
internal properties are unknown, and the objective is to determine internal
properties of the medium from various measurements (electrical, optical, or
acoustic) on its boundary or far away.

1.1. Electrical impedance tomography

The one-dimensional case. Consider a simple electric circuit consisting
of two components: a resistor given by a metal wire occupying the interval
0 ≤ x ≤ ℓ on the real line, and a voltage source attached to the resistor’s
terminals at x = 0 and x = ℓ. We denote by u(x) the voltage at x. By
Ohm’s law, the voltage difference between the points at x and x+ h is the
current, I, flowing through the wire times the resistance between x and
x + h. If the resistance density (or resistivity) ρ(x) at each point x on the
wire is continuous, then

u(x+ h)− u(x) = −Iρ(x′)h

for some x′ between x and x+ h. Dividing across by h and taking the limit
h→ 0, we get

u′(x) = −Iρ(x).
There are no sources or sinks of charge inside the wire, so the current I is
a constant. We may eliminate it from the equation just by dividing ρ(x)
across and differentiating. In terms of the conductivity γ(x) = 1

ρ(x) , we have

(1.1) γ(x)u′(x) = −I =⇒
(
γ(x)u′(x)

)′
= 0.

1



2 1. Introduction

Now suppose that the conductivity γ(x) of the wire is unknown to us,
and we may only measure the voltages and currents at the ends of the wire.
That is, we may only measure u(0), u(ℓ), γ(0)u′(0) and γ(ℓ)u′(ℓ). By (1.1),
γ(x)u′(x) is a constant and so takes the value γ(0)u′(0) everywhere. Thus

u′(x) = γ(0)u′(0)
1

γ(x)
=⇒ u(ℓ)− u(0) = γ(0)u′(0)

∫ ℓ

0

dx

γ(x)
.

Consequently, the only property of the wire that one can determine by mea-

surements at the ends of the wire is the total resistance
∫ ℓ
0

dx
γ(x) .

Derivation of the conductivity equation. Replacing the wire by a two
or higher dimensional body changes the picture completely. In Rn, n ≥ 2,
the current i(x) is a vector and Ohm’s Law is

(1.2) i(x) = −γ(x)∇u(x).
Assuming that charge is still not allowed to accumulate anywhere in the
body, the net rate of charge flow across the boundary ∂V of any region V
must vanish, so that ∫

∂V
i(x) · n̂(x) dS = 0

where n̂(x) is the outward unit normal to ∂V at x. To derive this condition,
concentrate on the charge that, at time t, is on an infinitesimal piece, dS, of
the surface of V . If this charge has velocity v(x), then at the end of an infini-
tesimal time interval dt it has moved to a surface element that is the translate
by v(x) dt of dS. In the figure, this surface element is denoted dS + v dt.

n̂(x)

v(x) dtθ

V

dS dS + v dt

The charge that has left V through dS during this time interval now fills
a tube whose ends are dS and dS + v dt. The tube has cross–sectional
area dS and height |v(x)| dt cos θ = n̂ · v dt. Hence the tube has volume
v(x) · n̂(x) dt dS. If the charge density at x is κ(x), the tube contains charge
κ(x)v(x) · n̂(x) dS dt = i(x) · n̂(x) dS dt. The total charge that leaves V
during the time interval dt is dt

∫
∂V i(x) · n̂(x) dS.

As we are not allowing charge to accumulate anywhere, 0 =
∫
∂V i(x) ·

n̂(x) dS =
∫
V ∇ · i(x) dx, by the divergence theorem. This is true for all

regions V . So, assuming that ∇ · i(x) is continuous,
∇ · i(x) = 0 =⇒ ∇ ·

(
γ(x)∇u(x)

)
= 0.

This equation will be called the conductivity equation.
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The Calderón problem. Suppose now that we have a conductor filling a
region Ω and that we apply a voltage f on the boundary ∂Ω and measure the
current that then flows out of the region. By measuring the rate at which
charge is leaving various parts of ∂Ω, we are measuring the current flux
through ∂Ω, which determines the quantity γ(x)∇u(x) · n̂(x) = γ(x)∂νu(x)
on ∂Ω where ∂νu is the normal derivative of u.

For a given γ and f , we will see in §2 that the boundary value problem

∇ ·
(
γ(x)∇u(x)

)
= 0 in Ω, u = f on ∂Ω

has a unique solution u in Ω. Let Λγ(f) be the function γ∂νu|∂Ω on the
boundary that results from a given γ and f . The map f 7→ Λγ(f), which
clearly depends linearly on f , is called the Dirichlet to Neumann map (DN
map). This map encodes the electrical boundary measurements for all pos-
sible functions f on the boundary. More precisely, we will see in §2 that Λγ
is a bounded linear map between two Sobolev spaces on ∂Ω,

Λγ : H1/2(∂Ω) → H−1/2(∂Ω).

The inverse problem of Calderón, also called the inverse conductivity prob-
lem or the inverse problem of electrical impedance tomography, is to deter-
mine the conductivity function γ from the knowledge of the map Λγ (that

is, from the knowledge of Λγ(f) for all f ∈ H1/2(∂Ω)).

Formal variable count. When dealing with inverse problems it is some-
times informative to do a formal variable count. The Calderón problem for
a domain in Rn asks to determine γ, which is a function depending on n
variables in general, from the DN map Λγ . Pretend for a minute that the
boundary ∂Ω contains only a finite number, m, of points and call the value
of f at the jth boundary point fj and the value of Λγ(f) at the i

th boundary
point Λγ(f)i. Then the map f 7→ Λγ(f) would correspond to a linear map
taking f ∈ Rm to Λγ(f) ∈ Rm, having of the form

Λγ(f)i =

m∑

j=1

λi,jfj

where λi,j is the current that results at ith boundary point when a unit

voltage is applied at the jth boundary point. The analogous formula for the
true, continuous, boundary ∂Ω is

Λγ(f) =

∫

∂Ω
λγ(x, y)f(y) dS(y)

where dS is the surface measure on ∂Ω and λγ(x, y) the current density that
results at x when a unit voltage is applied at y. Knowing the DN map Λγ(f)
for all applied surface voltages f is equivalent to knowing the integral kernel
λγ(x, y) for all x, y ∈ ∂Ω. This is a function of 2n− 2 variables.
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Thus, in the inverse problem of Calderón we are hoping to determine
a function of n variables (the conductivity γ) from a function of 2n − 2
variables (the integral kernel λγ of the DN map). For n = 1, this problem
is formally underdetermined since γ is a function of more variables than
λγ , and we have already seen that for n = 1 the DN map cannot possibly
determine the conductivity. For n = 2 the inverse problem is formally well-
determined (γ and λγ are both functions depending on two variables), while
for n ≥ 3 the problem is formally overdetermined since the data has more
degrees of freedom than the quantity that we wish to recover. The variable
count suggests that in large dimensions there may be redundancy in the
data, and this sometimes (but certainly not always) means that the inverse
problem may be easier in high dimensions.

Different aspects of the Calderón problem. In connection with any in-
verse problem, there are a number of different questions that are of interest.
In the following, we give a list of theorems proved in this book addressing
these questions. The first result states that knowledge of the DN map de-
termines the unknown coefficient γ uniquely on the boundary. This is often
a first step in determining γ in the interior.

Theorem 1.1. (Boundary uniqueness) Let Ω ⊂ Rn be a bounded C1 do-
main, and let γ1, γ2 ∈ C(Ω) be positive functions. If Λγ1 = Λγ2 , then
γ1|∂Ω = γ2|∂Ω.

The next result states that, under certain conditions, the DN map
uniquely determines the conductivity in the interior. The cases n ≥ 3 and
n = 2 will require different proofs, as suggested by the variable count.

Theorem 1.2. (Interior uniqueness) Let Ω ⊂ Rn be a bounded C2 domain,
and let γ1, γ2 be positive functions in C2(Ω) if n ≥ 3 and in L∞(Ω) if n = 2.
If Λγ1 = Λγ2 , then γ1 = γ2 in Ω.

The first proof that we will obtain for the interior uniqueness result is
not constructive, that is, it does not yield an algorithm for computing the
values of γ in Ω from the knowledge of Λγ . However, with extra work we
can also give a constructive procedure.

Theorem 1.3. (Reconstruction) Let Ω ⊂ Rn be a bounded C2 domain,
n ≥ 3, and let γ1, γ2 ∈ C2(Ω) be positive functions. There is a convergent
algorithm for determining the function γ from knowledge of Λγ .

In practice one would like to have an efficient numerical implementation
of the algorithm. This is out of the scope of this book, and is a challenging
topic for several reasons. First, the imaging method is very diffuse and it
is difficult to obtain high resolution images, and secondly the problem is
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ill-posed in the sense that small errors in the measurements may lead to a
large error in the reconstructed image. The next stability result quantifies
the degree of ill-posedness in the Calderón problem and states that, under
some a priori assumptions, the inverse map taking Λγ to γ has a logarithmic
modulus of continuity. It can also be proved that this modulus of conti-
nuity is optimal, and it cannot be improved to a Hölder or Lipschitz type
continuity in general.

Theorem 1.4. (Stability) Let Ω ⊂ Rn be a bounded C∞ domain, n ≥ 3,
and let γj, j = 1, 2, be two positive functions in the Sobolev space Hs+2(Ω)
with s > n/2, satisfying

1

M
≤ γj ≤M, ‖γj‖Hs+2(Ω) ≤M.

There are constants C = C(Ω, n,M, s) > 0 and σ = σ(n, s) ∈ (0, 1) such
that

‖γ1 − γ2‖L∞(Ω) ≤ ω(‖Λγ1 − Λγ2‖H1/2(∂Ω)→H−1/2(∂Ω))

where ω is a modulus of continuity satisfying

ω(t) ≤ C |log t|−σ , 0 < t < 1/e.

The previous results considered the case of full data, where one can
do measurements on the whole boundary ∂Ω. In practice this is often not
possible, and for instance in geophysical imaging one can only cover a tiny
part of the Earth’s surface with measurement devices. It is therefore of
interest to consider partial data problems. For the Calderón problem this
means that one has knowledge of Λγ(f) on some subset of the boundary for
functions f supported in some subset of the boundary. The next theorem
gives a result of this type for the special case where the part of the boundary
that is inaccessible to measurements is part of a sphere.

Theorem 1.5. (Partial data) Let Ω ⊂ Rn be a bounded C1 domain, where
n ≥ 3, and let γ1 and γ2 be two positive functions in C2(Ω). Assume that
Ω ⊆ B for some open ball B in Rn, let Γ0 = ∂Ω ∩ ∂B, and let Γ = ∂Ω \ Γ0.
Assume also that ∂B \ ∂Ω 6= ∅. If

Λγ1f |Γ = Λγ2f |Γ for all f ∈ H1/2(∂Ω) with supp (f) ⊂ Γ,

then γ1 = γ2 in Ω.

There are certainly many other important aspects of inverse problems
besides the ones listed above. A standard one is the problem of range char-
acterization, which asks to find a set of necessary and sufficient conditions
for a map acting on functions on ∂Ω to be the DN map of some conductivity.
Not much is known about this problem at the time of writing this. Also,
we have only considered the idealized mathematical problem where one can
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make infinitely many measurements (for all possible boundary voltages f) at
infinitely many points on the boundary. On the practical side of things, of
course only finitely many measurements at finitely many points are available
and discrete versions of the problem need to be studied. One also needs a
careful modeling of how the measurements are implemented with electrodes.
There will always be some noise in the measured DN map, and the stabil-
ity result above may not apply since the noisy version of the true DN map
may not be a DN map corresponding to some conductivity. Therefore, an
improved stability analysis possibly including a regularization strategy for
the numerical algorithm would be of interest. These topics are out of the
scope of this book.

The anisotropic Calderón problem. For certain materials, called isotropic
materials, if you apply a voltage u(x), then the current at x is in the direction
opposite to the voltage gradient, ∇u(x), and has magnitude proportional to
the magnitude of the voltage gradient, with the constant of proportional-
ity called the conductivity and denoted γ(x). So, for isotropic materials,
i(x) = −γ(x)∇u(x). The results mentioned previously in this section are
concerned with isotropic materials. However, there are more complicated
anisotropic materials where the current at x need not be parallel to ∇u(x)
and the magnitude of the current depends on the direction as well as the
magnitude of ∇u(x). For these materials, i(x) = −γ(x)∇u(x), but with
γ(x) being an n× n matrix, rather than just a number. In general, γ(x) is
a positive definite, symmetric, n× n matrix.

Theorem 1.2 showed that, for n ≥ 2, the map Λγ does indeed determine
an isotropic conductivity satisfying suitable assumptions. However, it can-
not possibly determine anisotropic conductivities for the following obvious
reason. Let Ψ : Ω̄ → Ω̄ be any diffeomorphism that is the identity map in
some neighbourhood of ∂Ω and set

γ̃ =
[ 1

|det(DΨ)| (DΨ)γ(DΨ)t
]
◦Ψ−1, ũ = u ◦Ψ−1,

where DΨ is the Jacobian matrix (the matrix of first partial derivatives) of
Ψ. In fact, a change of variables shows that
(1.3)

∇ ·
[
γ(x)∇u(x)

]
= 0 in Ω

u = f on ∂Ω

}
⇐⇒

{
∇ ·
[
γ̃(x)∇ũ(x)

]
= 0 in Ω

ũ = f on ∂Ω

Let uf and ũf denote the solutions of the left and right hand boundary
value problems of (1.3), respectively. By definition, Λγ(f)(x) = n̂(x) ·
γ(x)∇uf (x)∂Ω and

Λγ̃(f)(x) = n̂(x) · γ̃(x)∇ũf (x)|∂Ω
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Since Ψ is the identity map in some neighbourhood of ∂Ω, DΨ(x) = 1,
γ̃(x) = γ(x) and ũf (x) = uf

(
Ψ−1(x)

)
= uf (x) for all x in that neighbour-

hood of ∂Ω. Thus Λγ = Λγ̃ . In §?? we prove that, for n = 2, Λγ determines
anisotropic conductivities up to diffeomorphisms like this. It is conjectured
that this is also true for n ≥ 3.

Problems and examples.

Example 1.6. Here is a much simplified example in which an isotropic
conductivity is computed from a Dirichlet to Neumann map. The region
is the square Ω =

{
(x, y) ∈ R2

∣∣ 0 < x, y < 1
}
. To reduce the number

of variables that we are dealing with, we assume that the conductivity is a
function of x only. As γ(x) is a function only of a single variable, we hope to
be able to determine it by measuring just one function of a single variable.
We choose to measure the current k(x) = γ(x)∂u∂y

∣∣
y=0

at the base of the

square that results from applying the boundary voltage function specified
in the figure

x

y

γ(x) u(1, y) = sin(πy)u(0, y) = sin(πy)

u(x, 1) = 0

u = 0

k(x)

So our boundary value problem is

(a) ∇ ·
[
γ(x)∇u(x, y)

]
= 0 in Ω

(b) u(0, y) = u(1, y) = sin(πy) for all 0 ≤ y ≤ 1(1.4)

(c) u(x, 0) = u(x, 1) = 0 for all 0 ≤ x ≤ 1

The standard technique for solving the boundary value problem (1.4) is to
Fourier expand u(x, y) =

∑∞
n=1 an(x) sin(nπy). From the boundary condi-

tion (b), we would expect to only need the n = 1 term. So we look for a
solution of the form u(x, y) = a(x) sin(πy). Boundary condition (c) is satis-
fied for all functions a(x). Boundary condition (b) is satisfied if and only if
a(0) = a(1) = 1. The differential equation (a) is satisfied if and only if

0 = ∇ ·
(
γ(x)a′(x) sin(πy) , πγ(x)a(x) cos(πy)

)

= sin(πy)
[(
γ(x)a′(x)

)′ − π2γ(x)a(x)
]
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which is the case if and only if

(1.5)
(
γ(x)a′(x)

)′ − π2γ(x)a(x) = 0 for all 0 < x < 1

We imagine that we have measured

k(x) = γ(x)
∂u

∂y

∣∣
y=0

= γ(x)πa(x) cos(πy)
∣∣
y=0

= πγ(x)a(x)

and that we wish to determine γ(x). We can do so by subbing γ(x) = k(x)
πa(x)

into (1.5) and solving for a.

(
k(x)

a′(x)
a(x)

)′
= π2k(x) =⇒ d

dx

[
k(x)

d

dx
ln a(x)

]
= π2k(x)

=⇒ k(x)
d

dx
ln a(x) = π2

∫ x

0
k(t) dt− π2C

=⇒ ln a(x) = π2
∫ x

0

1

k(s)

[ ∫ s

0
k(t) dt− C

]
ds+D

for some constants C and D. To satisfy the boundary condition a(0) = 1,
we need D = 0 and to satisfy a(1) = 1, we need

C =

[ ∫ 1

0

ds

k(s)

]−1[ ∫ 1

0

ds

k(s)

∫ s

0
k(t) dt

]

This determines1 a(x) and hence γ(x) = k
πa(x) .

Exercise 1.7. Prove (1.3) by integrating the first equation against a test
function ϕ ∈ C∞

c (Ω), the divergence theorem and a suitable change of vari-
ables.

Exercise 1.8. Find the Dirichlet to Neumann map when Ω =
{
x ∈

R2
∣∣ |x| < 1

}
and the conductivity γ(x) ≡ 1.

Exercise 1.9. Let Ω = (−∞, 0)×S1. Functions on Ω can be identified with
those functions u(x, θ) that are defined for x < 0 and all θ ∈ R and that
are periodic of period 2π in θ. The gradient operator for Ω is ∇ =

(
∂
∂x ,

∂
∂θ

)
.

Find the Dirichlet to Neumann map when the conductivity γ(x, θ) ≡ 1.
Assume that potentials u(x, θ) must remain bounded in the limit x→ −∞.

Exercise 1.10. Let Ω be a bounded open subset of Rn. Assume that the
divergence theorem is applicable to Ω. Let γ(x) be a real–valued C∞ func-
tion on Ω all of whose derivatives are bounded. Suppose that the complex

1If you are worried about dividing by k in the integrals, you shouldn’t be. We know that
0 ≤ u ≤ 1 on ∂Ω. By the maximum principle, this implies that 0 < u < 1 in the interior of Ω.
This in turn forces ∂u

∂y
≥ 0 when y = 0. In fact, by the strong maximum principle [Ev, §6.4.2],

∂u
∂y

> 0 for y = 0, which ensures that k(x) > 0 for all 0 ≤ x ≤ 1.
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numbers λ, µ and the, not identically zero, functions ϕ, ψ ∈ C2(Ω) obey

∇ · [γ(x)∇ϕ(x)] = λϕ(x) for all x ∈ Ω

ϕ(x) = 0 for all x ∈ ∂Ω

∇ · [γ(x)∇ψ(x)] = µψ(x) for all x ∈ Ω

ψ(x) = 0 for all x ∈ ∂Ω

We say that ϕ and ψ are eigenfunctions for the differential operator u 7→
∇ · [γ∇u] with Dirichlet boundary conditions on ∂Ω. The numbers λ and µ
are the corresponding eigenvalues.

(a) Prove that λ, µ ∈ R.

(b) Prove that if λ 6= µ then ϕ and ψ are orthogonal in L2(Ω). In other

words, prove that
∫
Ω ϕ(x)ψ(x) d

nx = 0.

(c) Suppose that γ(x) > 0 for all x ∈ Ω. Prove that λ, µ < 0.

(d) Let H be the closure of the subspace of L2(Ω) spanned by the eigenfunc-
tions for the differential operator u 7→ ∇· [γ∇u] with Dirichlet boundary
conditions on ∂Ω. Prove that there is an orthonormal basis for H con-
sisting of real–valued eigenfunctions.

Exercise 1.11. Let Ω and γ be as in Problem 1.10. Assume that we already
know

• an orthonormal basis for L2(Ω) consisting of C2 eigenfunctions for
the differential operator u 7→ ∇ · [γ∇u] with Dirichlet boundary
conditions on ∂Ω. Call the eigenfunctions and corresponding eigen-
values {ϕℓ}ℓ∈N and {λℓ}ℓ∈N.

• a linear map E : C∞(∂Ω) → C∞(Ω) such that (Ef)(x) = f(x) for
all x ∈ ∂Ω.

Find the Dirichlet to Neumann map for conductivity γ.

Exercise 1.12. Apply the method of Problem 1.11 to find the Dirichlet to
Neumann map for

{
x ∈ R2

∣∣ |x| < 1
}
with conductivity γ ≡ 1. You may

assume that a suitable orthonormal basis exists.

Exercise 1.13. Let Ω be an open subset of Rn. Let γ ∈ C1(Ω) be bounded
away from zero. Find q, β ∈ C1(Ω) such that

∇ · [γ∇u] = 0 ⇐⇒ (−∆+ q)v = 0 for v = βu

Exercise 1.14. Let Ω be a bounded open subset of Rn. Let Λγ(f) de-
note the Dirichlet to Neumann map for the conductivity γ(x). Let β(x)
be a C∞ function on Ω all of whose derivatives are bounded. Compute
d
dtΛγ+tβ(f)

∣∣
t=0

. Assume that we already know
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• a complete orthonormal basis for L2(Ω) consisting of C2 eigenfunc-
tions for the differential operator u 7→ ∇ · [γ∇u] with Dirichlet
boundary conditions on ∂Ω. Call the eigenfunctions and corre-
sponding eigenvalues {ϕℓ}ℓ∈N and {λℓ}ℓ∈N.

• the solution to the boundary value problem ∇ · [γ∇u] = 0 in Ω,
u = f on ∂Ω. Call the solution u0(x).

1.2. Optical tomography

Optical tomography is concerned with the determination of spatially varying
optical absorption and scattering properties of a medium by measuring the
response of the medium to transmitted near–infrared light. This has been
proposed as a diagnostic tool in medicine. The standard model for prop-
agation of photons is the radiative transfer equation, also called the linear
Boltzmann equation. The main point in this section is to indicate that in
the diffusion approximation, which is often used to model highly scattering
media, the optical tomography problem essentially reduces to the inverse
problem of Calderón.

Consider photons propagating in a medium Ω ⊂ Rn where absorption
and scattering may occur, and assume that there are no sources of photons
in Ω. The function φ(x, v, t), modeling the density of photons at point x ∈ Ω
moving in direction v ∈ Sn−1 at time t, solves the radiative transfer equation
(
1

c

∂

∂t
+ v · ∇x + µtr(x)

)
φ(x, v, t) = µs(x)

∫

Sn−1

p(v · v′)φ(x, v′, t) dv′.

Here c is the speed of light, µtr = µa+µs where µa, µs ∈ C(Ω) are the absorp-
tion and scattering coefficients, and p(v, v′) = p(v · v′) with p ∈ C([−1, 1])
is the scattering kernel representing the probability of photons traveling in
direction v to scatter in direction v′. We will also make use of the photon
density

Φ(x, t) =

∫

Sn−1

φ(x, v, t) dv

and the current J = (J1, . . . , Jn) where

Jk(x, t) =

∫

Sn−1

vkφ(x, v, t) dv.

In the diffusion approximation, the following two assumptions that are
valid in predominantly scattering media are made:

(1) The density φ(x, v, t) is only weakly dependent on the direction v.

(2) The current J(x, t) is constant with respect to time.
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Assume for simplicity that Ω ⊂ R2, so unit vectors can be written as
vθ = (cos θ, sin θ) for θ ∈ [0, 2π]. We formally expand φ(x, vθ, t) in complex
Fourier series with respect to θ,

φ(x, vθ, t) =

∞∑

k=−∞
φk(x, t)e

ikθ.

A simple computation shows that

vθ · ∇xφ = eiθ∂φ+ e−iθ∂̄φ

where ∂ and ∂̄ are the complex derivatives

∂ =
1

2

(
∂

∂x1
− i

∂

∂x2

)
, ∂̄ =

1

2

(
∂

∂x1
+ i

∂

∂x2

)
.

Exercise 1.15. Prove the above representation for vθ · ∇xφ.

Thus, the radiative transfer equation may formally be written as
(1.6)(
1

c

∂

∂t
+ eiθ∂ + e−iθ∂̄ + µtr

) ∞∑

k=−∞
φk(x, t)e

ikθ = µs

∫

S1

p(v ·v′)φ(x, v′, t) dv′.

To express also the right hand side as a series in eiθ, we will use two facts
about Chebyshev polynomials Tk: the set {T0/

√
π} ∪ {

√
2/πTk}∞k=1 is an

orthonormal basis of the L2 space on (−1, 1) with weight 1/
√
1− t2, and

these polynomials have the important property that

(1.7) Tk(cos θ) = cos(kθ).

Write the scattering kernel as the Chebyshev polynomial expansion

p(t) =

∞∑

k=0

pkTk(t), t ∈ (−1, 1).

We have p0 = 1/2π by the following problem:

Exercise 1.16. Assume that p is a probability density function in the sense
that

∫ 2π

0
p(vθ · vθ′) dθ′ = 1 for all θ ∈ [0, 2π].

Show that p0 = 1/2π.
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Then formally, by using (1.7),
∫ 2π

0
p(vθ · vθ′)φ(x, vθ′ , t) dθ′ =

∞∑

j=0

∞∑

l=−∞

∫ 2π

0
pjTj(cos(θ − θ′))φl(x, t)e

ilθ dθ′

=

∞∑

j=0

∞∑

l=−∞

∫ 2π

0
pj
eij(θ−θ

′) + e−ij(θ−θ
′)

2
φl(x, t)e

ilθ′ dθ′

= 2πp0φ0(x, t) + π
∞∑

j=1

pj

[
eijθφj + e−ijθφ−j

]
.

We insert the last expression in (1.6) and consider the three equations ob-
tained by collecting the eikθ terms for k = 0, 1,−1. In these equations,
motivated by the assumption that φ is only weakly dependent on v, we also
make the approximation that

φk = 0 for |k| ≥ 2.

The resulting equations are(
1

c

∂

∂t
+ µtr(x)

)
φ0 + ∂̄φ1 + ∂φ−1 = 2πµsp0φ0,

(
1

c

∂

∂t
+ µtr(x)

)
φ1 + ∂φ0 = πµsp1φ1,

(
1

c

∂

∂t
+ µtr(x)

)
φ−1 + ∂̄φ0 = πµsp1φ−1.

Now, note that the photon density and current are given by

Φ(x, t) = 2πφ0(x, t)

and

J(x, t) =

(∫ 2π

0

eiθ + e−iθ

2
φ(x, vθ, t) dθ,

∫ 2π

0

eiθ − e−iθ

2i
φ(x, vθ, t) dθ

)

= 2π

(
φ1 + φ−1

2
,
i(φ1 − φ−1)

2

)
.

Consequently
2πφ−1 = J1 + iJ2, 2πφ1 = J1 − iJ2.

Using these expressions in the three equations obtained above and taking
suitable combinations, and using that p0 = 1/2π, we get the two equations

(
1

c

∂

∂t
+ µa(x)

)
Φ+∇x · J = 0,

(
1

c

∂

∂t
+ µa(x) + (1 − πp1)µs(x)

)
J +

1

2
∇xΦ = 0.

Exercise 1.17. Verify these two equations.
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We now make the approximation that J is constant in time,

∂J

∂t
= 0.

The second equation becomes

J = −D(x)∇xΦ

where D = 1/(2(µa+(1−πp1)µs)) is the diffusion coefficient. Inserting this
expression for J into the first equation, we obtain

−∇x ·D(x)∇xΦ+ µa(x)Φ +
1

c

∂Φ

∂t
= 0.

Finally, suppose that our transmitters emit light at a given frequency ω > 0,
so that

Φ(x, t) = u(x)eiωt.

Then u will solve the equation

−∇ ·D∇u+

(
µa +

iω

c

)
u = 0 in Ω.

A similar equation may be derived in dimensions n ≥ 3, if the Fourier series
in the previous argument are replaced by expansions in spherical harmonics.
The inverse problem in diffuse optical tomography (with infinitely many
measurements) is then to determineD and µa from the Dirichlet to Neumann
map associated to this equation. This problem is analogous to the inverse
conductivity problem.

1.3. Inverse scattering

Suppose that we are interested in a system in which sound waves, for ex-
ample, scatter off of some obstacle. Let p(x, t) be the pressure at position x
and time t. In (a somewhat idealized) free space, p obeys the wave equation
∂2p
∂t2 = c2∆p, where c is the speed of sound. We shall assume that in most
of the world, c takes a constant value c0. But we introduce an obstacle by
allowing c to depend on position in some compact region. We further allow
for some absorption in that region. Then p obeys the damped wave equation

∂2p

∂t2
+ γ(x)

∂p

∂t
= c(x)2∆p

where γ(x) is the damping coefficient of the medium at x. If the solution
p has fixed (temporal) frequency, then p(x, t) = Re

[
u(x)e−iωt

]
where u

satisfies

∆u+
ω2

c(x)2
[
1 + i

γ(x)

ω

]
u = 0.
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Outside of some compact region, the coefficient in brackets is constant:

ω2

c(x)2
[
1 + i

γ(x)

ω

]
=
ω2

c20
= k2 where k =

ω

c0
> 0.

If we define the index of refraction by

n(x) =
c20

c(x)2
[
1 + i

γ(x)

ω

]

then

(1.8) ∆u+ k2n(x)u = 0

with n(x) = 1 outside of some compact region. For concreteness, we restrict
to three dimensions for the rest of this section. We first consider two special
cases.

Example 1.18 (Free space). In the absence of any obstacle, we have ∆u+
k2u = 0 on all of R3. Any function u = eikθ·x, where θ is a unit vector, is a
solution that represents a plane wave moving in direction θ. It is also true
that any solution of this equation (say, in the class of tempered distributions)
can be obtained as a superposition of these plane waves when interpreted in
the right way.

Example 1.19 (Point source). If we have free space everywhere except at
the origin and we have a unit point source at the origin, then

∆u+ k2u = δ(x)

where the Dirac delta function δ(x) is a distribution (generalized function)
that is determined formally by the properties that δ(x) = 0 for all x 6= 0
and

∫
R3 δ(x) dx = 1. A rigorous version of “∆u + k2u = δ(x)” is provided

in Problem 1.20 below. Except at the origin, where there is a singularity,
we still have ∆u+ k2u = 0. The point source generates expanding spherical
waves. So u should be a function of r = |x| only and obey

u′′(r) +
2

r
u′(r) + k2u(r) = 0.

This equation is easily solved by changing variables to v(r) = ru(r), which
obeys

v′′(r) + k2v(r) = 0.

So v(r) = α sin(kr) + β cos(kr) and u(r) = α sin(kr)
r + β cos(kr)

r . To be an

outgoing (rather than incoming) wave, we require that u(r) = α′ eikr
r . (Note

that eikre−iωt is constant on r = ω
k t, which is a sphere that is expanding

with speed c0.) To give the Dirac delta function on the right hand side of

∆u+ k2u = δ(x), we need u(x) = − eik|x|

4π|x| .

Exercise 1.20. Set Φ(x) = − eik|x|

4π|x| .
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(a) Prove that ∆Φ(x) + k2Φ(x) = 0 for all x 6= 0.

(b) Let Bε be the ball of radius ε centered on the origin and let dS be the
surface measure on ∂Bε. Prove that, for any continuous function ψ(x),

lim
ε→0+

∫

∂Bε

ψ(x)

|x|p dS =

{
4πψ(0) if p = 2

0 if p < 2.

(c) (c) Let ψ(x) ∈ C∞
c (R3). Prove that

∫

R3

Φ(x)
[
∆ψ(x) + k2ψ(x)

]
dx = ψ(0).

Now let us return to the general case. We want to think of a physical
situation in which we send a plane wave ui(x) = eikθ·x in from infinity. This
plane wave shakes up the obstacle which then emits a bunch of expanding

spherical waves eik|x−y|

|x−y| emanating from various points y in the obstacle. So

the full solution is of the form

u(x) = ui(x) + us(x)

where the scattered wave, us, obeys the “radiation condition”

(1.9)
∂

∂r
us(x)− ikus(x) = O

( 1

|x|2
)

as |x| → ∞.

This condition is chosen to allow outgoing waves eik|x−y|

|x−y| but not incoming

waves e−ik|x−y|

|x−y| .

Let, as in Problem 1.20,

Φ(x) = − eik|x|

4π|x| .

Since δ(x− y) is the kernel of the identity operator, the equality

(∆x + k2)Φ(x− y) = δ(x− y)

says, roughly, that u(x) 7→
∫
Φ(x − y)u(y) dy is the inverse of the map

u(x) 7→ (∆ + k2)u(x) for functions that obey the radiation condition. We
can exploit this to convert (1.8), (1.9) into an equivalent integral equation

∆u+ k2n(x)u = 0 ⇐⇒ ∆u+ k2u = k2
(
1− n(x)

)
u

⇐⇒ ∆us + k2us = k2
(
1− n(x)

)
u

since ∆ui + k2ui = 0. As us obeys the radiation condition, we have

us(x) = k2
∫

R3

Φ(x− y)
(
1− n(y)

)
u(y) dy

so that

(1.10) u(x) = ui(x) + k2
∫

R3

(
1− n(y)

)
Φ(x− y)u(y) dy.
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This is called the Lippmann–Schwinger equation. Observe that it is of the
form u = ui + Fu or (1+ F )u = ui where F is the linear operator u(x) 7→
k2
∫
Φ(x− y)

(
1−n(y)

)
u(y) dy. This operator is compact (if you impose the

appropriate norms) and so behaves much like a finite dimensional matrix. If
F has operator norm smaller than one, which is the case if k2(1−n) is small
enough, then 1+F is trivially invertible and the equation (1+F )u = ui has
a unique solution. Even if F has operator norm larger than or equal to one,
(1+F )u = ui fails to have a unique solution only if F has eigenvalue minus
one. One can show that this is impossible in the present setting. Thus, one
can prove the following result.

Theorem 1.21. If n ∈ C2(R3), n(x)−1 has compact support and Ren(x), Imn(x) ≥
0, then (1.8), (1.9) has a unique solution.

For |y| bounded and |x| large, Φ(x− y) has the asymptotic behaviour

(1.11) Φ(x− y) = − eik|x|

4π|x|e
−ikx̂·y +O

( 1

|x|2
)

so that, when the incoming plane wave is moving in direction θ,

(1.12) u(x; θ) = ui(x; θ) +
eik|x|

4π|x|u∞(x̂; θ) +O
( 1

|x|2
)

where

u∞(x̂; θ) = −k2
∫

R3

e−ikx̂·y
(
1− n(y)

)
u(y; θ) dy.

If we are observing the scattered wave from vantage points far from the
obstacle, we will only be able to measure u∞(x̂; θ) for x̂ ∈ S2. This is
called the far field pattern, or scattering amplitude, of n corresponding to
the incoming wave ui(x) = eikθ·x. Assuming that we can send incoming
waves at a fixed frequency k > 0 from all possible directions θ, and that
we can measure the corresponding far field patterns for all x̂, the inverse
problem may be formulated in the following way.

Fixed frequency inverse scattering problem: Given u∞(x̂; θ) for all
x̂, θ ∈ S2 and for fixed k > 0, can we determine n?

The answer is yes, as shown by the following theorem.

Theorem 1.22. Fix k > 0. If n1, n2 ∈ C2(R3) with n1−1, n2−1 of compact
support and u1,∞(x̂; θ) = u2,∞(x̂; θ), for all x̂, θ ∈ S2, then n1 = n2.

We can get a rough idea why this theorem is true by looking at the Born
approximation. In this approximation us is ignored in the computation of
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u∞ so that

u∞(x̂; θ) ≈ −k2
∫
e−ikx̂·y

(
1− n(y)

)
ui(y; θ) dy

= −k2
∫
e−ik(x̂−θ)·y

(
1− n(y)

)
dy.

If we measure u∞(x̂; θ), then, in this approximation, we know the Fourier
transform of 1 − n(y) on the set

{
k(x̂ − θ)

∣∣ x̂, θ ∈ S2
}
which is exactly

the closed ball of radius 2k centered on the origin in R3. Since 1 − n(y) is
of compact support, its Fourier transform is analytic. So knowledge of the
Fourier transform on any open ball uniquely determines it.

It turns out that the scattering amplitude for n at a fixed frequency is
an analog of the Dirichlet to Neumann map, except that the measurements
are made far away (on the sphere at infinity) instead of on the boundary
of a domain. We shall discuss a quantum mechanical analog of the above
classical inverse scattering problem in §7, and the methods for dealing with
that problem will be very similar to those applied to the Calderón problem.

Exercise 1.23. Prove (1.11).

Exercise 1.24. Let f ∈ C∞
c (R3). Prove that

F (x) =

∫

R3

Φ(x− y)f(y) dy

obeys ∆F + k2F = f and the radiation condition.

1.4. Notes

Section 1.1. Example 1.6 is due to Kohn-Vogelius.

Section 1.2. See the survey of Arridge.

Section 1.3. See Colton-Kress for more information on acoustic inverse
scattering.





Chapter 2

Formulation of the

Calderón problem

In this chapter we formulate rigorously the inverse boundary value problem
for the conductivity equation

div(γ∇u) = 0

and for the related Schrödinger equation

(−∆+ q)u = 0.

This will include a discussion of weak solutions of the corresponding Dirichlet
problems, the definition of boundary measurements in terms of the Dirichlet-
to-Neumann map (DN map for short), and basic properties of the DN map.
We will also derive useful integral identities that allow to relate boundary
measurements of solutions to the interior values of the coefficients. The
section will end with a reduction of the inverse boundary value problem for
conductivity equation to an inverse problem for Schrödinger equation.

2.1. Calculus facts

This preliminary section collects some basic notation and facts from mul-
tivariable calculus. In the course of the book we will frequently need to
work locally in small sets and then patch up these local constructions into
global ones. Therefore, we will also discuss partitions of unity that are the
standard tool in such local arguments.

Convention. All functions will be complex valued unless stated otherwise.

19



20 2. Formulation of the Calderón problem

Definition 2.1. (Ck spaces) Let Ω be an open set in Rn (not necessarily
bounded). If k ∈ N0, we denote by Ck(Ω) the set of functions that are
k times continuously differentiable in Ω. By Ckc (Ω) we denote the set of
compactly supported functions in Ck(Ω), and Ck(Ω) is the set of functions
in Ck(Ω) whose partial derivatives up to order k extend continuously to
Ω. By C∞(Ω), C∞

c (Ω), and C∞(Ω) we denote the corresponding sets of
infinitely many times continuously differentiable functions.

For instance,

C∞
c (Ω) = {f ∈ C∞(Ω) ; supp (f) is a compact subset of Ω},

where the support is defined by supp (f) = Ω\{x ∈ Ω ; f = 0 in some neighborhood of x}.
The next definition gives examples of functions in C∞

c (Rn), in particular
showing that this set is not empty.

Definition 2.2. (Mollifiers) Define the function

η(x) =

{
C exp

(
1

|x|2−1

)
, |x| < 1,

0, |x| ≥ 1,

where the constant C is chosen so that
∫
Rn η(x) dx = 1. If ε > 0 define the

mollifier
ηε(x) = ε−nη(x/ε).

Exercise 2.3. Prove that η and ηε are in C∞
c (Rn).

Note that ηε ∈ C∞
c (Rn) satisfies∫

Rn

ηε(x) dx = 1, supp (ηε) = B(0, ε).

If ε is small, the function ηε looks like a sharp peak at the origin with area
under the peak equal to one. It is thus a smooth approximation of the Dirac
delta function at the origin, and it can be used to approximate a locally
integrable function by smooth functions. Recall that the convolution of two
functions f, g : Rn → C is the function f ∗ g defined by

(f ∗ g)(x) =
∫

Rn

f(y)g(x− y) dy =

∫

Rn

f(x− y)g(y) dy.

The convolution f ∗ g is well defined when f, g ∈ L1(Rn), in which case
f ∗ g ∈ L1(Rn) essentially by Fubini’s theorem. If f ∈ L1

loc(R
n) (meaning

that f |K ∈ L1(K) for any compact K ⊂ Rn) but g ∈ L1(Rn) has compact
support, then similarly f ∗ g ∈ L1

loc(R
n). If additionally g is smooth, then

also f ∗ g is smooth as in the next theorem.

Theorem 2.4. (Mollifications) If f ∈ L1
loc(R

n), define for ε > 0 the molli-
fications of f by

fε = f ∗ ηε.
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(a) fε ∈ C∞(Rn) for any ε > 0, and ∂αfε = f ∗ ∂αηε.
(b) supp (fε) ⊂ {x ∈ Rn ; dist(x, supp (f)) ≤ ε}.
(c) If f ∈ C0(Rn), then fε → f uniformly on compact sets in Rn as ε→ 0.

(d) If f ∈ Lp(Rn) where 1 ≤ p <∞, then fε → f in Lp as ε→ 0.

Proof. (a) Since ηε ∈ C0
c (R

n) and |f | is integrable on compact sets, the
function

fε(x) =

∫

Rn

f(y)ηε(x− y) dy

is well defined for all x ∈ Rn. Fix x ∈ Rn and note that for any h ∈ B(0, 1),

fε(x+ h)− fε(x) =

∫

Rn

f(y) [ηε(x+ h− y)− ηε(x− y)] dy.

The integral is over the set of all y for which |x− y| ≤ ε or |x+ h− y| ≤ ε.
This is a compact set (depending on x and ε) that we denote by K. Also,
since ηε is C

∞, we have the Taylor expansion

ηε(x− y + h) = ηε(x− y) +∇ηε(x− y) · h+ 1

2

n∑

j,k=1

∂2ηε
∂xj∂xk

(x− y + h′)hjhk

where h′ ∈ Rn is some point on the line segment between 0 and h. It follows
that

fε(x+ h)− fε(x) =

∫

K
f(y)


∇ηε(x− y) · h+

n∑

j,k=1

bjk(y;x, h)hjhk


 dy.

where |bjk(y;x, h)| ≤ C uniformly over y ∈ K and h ∈ B(0, 1). By domi-
nated convergence we obtain, as h→ 0

fε(x+ h)− fε(x) =
n∑

j=1

[∫

Rn

f(y)∂jηε(x− y) dy

]
hj +O(h2).

This shows that fε is differentiable. Repeating the argument for higher order
derivatives gives that fε ∈ C∞ and ∂αfε = f ∗ ∂αηε.

(b) Clear since supp (ηε) ⊂ B(0, ε).

(c) Let x ∈ K where K ⊂ Rn is compact, and fix ε0 > 0. Since
∫
ηε dy =

1, we have

|fε(x)− f(x)| =
∣∣∣∣
∫

Rn

f(x− y)ηε(y) dy −
∫

Rn

f(x)ηε(y) dy

∣∣∣∣

≤
∫

Rn

|f(x− y)− f(x)| ηε(y) dy.
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Note that the integral is over B(0, ε). The uniform continuity of f on com-
pact sets implies that there is δ0 > 0 such that

|f(x− y)− f(x)| < ε0 whenever x ∈ K and |y| < δ0.

This shows that ‖fε − f‖L∞(K) < ε0 whenever ε < δ0.

(d) To prove Lp convergence, we use the fact that Cc(R
n) is dense in

Lp(Rn) if 1 ≤ p <∞. Fix ε0 > 0 and choose some g ∈ Cc(R
n) with

‖f − g‖Lp(Rn) < ε0/3.

By the triangle inequality

‖fε − f‖Lp ≤ ‖fε − gε‖Lp + ‖gε − g‖Lp + ‖g − f‖Lp .

The supports of g and gε are contained in some compact set K, and

‖gε − g‖Lp(Rn) = ‖gε − g‖Lp(K) ≤ CK ‖gε − g‖L∞(K) .

By part (c) in this theorem, there is δ0 > 0 such that ‖gε − g‖Lp < ε0/3
whenever ε < δ0. Thus, for ε < δ0,

‖fε − f‖Lp ≤ ‖(f − g)ε‖Lp + 2ε0/3.

The result will now follow if we can show that for all h ∈ Lp(Rn),

‖hε‖Lp ≤ ‖h‖Lp .

This is a direct consequence of the Minkowski inequality in integral form
(Problem 2.5). The usual Minkowski inequality reads

‖
N∑

j=1

fj‖Lp ≤
N∑

j=1

‖fj‖Lp ,

and the integral form is the same inequality but where the sums are replaced
by integrals. Thus we have

‖hε‖Lp =

∥∥∥∥
∫
ηε(y)h( · − y) dy

∥∥∥∥
Lp

≤
∫
ηε(y) ‖h( · − y)‖Lp dy

= ‖h‖Lp

∫
ηε(y) dy = ‖h‖Lp .

�

Exercise 2.5. (Minkowski inequality in integral form) If (X,µ) and (Y, ν)
are σ-finite measure spaces, F : X × Y → C is measurable, and 1 ≤ p <∞,
prove that
(∫

X

(∫

Y
|F (x, y)| dν(y)

)p
dµ(x)

)1/p

≤
∫

Y

(∫

X
|F (x, y)|p dµ(x)

)1/p

dν(y).
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Mollifications yield an immediate proof of a variant of the du Bois-
Reymond lemma, which is fundamental for the definition of weak deriva-
tives.

Theorem 2.6. (du Bois-Reymond lemma) Let U ⊂ Rn be an open set and
f ∈ L1

loc(U). If

∫

U
fϕdx = 0 for all ϕ ∈ C∞

c (U),

then f = 0 almost everywhere in U .

Proof. Let x ∈ U and choose B = B(x, r) with B ⊂ U . Define f̃ = χBf ∈
L1(Rn) where χB is the characteristic function of the set B (that is, χB = 1

on B and χB = 0 elsewhere). If y ∈ B, then f̃ ∗ ηε(y) = 0 for ε small by the

assumption. Moreover, f̃ ∗ ηε → χBf in L1 as ε→ 0 by Theorem 2.4. Thus
f = 0 near x. �

The next result is an example of how mollification allows to create
smooth bump functions with specified behavior.

Theorem 2.7. (Smooth bump function) Let K ⊂ U ⊂ Rn where K is
compact and U is open. There exists a function ζ ∈ C∞

c (U) with 0 ≤ ζ ≤ 1
in U and ζ = 1 on K.

Proof. Choose a compact set L with K ⊂ int(L) ⊂ L ⊂ U . The character-
istic function χL is in L1(Rn). Since L is compact and Rn \U is a closed set
disjoint from L, there exists ε > 0 so that the set {x ∈ Rn ; dist(x,L) < ε}
is strictly contained in U . By Theorem 2.4 we have χL ∗ ηε ∈ C∞

c (U). By
further decreasing ε we have χL ∗ ηε = 1 on K, and ζ = χL ∗ ηε satisfies the
required properties. �

Theorem 2.8. (Partition of unity) Let K ⊂ Rn be compact and let K ⊂⋃N
j=1 Vj where Vj are open sets. There exist functions ζj ∈ C∞

c (Vj) such
that 0 ≤ ζj ≤ 1 and

N∑

j=1

ζj ≤ 1 in Rn,
N∑

j=1

ζj = 1 on K.

Definition 2.9. In the setting of Theorem 2.8, we say that {ζj}Nj=1 is a

partition of unity on K subordinate to the cover {Vj}Nj=1.

Exercise 2.10. Prove Theorem 2.8.
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2.2. Integration by parts

In this section we give a brief discussion of one of the most fundamental and
useful methods in mathematical analysis, namely integration by parts. In the
most classical case, this amounts to the fundamental theorem of calculus: if
f is a continuously differentiable real valued function on an interval [a, b],
then

∫ b

a
f ′(t) dt = f(b)− f(a).

Observe that this formula relates information in the interior of the domain
(the integral of f ′ over the interval) to information on the boundary (the
”boundary integral”, or the sum of values of f at the endpoints taken with
opposite signs).

The integration by parts formulas in this section are multidimensional
generalizations of the fundamental theorem of calculus. They underlie the
theory of weak solutions for partial differential equations, and in fact the
theory of weak solutions essentially amounts to taking the integration by
parts formula as an axiom rather than a theorem. Integration by parts is also
especially useful in inverse problems, since it allows to relate measurements
at the boundary to information in the interior just as in the one-dimensional
case above.

It is natural to first discuss the multidimensional domains over which we
integrate. To have a reasonable boundary integral, we need to assume some
regularity of the boundary of the domain. By definition, a domain in Rn is
an open connected subset of Rn. Much of the time connectedness will not
be required.

Our definition of sets with Ck boundary is given in terms of mappings
that flatten the boundary locally.

Definition 2.11. Let Ω ⊂ Rn be a bounded open set and let k ∈ Z+.

(a) We say that Ω has Ck boundary (or that ∂Ω is Ck or that ∂Ω ∈ Ck) if,
for each p ∈ ∂Ω, there is an open neighbourhood U = U(p) of p and a

Ck diffeomorphism Φ = Φp : U → Ũ onto some open set Ũ ⊂ Rn such
that Φ(p) = 0 and

Φ
(
U(p) ∩ Ω

)
=
{
x ∈ Ũ

∣∣ xn > 0
}
, Φ
(
U(p) ∩ ∂Ω

)
=
{
x ∈ Ũ

∣∣ xn = 0
}
.
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p

U(p)
Ω

∂Ω

ψp

Rn−1

Rn+

(b) We say that Ω has smooth boundary (or that ∂Ω is smooth or that
∂Ω ∈ C∞) if each Φp, p ∈ ∂Ω, of (a) is a C∞ diffeomorphism.

(c) We call the system
(
U(p),Φp

)
p∈∂Ω a coordinate system for ∂Ω.

If ∂Ω has C1 boundary, there is a well defined tangent space Tp(∂Ω) at
each point p of ∂Ω; if (Uq,Φq)q∈∂Ω is a coordinate system, a basis for this
space is given by {γ̇1(0), . . . , γ̇n−1(0)} where γα : (−ε, ε) → Rn are the C1

curves (here ε > 0 is sufficiently small, α = 1, . . . , n − 1, and eα is the αth
coordinate vector)

(2.1) γα(t) = Φ−1
p (teα).

There are two other equivalent ways of looking at sets with Ck boundary,
and we will mention these here since they will be useful below. The first
way expresses ∂Ω locally as the graph of a Ck function.

Theorem 2.12. (Local graph representation) Let Ω be a bounded open set
in Rn. Then Ω has Ck boundary if and only if for any point p ∈ ∂Ω, there
exist r > 0, an orthonormal coordinate system x = (x′, xn) with origin at p,
and a Ck function h : Rn−1 → R such that

Ω ∩B(p, r) = {x ∈ B(p, r) ; xn > h(x′)}.

Proof. Suppose (U(q),Φq) is a coordinate system for ∂Ω, fix p ∈ Ω, and let
Φ = Φp. We may translate and rotate the coordinate systems so that p = 0,
Φ(0) = 0, and the tangent space to ∂Ω at 0 is spanned by {e1, . . . , en−1}.
Since the nth component of Φ vanishes on ∂Ω, Φn(q) = 0 for q ∈ ∂Ω, we
have

Φn(γα(t)) = 0

where γα are the curves (2.1). Differentiating in t and evaluating at t = 0
implies that

∂αΦ
n(0) = 0, α = 1, . . . , n− 1.

Since Φ is a Ck diffeomorphism (k ≥ 1), the Jacobian matrix DΦ(0) is
invertible. This implies that ∂nΦ

n(0) 6= 0. Changing xn to −xn if necessary,
we may assume that ∂nΦ

n(0) > 0.
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By the implicit function theorem, there is a Ck function h defined near
the origin in Rn−1 such that near 0 we have

Φn(x′, xn) = 0 ⇐⇒ xn = h(x′).

We also have the Taylor expansion of Φn(x′, · ) at xn = h(x′),

Φn(x′, xn) = Φn(x′, h(x′)) + ∂nΦ
n(x′, h(x′))(xn − h(x′)) + o(xn − h(x′))

as xn → h(x′). Here Φn(x′, h(x′)) = 0 and ∂nΦ
n(x′, h(x′)) > 0 for x′

sufficiently close to 0 by continuity. Thus, if x is close to 0, the conditions
xn > h(x′) and Φn(x′, xn) > 0 are equivalent. This shows that locally Ω is
given by {(x′, xn) ; xn > h(x′)}.

The converse follows by choosing diffeomorphisms Φ(x′, xn) = (x′, xn −
h(x′)) in suitable neighborhoods of boundary points. �

Theorem 2.13. (Boundary defining function) Let Ω be a bounded open
set in Rn. Then Ω has Ck boundary if and only if there is a Ck function
ρ : Rn → R such that

Ω = {x ∈ Rn ; ρ(x) > 0}, ∂Ω = {x ∈ Rn ; ρ(x) = 0},
and ∇ρ 6= 0 on ∂Ω.

Proof. (Sketch) If p ∈ ∂Ω and if Ω ∩ B(p, r) = {x ∈ B(p, r) ; xn > h(x′)},
the function ρ in B(p, r) can be taken to be ρ(x′, xn) = xn − h(x′). We can
construct the global boundary defining function ρ from the local expressions
by using a suitable partition of unity. �

Exercise 2.14. Prove Theorem 2.13 in detail.

We can use any of the above definitions to define C l(∂Ω) functions if Ω
has Ck boundary and l ≤ k.

Definition 2.15. If Ω is a bounded open set with Ck boundary and if l ≤ k,
we say that f : ∂Ω → C is C l and write f ∈ C l(∂Ω) if there is a coordinate
system

(
U(p),Φp

)
such that f ◦ Φ−1

p : Rn−1 → C is C l.

There are two quantities associated with Ck domains that will be used
frequently. The first is the outer unit normal vector of ∂Ω.

Definition 2.16. Let Ω be a Ck domain and let ρ be a boundary defining
function for ∂Ω. The outer unit normal vector of ∂Ω at a point p ∈ ∂Ω is

ν(p) = − ∇ρ(p)
|∇ρ(p)| .

The definition of ν is independent of the choice of boundary defining
function. We write the vector field ν : ∂Ω → Rn in terms of its components
as ν = (ν1, . . . , νn), where each νj is a function in Ck−1(∂Ω) if the boundary
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is Ck. If ∂Ω is locally given as the graph x′ 7→ (x′, h(x′)), the unit outer
normal has the expression

ν(x′, h(x′)) =
(∇x′h(x

′),−1)

(1 + |∇x′h(x′)|2)1/2
.

Exercise 2.17. Verify the claims about ν in the preceding paragraph.

The second useful quantity on a Ck boundary ∂Ω is its (Euclidean)
surface measure dS, induced by the usual Lebesgue measure dx in Rn. The
surface measure is a constant multiple of the (n− 1)-dimensional Hausdorff
measure restricted to ∂Ω. Another way to obtain this measure is as follows:
for any f ∈ C0(∂Ω), define a function f̃ near ∂Ω by

f̃(p+ tν(p)) = f(p), p ∈ ∂Ω, |t| < ε.

If ε > 0 is small enough, f̃ is a well-defined continuous function in the set

Vε = {x ∈ Rn ; dist(x, ∂Ω) < ε}.

Theorem 2.18. (Surface measure) There is a unique positive Borel measure
on ∂Ω, acting on functions f ∈ C0(∂Ω) by f 7→

∫
∂Ω f dS, that satisfies∫

∂Ω
f dS = lim

ε→0

1

2ε

∫

Vε

f̃(x) dx.

If ∂Ω is expressed as the graph x′ 7→ (x′, h(x′)) near some p ∈ ∂Ω and if
f ∈ C0(∂Ω) is supported near p , then

∫

∂Ω
f dS =

∫

Rn−1

f(x′, h(x′))(1 +
∣∣∇h(x′)

∣∣2)1/2 dx′.

Exercise 2.19. Verify that the extension f̃ is well defined near ∂Ω, and
prove Theorem 2.18.

We are now ready to state the integration by parts formulas that will be
used in this book. Most of them are equivalent, and all are consequences of
the next result:

Theorem 2.20. (Gauss-Green formula) If Ω ⊂ Rn is a bounded open set
with C1 boundary and if u ∈ C1(Ω), then for j = 1, . . . , n

∫

Ω
∂ju dx =

∫

∂Ω
uνj dS.

Proof. For each p ∈ ∂Ω, we choose an orthonormal coordinate system
(x′, xn), a ball B(p, r) and a C1 function h : Rn−1 → R such that Ω ∩
B(p, r) = {x ∈ B(p, r) ; xn > h(x′)}. These balls cover the compact set ∂Ω,
and there is a finite subcover {Bk}Nk=1. Choose some open set B0 ⊂ Ω such
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that the sets {Bk}Nk=0 cover Ω. By Theorem 2.8, we may find a partition of

unity {ζj}Nk=0 on Ω subordinate to the cover {Bk}. Then
∫

Ω
∂ju dx =

N∑

k=0

∫

Ω
∂j(ζku) dx.

Since ζ0u ∈ C1
c (Ω), we have

∫

Ω
∂j(ζ0u) dx =

∫

Rn

∂j(ζ0u) dx =

∫

Rn−1

∫ ∞

−∞
∂j(ζ0u) dxj dy

where y contains all the variables in x except for xj . The fundamental
theorem of calculus implies that

∫ ∞

−∞
∂j(ζ0u)(x1, . . . , xn) dxj = 0.

Thus
∫
Ω ∂j(ζ0u) dx = 0.

Let now v = ζku where 1 ≤ k ≤ N , and write Bk = B(p, r) and
Ω ∩Bk = {x ∈ Bk ; xn > h(x′)}. Since ζk ∈ C∞

c (Bk), we have
∫

Ω
∂jv dx =

∫

Rn−1

∫ ∞

h(x′)
∂jv(x) dxn dx

′.

Choose a function ψ ∈ C∞(R) with ψ(t) = 0 for t < 0 and ψ(t) = 1 for
t > 1. (Such a function can be obtained by mollifying the function which is
zero for t < 1/2 and equals one for t > 1/2.) Define also ρ(x) = xn − h(x′)
in Bk. It follows that

∫

Ω
∂jv dx = lim

ε→0

∫

Rn

∂jv(x)ψ

(
ρ(x)

ε

)
dx

= lim
ε→0

∫

Rn

[
∂j

(
vψ
(ρ
ε

))
− vψ′

(ρ
ε

) ∂jρ
ε

]
dx.

Since vψ(ρ/ε) ∈ C1
c (R

n), the integral
∫
Rn ∂j(vψ(ρ/ε)) dx vanishes by the

fundamental theorem of calculus. Consequently
∫

Ω
∂jv dx = − lim

ε→0

∫

Rn

vψ′
(ρ
ε

) ∂jρ
ε
dx.

Using that ψ′(t) = 0 for t < 0 and t > 1 and writing xn = h(x′) + εt, we
may write
∫

Ω
∂jv dx = − lim

ε→0

∫

Rn−1

∫ h(x′)+ε

h(x′)
v(x)ψ′

(
xn − h(x′)

ε

)
∂jρ(x)

ε
dxn dx

′

= − lim
ε→0

∫

Rn−1

∫ 1

0
v(x′, h(x′) + εt)ψ′(t)∂jρ(x

′, h(x′) + εt) dt dx′.
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We may take the limit by dominated convergence, and the fact that
∫ 1
0 ψ

′(t) dt =
1 implies ∫

Ω
∂jv dx = −

∫

Rn−1

v(x′, h(x′))∂jρ(x
′, h(x′)) dt dx′.

From the definitions of the unit outer normal and surface measure, we see
that νj(x

′, h(x′)) = −∂jρ(x′, h(x′))/ |∇ρ(x′, h(x′))| and dS(x′) = |∇ρ(x′, h(x′))| dx′.
This shows that∫

Ω
∂j(ζku) dx =

∫

∂Ω
ζkuνj dS, k = 1, . . . , N.

The result follows by summing over k from 0 to N and using the fact that
{ζk} is a partition of unity. �

Theorem 2.21. Let Ω have C1 boundary.

(1) (Integration by parts) If u, v ∈ C1(Ω), then
∫

Ω
u∂jv dx = −

∫

Ω
(∂ju)v dx+

∫

∂Ω
uvνj dS.

(2) (Divergence theorem) If F : Ω → Rn is a C1 vector field, then∫

Ω
div(F ) dx =

∫

∂Ω
F · ν dS.

(3) (Green formula) If u ∈ C1(Ω), v ∈ C2(Ω), then∫

∂Ω
u∂νv dS =

∫

Ω
∇u · ∇v dx+

∫

Ω
u∆v dx.

(4) (Green formula) If u, v ∈ C2(Ω), then∫

∂Ω
(u∂νv − v∂νu) dS =

∫

Ω
(u∆v − v∆u) dx.

Exercise 2.22. Prove Theorem 2.21.

2.3. Sobolev spaces

Let Ω be a bounded open subset of Rn, and let γ ∈ L∞(Ω) be a positive func-
tion representing the electrical conductivity of the medium Ω. We wish to
consider a suitable function space for solutions of the conductivity equation

div(γ∇u) = 0 in Ω.

The function spaces that will be used for this purpose are called Sobolev
spaces, and they turn out to be appropriate for describing weak solutions of
a large class of partial differential equations.

If γ ∈ C1(Ω) and u ∈ C2(Ω), then one can interpret the equation
div(γ∇u) = 0 in the classical pointwise sense since the derivatives exist
pointwise. Solutions in C2(Ω) are often called classical solutions. However,
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when the conductivity γ is only in L∞(Ω) classical solutions do not make
sense. Also, our aim is to use energy methods and Hilbert space theory
to produce solutions, and for this purpose it is more natural to use spaces
based on L2(Ω) rather than the Ck spaces.

To define weak solutions of the equation div(γ∇u) = 0, one first needs
the concept of weak derivatives of functions that may not be differentiable
in the classical sense. Weak derivatives will be defined via a suitable test
function space.

Definition 2.23. (Test functions) The elements of C∞
c (Ω), that is, infinitely

differentiable functions ϕ : Ω → C with compact support in Ω, are called
test functions.

Motivation 2.24. To motivate the definition of weak derivatives, let Ω ⊂
Rn be a bounded open set with C1 boundary and let u ∈ Ck(Ω). Consider
the classical αth derivative of u, ∂αu, where α ∈ Nn0 is a multi-index with
|α| ≤ k. If ϕ ∈ C∞

c (Ω) is a test function, integrating by parts repeatedly
using Theorem 2.21(a) implies that

∫

Ω
u∂αϕdx = (−1)|α|

∫

Ω
(∂αu)ϕdx.

We used the fact that ϕ and its derivatives vanish near ∂Ω, so there are no
boundary terms. Now the left hand side is well defined if u ∈ L1

loc(Ω), and
in this case we say that u has αth weak partial derivative in L1

loc(Ω) if the
above identity remains true for all test functions ϕ when ∂αu on the right
hand side is replaced by some locally integrable function v.

Definition 2.25. (Weak derivatives) Let Ω ⊂ Rn be open, let u, v ∈ L1
loc(Ω),

and let α ∈ Nn be a multi-index. We say that v is the αth weak partial
derivative of u, written

v = ∂αu,

if ∫

Ω
u∂αϕdx = (−1)|α|

∫

Ω
vϕdx for all ϕ ∈ C∞

c (Ω).

By Theorem 2.6, the αth weak partial derivative (whenever it exists) is
uniquely defined as an L1

loc function. Having given the definition of weak
derivatives, we proceed to discuss the spaces of functions relevant for weak
solutions of the equation div(γ∇u) = 0 in Ω.

Definition 2.26. (Sobolev spaces) If Ω ⊂ Rn is open and k ∈ N0, the
Sobolev space Hk(Ω) consists of all functions u ∈ L2(Ω) for which the weak
partial derivative ∂αu is in L2(Ω) whenever α ∈ NN0 and |α| ≤ k. We equip
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this space with the inner product

(u, v)Hk(Ω) =
∑

|α|≤k
(∂αu, ∂αv)L2(Ω)

and with the norm

‖u‖Hk(Ω) = (u, u)
1/2

Hk(Ω)
.

Examples of Sobolev functions are given next; the problem below shows
that some rather pathological functions can still belong to H1(Ω).

Example 2.27. (a) If Ω ⊂ Rn is a bounded open set, the space Ck(Ω) is
contained in Hk(Ω).

(b) If Ω ⊂ Rn is open, C∞
c (Ω) is contained in Hk(Ω) for all k ≥ 0.

(c) If Ω = B(0, 1) ⊂ Rn, then the function

u(x) = |x|−α , |x| < 1

is in H1(Ω) if and only if α < n/2−1. Indeed, this function has gradient

∇u(x) = −α |x|−α−2 x, x ∈ Ω.

A computation in polar coordinates shows that x 7→ |x|−β is integrable
near 0 if and only if β < n. Using these facts, it is not hard to see that
the weak gradient is equal to the pointwise gradient and that u ∈ H1(Ω)
for any α < n/2− 1.

Exercise 2.28. If Ω = B(0, 1) ⊂ Rn, n ≥ 3, give an example of a function
u ∈ H1(Ω) that is not essentially bounded in any open subset of Ω. Give a
similar example for n = 2. Can you find an example of this type for n = 1?

The next result shows that Hk(Ω) is a Hilbert space, as the notation
already suggests.

Theorem 2.29. Hk(Ω) is a Hilbert space for each k ∈ N0.

Exercise 2.30. Prove Theorem 2.29.

Exercise 2.31. (Pointwise multipliers) If Ω ⊂ Rn is a bounded open set
and a ∈ Ck(Ω), u ∈ Hk(Ω), show that au ∈ Hk(Ω). Show also that

∂α(au) =
∑

β≤α

(
α

β

)
∂βa∂α−βu, α ∈ Nn0 , |α| ≤ k,

where β ≤ α means that βj ≤ αj for j = 1, . . . , n,
(α
β

)
= α!

β!(α−β)! , and

α! = α1! · · ·αn!. (Hint: use induction on |α|. It is enough to do the case
k = 1 if the general case is difficult.)
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To deal with boundary value problems for the equation div(γ∇u) = 0
in Ω, we need to consider the space H1

0 (Ω) consisting of those functions in
H1(Ω) which vanish on the boundary ∂Ω in some sense. Functions in C∞

c (Ω)
always vanish near the boundary, which motivates the following definition.

Definition 2.32. We denote by H1
0 (Ω) the closure of the set C∞

c (Ω) in
H1(Ω). Its dual space is denoted by

H−1(Ω) = (H1
0 (Ω))

∗ = {F : H1
0 (Ω) → C bounded linear functional}.

There is one potentially confusing point in the previous definition: Hilbert
space theory tells that any Hilbert space is isomorphic to its dual, so one
might wonder why the dual spaceH−1(Ω) is needed. In fact, the Riesz repre-
sentation theorem shows that any F ∈ H−1(Ω) can be uniquely represented
in the form

F (v) = (v,w)H1
0 (Ω), v ∈ H1

0 (Ω),

for some w ∈ H1
0 (Ω). The point is that this representation involves the

H1
0 (Ω) inner product, whereas the definition of weak derivatives is given in

terms of the L2 inner product. The above representation can be written in
the weak sense as

F (v) = (v,w)L2(Ω) + (∇v,∇w)L2(Ω) = (v,w −∆w)L2(Ω).

Thus H−1(Ω) can be identified with the set {w−∆w ; w ∈ H1
0 (Ω)}, if these

functions are understood to act on H1
0 (Ω) functions with respect to the L2

inner product. In this interpretation H−1(Ω) contains all functions in L2(Ω),
since any function g ∈ L2(Ω) gives rise to a bounded linear functional on
H1

0 (Ω) by

g(v) =

∫

Ω
gv dx, v ∈ H1

0 (Ω).

Theorem 2.33. H1
0 (Ω) and H−1(Ω) are Hilbert spaces, and H1

0 (Ω) is a
closed subspace of H1(Ω).

Proof. These claims follow immediately from Hilbert space theory. �

We will need only one nontrivial fact about Sobolev spaces to obtain
weak solutions to the partial differential equations that we are interested in.
This is the fact that the inclusion map i : H1

0 (Ω) → L2(Ω) is compact, or
in other words, every bounded sequence in H1

0 (Ω) has a subsequence that
converges in L2(Ω). After showing this we will have access to powerful tools
in the theory of compact operators, such as the Fredholm alternative and
the spectral theorem, in the analysis of weak solutions.

The fundamental principle that allows us to extract a convergent sub-
sequence is the Arzelà-Ascoli theorem. This result is an extension of the
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fact that any bounded sequence of complex numbers has a convergent sub-
sequence.

Theorem 2.34. (Arzelà-Ascoli) Let (X, d) be a compact metric space, and
let (fj) be a sequence of functions X → C. Assume that (fj) is pointwise
bounded and equicontinuous, that is, supj∈Z+

|fj(x)| < ∞ for each x ∈ X
and for any ε > 0 there is δ > 0 such that

|fj(x)− fj(y)| < ε whenever d(x, y) < δ and j = 1, 2, . . . .

Then (fj) has a subsequence that converges uniformly on X.

Exercise 2.35. Prove Theorem 2.34 in the case where additionally (X, d)
is separable. (Hint: choose a countable dense subset {xl}∞l=1 of X, and first
find a subsequence that converges at each xl.)

Exercise 2.36. Prove Theorem 2.34 in general.

Theorem 2.37. (Compact Sobolev embedding) If Ω ⊂ Rn is a bounded open
set, then the inclusion map i : H1

0 (Ω) → L2(Ω) is compact.

Proof. Suppose that (uj) ⊂ H1
0 (Ω) is a bounded sequence, so

‖uj‖H1(Ω) ≤ C, j = 1, 2, . . . .

Since C∞
c (Ω) is dense in H1

0 (Ω), for any j there is ϕj ∈ C∞
c (Ω) with

‖uj − ϕj‖H1(Ω) < 1/j. Then also (ϕj) is a bounded sequence in H1
0 (Ω),

and if we can find a subsequence (ϕjk) that converges in L2(Ω) then also
(ujk) will converge in L

2(Ω) to the same limit. Consequently, we may assume
that (uj) ⊂ C∞

c (Rn), supp (uj) ⊂ Ω for each j, and

(2.2) ‖uj‖H1(Rn) ≤ C, j = 1, 2, . . . .

Assume for the moment that instead of (2.2) we have uniform bounds
for p = ∞,

‖uj‖L∞(Rn) + ‖∇uj‖L∞(Rn) ≤ C, j = 1, 2, . . . .

Then the sequence (uj|Ω) would be pointwise bounded and also equicontin-
uous since

|uj(x)− uj(y)| ≤
(

sup
t∈[0,1]

|∇uj(x+ t(y − x)|
)
|x− y| ≤ C |x− y| , x, y ∈ K.

By the Arzelà-Ascoli theorem we could find a uniformly convergent subse-
quence on Ω.

The device that will be used to pass from the uniform bounds with p = 2
to the case p = ∞ described above is mollification. Define

uεj = uj ∗ ηε.
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We compute

uεj(x)− uj(x) =

∫

Rn

ηε(y) [uj(x− y)− uj(x)] dy =

∫

Rn

ηε(y)

[∫ 1

0

d

dt
uj(x− ty) dt

]
dy

=

∫

Rn

∫ 1

0
ηε(y)∇uj(x− ty) · (−y) dt dy

= −ε
∫

B(0,1)

∫ 1

0
η(y)∇uj(x− tεy) · y dt dy.

The Minkowski inequality in integral form (Problem 2.5) implies that

∥∥uεj − uj
∥∥
L2(Rn)

≤ ε

∫

B(0,1)

∫ 1

0
η(y) ‖∇uj( · − tεy)‖L2(Rn) |y| dt dy.

Since ‖∇uj( · − tεy)‖L2 = ‖∇uj‖L2 , the uniform bound (2.2) shows that
∥∥uεj − uj

∥∥
L2(Rn)

≤ C ′ε, j = 1, 2, . . .

for some C ′ > 0. The point is that these bounds are uniform with respect
to j.

We will now prove the theorem by showing that (uj) has a subsequence
that is Cauchy in L2(Ω). Fix ε0 > 0, and choose ε so small that

∥∥uj − uεj
∥∥
L2(Rn)

≤ ε0/3, j = 1, 2, . . . .

For this ε, the sequence (uεj) is uniformly bounded and equicontinuous. In

fact, by (2.2) and Cauchy-Schwarz we have

∣∣uεj(x)
∣∣ =

∣∣∣∣
∫
ηε(x− y)uj(y) dy

∣∣∣∣ ≤ ‖ηε(x− · )‖L2 ‖uj‖L2 ≤ Cε

and similarly

∣∣∇uεj(x)
∣∣ =

∣∣∣∣
∫

∇ηε(x− y)uj(y) dy

∣∣∣∣ ≤ ‖∇ηε(x− · )‖L2 ‖uj‖L2 ≤ Cε,

where the constants are uniform over x ∈ Rn and j = 1, 2, . . .. The Arzelà-
Ascoli theorem shows that there is a subsequence (uεjk)

∞
k=1 that converges

uniformly on Ω. It follows that

‖ujk − ujl‖L2(Ω) ≤
∥∥ujk − uεjk

∥∥
L2(Ω)

+
∥∥uεjk − uεjl

∥∥
L2(Ω)

+
∥∥uεjl − ujl

∥∥
L2(Ω)

≤ 2ε0/3 + CΩ

∥∥uεjk − uεjl
∥∥
L∞(Ω)

.

Here we used that Ω is bounded.

It follows that for any ε0 > 0 there is a subsequence (ujk) such that

lim sup
k,l→∞

‖ujk − ujl‖L2(Ω) ≤ ε0.
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We apply this argument with ε0 = 1 to obtain a subsequence (u
(1)
j ) of (uj)

with

lim sup
k,l→∞

∥∥∥u(1)k − u
(1)
l

∥∥∥
L2(Ω)

≤ 1.

Now, repeat the argument for ε0 = 1/2, but with (uj) replaced by the

sequence (u
(1)
j ), to obtain a further subsequence (u

(2)
j ) with

lim sup
k,l→∞

∥∥∥u(2)k − u
(2)
l

∥∥∥
L2(Ω)

≤ 1

2
.

We continue this for ε0 =
1
3 ,

1
4 , . . . and use the diagonal procedure to obtain

a sequence (vm), where vm = u
(m)
m , that is a subsequence of the original (uj)

and satisfies

lim sup
k,l→∞

‖vk − vl‖L2(Ω) = 0.

By the Cauchy criterion, we have found a subsequence that converges in
L2(Ω). �

As the first application of compact Sobolev embedding, we prove a
Poincaré inequality that will be crucial in showing existence of weak so-
lutions. The proof is quite general and adapts to other situations, but it
does not give any bounds on the constant C. A more direct proof is given
in Proposition ??.

Theorem 2.38 (Poincaré inequality). Let Ω ⊂ Rn be a bounded open set.
There is a constant C > 0 such that

‖u‖L2(Ω) ≤ C ‖∇u‖L2(Ω) , u ∈ H1
0 (Ω).

Proof. By density it is enough to prove this for all u ∈ C∞
c (Ω). We argue

by contradiction and assume that for any k ∈ Z+ there is uk ∈ C∞
c (Ω) with

‖uk‖L2(Ω) > k ‖∇uk‖L2(Ω) .

By dividing each uk by ‖uk‖L2(Ω), we may assume that

(2.3) ‖uk‖L2(Ω) = 1, ‖∇uk‖L2(Ω) <
1

k
.

Then (uk) is a bounded sequence in H1
0 (Ω), and by compact Sobolev em-

bedding there is a subsequence, also denoted by (uk), converging to some u
in L2(Ω). By (2.3), we also have ∇uk → 0 in L2(Ω).

We claim that u ∈ H1
0 (Ω) and ∇u = 0 in the weak sense. In fact, if

ϕ ∈ C∞
c (Ω) then
∫

Ω
u∂jϕdx = lim

k→∞

∫

Ω
uk∂jϕdx = − lim

k→∞

∫

Ω
(∂juk)ϕdx = 0



36 2. Formulation of the Calderón problem

and so ∇u = 0. (The integration by parts for a general open set Ω is easily
justified since uk, ϕ ∈ C∞

c (Ω).) Thus uk → u in H1(Ω), and since H1
0 (Ω) is

a closed subspace we have u ∈ H1
0 (Ω).

It is proved in Problem 2.39 that any u ∈ H1
0 (Ω) with vanishing gradient

must be identically zero. But then

0 = ‖u‖L2(Ω) = lim
k→∞

‖uk‖L2(Ω) = 1,

and we have arrived at a contradiction. �

Exercise 2.39. Show that any u ∈ H1(Ω) whose weak gradient vanishes
is constant on each connected component of Ω. If additionally u ∈ H1

0 (Ω),
show that u = 0.

Remark 2.40. The Poincaré inequality implies that ‖∇ · ‖L2(Ω) is an equiv-

alent norm on H1
0 (Ω):

C−1 ‖u‖H1(Ω) ≤ ‖∇u‖L2(Ω) ≤ C ‖u‖H1(Ω) , u ∈ H1
0 (Ω).

(The first inequality follows from Poincaré, and the second one is trivial.)
This will be useful for the existence of weak solutions.

We proceed to describe Sobolev spaces on the boundary ∂Ω that will
serve as appropriate function spaces for boundary values of weak solutions.
As mentioned above, we think of H1

0 (Ω) as the set of those functions in
H1(Ω) whose boundary value, also called trace, on ∂Ω vanishes. In the same
spirit, we consider two functions u, v ∈ H1(Ω) to have the same boundary
value on ∂Ω if u− v ∈ H1

0 (Ω). This motivates the following definition of an
abstract trace space of H1(Ω).

Definition 2.41. Define H1/2(∂Ω) as the quotient space

H1/2(∂Ω) = H1(Ω)/H1
0 (Ω).

The elements of H1/2(Ω) are the equivalence classes [u] = {u + ϕ ; ϕ ∈
H1

0 (Ω)} where u runs through all elements of H1(Ω). Also define the trace
operator

R : H1(Ω) → H1/2(Ω), Ru = [u].

We also write u|∂Ω = Ru.

We will see later that if Ω is a bounded open set with C1 boundary, the
abstract space H1/2(∂Ω) can be identified with a subspace of L2(∂Ω) (the
space of square integrable functions on ∂Ω with respect to surface measure).

This identification and a more precise description of H1/2(∂Ω) is most con-
veniently done via the Fourier transform. At this point, we only motivate
the notation H1/2(∂Ω) with an example of a function u ∈ H1(Ω) whose
boundary value u|∂Ω is in L2(∂Ω) but not in H1(∂Ω). In this example, one
can heuristically think that u|∂Ω has half a derivative in L2(∂Ω).
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Example 2.42. Let Ω ⊂ Rn be a bounded open set with C∞ boundary
such that Ω ⊂ {xn > 0} and B(0, 1) ∩ {xn > 0} ⊂ Ω, and consider the
function in Example 2.46(c),

u(x) = |x|−α , x ∈ Ω.

We fix α < n/2− 1, so that u ∈ H1(Ω).

Writing x = (x′, xn), the pointwise restriction of u to ∂Ω ∩ {xn = 0} is

u(x′, 0) =
∣∣x′
∣∣−α .

The pointwise gradient of this function is

∇x′u(x
′, 0) = −α

∣∣x′
∣∣−α−2

x′.

Thus, the function x′ 7→ u(x′, 0) is in L2(∂Ω ∩ {xn = 0}) (since α < n−1
2 ),

but its pointwise gradient is L2 integrable only if α < n−1
2 −1. Heuristically,

interpolating the expressions for u(x′, 0) and ∇x′u(x
′, 0) suggests that the

absolute value of the ”fractional gradient”
∣∣∇θ

x′u(x
′, 0)
∣∣ would behave like

|x′|−α−θ. This is always L2 integrable if 0 ≤ θ ≤ 1/2, suggesting that u|∂Ω
has half a derivative in L2(∂Ω) but not a full derivative in general.

The benefit of the abstract definition of H1/2(∂Ω) is that this definition
is valid without any regularity assumptions on the boundary ∂Ω. For many
results considered in this book, this abstract setup is actually sufficient to
formulate the corresponding inverse problems and their solutions. We now
describe some further properties of the abstract space H1/2(∂Ω). Note first
the orthogonal decomposition

H1(Ω) = H1
0 (Ω)⊕H1

0 (Ω)
⊥.

This is valid since H1
0 (Ω) is a closed subspace of H1(Ω). The next result

gives the standard Hilbert space structure on H1/2(∂Ω).

Theorem 2.43. The orthogonal projection P : H1(Ω) → H1
0 (Ω)

⊥ induces
a bijective linear map

T : H1/2(∂Ω) → H1
0 (Ω)

⊥, T ([u]) = P (u).

The space H1/2(∂Ω) becomes a Hilbert space when equipped with the inner
product

([u], [v])H1/2(∂Ω) = (T ([u]), T ([v]))H1(Ω), u, v ∈ H1(Ω)

and with the norm

‖[u]‖H1/2(∂Ω) = ‖T ([u])‖H1(Ω) = inf
v∈H1

0 (Ω)
‖u+ v‖H1(Ω) , u ∈ H1(Ω).
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Proof. The map T is well defined since P (u+ v) = P (u) for v ∈ H1
0 (Ω). If

T ([u]) = 0, then P (u) = 0 so u ∈ H1
0 (Ω) and [u] = 0, and given w ∈ H1

0 (Ω)
⊥

we have w = P (w) = T ([w]). Thus T is linear and bijective.

The inner product on H1/2(∂Ω) is clearly sesquilinear, conjugate sym-
metric and positive definite. If ([uj ]) is a Cauchy sequence, then (T [uj ]) =

(P (uj)) is Cauchy in H1(Ω) and converges in H1(Ω). Since H1
0 (Ω)

⊥ is
closed it follows that P (uj) → P (u) in H1(Ω) for some u ∈ H1

0 (Ω), so that

[uj] → [u] in H1/2(∂Ω). �

Theorem 2.44. (Right inverse of trace operator) There is a bounded linear
map

E∂Ω : H1/2(∂Ω) → H1(Ω)

that satisfies

RE∂Ωf = f, f ∈ H1/2(∂Ω).

In particular, for any f ∈ H1/2(∂Ω) there is vf ∈ H1(Ω) with

‖vf‖H1(Ω) ≤ C ‖f‖H1/2(∂Ω) , vf |∂Ω = f.

Proof. It is enough to take E∂Ω([u]) = P (u) for u ∈ H1(Ω). ThenRE∂Ω([u]) =
[P (u)] = [u] and ‖E∂Ω([u])‖H1(Ω) = ‖P (u)‖H1(Ω) = ‖[u]‖H1/2(∂Ω). �

Let us finally define the negative order Sobolev space H−1/2(∂Ω) as a
dual space:

Definition 2.45. Define H−1/2(∂Ω) as the Hilbert dual

H−1/2(∂Ω) = (H1/2(∂Ω))∗ = {T : H1/2(Ω) → C bounded linear functional}.

Example 2.46. We will see later that if Ω has C1 boundary, any function
f ∈ L2(∂Ω) can be identified with the element Tf ∈ H−1/2(∂Ω) defined by

Tf : H1/2(∂Ω) → R, Tf (g) =

∫

∂Ω
fg dS.

Thus in this case L2(∂Ω) will be a subspace of H−1/2(∂Ω).

2.4. Weak solutions

In this section, Ω will be a bounded open subset of Rn (no regularity of the
boundary ∂Ω is required). Consider a second order differential operator L,
acting on functions u on Ω, given by

(2.4) Lu = −
∞∑

j,k=1

∂

∂xj

(
ajk

∂u

∂xk

)
+ qu.
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Here the coefficients are assumed to satisfy the following conditions:

ajk, q ∈ L∞(Ω) are real valued,

ajk = akj for all j, k = 1, . . . , n,

(2.5)

n∑

j,k=1

ajk(x)ξjξk ≥ c |ξ|2 for a.e. x ∈ Ω and all ξ ∈ Rn, where c > 0.

The last condition is an ellipticity condition for the operator L, and it ensures
that the operator L will have similar properties as the Laplace operator ∆.

Later in this book, we will mostly consider L to be one of the following
special cases:

(1) The conductivity operator

Lu = −div(γ∇u)
where γ ∈ L∞(Ω) is positive.

(2) The anisotropic conductivity operator

Lu = −div(γ∇u)
where γ = (γjk)nj,k=1 satisfies γ

jk = γkj ∈ L∞(Ω) and
∑n

j,k=1 γ
jk(x)ξjξk ≥

c |ξ|2.
(3) The Schrödinger operator

Lu = (−∆+ q)u

where q ∈ L∞(Ω).

Remark 2.47. The ellipticity condition implies a similar condition for com-
plex vectors: if A = (ajk(x))nj,k=1 and ζ ∈ Cn, then writing ζ = ξ+ iη where
ξ, η ∈ Rn and using the symmetry of A gives

Aζ · ζ = A(ξ + iη) · (ξ − iη) = Aξ · ξ +Aη · η.
The ellipticity condition thus implies

(2.6)

n∑

j,k=1

ajk(x)ζj ζ̄k ≥ c |ζ|2 for a.e. x ∈ Ω and all ζ ∈ Cn.

We will use this stronger condition below.

Remark 2.48. Notice that if ajk ∈ C1(Ω), one can write Lu in the form

Lu = −
n∑

j,k=1

ajk∂jku−
n∑

j,k=1

(∂ja
jk)∂ku+ qu.

This operator is said to be in nondivergence form, while the operator (2.4)
is in divergence form. We will consider divergence form operators in this
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section since they are better suited to the energy method related to weak
solutions.

Motivation 2.49. (Weak solutions) Suppose Ω has C1 boundary, L has
C1 coefficients, and u ∈ C2(Ω) is a classical solution of Lu = F in Ω
which satisfies the boundary condition u|∂Ω = f , where F ∈ L2(Ω) and
f ∈ C0(∂Ω). Multiplying the equation Lu = F by v̄ where v ∈ C1(Ω)
satisfies v|∂Ω = 0, an integration by parts implies that

∫

Ω




n∑

j,k=1

ajk∂ju∂kv + quv̄


 dx =

∫

Ω
F v̄ dx.

Now, the left hand side makes sense for any u, v ∈ H1(Ω) (note however
that the integration by parts above made use of the vanishing of v on ∂Ω).
We can use this identity to define weak solutions of the equation Lu = F
in Ω with u|∂Ω = f . More generally, we can consider any right hand side F
that is a continuous linear functional on H1

0 (Ω).

Definition 2.50. Let L be the differential operator (2.4). The sesquilinear
form related to L is given by

(2.7) B[u, v] =

∫

Ω




n∑

j,k=1

ajk∂ju∂kv + quv̄


 dx, u, v ∈ H1(Ω).

If F ∈ H−1(Ω) and f ∈ H1/2(∂Ω), we say that a function u ∈ H1(Ω) is a
weak solution of the Dirichlet problem

{
Lu = F in Ω,

u = f on ∂Ω,

if one has

B[u, v] = F (v̄) for all v ∈ H1
0 (Ω)

and if Ru = f , where R is the trace operator in Definition 2.41.

Remark 2.51. The condition u = f on ∂Ω is called the Dirichlet bound-
ary condition. It is understood in an abstract sense, having the following
equivalent interpretations:

(a) Ru = f where R is the trace operator,

(b) u− v ∈ H1
0 (Ω) for some v ∈ H1(Ω) with Rv = f ,

(c) u− v ∈ H1
0 (Ω) for any v ∈ H1(Ω) with Rv = f .

We are ready to give the first solvability result for boundary value prob-
lems.
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Theorem 2.52. (Weak solutions) Let Ω be a bounded open set in Rn, and
let L be as in (2.4), (2.5). Assume in addition that

q ≥ 0 a.e. in Ω.

For any F ∈ H−1(Ω) and f ∈ H1/2(∂Ω), there is a unique solution u ∈
H1(Ω) of the Dirichlet problem

{
Lu = F in Ω,

u = f on ∂Ω.

There is a constant C independent of F and f such that

‖u‖H1(Ω) ≤ C
(
‖F‖H−1(Ω) + ‖f‖H1/2(∂Ω)

)
.

This result follows readily from the next theorem.

Theorem 2.53. If s ∈ R is a constant such that q+s ≥ 0 almost everywhere,
then the sesquilinear form Bs[u, v] = B[u, v]+s(u, v)L2(Ω) is an inner product

on the space H1
0 (Ω) that induces a norm equivalent to the original one:

C−1 ‖u‖2H1(Ω) ≤ Bs[u, u] ≤ C ‖u‖2H1(Ω) , u ∈ H1
0 (Ω).

Proof. It is clear that the map (u, v) 7→ Bs[u, v] is sesquilinear, andBs[u, v] =

Bs[v, u] since a
jk = akj and ajk, q, s are real. The ellipticity condition (2.6)

and the assumption that q + s ≥ 0 imply that

Bs[u, u] =

∫

Ω




n∑

j,k=1

ajk∂ju∂ku+ (q + s) |u|2

 dx ≥ c

∫

Ω
|∇u|2 dx.

Thus Bs[u, u] ≥ 0, and if Bs[u, u] = 0 then ∇u = 0 a.e. and thus u = 0 for
instance by the Poincaré inequality (Theorem 2.38). We have proved that
Bs[ · , · ] is an inner product.

The triangle inequality and the fact that ajk, q ∈ L∞(Ω) imply that

Bs[u, u] ≤ Cajk ,q,s

∫

Ω

(
|∇u|2 + |u|2

)
≤ C ‖u‖2H1(Ω) , u ∈ H1

0 (Ω).

Moreover, the previous argument and the Poincaré inequality show that

Bs[u, u] ≥ c ‖∇u‖2L2(Ω) ≥ c ‖u‖2H1(Ω) , u ∈ H1
0 (Ω).

Thus Bs[ · , · ] gives an equivalent norm on H1
0 (Ω). �

Proof of Theorem 2.52. Consider first the case of zero boundary values,
where we want to solve {

Lu = F in Ω,

u = 0 on ∂Ω.
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The assumption that q ≥ 0 together with Theorem 2.53 show that B[ · , · ] =
B0[ · , · ] is an inner product on H1

0 (Ω) giving a norm equivalent to the orig-
inal one. It follows that the inner product space (H1

0 (Ω), B[ · , · ]) has the
same Cauchy sequences as the original H1

0 (Ω) and therefore is a Hilbert
space. Also, F is a bounded linear functional on this space, satisfying

|F (v)| ≤ ‖F‖H−1(Ω) ‖v‖H1(Ω) ≤ C ‖F‖H−1(Ω)B[v, v]1/2, v ∈ H1
0 (Ω).

The Riesz representation theorem implies that there exists a unique u ∈
H1

0 (Ω), whose norm is equal to the norm of F as a bounded linear functional
on (H1

0 (Ω), B[ · , · ]), such that

B[u, v] = F (v̄), v ∈ H1
0 (Ω).

Since this function satisfies Ru = 0, we have found the unique solution
of our boundary value problem. The solution also satisfies ‖u‖H1(Ω) ≤
C ‖F‖H−1(Ω).

We move to the case of nonzero boundary values, and want to find
u ∈ H1(Ω) with

B[u, v] = F (v̄) for v ∈ H1
0 (Ω), Ru = f.

Choose ef ∈ H1(Ω) with ‖ef‖H1(Ω) ≤ C ‖f‖H1/2(∂Ω) (this is possible by

Theorem 2.44). Writing u = ef+ũ, the boundary value problem is equivalent
with

B[ũ, v] = F (v̄)−B[ef , v] for v ∈ H1
0 (Ω), Rũ = 0.

The map F̃ : w 7→ F (w)−B[ef , w] is a bounded linear functional on H1
0 (Ω)

since by the triangle inequality and Cauchy-Schwarz

|B[ef , w]| ≤ C

∫

Ω
(|∇ef | |∇w|+ |ef | |w|) dx ≤ C ‖ef‖H1(Ω) ‖w‖H1(Ω) .

It follows that

‖F̃‖H−1(Ω) ≤ C(‖F‖H−1(Ω) + ‖f‖H1/2(∂Ω)).

The result for zero boundary values proved above shows that there is a
unique solution ũ ∈ H1

0 (Ω) satisfying

‖ũ‖H1(Ω) ≤ C(‖F‖H−1(Ω) + ‖f‖H1/2(∂Ω)).

Thus, the original boundary value problem for u also has a unique solution
with

‖u‖H1(Ω) ≤ C(‖F‖H−1(Ω) + ‖f‖H1/2(∂Ω)).

�

Since the conductivity operator −div(γ∇u) is of the form (2.4) with
q = 0, the previous result implies the basic solvability result for the conduc-
tivity equation. Next we wish to deal with the case where q may be negative
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somewhere. This is different from the previous case since the Dirichlet prob-
lem is not always uniquely solvable, and there may be nontrivial solutions
of the equation (−∆+ q)u = 0 with u|∂Ω = 0. This is due to the existence
of eigenfunctions, as illustrated by the following example.

Example 2.54. Let Ω = (0, π) ⊂ R, and consider the Schrödinger operator
−∆+q in Ω in the special case where the function q happens to be a constant,
q = −λ where λ > 0. A function u solves (−∆ + q)u = 0 with vanishing
boundary values if

u′′(x) + λu(x) = 0 for 0 < x < π, u(0) = u(π) = 0.

The general solution to the ordinary differential equation u′′(x)+λu(x) = 0
is

u(x) = A sin
(√
λx
)
+B cos

(√
λx
)
.

The boundary condition u(0) = 0 is satisfied if and only if B = 0. With
B = 0, the boundary condition u(π) = 0 is satisfied if and only if either

A = 0 or sin
(√
λπ
)
= 0. The latter condition is equivalent to

√
λ ∈ Z ⇐⇒ λ = k2, k ∈ Z+.

Thus there is a nontrivial solution u ∈ H1(Ω) with vanishing boundary value
whenever λ = k2 for some positive integer k.

The next theorem shows that there is only a countable set of eigenvalues
where unique solvability of the Dirichlet problem for L may fail. Outside of
these eigenvalues, we recover the same solvability result as before. The proof
uses compact Sobolev embedding and the spectral theorem for compact
operators.

Theorem 2.55 (Weak solutions). Let Ω be a bounded open set in Rn, and
let L be as in (2.4), (2.5).

(1) There is a set of real numbers

Spec(L) = {λj}∞j=1

with λ1 ≤ λ2 ≤ . . . → ∞, such that whenever λ /∈ Spec(L) the
boundary value problem

{
Lu = λu+ F in Ω,

u = f on ∂Ω

has a unique solution u ∈ H1(Ω) for any F ∈ H−1(Ω) and any

f ∈ H1/2(∂Ω).
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(2) If λ /∈ Spec(L), then the map

H1(Ω) → H−1(Ω)⊕H
1
2 (∂Ω)

u 7→
(
Lu− λu , Ru

)

is an isomorphism (1–1, onto, bounded with bounded inverse). There
is a constant C independent of F and f (but depending on λ) such
that

‖u‖H1(Ω) ≤ C
(
‖F‖H−1(Ω) + ‖f‖H1/2(∂Ω)

)
.

(3) If λ ∈ Spec(L), there is a nontrivial solution u ∈ H1
0 (Ω) to the

Dirichlet problem
{
Lu = λu in Ω,

u = 0 on ∂Ω

The space of such solutions is finite dimensional.

(4) If a ∈ R is a constant such that

q(x) ≥ a a.e. in Ω,

then Spec(L) ⊂ (a,∞).

Definition 2.56. The set Spec(L) is called the spectrum of the operator
L with Dirichlet boundary condition. The elements of Spec(L) are called
Dirichlet eigenvalues.

Proof. 1. Consider first the case of zero boundary values. Since q ∈ L∞(Ω),
we may choose s ∈ R such that q + s ≥ 0 a.e. in Ω. Let Ls be the operator
obtained from L by replacing q by q + s, so that Ls = L+ s, and let Bs be
the corresponding sesquilinear form. Theorem 2.53 shows that Bs[ · , · ] is
an inner product on H1

0 (Ω) giving a norm equivalent to the original one.

Theorem 2.52 implies that the Dirichlet problem for Ls with zero bound-
ary values has unique solutions, and the map Ls : H

1
0 (Ω) → H−1(Ω) is in-

vertible with bounded inverse L−1
s taking F ∈ H−1(Ω) to the unique solution

u ∈ H1
0 (Ω) of Lu = F in Ω with Ru = 0. We now have, for u ∈ H1

0 (Ω),

Lu = λu+ F ⇐⇒ Lsu = (λ+ s)u+ F ⇐⇒ u− (λ+ s)L−1
s u = L−1

s F.

If λ 6= −s, the last part may be equivalently written as

(µI −K)(i(u)) = F̃

with µ = 1
λ+s , K = i◦L−1

s ◦j, and F̃ = µi(L−1
s F ), where i : H1

0 (Ω) → L2(Ω)

and j : L2(Ω) → H−1(Ω) are the inclusion maps.

We claim that

K : L2(Ω) → L2(Ω) is a compact, self-adjoint, positive definite operator.
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By Theorem 2.37 the map i is compact, and consequently K is compact. It
is also self-adjoint, since for F,G ∈ L2(Ω), writing v = L−1

s F and w = L−1
s G

gives that

(KF,G)L2 = (L−1
s (F ), G)L2 = (v, Lsw)L2 = Bs[w, v].

Similarly

(KG,F )L2 = Bs[v,w].

Since Bs is conjugate symmetric, Bs[v,w] = Bs[w, v], we have (KF,G)L2 =
(F,KG)L2 . Finally, K is positive definite since by the above computation

(KF,F )L2 = Bs[v, v]

where Bs is a positive definite inner product.

By the spectral theorem for self-adjoint compact operators (Proposition
A.73), Spec(K) is an at most countable subset of R that may only accumu-
late at 0, and each element of Spec(K) (except possibly 0) is an eigenvalue
with finite dimensional eigenspace. Each eigenvalue is positive since K is
positive definite. Since L2(Ω) is not finite dimensional, Spec(K) is in fact
countably infinite and contains 0, and we may write Spec(K) = {µj}∞j=1∪{0}
where µ1 ≥ µ2 ≥ . . . and µj → 0 as j → ∞. Now, µI −K is invertible on
L2(Ω) for all µ ∈ R \ Spec(K).

We now return to solvability of the Dirichlet problem. We wrote earlier
that µ = 1

λ+s , so we define

λj =
1

µj
− s, j = 1, 2, . . . .

Then λ1 ≤ λ2 ≤ . . . and λj → ∞. If F ∈ H−1(Ω) and λ + s 6= 0, we saw
above that for u ∈ H1

0 (Ω) one has

Lu = λu+ F ⇐⇒ (µI −K)(i(u)) = µi(L−1
s (F ))

where µ = 1
λ+s /∈ Spec(K). If we assume that λ ∈ R \ {λj}∞j=1, then

µ /∈ Spec(K) and for any F ∈ H−1(Ω) there is a unique solution ũ ∈ L2(Ω)
of

(µI −K)(ũ) = µi(L−1
s (F )).

This function satisfies ũ = µ−1L−1
s ũ+L−1

s F , so ũ = i(u) for some u ∈ H1
0 (Ω)

with ‖u‖H1(Ω) ≤ C(‖ũ‖L2(Ω)+‖F‖H−1(Ω)) ≤ C ‖F‖H−1(Ω), using that µI−K
and Ls are invertible. This shows the existence of a unique solution if
λ+ s 6= 0. In the remaining case where λ+ s = 0, the equation is Lsu = F
which has unique solutions in H1

0 (Ω) by Theorem 2.52.

The case of nonzero boundary values is handled in the same way as in
Theorem 2.52. This proves part 1 in the theorem.
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2. The fact that u 7→ (Lu−λu,Ru) is an isomorphism follows easily (only
boundedness remains to be proved, but the inequality ‖Lu− λu‖H−1(Ω) +

‖Ru‖H1/2(∂Ω) ≤ C ‖u‖H1(Ω) follows from the arguments above).

3. If λ = λj ∈ Spec(L), then the proof in part 1 shows that the equation
Lu = λu for u ∈ H1

0 (Ω) is equivalent with

(µI −K)(i(u)) = 0

for µ = µj = 1
λ+s . Since µj ∈ Spec(K) and K is compact, there is a

nontrivial finite dimensional space consisting of those ũ ∈ L2(Ω) with (µI −
K)ũ = 0. This space is contained in H1

0 (Ω) because any such ũ satisfies
ũ = µ−1L−1

s ũ, and gives rise to a finite dimensional space of solutions to
Lu = λu in Ω.

4. If q ≥ a a.e., then we may choose s = −a above and each eigenvalue
satisfies λj > a by definition. �

Exercise 2.57. Prove Theorem 2.52 in the simpler case of the Dirichlet
problem for the Laplacian,

{
−∆u = F in Ω,

u = f on ∂Ω,

by using Remark 2.40 instead of Theorem 2.53.

Exercise 2.58. Show that Theorem 2.55, except for part 4, remains true if
L is the following operator containing first order terms,

Lu = −
∞∑

j,k=1

∂

∂xj

(
ajk

∂u

∂xk

)
+ i

n∑

j=1

(
bj
∂u

∂xj
+

∂

∂xj
(bju)

)
+ qu,

where the coefficients satisfy (2.5) and additionally bj ∈ L∞(Ω) are real
valued. The sesqulinear form corresponding to L is given by

B[u, v] =

∫

Ω




n∑

j,k=1

ajk∂ju∂kv + i

n∑

j=1

(bj(∂ju)v̄ − bju∂j v̄) + quv̄


 dx.

2.5. Higher regularity

We will end this chapter with a discussion of higher order regularity of
solutions. The philosophy is that a solution of the second order elliptic
equation Lu = F should always be two derivatives smoother than the right
hand side F , unless this gain of regularity is prevented by lack of smoothness
in the coefficients of L, the boundary values of u, or in the boundary ∂Ω.
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Theorem 2.59. (Elliptic regularity) Let Ω be a bounded open set in Rn,
and let L be the second order operator (2.4). Assume that u ∈ H1(Ω) solves
the Dirichlet problem

{
Lu = F in Ω,

u = f on ∂Ω.

(1) Assume Ω has C2 boundary, γ ∈ C1(Ω), and q ∈ L∞(Ω). If F ∈
L2(Ω) and f ∈ H3/2(Ω), then u ∈ H2(Ω) and

‖u‖H2(Ω) ≤ C(‖F‖L2(Ω) + ‖f‖H3/2(∂Ω)).

(2) Let l ≥ 1 and assume that Ω has C l+2 boundary, γ ∈ C l+1(Ω), and

q ∈ C l(Ω). If F ∈ H l(Ω) and f ∈ H l+3/2(∂Ω), then u ∈ H l+2(Ω)
and

‖u‖Hl+2(Ω) ≤ C(‖F‖Hl(Ω) + ‖f‖Hl+3/2(∂Ω)).

Theorem 2.59 has two useful consequences. The first concerns interior
regularity of solutions.

Theorem 2.60. (Interior regularity) Let Ω and Ω′ be bounded open subsets
of Rn with Ω ⊂ Ω′. Let L be the second order operator (2.4) in Ω′, and let
ℓ ∈ N. There is a constant C, depending only on ℓ, Ω, Ω′ and L such that,
for all u ∈ H1(Ω′) and F ∈ Hℓ−2(Ω′) obeying

Lu = F in Ω′

we have u|Ω ∈ Hℓ(Ω) and

‖u‖ |Hℓ(Ω) ≤ C
(
‖F‖Hℓ−2(Ω′) + ‖u‖L2(Ω′)

)
.

The second consequence of Theorem 2.59 shows that if all quantities are
C∞, then also the weak solution u is C∞ up to the boundary.

Theorem 2.61. (Smoothness up to the boundary) Let Ω be a bounded open
set in Rn with smooth boundary, and let L be the second order operator
(2.4). Assume that γ ∈ C∞(Ω) and q ∈ C∞(Ω). If u ∈ H1(Ω) solves the
Dirichlet problem

{
Lu = F in Ω,

u = f on ∂Ω

where F ∈ C∞(Ω) and f ∈ C∞(∂Ω), then u ∈ C∞(Ω).
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2.6. The DN map and inverse problems

Let Ω be a bounded open set in Rn, and let γ ∈ L∞(Ω) be a positive
function. We would like to define the Dirichlet-to-Neumann map mapping
a boundary voltage f to the current flux at the boundary,

Λγ : f 7→ γ∂νuf |∂Ω
where uf is the solution the conductivity equation div(γ∇uf ) = 0 in Ω with
uf |∂Ω = f .

In fact we can consider the more general operators (2.4),

Lu = −
∞∑

j,k=1

∂

∂xj

(
ajk

∂u

∂xk

)
+ qu,

where ajk, q ∈ L∞(Ω) satisfy the conditions (2.5). The corresponding DN
map for L would be formally given by

(2.8) ΛL : f 7→
n∑

j,k=1

ajk(∂ju)νk

∣∣∣
∂Ω
.

Motivation 2.62. (Definition of DN map) Assume that Ω has smooth
boundary and ajk, q ∈ C∞(Ω), and suppose that uf solves the Dirichlet

problem Lu = 0 in Ω, uf |∂Ω = f , for some f ∈ C∞(∂Ω). Then uf ∈ C∞(Ω)
by Theorem 2.61, and we may define ΛLf by the right hand side of (2.8) as a
function in C∞(∂Ω). Let g ∈ C∞(∂Ω) and let eg ∈ C∞(Ω) be any function
such that eg|∂Ω = g. An integration by parts, using that all quantities are
smooth, shows that

∫

∂Ω
(ΛLf)g dS =

n∑

j,k=1

∫

∂Ω
ajk(∂juf )egνk dS

=

n∑

j,k=1

∫

Ω
∂k

(
ajk(∂juf )eg

)
dx

=

∫

Ω

[ n∑

j,k=1

ajk∂juf∂keg + qufeg

]
dx.

In the last step we used that Lu = 0.

Notice that the expression on the last line is just B[uf , ēg] where B is
the sesquilinear form corresponding to L. This expression is well defined
even when ajk, q ∈ L∞(Ω) and uf , eg ∈ H1(Ω). We use this observation to

define the DN map in a weak sense even when the quantity ajk(∂ju)νk may
not be defined pointwise.
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Recall that H−1/2(∂Ω) is the dual space of H1/2(∂Ω) = H1(Ω)/H1
0 (Ω).

If f ∈ H−1/2(∂Ω), we will express the duality by the notation

〈f, g〉∂Ω = f(g), g ∈ H1/2(∂Ω).

If Ω has C1 boundary and f ∈ L2(∂Ω), this reduces to the usual integral

〈f, g〉∂Ω =

∫

∂Ω
fg dS.

Theorem 2.63. (DN map for L) Let Ω be a bounded open set in Rn and
let L satisfy (2.4), (2.5). Assume that 0 is not a Dirichlet eigenvalue of L
in Ω. There is a unique bounded linear map

ΛL : H1/2(∂Ω) → H−1/2(∂Ω)

that satisfies

(2.9) 〈ΛLf, g〉∂Ω = B[uf , ēg] =

∫

Ω

[ n∑

j,k=1

ajk∂juf∂keg + qufeg

]
dx

where uf ∈ H1(Ω) is the unique solution of Lu = 0 in Ω with u|∂Ω = f , and
eg is any function in H1(Ω) with eg|∂Ω = g.

If Ω has C∞ boundary and ajk, q ∈ C∞(Ω), then ΛL restricts to a linear
map

ΛL : C∞(∂Ω) → C∞(∂Ω)

which satisfies (2.8) for all f ∈ C∞(∂Ω).

Proof. 1. The first step is to show that the right hand side of (2.9) does
not depend on the particular choice of the extension eg of g. That is, if eg, ẽg
are two functions in H1(Ω) with eg|∂Ω = ẽg|∂Ω = g, then

B[uf , ēg] = B[uf , ẽg].

But this follows from the fact that ẽg = eg + ϕ for some ϕ ∈ H1
0 (Ω), since

the definition of weak solutions implies B[uf , ϕ̄] = 0.

2. Fix f ∈ H1/2(∂Ω), and define a linear functional Tf : H1/2(∂Ω) → C

by

Tf (g) = B[uf , ēg], g ∈ H1/2(∂Ω),

where eg ∈ H1(Ω) is the extension of g provided by Theorem 2.44 satisfying
eg|∂Ω = g and ‖eg‖H1(Ω) ≤ C ‖g‖H1/2(∂Ω). Then by Cauchy-Schwarz

|Tf (g)| ≤
∫

Ω




n∑

j,k=1

∣∣∣ajk
∣∣∣ |∇uf | |∇eg|+ |q| |uf | |eg|


 dx ≤ C ‖uf‖H1(Ω) ‖eg‖H1(Ω) .

By Theorem 2.55 we have

‖uf‖H1(Ω) ≤ C ‖f‖H1/2(∂Ω)
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Consequently

|Tf (g)| ≤ C ‖f‖H1/2(∂Ω) ‖g‖H1/2(∂Ω) .

Thus Tf is a bounded linear functional on H1/2(∂Ω), or in other words

Tf ∈ H−1/2(∂Ω), and Tf has norm less than or equal to C ‖f‖H1/2(∂Ω). We

define

Λγ : H1/2(∂Ω) → H−1/2(∂Ω), f 7→ Tf .

This map satisfies (2.9) and is the unique map with this property.

3. If Ω has C∞ boundary and γ ∈ C∞(Ω), and if f, g ∈ C∞(∂Ω), then
uf ∈ C∞(Ω) by Theorem 2.61. The computation done in Motivation 2.62
implies that

〈ΛLf, g〉∂Ω =

n∑

j,k=1

∫

∂Ω
ajk(∂juf )egνk dS.

Thus 〈ΛLf −∑n
j,k=1 a

jk(∂juf )νk|∂Ω, g〉∂Ω = 0 for all g ∈ C∞(∂Ω). Since

C∞(∂Ω) is dense inH1/2(∂Ω), this shows that ΛLf =
∑n

j,k=1 a
jk(∂juf )νk|∂Ω

as elements of H−1/2(∂Ω). Consequently Λγf can be identified with the C∞

function
∑n

j,k=1 a
jk(∂juf )νk|∂Ω. �

We now obtain the DN maps for the conductivity equation, anisotropic
conductivity equation, and Schrödinger equation as special cases of the pre-
vious result.

Theorem 2.64. (DN map for conductivity and Schrödinger equations) Let
Ω be a bounded open set in Rn, and let c > 0. Assume that

(1) γ ∈ L∞(Ω) and γ(x) ≥ c for a.e. x ∈ Ω,

(2) G = (γjk)nj,k=1 is a symmetric matrix of L∞(Ω) functions and

n∑

j,k=1

γjk(x)ξjξk ≥ c |ξ|2 for a.e. x ∈ Ω and for all ξ ∈ Rn,

(3) q ∈ L∞(Ω) is real valued and 0 is not a Dirichlet eigenvalue of
−∆+ q in Ω.

There are bounded linear maps

Λγ ,ΛG,Λq : H
1/2(∂Ω) → H−1/2(∂Ω)

that satisfy for all f, g ∈ H1/2(∂Ω)

〈Λγf, g〉∂Ω =

∫

Ω
γ∇uf ·∇eg dx, 〈ΛGf, g〉∂Ω =

∫

Ω
G∇vf ·∇eg dx, 〈Λqf, g〉∂Ω =

∫

Ω
(∇wf · ∇eg + qwfeg)

where uf , vf , wf ∈ H1(Ω) are the unique solutions of div(γ∇u) = 0, div(G∇v) =
0 and (−∆ + q)w = 0 in Ω with boundary value f , and eg is any function
in H1(Ω) with eg|∂Ω = g.
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If Ω has C∞ boundary and γ, γjk, q ∈ C∞(Ω), then these maps restrict
to linear maps

Λγ ,ΛG,Λq : C
∞(∂Ω) → C∞(∂Ω)

which satisfy for f ∈ C∞(∂Ω)

Λγf = γ∂νuf |∂Ω, ΛGf = G∇uf · ν|∂Ω, Λqf = ∂νuf |∂Ω.

Proof. By our assumptions, the operators −div(γ∇ · ), −div(G∇ · ), and
−∆ + q are of the form (2.4), (2.5). In the first two cases there is no
zero order term and we see from Theorem 2.55 that 0 is not a Dirichlet
eigenvalue, and for the third case this is explicitly assumed. The result
follows from Theorem 2.63. �

Exercise 2.65. Assume the conditions of Theorem 2.63, and show that
knowledge of the DN map ΛL is equivalent to knowing the quadratic form

QL : H1/2(∂Ω) → R, QL(f) = B[uf , uf ] =

∫

Ω

[ n∑

j,k=1

ajk∂juf∂kuf+q |uf |2
]
dx.

(Physically, for the conductivity equation, the quadratic form

Qγ(f) =

∫

Ω
γ |∇uf |2 dx

expresses the power needed to maintain the voltage f at the boundary.)

The next result shows that the DN map is a symmetric operator.

Theorem 2.66. Let Ω ⊂ Rn be a bounded open set, and let L satisfy (2.4),
(2.5). Assume that 0 is not a Dirichlet eigenvalue of L in Ω. Then

〈ΛLf, g〉∂Ω = 〈f,ΛLg〉∂Ω, f, g ∈ H1/2(∂Ω).

In particular, the maps Λγ , ΛG, Λq in Theorem 2.64 also have this property.

Proof. By definition

〈ΛLf, g〉∂Ω = B[uf , ēg]

where uf ∈ H1(Ω) is the unique solution of Lu = 0 in Ω with uf |∂Ω = f , and
eg is any function H1(Ω) with eg|∂Ω = g. We choose eg = ug, the solution of
Lu = 0 with boundary value g. Then, since B[ · , · ] is conjugate symmetric
and ajk, q are real valued,

〈ΛLf, g〉∂Ω = B[uf , ūg] = B[ūg, uf ] = B[ug, ūf ] = 〈ΛLg, f〉∂Ω.
�

We are now in a position to give mathematically precise formulations
for the inverse problems considered in this book.



52 2. Formulation of the Calderón problem

2.6.1. Calderón problem. Let Ω ⊂ Rn be a bounded open set. We think
of Ω as an electrical conductor, and assume that the conductivity at each
point of Ω is given by a function γ ∈ L∞(Ω) satisfying γ(x) ≥ c > 0 a.e. in
Ω. By Theorem 2.64 there is a bounded linear map

Λγ : H1/2(∂Ω) → H−1/2(∂Ω)

which formally associates to a function f ∈ H1/2(∂Ω) an element Λγf ∈
H−1/2(∂Ω) that may be thought of as the electrical current γ∂νuf |∂Ω corre-

sponding to boundary voltage f . (If Ω has C∞ boundary and γ ∈ C∞(Ω),
we saw in by Theorem 2.64 that Λγf = γ∂νuf |∂Ω for any f ∈ C∞(∂Ω) in
the classical sense.)

We think that for each boundary voltage f ∈ H1/2(∂Ω), we can measure

the corresponding current Λγf ∈ H−1/2(∂Ω). This leads to the following
inverse problem.

Calderón problem. Let Ω ⊂ Rn be a bounded open set, and let γ ∈ L∞(Ω)
satisfy γ ≥ c > 0 a.e. in Ω. From the knowledge of the map Λγ , determine
the function γ in Ω.

2.6.2. Inverse BVP for Schrödinger equation. Let Ω ⊂ Rn be a
bounded open set, and let q ∈ L∞(Ω). We consider an inverse problem
for the equation (−∆+ q)u = 0 analogous to the Calderón problem. How-
ever, in order to have a well defined DN map we need to assume that 0 is not
a Dirichlet eigenvalue of −∆+ q in Ω. If this is the case, then by Theorem
2.64 there is a bounded linear map

Λq : H
1/2(∂Ω) → H−1/2(∂Ω)

that associates to any function f ∈ H1/2(∂Ω) an element Λqf ∈ H−1/2(∂Ω)
that corresponds (in the case where everything is smooth) to the normal
derivative ∂νuf |∂Ω, where uf ∈ H1(Ω) is the unique solution of (−∆+q)u =
0 in Ω with boundary value f . The inverse problem is as follows.

Inverse BVP for Schrödinger equation. Let Ω ⊂ Rn be a bounded
open set, let q ∈ L∞(Ω), and assume that 0 is not a Dirichlet eigenvalue of
−∆+ q in Ω. From the knowledge of the map Λq, determine the function q
in Ω.

It is also possible to formulate this problem without the assumption that
0 is not a Dirichlet eigenvalue, by using the notion of Cauchy data sets. To
do this, we observe that even though the normal derivative on ∂Ω does not
make sense for a general function u ∈ H1(Ω), we can still define the normal
derivative weakly if we assume that u is additionally a solution. The proof
is similar to that of Theorem 2.63.
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Exercise 2.67. If u ∈ H1(Ω) is a solution of (−∆ + q)u = 0 in Ω, show

that the following identity defines ∂νu|∂Ω as an element of H−1/2(∂Ω):

〈∂νu|∂Ω, g〉∂Ω =

∫

Ω
(∇u · ∇eg + queg) dx, g ∈ H1/2(∂Ω),

where eg is any function in H1(Ω) with eg|∂Ω = g. Show that if u ∈ C∞(Ω),
then this definition of ∂νu|∂Ω coincides with the usual one.

Definition 2.68. Let Ω ⊂ Rn be a bounded open set, and let q ∈ L∞(Ω).
The Cauchy data set associated with the operator −∆+ q in Ω is the set

Cq =
{
(u|∂Ω, ∂νu|∂Ω)

∣∣ u ∈ H1(Ω), (−∆+ q)u = 0 in Ω
}
.

By Problem 2.67, Cq is a subset of H1/2(∂Ω)×H−1/2(∂Ω). If 0 is not a
Dirichlet eigenvalue of −∆+ q in Ω, the next problem shows that knowing
the Cauchy data set Cq is equivalent to knowing the DN map Λq.

Exercise 2.69. Let Ω ⊂ Rn be a bounded open set, let q ∈ L∞(Ω), and
assume that 0 is not a Dirichlet eigenvalue of −∆+ q in Ω. Show that the
Cauchy data set is the graph of the DN map acting on H1/2(∂Ω):

Cq =
{
(f,Λqf)

∣∣ f ∈ H1/2(∂Ω)
}
.

The next question generalizes the inverse BVP for Schrödinger equation
given above.

Inverse BVP for Schrödinger equation, Cauchy data set version.
Let Ω ⊂ Rn be a bounded open set, and let q ∈ L∞(Ω). From the knowledge
of the set Cq, determine the function q in Ω.

2.6.3. Anisotropic Calderón problem. Again, Ω ⊂ Rn is a bounded
open set that is thought of as an electrical conductor, but this time the
conductivity at each point of Ω is given by a symmetric matrix function
G = (γjk)nj,k=1. For this problem we assume that Ω has C∞ boundary and

that each γjk is in C∞(Ω). We also assume the ellipticity condition for some
c > 0,

n∑

j,k=1

γjk(x)ξjξk ≥ c |ξ|2 for a.e. x ∈ Ω and for all ξ ∈ Rn.

By Theorem 2.64 there is a linear map

ΛG : C∞(∂Ω) → C∞(∂Ω)

which associates to a function f ∈ C∞(∂Ω) the boundary current Λγf =
G∇uf · ν|∂Ω ∈ C∞(∂Ω).
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Anisotropic Calderón problem. From the knowledge of the map ΛG,
determine a symmetric matrix function Ĝ with elements in C∞(Ω) such that

Ĝ = F∗G for some diffeomorphism F : Ω → Ω with F |∂Ω = Id.

2.7. Integral identities and reductions

The purpose of this section is to introduce certain integral identities for
differences of two DN maps. These identities can be used to relate boundary
measurements to interior information about the coefficients, and they allow
to reduce uniqueness questions in inverse problems to questions about the
density of products of (gradients of) solutions. We also give two simple
reductions that will be useful later.

Theorem 2.70. (Integral identity for ΛL1 −ΛL2) Let Ω ⊂ Rn be a bounded
open set, and let L1, L2 be two operators of the form

Lmu = −
∞∑

j,k=1

∂

∂xj

(
ajkm

∂u

∂xk

)
+ qmu,

where ajkm , qm are as in (2.5) for m = 1, 2. Assume that 0 is not a Dirichlet

eigenvalue for L1 or L2 in Ω. Then for any f1, f2 ∈ H1/2(∂Ω),

〈(ΛL1−ΛL2)f1, f2〉∂Ω =

∫

Ω




n∑

j,k=1

(ajk1 − ajk2 )∂ju1∂ku2 + (q1 − q2)u1u2


 dx,

where um ∈ H1(Ω) is the unique solution of Lmum = 0 in Ω with um|∂Ω =
fm.

Proof. Let u1 and u2 be as described. By Theorem 2.64 we have

〈ΛL1f1, f2〉∂Ω =

∫

Ω




n∑

j,k=1

ajk1 ∂ju1∂kv2 + q1u1v2


 dx

where v2 is any function in H1(Ω) with v2|∂Ω = f2. Similarly, also using
Theorem 2.66, we have

〈ΛL2f1, f2〉∂Ω = 〈ΛL2f2, f1〉∂Ω =

∫

Ω




n∑

j,k=1

ajk2 ∂ju2∂kv1 + q2u2v1


 dx

where v1 is any function in H1(Ω) with v1|∂Ω = f1. Now, we may choose
v1 = u1 and v2 = u2. Subtracting the two identities above, we obtain the
theorem. �
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As an immediate consequence of the above result, we obtain integral
identities for the differences of DN maps in the case of the conductivity and
Schrödinger equation.

Theorem 2.71. (Integral identity for Λγ1 − Λγ2) Let Ω ⊂ Rn be a bounded
open set, and let γ1, γ2 ∈ L∞(Ω) satisfy γ1, γ2 ≥ c > 0 a.e. in Ω.

(a) One has the integral identity

〈(Λγ1 − Λγ2)f1, f2〉∂Ω =

∫

Ω
(γ1 − γ2)∇u1 · ∇u2 dx, f1, f2 ∈ H1/2(∂Ω),

where uj ∈ H1(Ω) is the unique solution of div(γj∇uj) = 0 in Ω with
uj |∂Ω = fj.

(b) If Λγ1 = Λγ2 , then ∫

Ω
(γ1 − γ2)∇w1 · ∇w2 dx = 0

for all wj ∈ H1(Ω) with div(γj∇wj) = 0 in Ω.

Theorem 2.72. (Integral identity for Λq1 − Λq2) Let Ω ⊂ Rn be a bounded
open set, let q1, q2 ∈ L∞(Ω), and assume that 0 is not a Dirichlet eigenvalue
of −∆+ qj in Ω.

(a) One has the integral identity

〈(Λq1 − Λq2)f1, f2〉∂Ω =

∫

Ω
(q1 − q2)u1u2 dx, f1, f2 ∈ H1/2(∂Ω),

where uj ∈ H1(Ω) is the unique solution of (−∆+ qj)uj = 0 in Ω with
uj |∂Ω = fj.

(b) If Λq1 = Λq2 , then ∫

Ω
(q1 − q2)w1w2 dx = 0

for all wj ∈ H1(Ω) with (−∆+ qj)uj = 0 in Ω.

Exercise 2.73. Show that Theorem 2.72(b) remains true in the case of
Cauchy data sets: if Ω ⊂ Rn is a bounded open set and q1, q2 ∈ L∞(Ω),
then ∫

Ω
(q1 − q2)w1w2 dx = 〈∂νw1, w2〉∂Ω − 〈w1, ∂νw2〉∂Ω

for all wj ∈ H1(Ω) with (−∆+qj)wj = 0 in Ω, where the normal derivatives
are interpreted as in Problem 2.67. If additionally Cq1 = Cq2 , then∫

Ω
(q1 − q2)w1w2 dx = 0

for all such wj .
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Suppose now that γ1, γ2 are two conductivities such that Λγ1 = Λγ2 . We
would like to conclude that γ1 = γ2. By Theorem 2.71(b), this would follow
if one can show that the set

{
∇w1 · ∇w2

∣∣ wj ∈ H1(Ω),div(γj∇wj) = 0 in Ω
}

is dense in L1(Ω). In the same way, if q1, q2 ∈ L∞(Ω) and Λq1 = Λq2 then it
would follow from Theorem 2.72(b) that q1 = q2 if one can show the set

{
w1w2

∣∣ wj ∈ H1(Ω), (−∆+ qj)wj = 0 in Ω
}

is dense in L1(Ω). This implies that uniqueness in the Calderón prob-
lem would follow from the density of products of gradients of solutions
to conductivity equations. Similarly, uniqueness in the inverse BVP for
Schrödinger equation would follow from the density of products of solutions
to Schrödinger equations. Most of the interior uniqueness results in this
book will be proved by following this route.

Next we give a result showing that the Calderón problem can be re-
duced to the inverse BVP for the Schrödinger equation, provided that the
conductivity has two derivatives. This is based on a simple argument, some-
times called a Liouville transformation, where the substitution w = γ1/2u
reduces the conductivity equation div(γ∇u) = 0 to the Schrödinger equation
(−∆+ qγ)w = 0, where the potential qγ is given by

qγ =
∆γ1/2

γ1/2
.

Theorem 2.74. Let Ω ⊂ Rn be a bounded open set, let γ ∈ C2(Ω) be strictly

positive, and set q = ∆γ1/2

γ1/2
.

(a) If f ∈ H1/2(∂Ω), then u ∈ H1(Ω) is a solution of

∇ · γ∇u = 0 in Ω, u = f on ∂Ω

if and only if w = γ1/2u is a solution of

−∆w + qw = 0 in Ω, w = γ1/2f on ∂Ω.

In particular, 0 is not a Dirichlet eigenvalue for −∆+ q in Ω if q arises
from a C2 conductivity.

(b) If Ω has C∞ boundary and γ ∈ C∞(Ω), then the DN maps Λγ and Λq
for q as defined above are related by

Λqf = γ−1/2Λγ
(
γ−1/2f

)
+ 1

2γ
−1(∂νγ)f

∣∣
∂Ω
, f ∈ C∞(∂Ω).

Proof. (a) Assume first that w ∈ C2(Ω). To reduce the Schrödinger equa-
tion to a conductivity equation, we attempt to find a ∈ C2(Ω) such that
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∇ · (γ∇(aw)) = γa(∆w + rw) for some function r. By the product rule

∇ · (γ∇(aw)) = ∇ · (γ(∇a)w + γa∇w)
= γa∆w + (∇(γa) + γ∇a) · ∇w + (∇ · (γ∇a))w.

The first order term will disappear if we can choose a so that

∇(γa) + γ∇a = 0.

This is equivalent with 2γ∇a+(∇γ)a = 0, and dividing by γa we obtain
the equation

∇(2 log a+ log γ) = 0.

Thus, by the properties of logarithms log(a2γ) should be constant, so

that a = Cγ−1/2 for some constant C.
We choose a = γ−1/2, and the previous computation implies

∇ · (γ∇(aw)) = γa∆w + (∇ · (γ∇a))w.
Here γ∇a = −∇(γa), so we obtain

∇ · (γ∇(γ−1/2w)) = γ1/2(∆w − ∆γ1/2

γ1/2
w).

This shows part (a) in the case where u,w ∈ C2(Ω). The case where
u,w ∈ H1(Ω) follows either from the definition of weak solutions or by
approximation, and is left as a problem.

(b) Set g = γ−1/2f and ug = γ−1/2wf , where wf is the unique solution of
(−∆ + q)w = 0 in Ω with boundary value f . Then, by part (a), ug is
the solution of ∇ · γ∇ug = 0 in Ω with ug|∂Ω = g, and

Λq(f) =
n∑
j=1

(∂jwf )n̂j

∣∣∣
∂Ω

=
n∑
j=1

∂j(γ
1/2ug)n̂j

∣∣∣
∂Ω

=
n∑
j=1

γ1/2(∂jug)n̂j +
n∑
j=1

1
2ugγ

−1/2(∂jγ)n̂j

∣∣∣
∂Ω

= γ−1/2Λγ(g) +
n∑
j=1

1
2gγ

−1/2(∂jγ)n̂j

∣∣∣
∂Ω

= γ−1/2Λγ(γ
−1/2f) + 1

2γ
−1(∂νγ)f

∣∣∣
∂Ω
.

�

Exercise 2.75. Verify Theorem 2.74(a) in detail for u,w ∈ H1(Ω).

The final reduction states that if two DN maps for operators in some
domain Ω are equal, then the DN maps corresponding to extensions of the
operators to a larger domain Ω̃ are also equal provided that the coefficients
agree in Ω̃ \ Ω.
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Theorem 2.76. Let Ω and Ω̃ be bounded open sets in Rn with Ω ⊂ Ω̃.
Suppose that L1 and L2 are two operators in Ω of the form

Lmu = −
∞∑

j,k=1

∂

∂xj

(
ajkm

∂u

∂xk

)
+ qmu.

Let ãjkm , q̃m be extensions of ajkm , qm to Ω̃, and denote by L̃1 and L̃2 the
corresponding operators in Ω̃,

L̃mu = −
∞∑

j,k=1

∂

∂xj

(
ãjkm

∂u

∂xk

)
+ q̃mu.

Assume that ajkm , qm, ã
jk
m , q̃m satisfy (2.5) for m = 1, 2, and assume that 0 is

not a Dirichlet eigenvalue for L1 or L2 in Ω or for L̃1 or L̃2 in Ω.

If

ãjk1 = ãjk2 in Ω̃ \ Ω, q̃1 = q̃2 in Ω̃ \Ω,
then

〈(ΛL̃1
−ΛL̃2

)f̃1, f̃2〉∂Ω̃ = 〈(ΛL1 −ΛL2)(ũ1|∂Ω), ũ2|∂Ω〉∂Ω, f̃1, f̃2 ∈ H1/2(∂Ω̃),

where ũm is the unique solution in H1(Ω̃) of L̃mũm = 0 in Ω̃ with ũm|∂Ω̃ =

f̃m.

In particular,

ΛL1 = ΛL2 =⇒ ΛL̃1
= ΛL̃2

.

Proof. By Theorem 2.70, and using the fact that ãjk1 = ãjk2 and q̃1 = q̃2
outside of Ω, we have

〈(ΛL̃1
− ΛL̃2

)f̃1, f̃2〉∂Ω̃ =

∫

Ω̃




n∑

j,k=1

(ãjk1 − ãjk2 )∂j ũ1∂kũ2 + (q̃1 − q̃2)ũ1ũ2


 dx

=

∫

Ω




n∑

j,k=1

(ajk1 − ajk2 )∂j ũ1∂kũ2 + (q1 − q2)ũ1ũ2


 dx

= 〈(ΛL1 − ΛL2)(ũ1|∂Ω), ũ2|∂Ω〉∂Ω
since ũm|Ω solves Lmũm = 0 in Ω. �

2.8. Notes

Section 2.1. For more on convolutions we refer to Hörmander, The analysis
of linear partial differential operators, Vol. I.
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Sections 2.3–2.5. The treatment here partly follows Evans, Partial dif-
ferential equations, which contains further material on Sobolev spaces and
weak solutions.





Chapter 3

Boundary

determination

The goal of this chapter is to show that if two conductivities γ1 and γ2 are in
C∞(Ω) and give rise to the same boundary measurements (i.e., Λγ1 = Λγ2)
on the entire boundary, then the conductivities and their normal derivatives
of all orders agree on ∂Ω. This was the first identifiability theorem proved
for the conductivity equation and it seems to remain a necessary ingredient
in many proofs of identifiability in the interior.

The critical observation is that by choosing the Dirichlet boundary data
f to be highly oscillatory and supported near a point p ∈ ∂Ω, we can
arrange that the solution to div(γ∇u) = 0, u|∂Ω = f , is concentrated near
p. Solutions of this type can be used to extract the Taylor series of the
conductivity at p from the knowledge of Λγ .

Theorem 3.1. Let Ω be a bounded domain in Rn with smooth boundary
and let Γ be an open subset of ∂Ω. Suppose that γ ∈ C∞(Ω) is a positive
function, and that one has knowledge of the measurements

Λγf
∣∣
Γ

for all f ∈ C∞(∂Ω) supported in Γ.

From this information it is possible to determine (∂/∂ν)lγ on Γ for any
integer l ≥ 0.

The precise definition of the lth order normal derivative (∂/∂ν)lγ is given
below in Section 3.3. Note that Theorem 3.1 is a constructive and local
result: from the knowledge of the Dirichlet-to-Neumann map on a small
subset Γ of the boundary, one can constructively determine the conductivity

61
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and its normal derivatives on Γ. In particular, the following uniqueness
result is an immediate corollary.

Theorem 3.2. Let Ω be a bounded domain in Rn with smooth boundary and
suppose that γ1 and γ2 are two positive functions in C∞(Ω). If

Λγ1 = Λγ2

then for any integer l ≥ 0
(
∂

∂ν

)l
γ1 =

(
∂

∂ν

)l
γ2 on ∂Ω.

We wish to give one heuristic explanation as to why oscillating boundary
data are useful in boundary determination. This explanation is based on
symbol calculus for (pseudo)differential operators, which will not be used
anywhere in the book.

Recall that we are trying to determine the boundary values of the con-
ductivity from the map

Λγ : H1/2(∂Ω) → H−1/2(∂Ω).

As the notation suggests, this map acts like a first order differential operator
on ∂Ω in the sense that it takes away one derivative from any function that
it is applied to. Pretend for the moment that ∂Ω = Rn−1. First order
differential operators on Rn−1 have the form

A(x′,D′) =
n−1∑

j=1

aj(x
′)Dj , x′ ∈ Rn−1,

where we write D′ = (D1, . . . ,Dn−1) and Dj = 1
i
∂
∂xj

. This operator is

characterized by its symbol, which is the function

a(x′, ξ′) =
n−1∑

j=1

aj(x
′)ξj , x′, ξ′ ∈ Rn−1.

The symbol can be obtained from the operator by testing against oscillatory
functions:

a(x′, ξ′) = N−1e−iNx
′·ξ′A(x′,D′)eiNx

′·ξ′ , N large.

Now, the operator Λγ is not a differential operator of order one, but
belongs to the more general class of classical pseudodifferential operators of
order one. This means that the main behavior of Λγ is also governed by a
symbol, but this time the symbol is given by an infinite asymptotic sum

a(x′, ξ′) ∼ a1(x
′, ξ′) + a0(x

′, ξ′) + a−1(x
′, ξ′) + . . .

where each aj is a smooth function that is positively homogeneous of degree
j in ξ′ for ξ′ away from the origin. As for differential operators, the functions
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aj can be obtained from the operator Λγ by testing against (localized) highly
oscillatory functions. It turns out that one can recover γ|∂Ω from a1, ∂νγ|∂Ω
from a0, and so on. The (distributional) integral kernel λ(x, y) of Λγ has an
expansion corresponding to the symbol expansion,

λ(x, y) ∼ λ1(x, y) + λ0(x, y) + λ−1(x, y) + . . . ,

where λ1(x, y) corresponds to the strongest singularities of the kernel λ(x, y),
λ0(x, y) corresponds to the next strongest singularities, and so on. It turns
out that from the singularities of the kernel of Λγ one can only recover the
Taylor series of the conductivity at boundary points, but not at interior
points. The values of γ at interior points are hidden in the C∞ part of the
kernel, which makes the interior uniqueness problem rather subtle.

In this chapter, instead of using the theory of pseudodifferential op-
erators to recover the boundary values, we will employ elementary direct
methods. In the next two sections we will show that the boundary value
γ|∂Ω and the normal derivative ∂νγ|∂Ω are determined by the DN map in
a local and stable way. These arguments are valid also when the conduc-
tivity and the boundary have limited regularity. The proof of Theorem 3.1
follows similar ideas, but is longer and requires a higher order asymptotic
construction. The proof is divided in three parts. The first step is to flat-
ten the boundary near a fixed boundary point p by a suitable change of
coordinates. Next, one constructs the solutions which concentrate near the
boundary point and oscillate rapidly on the flat boundary piece, the speed of
oscillations depending on a large parameter s > 0. The third step is to use
the boundary values φs of these solutions in the expression 〈Λγφs, φ̄s〉, where
Λγ is our given data and φs will be explicit functions. The Taylor series of
γ can now be read off from the large s asymptotics of this expression.

3.1. Recovering boundary values

The main result in this section states that the boundary values γ|∂Ω can be
determined from the knowledge of the DN map Λγ .

Theorem 3.3. (Recovering γ on ∂Ω) Let Ω be a bounded open set with C1

boundary, and let γ ∈ C0(Ω) be positive. Given a point x0 ∈ ∂Ω, there exists
a sequence of functions (fM ) ⊂ C1(∂Ω) for which

lim
M→∞

〈ΛγfM , f̄M 〉∂Ω = γ(x0).

The functions fM do not depend on γ and they are supported in B(x0, 1/M)∩
∂Ω.

In fact, since fM are independent of γ and are supported in small balls,
the result gives a constructive method for finding γ(x0) from the local DN
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map evaluated in a small neighborhood of x0 on ∂Ω. The method also allows
to show the following stability result at the boundary.

Theorem 3.4. (Stability of γ on ∂Ω) Let Ω be a bounded open set with C1

boundary, and let γ1, γ2 ∈ C0(Ω) be positive. Then

‖γ1 − γ2‖L∞(∂Ω) ≤ C ‖Λγ1 − Λγ2‖H1/2(∂Ω)→H−1/2(∂Ω) .

Both of these results follow immediately from the existence of special
solutions to the conductivity equation that concentrate at the boundary
point x0:

Theorem 3.5. (Solutions concentrating at a boundary point) Let Ω be a
bounded open set with C1 boundary, and let γ ∈ C0(Ω) be positive. Given
a point x0 ∈ ∂Ω, there is a sequence of solutions (uM ) ⊂ H1(Ω) of the
conductivity equation

div(γ∇u) = 0 in Ω

such that

lim
M→∞

∫

Ω
γ |∇uM |2 dx = γ(x0).

Further, fM = uM |∂Ω are functions in C1(∂Ω) supported in B(x0, 1/M)∩∂Ω
that do not depend on γ, and they satisfy

‖fM‖H1/2(∂Ω) = O(1) as M → ∞ uniformly over x0 ∈ ∂Ω.

Proof of Theorem 3.3. Let uM be as in Theorem 3.5. By the definition
of the DN map (Theorem 2.64), we have

〈ΛγfM , f̄M〉∂Ω =

∫

Ω
γ∇uM · ∇ūM dx

and consequently

lim
M→∞

〈ΛγfM , f̄M 〉∂Ω = lim
M→∞

∫

Ω
γ |∇uM |2 dx = γ(x0).

�

Proof of Theorem 3.4. Let uM and vM be solutions provided by Theorem
3.5 of the equations

div(γ1∇uM ) = 0, div(γ2∇vM ) = 0.

Since the boundary values of uM and vM only depend on M and ∂Ω, we
have uM |∂Ω = vM |∂Ω = fM . Then by the definition of the DN maps,

〈(Λγ1 − Λγ2)fM , f̄M 〉∂Ω =

∫

Ω
γ1 |∇uM |2 dx−

∫

Ω
γ2 |∇vM |2 dx.
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Taking the limit as M → ∞ and taking absolute values, we have

|γ1(x0)− γ2(x0)| = lim
M→∞

∣∣〈(Λγ1 − Λγ2)fM , f̄M 〉∂Ω
∣∣

≤ lim
M→∞

‖Λγ1 − Λγ2‖H1/2(∂Ω)→H1/2(∂Ω) ‖fM‖2H1/2(∂Ω) .

Since ‖fM‖H1/2(∂Ω) is bounded uniformly with respect to M and x0, it fol-

lows that

‖γ1 − γ2‖L∞(∂Ω) ≤ C ‖Λγ1 − Λγ2‖H1/2(∂Ω)→H1/2(∂Ω) .

�

To prove Theorem 3.5, we choose coordinates so that x0 = 0 and h :
Rn−1 → R is a C1 function such that for some r > 0,

Ω =
{
x ∈ B(0, r)

∣∣ xn > h(x′)
}
, ∂Ω =

{
x ∈ B(0, r)

∣∣ xn = h(x′)
}
,

and moreover h(0) = 0 and ∇x′h(0) = 0. Consider the local boundary
defining function

ρ : B(0, r) → R, ρ(x) = xn − h(x′).

Then ρ(0) = 0 and ∇ρ(0) = en. Also choose some unit tangent vector α to
∂Ω at 0, that is, α ∈ Rn is a unit vector with α · en = 0. We wish to use
oscillating boundary data eiNα·x for x ∈ ∂Ω, where N > 0 is a large number,
to determine the conductivity on the boundary. However, in order to focus
on the value of γ at the origin, we need to multiply by a cutoff function.

We will eventually choose the boundary data to be

fM = cM,Nη(Mx)eiNα·x, x ∈ ∂Ω,

where η is a cutoff function supported in the unit ball, M and N are large
numbers, and cM,N is a scaling constant. The boundary value fM oscillates
with period 2π/N , and we should choose N so that there are many oscilla-
tions in the ball of radius 1/M . For this reason, we will choose N = N(M)
such that

(3.1) M/N = o(1) as M → ∞.

For example, N(M) = Mβ for β > 1 satisfies this, and we will actually fix
the choice N(M) =M3 in the end of the proof.

The next lemma will be useful in estimating the size of the corresponding
solutions.

Lemma 3.6. Let η be continuous and supported in B(0, 1). Then

lim
M→∞

Mn−1N

∫

Ω
η(Mx)e−2Nρ(x) dx =

1

2

∫

Rn−1

η(x′, 0) dx′,
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and for M large, for some constant C only depending on η,∣∣∣∣
∫

Ω
η(Mx)e2Nρ(x) dx

∣∣∣∣ ≤ CM1−nN−1.

Proof. If M is large, changing variables xn = t+ h(x′) and scaling gives
∫

Ω
η(Mx)e−2Nρ(x) dx =

∫

Rn−1

∫ ∞

h(x′)
η(Mx′,Mxn)e

−2N(xn−h(x′)) dxn dx
′

=

∫

Rn−1

∫ ∞

0
η(Mx′,M(t+ h(x′))e−2Nt dt dx′

=M1−nN−1

∫

Rn−1

∫ ∞

0
η(x′,

M

N
t+Mh(

x′

M
))e−2t dt dx′.

Note that

lim
M→∞

Mh(
x′

M
) = lim

s→0

h(sx′)− h(0)

s
= ∇x′h(0) · x′ = 0.

Since the integral over Rn−1 is actually over the unit ball, dominated con-
vergence and (3.1) imply, as M → ∞,

Mn−1N

∫

Ω
η(Mx)e−2Nρ(x) dx→

∫

Rn−1

∫ ∞

0
η(x′, 0)e−2t dt dx′ = 1

2

∫

Rn−1

η(x′, 0) dx′.

This shows the first claim, and the second one is an immediate consequence.
�

Proof of Theorem 3.5. 1. With M and N as in (3.1), we define

v0(x) = ηM (x)hN (x), x ∈ Rn,

where hN is the complex exponential

hN (x) = eN(iα·x−ρ(x))

and ηM is a cutoff function

ηM (x) = η(Mx)

where η ∈ C∞
c (Rn), 0 ≤ η ≤ 1, η = 1 for |x| ≤ 1/2, and η = 0 for |x| ≥ 1.

Note that v0 ∈ C1
c (R

n) is supported in a small ball B(0, 1/M).

(The function v0 calls for some explanation. First of all, we will think
of ∂Ω as being almost flat in small neighborhoods near 0 (this is justified
since the boundary is C1). In the case where ∂Ω is exactly flat near 0, we
have v0(x) = ηM (x)eN(iα−en)·x for M large. The exponential eN(iα−en)·x is
harmonic in Ω:

∆(eN(iα−en)·x) = N2(iα− en) · (iα− en)e
N(iα−en)·x = 0

since |α|2 = 1 and α · en = 0. Consequently, this exponential solves the con-
ductivity equation div(γ(0)∇v) = 0 with coefficient frozen at 0. Multiplying
by the cutoff ηM concentrates the exponential in a small neighborhood of



3.1. Recovering boundary values 67

0, and in this neighborhood the conductivity equation div(γ∇v) = 0 can be
approximated by the same equation with γ replaced by γ(0). Thus, v0 is
an approximate solution of the conductivity equation that concentrates near
the boundary point 0 and eventually allows to determine γ(0).)

2. We establish two basic properties of v0: as M → ∞,∫

Ω
|∇v0|2 dx = O(M1−nN),(3.2)

lim
M→∞

Mn−1N−1

∫

Ω
γ |∇v0|2 dx = cηγ(0)(3.3)

where cη =
∫
Rn−1 η(x

′, 0)2 dx′. For the proof we first write

(3.4) ∇v0 = N(iα−∇ρ)ηMhN︸ ︷︷ ︸
F1

+M(∇η)(M · )hN︸ ︷︷ ︸
F2

.

Lemma 3.6 implies that, as M → ∞,
(3.5)

‖F1‖2L2(Ω) = O(M1−nN), ‖F2‖2L2(Ω) = O(M1−nN(M/N)2) = o(M1−nN)

using that M/N = o(1). This shows (3.2). The second claim follows by
writing∫

Ω
γ |∇v0|2 dx = γ(0)

∫

Ω
|∇v0|2 dx+

∫

Ω
(γ − γ(0)) |∇v0|2 dx

= γ(0)

∫

Ω
|F1|2 dx+ γ(0)

∫

Ω
(F1 · F̄2 + F̄1 · F2 + |F2|2) dx+

∫

Ω
(γ − γ(0)) |∇v0|2 dx.

By continuity of γ we have

(3.6) sup
x∈B(0,1/M)

|γ(x)− γ(0)| = o(1) as M → ∞.

Since supp (v0) ⊂ B(0, 1/M), all the terms above except the first one are
o(M1−nN) by (3.5) and Cauchy-Schwarz. For the first term we have

Mn−1N−1

∫

Ω
|F1|2 dx =M1−nN

∫

Ω
η(Mx)2e−2Nρ(x)(1 + |∇ρ(x)|2) dx

= 2M1−nN
∫

Ω
η(Mx)2e−2Nρ dx+M1−nN

∫

Ω
η(Mx)2e−2Nρ(|∇ρ(x)|2 − |∇ρ(0)|2) dx.

In the last expression, the first term has limit cη as M → ∞ by Lemma 3.6,

and the second term is o(1) since x 7→ |∇ρ(x)|2 is continuous near 0. We
have proved (3.3).

3. In addition to the approximate solution v0, we will make use of
the exact solution v of the conductivity equation obtained by solving the
Dirichlet problem {

div(γ∇v) = 0 in Ω,

v = f0 on ∂Ω
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where

f0 = v0|∂Ω.
Since v0 ∈ H1(Ω), we have f0 ∈ H1/2(∂Ω) and the Dirichlet problem above
has a unique solution v ∈ H1(Ω) by Theorem ??. We also write

v = v0 + v1

where v1 = v − v0 is (by Theorem ??) the unique H1
0 (Ω) solution of

{
div(γ∇v1) = −div(γ∇v0) in Ω,

v = 0 on ∂Ω.

The right hand side −div(γ∇v0) is in H−1(Ω), and it acts on functions
ϕ ∈ H1

0 (Ω) by

〈−div(γ∇v0), ϕ〉 =
∫

Ω
γ∇v0 · ∇ϕdx.

4. Now we consider the function v1, and claim that as M → ∞

(3.7)

∫

Ω
|∇v1|2 dx = o(M1−nN).

This estimate justifies calling v0 an approximate solution, since it says that
the difference v1 between the exact solution v and v0 is asymptotically
smaller than v0. By Theorem ??, to prove (3.7) it is enough to show that

‖−div(γ∇v0)‖2H−1(Ω) = o(M1−nN),

or equivalently,

(3.8)

∣∣∣∣
∫

Ω
γ∇v0 · ∇ϕdx

∣∣∣∣ ≤ o(M (1−n)/2N1/2) ‖ϕ‖H1(Ω) , ϕ ∈ C∞
c (Ω).

Let ϕ ∈ C∞
c (Ω). We begin by writing

∫

Ω
γ∇v0 · ∇ϕdx = γ(0)

∫

Ω
∇v0 · ∇ϕdx+

∫

Ω
(γ − γ(0))∇v0 · ∇ϕdx.

Using the continuity of γ and (3.2), the second term is o(M (1−n)/2N1/2) ‖ϕ‖H1(Ω).

For the first term, write ∇v0 as in (3.4) and use (3.5) to obtain
∫

Ω
γ∇v0·∇ϕdx = γ(0)

∫

Ω
N(iα−∇ρ)ηMhN ·∇ϕdx+o(M (1−n)/2N1/2) ‖ϕ‖H1(Ω) .

In the first term on the right write ∇ρ = ∇ρ(0) + (∇ρ − ∇ρ(0)). Since
∇ρ is continuous and the integral is over B(0, 1/M), we get (recall that
∇ρ(0) = en)
∫

Ω
γ∇v0·∇ϕdx = γ(0)

∫

Ω
N(iα−en)ηMhN ·∇ϕdx+o(M (1−n)/2N1/2) ‖ϕ‖H1(Ω) .
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Integrating by parts in the first term on the right, which is possible since ϕ
has compact support, yields
∫

Ω
γ∇v0 · ∇ϕdx = −γ(0)

∫

Ω
N2(iα− en) · (iα −∇ρ)ηMhNϕdx

− γ(0)

∫

Ω
MN(iα− en) · (∇η)(M · )hNϕdx+ o(M (1−n)/2N1/2) ‖ϕ‖H1(Ω) .

Here comes a key point in the proof: we can now use the fact that eN(iα−en)·x

is a harmonic function, or equivalently that (iα−en) · (iα−en) = 0, to write

∫

Ω
γ∇v0 · ∇ϕdx = γ(0)

∫

Ω
N2(iα− en) · (∇ρ−∇ρ(0))ηMhNϕdx

− γ(0)

∫

Ω
MN(iα− en) · (∇η)(M · )hNϕdx+ o(M (1−n)/2N1/2) ‖ϕ‖H1(Ω) .

(3.9)

Recall that we want ‖ϕ‖H1(Ω) on the right. For this purpose, we write

(3.10) hN = − 1

N
∂nhN .

This is valid since ∂nρ = 1. Using (3.10) and integrating by parts, the second
integral on the right hand side of (3.9) becomes
∫

Ω
M(iα− en) · (∇η)(M · )(∂nhN )ϕdx = −

∫

Ω
M(iα− en) · (∇η)(M · )hN∂nϕdx

−
∫

Ω
M2(iα− en) · (∇∂nη)(M · )hNϕdx.

The first integral on the right is of the form
∫
Ω F2 · (iα − en)∂nϕdx and

is bounded by o(M (1−n)/2N1/2) ‖ϕ‖H1 by Cauchy-Schwarz and (3.5). Simi-

larly, the second integral is bounded by O(M (1−n)/2N1/2(M2/N)) ‖ϕ‖L2 . If
we make the choice

N(M) =M3,

then this is o(M (1−n)/2N1/2) ‖ϕ‖H1 .

We have proved that if N(M) =M3, then
∫

Ω
γ∇v0·∇ϕdx =

∫

Ω
N2(iα−en)·(∇ρ−∇ρ(0))ηMhNϕdx+o(M (1−n)/2N1/2) ‖ϕ‖H1(Ω) .

Inserting (3.10) in the integral on the right and integrating by parts, this
integral becomes

∫

Ω
N(iα− en) · (∇ρ−∇ρ(0))ηMhN∂nϕdx

+

∫

Ω
N(iα− en) · (∇ρ−∇ρ(0))M∂nη(M · )hNϕdx.
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Here we used that∇ρ(x) = (−∇h(x′), 1) is independent of xn, which justifies
that one can integrate by parts with respect to xn even though ∇ρ is only
continuous. The second integral is essentially of the same form as the second
integral on the right hand side of (3.9), and the argument above shows that

it is o(M (1−n)/2N1/2) ‖ϕ‖H1 (use again that ∇ρ is independent of xn). Also

the first integral is o(M (1−n)/2N1/2) ‖ϕ‖H1 by Cauchy-Schwarz, Lemma 3.6
and the continuity of ∇ρ. This shows (3.7).

5. We can now finish the proof of the theorem. Define

uM = cM,Nv, fM = cM,Nf0, cM,N =

√
Mn−1N−1

cη
.

Since f0 = v0|∂Ω, clearly fM is in C1(∂Ω) and supported in B(0, 1/M)∩ ∂Ω
and

‖fM‖H1/2(∂Ω) ≤ CcM,N ‖v0‖H1(Ω) .

We saw in (3.2) that cM,N ‖∇v0‖L2(Ω) ≤ C uniformly over M , and since the

constant only depends on the choice of η and the C1 norm of ρ it can be
chosen uniform over x0 ∈ ∂Ω. Similarly cM,N ‖v0‖L2(Ω) ≤ C uniformly over

M and x0. Furthermore,
∫

Ω
γ∇uM ·∇ūM dx =

Mn−1N−1

cη

∫

Ω
γ(|∇v0|2+∇v̄0·∇v̄1+∇v0·∇v1+|∇v1|2) dx.

The first term satisfies by (3.3)

lim
M→∞

Mn−1N−1

cη

∫

Ω
γ |∇v0|2 dx = γ(0).

The other terms may be estimated by Cauchy-Schwarz and (3.2), (3.7), so
that∣∣∣∣
∫

Ω
γ(∇v0 · ∇v̄1 +∇v0 · ∇v1 + |∇v1|2) dx

∣∣∣∣ ≤ C(‖∇v0‖L2(Ω) + ‖∇v1‖L2(Ω)) ‖∇v1‖L2(Ω)

= o(M1−nN).

This proves the result. �

Remark 3.7. For later purposes, we make the following remarks about the
proof. If Ω has Ck boundary, it is clear that the approximate solution is in
Ck(Ω) and consequently fM ∈ Ck(∂Ω) and uM ∈ Hk(Ω). Inspecting the
proof, we have actually shown that the sequence (uM ) satisfies

lim
M→∞

∫

Ω
g |∇uM |2 dx = g(x0)

for any function g ∈ C0(Ω) (not just g = γ).

Exercise 3.8. Verify the details in Remark 3.7.
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The end part of the proof of Theorem 3.5 may be simplified by using
the Hardy inequality. Writing

δ(x) = dist(x, ∂Ω) = inf
z∈∂Ω

|x− z| ,

this inequality is as follows:

Theorem 3.9. (Hardy inequality) Let Ω be a bounded open set with C1

boundary. There is a constant C > 0 such that

‖ϕ/δ‖L2(Ω) ≤ C ‖∇ϕ‖L2(Ω) , ϕ ∈ H1
0 (Ω).

The following problems contain a proof of the Hardy inequality and
discuss how it is used in boundary determination.

Exercise 3.10. (Hardy inequality on the half line) If f ∈ C∞
c ((0,∞)),

define

Tf(x) =
1

x

∫ x

0
f(t) dt, x > 0.

For 1 < p <∞ prove that

‖Tf‖Lp((0,∞)) ≤ Cp ‖f‖Lp((0,∞)) , f ∈ C∞
c ((0,∞)).

Exercise 3.11. (Hardy inequality in half space) Let Rn+ =
{
x ∈ Rn

∣∣ xn >
0
}
. If 1 < p <∞, prove that

‖u/xn‖Lp(Rn
+) ≤ Cp ‖∂nu‖Lp(Rn

+) , u ∈ C∞
c (Rn+).

Exercise 3.12. Let Ω be a bounded open set with C1 boundary. Show that
for any x0 ∈ ∂Ω, there is r > 0, a C1 function h : Rn−1 → R, and a constant
c > 0 such that Ω ∩B(x0, r) =

{
x ∈ B(x0, r)

∣∣ xn > h(x′)
}
and

c(xn − h(x′)) ≤ δ(x) ≤ xn − h(x′), x ∈ B(x0, r) ∩ Ω.

Exercise 3.13. Prove Theorem 3.9.

Exercise 3.14. Consider the situation before the proof of Theorem 3.5, and
show that if η is continuous and supported in B(0, 1), then∣∣∣∣

∫

Ω
δ(x)kη(Mx)e−2Nρ(x) dx

∣∣∣∣ ≤ CM1−nN−k−1.

Exercise 3.15. Give an alternative proof of Theorem 3.7, by using the
Hardy inequality and Problem 3.14 in the part following (3.9).

Exercise 3.16. In this problem we construct harmonic functions on Rn+ that

are concentrated near the origin. We denote x′ = (x1, · · · , xn−1) ∈ Rn−1.
Let

Pxn(x
′) =

Γ(n2 )

πn/2
xn

(x2n + |x′|2)n/2
be the Poisson kernel.
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(a) Prove that ∆Pxn(x
′) = 0 for all xn > 0. Here ∆ is the Laplacian on Rn.

(b) Prove that
∫
Rn−1 Pxn(x

′) dx′ = 1 for all xn > 0.

(c) Let ϕ(x′) be a bounded continuous function on Rn−1. Prove that

Φ(x) =

∫

Rn−1

Pxn(x
′ − y′)ϕ(y′) dy′

obeys ∆Φ(x) = 0 in Rn+ and

lim
x→(z′,0)
xn>0

Φ(x) = ϕ(z′).

(d) Now suppose that ϕ(x′) = ∂αψ(x′) with ψ ∈ C |α|(Rn−1) supported in
the ball of radius 1 centred on the origin. Prove that there is a constant,
which depends only on |α| and n, such that

|Φ(x)| ≤ C

1 + |x||α|+n−1
.

3.2. Recovering normal derivatives

The next results imply uniqueness, reconstruction, and Hölder type stability
for determining the normal derivative of γ on the boundary from the DN
map.

Theorem 3.17. (Recovering ∂νγ on ∂Ω) Let Ω be a bounded open set with
C2 boundary, and let γ ∈ C1(Ω) be positive. Given a point x0 ∈ ∂Ω and
an open set Γ ⊂ ∂Ω containing x0, the quantity ∂νγ(x0) can be determined
from the knowledge of Λγf |Γ for all f ∈ C2(∂Ω) with supp (f) ⊂ Γ.

Theorem 3.18. (Stability of ∂νγ on ∂Ω) Let Ω be a bounded open set with
C2 boundary, and let γj ∈ C2(Ω) for j = 1, 2. Let E > 0 be a constant so
that

1/E ≤ γj ≤ E in Ω,

‖γj‖C2(Ω) ≤ E.

Then

‖∂νγ1 − ∂νγ2‖L∞(∂Ω) ≤ C(E) ‖Λγ1 − Λγ2‖
1/4

H1/2(∂Ω)→H−1/2(∂Ω)
.

In the previous section, we recovered the value of γ at a boundary point
x0 by using that

γ(x0) = lim
M→∞

∫

Ω
γ |∇uM |2 dx = lim

M→∞
〈ΛγfM , f̄M 〉∂Ω.

Here uM ∈ H1(Ω) are special solutions to the conductivity equation which
concentrate near x0, and fM is the boundary value of uM . These solutions
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can also be used to recover the normal derivative of γ at x0. By Remark
3.7, if γ ∈ C1(Ω) and if α ∈ Rn is a constant vector then one has

(3.11) α · ∇γ(x0) = lim
M→∞

∫

Ω
(α · ∇γ) |∇uM |2 dx.

By choosing α = ν(x0), Theorem 3.17 will follow if we can somehow deter-
mine the right hand side of the above identity from boundary measurements.
This will be done by the following Rellich type identity.

Lemma 3.19. Let Ω ⊂ Rn be a bounded open set with C2 boundary, and let
γ ∈ C1(Ω). If u ∈ H2(Ω) satisfies div(γ∇u) = 0 in Ω, then for any α ∈ Rn

one has∫

Ω
(α · ∇γ) |∇u|2 dx =

∫

∂Ω
(α · ν)γ |∇u|2 dS − 2

∫

∂Ω
Re((α · ∇u)γ∂νu) dS.

Proof. Let first w ∈ C∞(Ω). Integrating by parts, rearranging terms and
integrating by parts again gives that
∫

Ω
(α · ∇γ) |∇w|2 dx =

∫

∂Ω
(α · ν)γ |∇w|2 dS −

n∑

j=1

∫

Ω
γαj∂j(∇w · ∇w) dx

=

∫

∂Ω
(α · ν)γ |∇w|2 dS − 2

n∑

j=1

∫

Ω
αj Re(∇∂jw · γ∇w) dx

=

∫

∂Ω
(α · ν)γ |∇w|2 dS − 2

n∑

j=1

∫

∂Ω
αj Re(ν∂jw · γ∇w) dS

+ 2
n∑

j=1

∫

Ω
αj Re((∂jw)div(γ∇w)) dx

=

∫

∂Ω
(α · ν)γ |∇w|2 dS − 2

∫

∂Ω
Re((α · ∇w)γ∂νw̄) dS + 2

∫

Ω
Re((α · ∇w)div(γ∇w̄)) dx.

Let now u ∈ H2(Ω) solve div(γ∇u) = 0 in Ω. Since Ω has C2 boundary,
we may choose (wj) ⊂ C∞(Ω) such that wj → u inH2(Ω). Multiplication by

γ ∈ C1(Ω) is a bounded operator on H1(Ω), which shows that γ∇wj → γ∇u
in H1(Ω) and

div(γ∇wj) → div(γ∇u) = 0 in L2(Ω).

By the trace theorem ∂lwj |∂Ω → ∂lu|∂Ω in L2(∂Ω) for each l. Thus, the
theorem follows by applying the integral identity derived above to wj and
taking the limit as j → ∞. �

Proof of Theorem 3.17. By Remark 3.7, the solutions uM in Theorem
3.5 are in H2(Ω) and their boundary values fM are in C2(∂Ω). Applying
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Lemma 3.19 to uM , we have
∫

Ω
(α·∇γ) |∇uM |2 dx =

∫

∂Ω
(α·ν)γ |∇uM |2 dS−2

∫

∂Ω
Re((α·∇uM )γ∂νuM ) dS.

Denote the tangential part of ∇uM on ∂Ω by

∇TuM = ∇uM − (∇uM · ν)ν
∣∣∣
∂Ω
.

Since uM |∂Ω = fM , the tangential gradient of uM on ∂Ω is just the tangential
gradient of fM and we have

∇uM |∂Ω = ∇TuM + (∂νuM )ν
∣∣∣
∂Ω

= ∇TfM + γ−1ΛγfM

∣∣∣
∂Ω
.

Similarly, writing α = αT + (α · ν)ν we obtain
∫

Ω
(α · ∇γ) |∇uM |2 dx =

∫

∂Ω
(α · ν)γ |∇TfM |2 dS +

∫

∂Ω
(α · ν)γ−1 |ΛγfM |2 dS

− 2

∫

∂Ω
Re((α · ∇T fM )ΛγfM) dS − 2

∫

∂Ω
Re((α · ν)γ |∂νuM |2) dS.

Thus

∫

Ω
(α · ∇γ) |∇uM |2 dx =

∫

∂Ω
(α · ν)γ |∇T fM |2 dS −

∫

∂Ω
(α · ν)γ−1 |ΛγfM |2 dS

− 2

∫

∂Ω
Re((α · ∇T fM)ΛγfM ) dS.

(3.12)

The right hand side of (3.11) is therefore determined by the knowledge of
ΛγfM and the restriction of γ to supp (fM ). By Theorem 3.3 the boundary
values of γ near x0 are determined by the DN map near x0, and it follows
from (3.11) that α · ∇γ(x0) can be determined from the DN map near x0
for any constant vector α. The normal derivative is obtained by choosing
α = ν(x0). �

The proof of the stability result, Theorem 3.18, follows by comparing
the expressions in the previous theorem for two different conductivities. To
do this properly we will need certain further facts about the approximate
solutions constructed in 3.1, and these facts will be proved in the problems
in the end of this section.

Proof of Theorem 3.18. In this proof, the constants C will only depend
on Ω and E. Fix a point x0 ∈ ∂Ω (the constants C will also be independent
of the choice of x0), and for ease of notation assume that x0 = 0. Let
uM and vM be the solutions provided by Theorem 3.5 to the equations
div(γ1∇uM ) = 0 and div(γ2∇vM ) = 0 in Ω. By Remark 3.7, these solutions
are inH2(Ω) and their boundary values satisfy u|∂Ω = v|∂Ω = fM ∈ C2(∂Ω).
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Applying (3.12) to uM and vM and subtracting the resulting expressions
shows that∫

Ω
(α · ∇γ1) |∇uM |2 dx−

∫

Ω
(α · ∇γ2) |∇vM |2 dx

=

∫

∂Ω
(α · ν)(γ1 − γ2) |∇T fM |2 dS −

∫

∂Ω
(α · ν)(γ−1

1 − γ−1
2 ) |Λγ1fM |2 dS

+

∫

∂Ω
(α · ν)γ−1

2

[
(Λγ1fM − Λγ2fM)Λγ1fM +Λγ2fM(Λγ1fM − Λγ2fM)

]
dS

− 2

∫

∂Ω
Re
[
(α · ∇T fM)(Λγ1fM − Λγ2fM)

]
dS.

Notice that
∣∣γ−1

1 − γ−1
2

∣∣ =
∣∣∣∣
γ1 − γ2
γ1γ2

∣∣∣∣ ≤ E2 |γ1 − γ2| .

Assuming that α has unit length, we obtain
∣∣∣∣
∫

Ω
(α · ∇γ1) |∇uM |2 dx−

∫

Ω
(α · ∇γ2) |∇vM |2 dx

∣∣∣∣

≤ C ‖γ1 − γ2‖L∞(∂Ω)

[
‖fM‖2H1 + ‖Λγ1fM‖2L2

]

+ C ‖(Λγ1 − Λγ2)fM‖H−1/2

[
‖Λγ1fM‖H1/2 + ‖Λγ2fM‖H1/2 + ‖fM‖H3/2

]
.

Using the bounds for γj , we have (see Problem 3.20)
∥∥ΛγjfM

∥∥
H1/2 ≤ C ‖fM‖H3/2 ,

∥∥ΛγjfM
∥∥
L2 ≤ C ‖fM‖H1 .

Using also Theorem 3.4, it follows that
∣∣∣∣
∫

Ω
(α · ∇γ1) |∇uM |2 dx−

∫

Ω
(α · ∇γ2) |∇vM |2 dx

∣∣∣∣

≤ C ‖Λγ1 − Λγ2‖H1/2→H−1/2

[
‖fM‖2H1 + ‖fM‖H1/2 ‖fM‖H3/2

]
.

Since fM is an explicit function, we have the bounds (see Problem 3.21)

‖fM‖H1/2 ≤ C, ‖fM‖H1 ≤ CN1/2, ‖fM‖H3/2 ≤ CN.

It follows that∣∣∣∣
∫

Ω
(α · ∇γ1) |∇uM |2 dx−

∫

Ω
(α · ∇γ2) |∇vM |2 dx

∣∣∣∣
≤ CN ‖Λγ1 − Λγ2‖H1/2→H−1/2 .

Inspecting the construction in Section 3.1 carefully, for any g ∈ C1(Ω) we
have the quantitative estimate (see Problem 3.22)

∣∣∣∣
∫

Ω
g |∇uM |2 dx− g(0)

∣∣∣∣ ≤ C(|g(0)|M/N + ‖∇g‖L∞(Ω)M
−1).
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Applying this with g = α · ∇γj, it follows that
|α · ∇γ1(0)− α · ∇γ2(0)| ≤ C(N ‖Λγ1 − Λγ2‖H1/2→H−1/2 +M/N +M−1).

Let α = ν(0). Recalling that we eventually made the choice N(M) = M3

in 3.1, this implies

|∂νγ1(0) − ∂νγ2(0)| ≤ C(M3 ‖Λγ1 − Λγ2‖H1/2→H−1/2 +M−1).

We now fix a suitable large number M , of the form

M = ‖Λγ1 − Λγ2‖sH1/2→H−1/2 ,

for some s > 0 optimized so that both terms on the right hand side of the
last estimate are comparable. This condition results in the equation

3s+ 1 = −s,
or s = −1/4. With these choices, we have

|∂νγ1(0)− ∂νγ2(0)| ≤ C ‖Λγ1 − Λγ2‖
1/4

H1/2→H−1/2 .

Since this applies at any boundary point with a uniform constant C, we
have proved the result. �

Exercise 3.20. Let Ω ⊂ Rn is a bounded open set, and let γ ∈ L∞(Ω)
be such that 1/E ≤ γ ≤ E a.e. in Ω for some E > 0. Show that for any

f ∈ H1/2(∂Ω) the unique solution of div(γ∇u) = 0 in Ω with u|∂Ω = f
satisfies

‖u‖H1(Ω) ≤ C(E,Ω) ‖f‖H1/2(∂Ω) .

Show also that

‖Λγf‖H−1/2(∂Ω) ≤ C(E,Ω) ‖f‖H1/2(∂Ω) .

Moreover, if Ω has C2 boundary and ‖γ‖C1(Ω) ≤ E and f ∈ H3/2(∂Ω), show

that

‖u‖H2(Ω) ≤ C(E,Ω) ‖f‖H3/2(∂Ω)

and

‖Λγf‖H1/2(∂Ω) ≤ C(E,Ω) ‖f‖H3/2(∂Ω) .

Use also interpolation to show that

‖Λγf‖Hs−1(∂Ω) ≤ C(E,Ω) ‖f‖Hs(∂Ω) , 1/2 ≤ s ≤ 3/2.

Exercise 3.21. Let Ω ⊂ Rn is a bounded open set with C2 boundary. Show
that the function fM satisfies

‖fM‖Hs(∂Ω) ≤ C(Ω)N s−1/2, 0 ≤ s ≤ 2.
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Exercise 3.22. Let Ω ⊂ Rn is a bounded open set with C1 boundary. Show
that there is C > 0 such that for any g ∈ C(Ω) with modulus of continuity
ω, meaning that

|g(x)− g(y)| ≤ ω(|x− y|), x, y ∈ Ω,

one has
∣∣∣∣
∫

Ω
g |∇uM |2 dx− g(0)

∣∣∣∣ ≤ C(|g(0)|M/N + ω(M−1)).

3.3. Boundary normal coordinates

To recover higher order derivatives of the conductivity, it will be useful to
reduce to the case where the boundary is flat. Flattening the boundary
can be carried out in different ways, and typically the scalar conductivity is
transformed into a matrix conductivity in the process. Here it is convenient
to choose the change of coordinates so that the new conductivity matrix has
special form. These coordinates are called boundary normal coordinates,
since (as may be seen from the proof) the point F−1(y′, yn) is obtained by
choosing a boundary point according to y′ and then moving yn units in the
direction of the inner unit normal.

Proposition 3.23. Let Ω be a bounded domain with C∞ boundary in Rn,
and let p ∈ ∂Ω. There is a C∞ diffeomorphism F : U → V between open
sets of Rn where U is a neighborhood of p and V is a neighborhood of 0,
such that

F (p) = 0, F (Ω ∩ U) = V ∩ {yn > 0}, F (∂Ω ∩ U) = V ∩ {yn = 0},

and further for any y ∈ V ∩ {yn ≥ 0},

(DF )(DF )t|F−1(y) =

[
h(y) 0
0 1

]

for some C∞ symmetric positive definite matrix h(y) =
[
hαβ(y)

]n−1

α,β=1
.

Proof. Since Ω has smooth boundary, there is a system of coordinates where
p = 0 and where

Ω ∩B(0, 2r) =
{
y ∈ B(0, 2r)

∣∣ yn > h(y′)
}

for some C∞ map h : Rn−1 → R with h(0) = 0. Write q(y′) = (y′, h(y′)),
and define a map Φ : B(0, r) → Rn by

Φ(y′, yn) = q(y′)− ynν(q(y
′))
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This is a C∞ map in some neighborhood of 0, and its Jacobian matrix is
given in terms of columns by

DΦ(y′, yn) =
[
∂1q − yn∂1

(
ν(q(y′))

)
, . . . , ∂n−1q − yn∂n−1

(
ν(q(y′))

)
,−ν(q(y′))

](3.13)

Thus DΦ(0, 0) = [∂1q(0), . . . , ∂n−1q(0),−ν(0)]. Since q parametrizes ∂Ω,
the vectors {∂1q(0), . . . , ∂n−1q(0)} form a basis for all the tangent vectors
to ∂Ω at 0. Consequently DΦ(0, 0) is invertible. By the inverse function
theorem, there is a neighborhood V of 0 and a neighborhood U of 0 such
Φ : V 7→ U is a diffeomorphism.

We set F = Φ−1 : U → V . This is a diffeomorphism with F (0) = 0, and
F (Ω ∩ U) coincides with V ∩ {yn > 0} since ν was the unit outer normal.
By (3.13) we have

DΦ(y)tDΦ(y) =

[
g(y) v(y)
v(y)t 1

]

where g(y) is some smooth (n− 1)× (n− 1) matrix. But v = 0 since

vj(y) =
[
∂jq(y

′)− yn∂j
(
ν(q(y′))

)]
·
[
− ν(q(y′))

]

=
yn
2
∂j
[
ν(q(y′)) · ν(q(y′))

]
= 0

using that ∂jq(y
′) is tangent to ∂Ω and |ν| = 1. This concludes the proof

since DΦ(y) = DF (F−1(y))−1, and thus (DF )(DF )t|F−1(y) has the required

form where h(y) = g(y)−1 is positive definite because (DF )(DF )t is. �

Remark 3.24. A brief discussion about the precise meaning of “
(
∂
∂ν

)ℓ
f” is

in order. Let f be any C∞ function that is defined in a neighbourhood of ∂Ω.
For each point x, which is sufficiently close to ∂Ω, there is a unique point
π(x) ∈ ∂Ω that is nearest to x. The vector from x to π(x) is normal to ∂Ω
at π(x). See Problem 3.25. Let n̂(x) be a unit vector that is parallel to the
vector from x to π(x) and points from inside Ω to outside Ω. In the event that
x ∈ ∂Ω, so that π(x) = x, choose n̂(x) to be the unit outward normal to ∂Ω
at x. The vector n̂(x) = n̂

(
π(x)

)
is a C∞ function of x in a neighbourhood

of ∂Ω. Again, see Problem 3.25. We define ∂
∂ν f(x) = n̂(x) · ∇f(x), for all x

in a neighbourhood of ∂Ω. Then we may define
(
∂
∂ν

)ℓ
f by ℓ applications of

∂
∂ν .

Exercise 3.25. Let p ∈ ∂Ω. Let x′(ξ′) be a C∞ parametrization of a
neighbourhood of p in ∂Ω with x′(0) = p. Denote by n̂(x′) the unit outward
normal to ∂Ω at x′ ∈ ∂Ω. Define x(ξ′, ξn) = x′(ξ′)− ξnn̂

(
x′(ξ′)

)
.

(a) Prove that x(ξ′, ξn) is a C∞ diffeomorphism from a neighbourhood of
0 ∈ Rn to a neighbourhood of p ∈ Rn.
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(b) Prove that, for all sufficiently small (ξ′, ξn), x′(ξ′) is the point of ∂Ω that
is nearest x(ξ′, ξn), so that the distance from x(ξ′, ξn) to ∂Ω is |ξn|.

We now give a precise definition of higher order normal derivatives at
the boundary.

Definition 3.26. ??? MS:Possible exercises: relation to Remark
3.24, proof that the definition does not depend on choice of F .
??? Let Ω be a bounded domain with C∞ boundary, let γ ∈ C∞(Ω), and
let p ∈ ∂Ω. For l ≥ 0 we define

(
∂

∂ν

)l
γ(p) = ∂lyn(γ(F

−1(y)))|y=0

where F is as in Proposition 3.23.

Exercise 3.27. Show that the definition above is independent of the choice
of F .

??? MS:Could remark that coordinate invariance is explained
in more detail elsewhere in the book. ??? We will next determine
how the conductivity equation transforms under F . The idea is that solu-
tions to Lγu = 0 transform into solutions to Lγ̃ũ = 0 by the rule ũ = u◦F−1,
where γ̃ is a certain matrix conductivity given below. However, since the
change of coordinates is only defined near p we need to restrict our attention
to functions defined in a neighborhood of p.

Lemma 3.28. Let Ω, p, and F : U → V be as in Proposition 3.23, and
let γ ∈ C∞(Ω) be a positive function. Assume that v ∈ C∞(U ∩ Ω) and
let ṽ(y) = v(F−1(y)) for y ∈ V ∩ {yn ≥ 0}. If ϕ ∈ C∞

c (U ∩ Ω) and if
ϕ̃(y) = ϕ(F−1(y)), then ??? MS:Is this notation consistent? ???

〈Lγv, ϕ〉 = 〈Lγ̃ ṽ, ϕ̃〉

where

γ̃(y) =

[
ch 0
0 c

]

Here h =
[
hα,β

]n−1

α,β=1
is the matrix in Proposition 3.23 and

c(y) =
γ(F−1(y))

|detDF (F−1(y))| .

Proof. ??? MS:Are references needed to these basic things such
as changing coordinates in integrals, chain rule, ...? ??? Since
ϕ is compactly supported in U ∩Ω, we can make the change of coordinates
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x = F−1(y) to obtain

〈Lγv, ϕ〉 =
∫

U∩Ω
γ(x)∇v(x) · ∇ϕ(x) dx

=

∫

V ∩{yn>0}
γ(F−1(y))∇v(F−1(y)) · ∇ϕ(F−1(y))|detD(F−1)(y)| dy

The chain rule implies Dv(x) = D(ṽ ◦ F )(x) = Dṽ(F (x))DF (x), thus

∇v(x) = DF (x)t∇ṽ(F (x))
Using the analogous result for ϕ, we have

〈Lγv, ϕ〉 =
∫

V ∩{yn>0}

γ(F−1(y))DF (F−1(y))t∇ṽ(y) ·DF (F−1(y))t∇ϕ̃(y)
|detDF (F−1(y))| dy

=

∫

V ∩{yn>0}

γ

|detDF |(DF )(DF )
t
∣∣∣
F−1(y)

∇ṽ(y) · ∇ϕ̃(y) dy

〈Lγ̃ ṽ, ϕ̃〉 where γ̃ is as required. �

3.4. Oscillating solutions

Using the change of coordinates in Proposition 3.23, we may assume that
we are working in a domain Ω̃ which is flat near 0 and for some r > 0 one
has

B(0, 2r) ∩ Ω̃ = B(0, 2r) ∩ {yn > 0}.
We will determine the conductivity in the set

Γ̃ = B(0, r) ∩ {yn = 0}
Below, we will also think of Γ̃ as a subset of Rn−1. Motivated by Lemma
3.28, we consider a matrix conductivity γ̃ having the form

(3.14) γ̃(y) =

[
ch 0
0 c

]

where h(y) = (hα,β(y))n−1
α,β=1 is a symmetric positive definite matrix and c(y)

is a positive scalar function, both depending smoothly on y in B(0, 2r) ∩
{yn ≥ 0}. We assume that the matrix h is known, and that c is an unknown
function which needs to be determined.

The next step is to construct approximate solutions to the conductivity
equation in Ω̃ which are supported in a small neighborhood of Γ̃ and oscillate
rapidly on Γ̃, the speed of oscillation depending on a large parameter s > 0.
To recover high order derivatives of the conductivity, we need to do an
asymptotic construction in terms of powers of s. The proof is rather long
but quite elementary.

We will use the following result several times below:
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Exercise 3.29 (Leibniz rule). If u(t) and v(t) are Cm functions on some
real interval I, then

(
d

dt

)m (
u(t)v(t)

)
= u(m)(t)v(t) + u(t)v(m)(t) +

m−1∑

j=1

[
m
j

]
u(j)(t)v(m−j)(t)

(3.15)

Note that the approximate solutions in the next result are exponentially
decaying in Ω̃. They are related to the exponentially growing solutions which
are used later for proving uniqueness results for the Calderón problem in the
interior.

Proposition 3.30. Let N > 0, let t′ be a unit vector in Rn−1, and assume
that η ∈ C∞(Rn−1) is a compactly supported function in Γ̃. For some small

δ > 0 and for any s ≥ 1, there is a function ṽs ∈ C∞(Ω̃) satisfying

ṽs(y
′, 0) = eisy

′·t′η(y′) on Γ̃

supp (ṽs) ⊂ Γ̃× [0, δ]
(3.16)

and

‖ṽs‖H1(Ω̃) ≤ Cs1/2(3.17)

‖Lγ̃ ṽs‖L2(Ω̃) ≤ Cs−N+3/2(3.18)

where the constant C is independent of s. Further, this function has the
form

(3.19) ṽs = esΦ(a0 + s−1a−1 + . . .+ s−Na−N )

where Φ is a smooth complex function satisfying for some σ > 0

Φ(y′, 0) = iy′ · t′ for y′ ∈ Γ̃

∂nΦ(y
′, 0) = f1(y

′) for y′ ∈ Γ̃

Re(Φ(y′, yn)) ≤ −σyn for y ∈ Γ̃× [0, δ]

with

f1(y
′) = −




n−1∑

α,β=1

hα,β(y′, 0)tαtβ




1/2

and a0, a−1, . . . , a−N are smooth complex functions independent of s and
supported in the set Γ̃× [0, δ] and they satisfy

a0(y
′, 0) = η(y′) for y′ ∈ Γ̃

a−l(y
′, 0) = 0 for y′ ∈ Γ̃ and l ≥ 1
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Proof. ??? MS:Should this long proof be broken into separate
lemmas? ??? We try to find an approximate solution of the equation
Lγ̃ ṽ = 0 having the form ṽs = esΦa. One has the identity

∂j(e
sΦw) = esΦ(∂j + s∂jΦ)w.

Using this identity, the function ṽs satisfies

Lγ̃ ṽs =

n∑

j,k=1

∂j(γ̃
j,k∂kṽs)

=

n∑

j,k=1

esΦ(∂j + s∂jΦ)(γ̃
jk(∂k + s∂kΦ)a)

= esΦ
{
s2
[( n∑

j,k=1

γ̃j,k∂jΦ∂kΦ
)
a
]

+ s
[ n∑
j,k=1

(
2γ̃j,k∂jΦ∂ka+ ∂j

(
γ̃j,k∂kΦ

))
a
]
+ [Lγ̃a]

}

(3.20)

Note that we have grouped the terms corresponding to different powers of
s. The idea is to choose Φ and a so that the terms involving the largest
powers of s are small, finally resulting in the estimate (3.18). Since we are
only interested in finding approximate solutions in a small neighborhood of
Γ̃, it is sufficient to arrange that the terms vanish to high order on Γ̃ instead
of vanishing in a full neighborhood of Γ̃.

Finding Φ. 1. Looking at the s2 term in (3.20), the first task is to find
a complex function Φ which satisfies

(3.21) ∂jn(

n∑

j,k=1

γ̃j,k∂jΦ∂kΦ)|Γ̃ = 0 for j = 0, 1, . . . , N − 1

We will look for Φ in the form

(3.22) Φ(y′, yn) = f0(y
′) + ynf1(y

′) +
y2n
2
f2(y

′) + . . . +
yNn
N !

fN(y
′)

where fj(y
′) = ∂jnΦ(y′, 0) are functions to be determined. To ensure the

boundary condition (3.16), we choose

f0(y
′) = iy′ · t′

2. Next we find f1(y
′) = ∂nΦ(y

′, 0) so that (3.21) is satisfied for j = 0.
Using the special form of γ̃ given in 3.14, we need that

c(∂nΦ)
2 + c

n−1∑

α,β=1

hα,β∂αΦ∂βΦ
∣∣∣
Γ̃
= 0
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Since ∂αΦ|Γ̃ = itα, this reduces to

f21 −
n−1∑

α,β=1

hα,βtαtβ = 0.

Recalling that we want Re(Φ) ≤ 0 in Γ̃ × [0, δ], it makes sense to require
that f1 = ∂nΦ|Γ̃ is negative. Thus, we make the choice

f1(y
′) = −




n−1∑

α,β=1

hα,β(y′, 0)tαtβ




1/2

(hα,β(y′, 0)) is positive definite.

3. We continue with (3.21) for j = 1 and try to find f2 such that

∂n

( n∑

j,k=1

γ̃j,k∂jΦ∂kΦ
)∣∣∣

Γ̃
= 0

Since (∂nΦ)
2 +

∑n−1
α,β=1 h

α,β∂αΦ∂βΦ
∣∣
Γ̃
= 0 by (3.21) for j = 0, we have

∂n

( n∑

j,k=1

γ̃j,k∂jΦ∂kΦ
)∣∣∣

Γ̃
= c∂n

(
(∂nΦ)

2 +
n−1∑

α,β=1

hα,β∂αΦ∂βΦ
)∣∣∣

Γ̃

= c
(
2f1∂

2
nΦ−

n−1∑

α,β=1

(∂nh
α,β)tαtβ + T0(h)

)∣∣∣
Γ̃

where T0(h) is a quantity only depending on t′ and on y′-derivatives of
hα,β(y′, 0). The last expression vanishes if we choose f2 = ∂2nΦ|Γ̃ as

f2 =
1

2f1

n−1∑

α,β=1

(∂nh
α,β)tαtβ −

1

2f1
T0(h)

4. Let f0 and f1 be as above, and suppose that we have found f2, . . . , fm
such that ??? MS: The precise form of fj is actually not needed,
the only thing that one needs to know is that fj exists and is
independent of c. ???

∂jn

( n∑

j,k=1

γ̃j,k∂jΦ∂kΦ
)∣∣∣

Γ̃
= 0 for 0 ≤ j ≤ m− 1(3.23)

fj =
1

2f1

n−1∑

α,β=1

(∂j−1
n hα,β)tαtβ + Tj−2(h) for 2 ≤ j ≤ m(3.24)

where Tl(h) is an expression only depending on t′ and on y′-derivatives of
∂knh

α,β(y′, 0) for 0 ≤ k ≤ l. We wish to find fm+1 of the form (3.24) such
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that (3.23) is valid also for j = m. Since

n∑

j,k=1

γ̃j,k∂jΦ∂kΦ = c
(
(∂nΦ)

2 +
n−1∑

α,β=1

hα,β∂αΦ∂βΦ
)

the identity (3.15) and the hypothesis (3.23) imply that

∂jn

(
(∂nΦ)

2 +

n−1∑

α,β=1

hα,β∂αΦ∂βΦ
)∣∣∣

Γ̃
= 0 for 0 ≤ j ≤ m− 1.

Consequently, by (3.15) again and by (3.24),

∂mn

( n∑

j,k=1

γ̃j,k∂jΦ∂kΦ
)∣∣∣

Γ̃
= c∂mn

(
(∂nΦ)

2 +
n−1∑

α,β=1

hα,β∂αΦ∂βΦ
)∣∣∣

Γ̃

= c
(
2f1fm+1 −

n−1∑

α,β=1

(∂mn h
α,β)tαtβ + Tm−1(h)

)

We can make the last expression vanish by choosing fm+1, as required, as

fm+1 =
1

2f1

n−1∑

α,β=1

(∂mn h
α,β)tαtβ + Tm−1(h)

5. We use the previous steps to inductively find f0, f1, . . . , fN so that
Φ given by (3.22) satisfies the condition (3.21). Further, we have Φ(y′, 0) =
iy′ · t′, and

Re(Φ(y′, 0)) = yn

[
f1(y

′) + Re
(yn
2
f2(y

′) + . . .+
yN−1
n

N !
fN (y

′)
)]

If σ > 0 is such that f1|Γ̃ ≤ −2σ, we can find δ > 0 such that
∣∣∣∣
yn
2
f2(y

′) + . . .+
yN−1
n

N !
fN (y

′)

∣∣∣∣ ≤ σ for y ∈ Γ̃× [0, δ]

Then, for y ∈ Γ̃ × [0, δ] we have Re(Φ(y)) ≤ −σyn. This completes the
construction of Φ.

Finding a. 1. We have constructed a function Φ so that the s2 term in
(3.20) vanishes to high order on Γ̃. The next task is to find a function a so
that the s1 and s0 terms in (3.20) have the same property. We will in fact
look for a in the form

a = a0 + s−1a−1 + . . . + s−Na−N .

Here a0, a−1, . . . , a−N will be complex functions functions supported in Γ̃×
[0, δ] which are independent of s. For such a, the s1 and s0 terms in (3.20)
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become

s
[ n∑

j,k=1

(2γ̃j,k∂jΦ∂ka+ ∂j(γ̃
j,k∂kΦ)a

]
+ [Lγ̃a]

= s[Ma0] + [Ma−1 + Lγ̃a0] + s−1[Ma−2 + Lγ̃a−1] + . . .

+ s−(N−1)[Ma−N + Lγ̃a−(N−1)] + s−N [Lγ̃a−N ]

where M is the first order differential operator given by

Mb =

n∑

j,k=1

(
2γ̃j,k∂jΦ∂kb+ ∂j(γ̃

j,k∂kΦ)b
)

Note that the quantities in brackets are independent of s. We shall find
a0, a−1, . . . , a−N successively so that one has

∂jn
(
Ma0

)∣∣
Γ̃
= 0 for j = 0, 1, . . . , N − 1(3.25)

∂jn
(
Ma−1 + Lγ̃a0

)∣∣
Γ̃
= 0 for j = 0, 1, . . . , N − 1(3.26)

...(3.27)

∂jn
(
Ma−N + Lγ̃a−(N−1)

)∣∣
Γ̃
= 0 for j = 0, 1, . . . , N − 1(3.28)

2. The function a0 is constructed in a similar way as Φ. We look for a0
in the form

a0(y
′, yn) =

(
g0(y

′) + yng1(y
′) + . . .+

yNn
N !

gN (y
′)

)
ζ(yn/δ)

where gj(y
′) = ∂jna0(y

′, 0) are functions in C∞
c (Γ̃) to be determined, and

ζ ∈ C∞(R) is a fixed cutoff function with ζ(t) = 1 for |t| ≤ 1/2 and ζ(t) = 0

for |t| ≥ 1. It follows that a0 is compactly supported in Γ̃× [0, δ]. Motivated
by the boundary condition (3.16), we choose g0 as

g0(y
′) = η(y′)

3. Using the special form 3.14 for γ̃, it follows that

Mb =

n∑

j,k=1

(
2γ̃j,k∂jΦ∂kb+ γ̃j,k(∂j∂kΦ)b+ (∂j γ̃

j,k)(∂kΦ)b
)

= 2c∂nΦ∂nb+ 2c

n−1∑

α,β=1

hα,β∂αΦ∂βb+ c(∂2nΦ)b+ c

n−1∑

α,β=1

hα,β(∂α∂βΦ)b

+ (∂nc)(∂nΦ)b+

n−1∑

α,β=1

(∂αc)h
α,β(∂βΦ)b+ c

n−1∑

α,β=1

(∂αh
α,β)(∂βΦ)b

(3.29)
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For the equation (3.25) with j = 0, we have

Ma0
∣∣
Γ̃
= 2cf1∂na0 + (∂nc)f1η + c(∂2nΦ)η + T0(c, h)

where Tk(c, h) denotes an expression depending only on t′, η, and on y′-
derivatives of ∂jnc|Γ̃ and ∂jnhα,β |Γ̃ for 0 ≤ j ≤ k. Consequently, we have
Ma0|Γ̃ = 0 if g1 = ∂na0|Γ̃ is chosen as ??? MS: The precise form

of gj for j ≥ 1 (similarly ∂jna−l|Γ̃ for j ≥ 1) is actually not needed
anywhere. ???

g1(y
′) = −∂nc

2c
η − 1

2f1
f2η + T0(c, h)

= −∂nc
2c

η −
( 1

2f1

)2( n−1∑
α,β=1

(∂nh
α,β)tαtβ

)
η + T0(c, h)

by (3.24).

4. Let g0 be as above, and suppose that we have found g1, . . . , gm such
that (3.25) holds for j = 0, 1, . . . ,m− 1, and

(3.30) gj = −∂
j
nc

2c
η−
( 1

2f1

)2( n−1∑
α,β=1

(∂jnh
α,β)tαtβ

)
η+Tj−1(c, h), 1 ≤ j ≤ m

We will find gm+1 having the form (3.30) so that (3.25) is satisfied also for
j = m. By (3.29) and (3.15),

∂mn (Ma0)|Γ̃ = 2cf1∂
m+1
n a0 + (∂m+1

n c)f1η + cfm+2η + Tm(c, h).

We can make this vanish by choosing gm+1 = ∂m+1
n a0|Γ̃ having the required

form (3.30), using the expression for fm+2 in (3.24).

5. By the previous steps, we can find g0, g1, . . . , gN inductively so that
(3.25) is satisfied and each gj for j = 1, . . . , N has the form (3.30). This
completes the construction of a0.

6. The construction of a−1 is similar to that of a0. The function a−1

will have the form

a−1(y
′, yn) =

(
g−1,0(y

′) + yng−1,1(y
′) + . . .+

yNn
N !

g−1,N (y
′)

)
ζ(yn/δ)

for suitable g−1,j ∈ C∞
0 (Γ̃) and with ζ as above. Considering the boundary

condition (3.16), we choose

g−1,0(y
′) = 0.

Considering (3.26) for j = 0, since a−1|Γ̃ = 0 we have by (3.29)

Ma−1 + Lγ̃a0
∣∣
Γ̃
= 2cf1∂na−1 + Lγ̃a0

∣∣
Γ̃

= 2cf1∂na−1

∣∣
Γ̃
+ cg2 + T1(c, h)
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This vanishes if g−1,1 is chosen as

g−1,1 = − 1

2f1
g2 + T1(c, h)

= −
(
− 1

2f1

)∂2nc
2c

η −
(
− 1

2f1

)3( n−1∑
α,β=1

(∂2nh
α,β)tαtβ

)
η + T1(c, h)

Here we used (3.30). The next case to consider is

∂n
(
Ma−1 + Lγ̃a0

)∣∣
Γ̃
= 2cf1g−1,2 + cg3 + T2(c, h)

This vanishes if one defines

g−1,2 = − 1

2f1
g3 + T2(c, h)

= −
(
− 1

2f1

)∂3nc
2c

η −
(
− 1

2f1

)3( n−1∑
α,β=1

(∂3nh
α,β)tαtβ

)
η + T2(c, h)

Continuing, we obtain g−1,0, g−1,1, . . . , g−1,N such that a−1 satisfies (3.26)
and

g−1,j = −
(
− 1

2f1

)∂1+jn c

2c
η −

(
− 1

2f1

)3( n−1∑
α,β=1

(∂1+jn hα,β)tαtβ

)
η

+ T1+j−1(c, h), 1 ≤ j ≤ N

We have now constructed a−1.

7. The construction of a−2, . . . , a−N is completely analogous to that of
a−1. We leave it as an exercise to check that one can find a−2, . . . , a−N such
that (3.25)–(3.28) are satisfied, and

a−l|Γ̃ = 0, 1 ≤ l ≤ N

∂jna−l|Γ̃ = − 1

2f1
∂j+1
n a−(l−1)|Γ̃ + Tl+j−1(c, h)

= −
(
− 1

2f1

)l ∂l+jn c

2c
η −

(
− 1

2f1

)l+2( n−1∑
α,β=1

(∂l+jn hα,β)tαtβ

)
η

+ Tl+j−1(c, h), 1 ≤ l ≤ N, 1 ≤ j ≤ N

where, as before, Tk(c, h) denotes an expression only depending on t′, η, and
on y′-derivatives of ∂jnc|Γ̃ and ∂jnhα,β|Γ̃ for 0 ≤ j ≤ k.

End of proof. We have proved all the statements in the proposition
except for the estimates (3.17) and (3.18). To verify (3.17), we first use that
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a is uniformly bounded in Γ̃× [0, δ] and that Re(Φ) ≤ −σyn to obtain

‖ṽs‖L2(Γ̃×[0,δ]) ≤ C
∥∥∥esRe(Φ)

∥∥∥
L2(Γ̃×[0,δ])

≤ C
(∫

Γ̃

∫ δ

0
e−2sσyn dy′ dyn

)1/2

≤ Cs−1/2

by changing variables yn = t/s. The derivatives of ṽs are given by ∂j ṽs =
esΦ
(
s(∂jΦ)a+∂ja

)
, and a similar argument as above shows that ‖∂j ṽs‖L2(Γ̃×[0,δ]) ≤

Cs1/2 which implies (3.17).

To prove (3.18), we note that (3.20) and the construction of Φ and a
imply that

Lγ̃ ṽs = esΦ
(
s2b2 + sb1 + b0 + . . .+ s−(N−1)b−(N−1) + s−Nr−N

)

where each bk satisfies

∂jnbk|Γ̃ = 0, 0 ≤ j ≤ N − 1, −(N − 1) ≤ k ≤ 2,

and the remainder term r−N has the form

r−N = Lγ̃a−N .

??? MS: This property of Taylor series could be formulated as a
problem. ??? It follows that for y ∈ Γ̃× [0, δ], one has

∣∣bk(y′, yn)
∣∣ ≤ CyNn , −(N − 1) ≤ k ≤ 2,

where the constant C depends on the N th derivatives of bk and is indepen-
dent of s. Also |rN (y′, yn)| ≤ C with C independent of s. Since s ≥ 1, we
can estimate

∣∣Lγ̃ ṽs(y′, yn)
∣∣ ≤ CesRe(Φ)(s2yNn + s−N )

≤ Ce−σsyn(s2yNn + s−N )

The function Lγ̃ ṽs is supported in Γ̃× [0, δ] and satisfies

‖Lγ̃ ṽs‖2L2(Ω̃)
≤ 2C2

∫

Γ̃

∫ δ

0
e−2σsyn

(
s4y2Nn + s−2N

)
dy′ dyn

We used the inequality (a + b)2 ≤ 2(a2 + b2) for a, b ≥ 0. The integrand is
independent of y′ and consequently

‖Lγ̃ ṽs‖2L2(Ω̃)
≤ C ′

∫ ∞

0
e−2σsyn

(
s4y2Nn + s−2N

)
dyn

= C ′
∫ ∞

0
e−2σt

(
s4−2N t2N + s−2N

)
s−1 dt
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by the change of variable yn = t/s. Finally,

‖Lγ̃ ṽs‖2L2(Ω̃)
≤ C ′s3−2N

∫ ∞

0
e−2σtt2N dt+ C ′s−1−2N

∫ ∞

0
e−2σt dt

≤ C ′′s3−2N

We have proved (3.18). �

3.5. Recovering higher order derivatives

Let now Ω be a bounded domain with smooth boundary, and let p be a
fixed point on ∂Ω. Assume that γ ∈ C∞(Ω) is a positive function. We
will prove that γ and its normal derivatives at p can be recovered from the
Dirichlet–to–Neumann map measured on a small neighborhood of p.

First, let F : U → V be the boundary flattening change of coordinates
given in Proposition 3.23. We choose r > 0 so small that B(0, 2r) ∩ {yn >
0} ⊂ V , and define as in Lemma 3.28

γ̃(y) =

[
ch 0
0 c

]

where h(y) =
[
hα,β(y)

]n−1

α,β=1
is the matrix in Proposition 3.23 and where

c(y) =
γ(F−1(y))

|detDF (F−1(y))|
Note that c and h are only defined in V ∩ {yn ≥ 0}. We also consider the

flat boundary piece Γ̃ = B(0, r) ∩ {yn = 0}, and Γ = F−1(Γ̃) will be the
corresponding neighborhood of p in ∂Ω.

Let t′ ∈ Rn−1 be a unit vector, let η ∈ C∞(Rn−1) be supported in Γ̃,
and let N be large. We take ṽs to be the approximate solution given in
Proposition 3.30, and we transport ṽs to the original domain Ω by

vs(x) = ṽs(F (x)), x ∈ U ∩ Ω.

Since ṽs is compactly supported in Γ̃× [0, δ], it follows that we may extend
vs by zero to Ω and obtain a new function, also denoted by vs, in C∞(Ω)
with supp (vs) contained in a small neighborhood of p in Ω. We define the
function φs on ∂Ω by

φs = vs|∂Ω
The next result shows that one can construct an exact solution of Lγu =

0 in Ω which looks like vs when s is large.

Lemma 3.31. There is a unique solution us ∈ H1(Ω) of

Lγus = 0 in Ω

us = φs on ∂Ω
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This solution has the form us = vs + rs with

(3.31) ‖rs‖H1(Ω) ≤ Cs−N+3/2

Proof. The existence of a unique solution follows from the well–posedness
of the Dirichlet problem. ??? MS: Insert reference for Dirichlet
problem. ??? To show the estimate (3.31) for the correction term rs,
we note that rs solves

Lγrs = −Lγvs in Ω

rs = 0 on ∂Ω

Again by well–posedness of the Dirichlet problem, we have

‖rs‖H1(Ω) ≤ C ‖Lγvs‖H−1(Ω) ≤ C ‖Lγvs‖L2(Ω)

Now Lemma 3.28 together with a change of coordinates shows that for any
ϕ ∈ C∞

c (U ∩ Ω), with ϕ̃ = ϕ ◦ F−1, one has

|〈Lγvs, ϕ〉| = |〈Lγ̃ ṽs, ϕ̃〉| ≤ ‖Lγ̃ ṽs‖L2(V ∩{yn>0}) ‖ϕ̃‖L2(V ∩{yn>0})

≤ C ‖Lγ̃ ṽs‖L2(V ∩{yn>0}) ‖ϕ‖L2(Ω)

??? MS: Should we give a reference to the density statement? ???
Since C∞

c (U ∩ Ω) is dense in L2(U ∩ Ω), the same result remains true for
ϕ ∈ L2(U ∩ Ω). This implies that

‖Lγvs‖L2(Ω) = ‖Lγvs‖L2(U∩Ω) ≤ C ‖Lγ̃ ṽs‖L2(V ∩{yn>0}) ≤ Cs−N+3/2

by (3.18). Thus

‖rs‖H1(Ω) ≤ C ‖Lγvs‖L2(Ω) ≤ Cs−N+3/2

�

Note that the boundary value φs is explicit and is given by

φs(x) =

{
eisy

′(x)·t′η(y′(x)) if x∈ Γ

0 otherwise

where y′(x) =
(
F1(x), . . . , Fn−1(x)

)
is the representation of Γ as a flat

boundary piece. Thus, the next proposition proves that the boundary values
of γ on Γ can be determined from the knowledge of Λγ .

We first give a simple result needed for the proof:

Lemma 3.32. If Φ is as in Proposition 3.30 and if b is a smooth function
with supp (b) ⊂ Γ̃× [0, δ], then for any k ≥ 0

lim
s→∞

sk+1

∫

Γ̃×[0,δ]
e2sRe(Φ(y))yknb(y) dy = k!

∫

Γ̃

(
− 1

2f1(y′)

)k+1
b(y′, 0) dy′
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Proof. ??? MS:This proof could also be left as a problem. ???
From Proposition 3.30 we have that Re(Φ(y)) = ynψ(y

′, yn) where ψ ≤ −σ
in Γ̃ × [0, δ] and ψ(y′, 0) = f1(y

′). Consequently, the change of variable
yn = t/s shows that

sk+1

∫

Γ̃×[0,δ]
e2sRe(Φ(y))yknb(y) dy = sk+1

∫

Γ̃

∫ δ

0
e2synψ(y

′,yn)yknb(y
′, yn) dy

′ dyn

=

∫

Γ̃

∫ sδ

0
e2tψ(y

′ ,t/s)tkb(y′, t/s) dy′ dt

Since ψ ≤ −σ the integral is absolutely convergent, and we may apply
dominated convergence to obtain

lim
s→∞

sk+1

∫

Γ̃×[0,δ]
e2sRe(Φ(y))yknb(y) dy =

∫

Γ̃

∫ ∞

0
e2tψ(y

′ ,0)tkb(y′, 0) dy′ dt

The result follows by noting that for any λ > 0,
∫ ∞

0
e−λttk dt = λ−k−1

∫ ∞

0
e−ttk dt = k!λ−k−1.

�

Proposition 3.33. We have

lim
s→∞

s−1〈Λγφs, φ̄s〉 = −
∫

Γ̃
c(y′, 0)f1(y

′)η(y′)2 dy′

Proof. Assume that N > 1 in the construction of ṽs. Using that us =
vs + rs, we have ??? MS:Reference for this identity? ???

〈Λγφs, φ̄s〉 =
∫

Ω
γ∇us · ∇v̄s dx =

∫

Ω
γ∇vs · ∇v̄s dx+Rs

where Rs =
∫
Ω γ∇rs · ∇v̄s dx satisfies

(3.32) |Rs| ≤ C ‖rs‖H1(Ω) ‖vs‖H1(Ω) ≤ Cs−N+2

by (3.31) and the fact that ‖vs‖H1(Ω) ≤ Cs1/2 which follows from (3.17).

Lemma 3.28 implies that
∫

Ω
γ∇vs · ∇v̄s dx =

∫

Γ̃×[0,δ]
γ̃∇ṽs · ∇ṽs dy.

From the explicit form of ṽs in (3.19), we see that

∂j ṽs = esΦ
(
s(∂jΦ)a0 + r0,j

)

where |r0,j | ≤ C uniformly in s. Combining all these facts, one has the
identity

s−1〈Λγφs, φ̄s〉 = s

∫

Γ̃×[0,δ]
e2sRe(Φ)(γ̃∇Φ · ∇Φ̄)|a0|2 dy +

∫

Γ̃×[0,δ]
e2sRe(Φ)q dy + s−1Rs
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where |q| ≤ C uniformly in s. By Lemma 3.32 for k = 0 the second term
converges to zero as s→ ∞, and this is also true for the last term by (3.32)
since N > 1. Thus by Lemma 3.32 again

lim
s→∞

s−1〈Λγφs, φ̄s〉 = −1

2

∫

Γ̃

(γ̃∇Φ · ∇Φ̄)|a0|2
f1

∣∣∣∣
Γ̃

dy′

It remains to observe that

(γ̃∇Φ · ∇Φ̄)|a0|2|Γ̃ = c(y′, 0)
[
|∂nΦ(y′, 0)|2 +

n−1∑
α,β=1

hα,β(y′, 0)tαtβ
]
η(y′)2

where the expression in brackets is equal to 2f1(y
′)2. �

Since η ∈ C∞
c (Γ̃) can be chosen arbitrarily and f1 is known, it follows

from the previous result that c(y′, 0) is determined by Λγ on Γ. Finally,
because c(y) = |detDF |−1γ|F−1(y) where F only depends on p and Ω and

can therefore be considered as known, we recover γ(F−1(y′, 0)) for y′ ∈ Γ̃.
Thus we have determined γ|Γ.

The last result recovered the boundary value of γ. The simplest way to
recover the normal derivatives of γ is by comparing Λγ to Λγk where the

normal derivatives of γ and γk agree up to order k − 1.

Proposition 3.34. Let k ≥ 1 and let γk ∈ C∞(Ω) be any positive function
such that for 0 ≤ j ≤ k − 1,

(3.33)

(
∂

∂ν

)j
γk =

(
∂

∂ν

)j
γ on Γ

and

(3.34)

(
∂

∂ν

)k
γk = 0 on Γ

Then

lim
s→∞

sk−1〈(Λγ − Λγk)φs, φ̄s〉 =
1

2

∫

Γ̃

(
− 1

2f1(y′)

)k−1 ∂kn(γ ◦ F−1)(y′, 0)
|detDF (F−1(y′, 0))|η(y

′)2 dy′

Proof. Let N > k + 1, let us = vs + rs be the solution given in Lemma
3.31, and let uks = vks + rks be the corresponding solution in the case where
γ is replaced by γk. Then we have vks = ṽks ◦ F , where

ṽks = esΦ(ak0 + s−1ak−1 + . . .+ s−Nak−N )

is the function in Proposition 3.30 with c replaced by ck, and

ck(y) =
γk(F−1(y))

|detDF (F−1(y))| .

Note that Φ in Proposition 3.30 does not depend on c (see (3.22) and (3.24)),
therefore Φ is the same both for ṽs and ṽ

k
s . We also have a0|Γ̃ = ak0 |Γ̃ = η.
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As in the proof of Proposition 3.33, we have ??? MS: Reference for
this identity? ???

〈(Λγ − Λγk)φs, φ̄s〉 =
∫

Ω
(γ − γk)∇us · ∇ūks dx

=

∫

Γ̃×[0,δ]
(γ̃ − γ̃k)∇ṽs · ∇ṽks dy +Rs

where Rs involves rs and r
k
s and |Rs| ≤ Cs−N+2. Here

γ̃ − γ̃k = (c− ck)

[
h 0
0 1

]

By the condition (3.33) we have ∂jn(c−ck)|Γ̃ = 0 for 0 ≤ j ≤ k−1. Therefore
??? MS: Reference for this fact on Taylor series? ???

(c− ck)(y′, yn) = yknψk(y
′, yn)

where ψk is a smooth function satisfying

(3.35) ψk(y
′, 0) =

∂kn(c− ck)(y′, 0)
k!

=
1

k!

∂kn(γ ◦ F−1)(y′, 0)
|detDF (F−1(y′, 0))|

by the Leibniz rule, (3.33), and (3.34). Using that

∂j ṽs = esΦ(s(∂jΦ)a0 + r0,j)

∂j ṽ
k
s = esΦ(s(∂jΦ)a

k
0 + rk0,j)

where |r0,j | and |rk0,j | are bounded uniformly in s, it follows that

〈(Λγ − Λγk)φs, φ̄s〉 = s2
∫

Γ̃×[0,δ]
e2sRe(Φ)yknψk

[
|∂nΦ|2

+

n−1∑

α,β=1

hα,β∂αΦ∂βΦ̄
]
a0ā

k
0 dy + s

∫

Γ̃×[0,δ]
e2sRe(Φ)yknq dy +Rs

Here |q| ≤ C uniformly in s, and Lemma 3.32 and the condition N > k + 1
imply

lim
s→∞

sk−1

[
s

∫

Γ̃×[0,δ]
e2sRe(Φ)yknq dy +Rs

]
= 0.

From Lemma 3.32 we conclude that

lim
s→∞

sk−1〈(Λγ − Λγk)φs, φ̄s〉 = k!

∫

Γ̃

(
− 1

2f1(y′)

)k+1

ψk(y
′, 0)[2f1(y

′)2]η(y′)2 dy′

This finishes the proof by using (3.35). �

The main result of this section follows immediately.
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Proof of Theorem 3.1. If Γ is as stated and p is a fixed point on Γ, then
it is enough to determine (∂/∂ν)lγ near p. Thus, by reducing Γ if necessary
we may assume that we are working in the setting described in the beginning
of this section.

If l ≥ 0 is given, we choose N > l+1 and consider the solution us given
in Lemma 3.31 such that the function φs = us|∂Ω is supported in Γ. Since we
have knowledge of Λγf |Γ for f supported in Γ, we also know the quantities
〈Λγφs, φ̄s〉 for s ≥ 1. By Proposition 3.33 this determines γ on Γ by varying
the function η. From this knowledge we can construct a conductivity γ1

with γ = γ1 near p, and then Proposition 3.34 allows to recover (∂/∂ν)γ
near p. Continuing in this way, one finds the normal derivatives of γ up to
order l near p and thus on all of Γ by varying p.

??? MS:The construction of γk given in this paragraph could
be left as a problem. ??? The previous argument used that if (∂/∂ν)jγ
is known on Γ for 0 ≤ j ≤ k − 1, one can construct a smooth conductivity
γk satisfying (3.33) and (3.34) near p. To see this, define the function

γ̃k(y′, yn) =
k−1∑

j=0

∂jyn(γ ◦ F−1)(y′, 0)
j!

yjn.

This function is known since it involves (∂/∂ν)jγ|Γ for 0 ≤ j ≤ k− 1. Also,

since γ is positive in Ω, we have γ̃k ≥ ε0 > 0 in Γ̃×[0, δ0] for some sufficiently
small δ0 > 0. Let χ1(y

′) and χ2(yn) be smooth cutoff functions such that

χ1(y
′) = 1 for |y′| small and supp (χ1) ⊂ Γ̃, and χ2(yn) is 1 for |yn| ≤ δ0/2

and 0 for |yn| ≥ δ0. We then define χ(y′, yn) = χ1(y
′)χ2(yn) and

γk(x) = χ(F (x))γ̃k(F (x)) + (1− χ(F (x))).

This gives a smooth positive function in Ω for which (3.33) holds near p, as
desired. �

3.6. Stability

??? MS: Insert discussion about the norm of DN map (maybe
also local DN map, since the proofs immediately give also local
stability results). ??? A slightly more careful argument can be used
to prove a stability estimate for the inverse problem at the boundary. For
that purpose we define ??? ... ???

The main stability result is as follows.

Theorem 3.35. Let γ1 and γ2 be two positive functions in C∞(Ω). Then

(3.36) ‖γ1 − γ2‖L∞(∂Ω) ≤ C0 ‖Λγ1 − Λγ2‖H1/2(∂Ω)→H−1/2(∂Ω)
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Also
(3.37)
∥∥∂
∂ν

(γ1 − γ2)
∥∥
L∞(∂Ω)

≤ C0

∥∥∥Λγ1 − Λγ11 − (Λγ2 − Λγ12 )
∥∥∥
H1/2(∂Ω)→H1/2(∂Ω)

The constant C0 only depends on Ω, and γ1j are as in Proposition 3.34.

The proof depends on two lemmas. The first one is of independent
interest and states that even if the operators Λγ and Λ1 (the Dirichlet–

to–Neumann map for the constant conductivity) only map H1/2(∂Ω) to

H−1/2(∂Ω), the difference Λγ − γΛ1 has better regularity properties and

maps H1/2(∂Ω) to itself. The same holds for Λγ − Λγ1 , which shows that
the norm in (3.37) is well defined.

Lemma 3.36. Let γ be a positive function in C∞(Ω), and let γ̂ be another
such function which satisfies γ̂|∂Ω = γ|∂Ω. Then Λγ − γΛ1 and Λγ − Λγ̂ are

bounded operators from H1/2(∂Ω) to H1/2(∂Ω).

Proof. Let first f ∈ C∞(∂Ω). We have ??? MS: Reference to the fact
that Λγf = γ∂u/∂ν if f ∈ C∞... ???

(Λγ − γΛ1)f = γ
∂

∂ν
(u− u0)

∣∣∣
∂Ω

where u, u0 ∈ H1(Ω) solve the equations

∇ · γ∇u = 0 in Ω

∆u0 = 0 in Ω

and u|∂Ω = u0|∂Ω = f . Then the function w = u− u0 satisfies

∇ · γ∇w = −∇ · γ∇u0 = −γ∆u0 −∇γ · ∇u0 = −∇γ · ∇u0
Thus w ∈ H1(Ω) solves the Dirichlet problem

∇ · γ∇w = −∇γ · ∇u0 in Ω

w = 0 on ∂Ω

Since ∇γ · ∇u0 ∈ L2(Ω), elliptic regularity ??? MS: Reference for
elliptic regularity. ??? implies that w ∈ H2(Ω) and

‖w‖H2(Ω) ≤ C ‖∇γ · ∇u0‖L2(Ω) ≤ C ‖γ‖C1(Ω) ‖u0‖H1(Ω) ≤ C ‖γ‖C1(Ω) ‖f‖H1/2(∂Ω)

Therefore

‖(Λγ − γΛ1)f‖H1/2(∂Ω) =

∥∥∥∥γ
∂w

∂ν

∥∥∥∥
H1/2(∂Ω)

≤ C ‖γ‖C1(∂Ω)

∥∥∥∥
∂w

∂ν

∥∥∥∥
H1/2(∂Ω)

≤ C ‖w‖H2(Ω)

≤ C ‖f‖H1/2(∂Ω)

where C depends on γ. This is true for all f ∈ H1/2(∂Ω) by density.
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Finally, we have

Λγ − Λγ̂ = (Λγ − γΛ1)− (Λγ̂ − γ̂Λ1)

and this operator also maps H1/2(∂Ω) to itself boundedly. �

The next lemma concerns norm estimates for φs where the dependence
on the choice of η is made explicit. We make the same assumptions as in
the beginning of Section 3.5, and suppose that p ∈ ∂Ω is a boundary point
with a neighborhood Γ in ∂Ω corresponding to a flat boundary piece Γ̃.

Lemma 3.37.

‖φs‖H1/2(∂Ω) ≤ C0

(
s1/2 ‖η‖L2(Rn−1) + ‖η‖H1/2(Rn−1)

)
(3.38)

‖φs‖H−1/2(∂Ω) ≤ C0

(
s−1/2 ‖η‖L2(Rn−1) + s−1 ‖η‖H1(Rn−1)

)
(3.39)

where C0 only depends on Ω.

Proof. ??? MS:Are references for these Sobolev facts needed?
??? The function φs is supported in Γ which corresponds to Γ̃ in the
change of coordinates F . The invariance of Sobolev norms under changes of
coordinates implies ‖φs‖Hα(∂Ω) ≤ C0 ‖fs‖Hα(Rn−1) where C0 only depends

of ∂Ω and α, and

fs(y
′) = eisy

′·t′η(y′).

By definition, ‖fs‖Hα(Rn−1) = (2π)−
n−1
2

∥∥∥(1 + |ξ′|2)α/2f̂s
∥∥∥
L2(Rn−1)

. But we

have f̂s(ξ
′) = η̂(ξ′ − st′). This satisfies

∥∥f̂s
∥∥
L2(Rn−1)

= (2π)
n−1
2 ‖fs‖L2(Rn−1) = (2π)

n−1
2 ‖η‖L2(Rn−1)

and, using the inequality (a+ b)1/2 ≤ a1/2 + b1/2 for a, b ≥ 0,

∥∥∥|ξ′|1/2f̂s
∥∥∥
L2(Rn−1)

≤
∥∥∥(|ξ′ − st′|1/2 + |st′|1/2)η̂(ξ′ − st′)

∥∥∥
L2(Rn−1)

≤
∥∥∥|z′|1/2η̂(z′)

∥∥∥
L2(Rn−1)

+ s1/2
∥∥η̂(z′)

∥∥
L2(Rn−1)

≤ (2π)
n−1
2 [‖η‖H1/2(Rn−1) + s1/2 ‖η‖L2(Rn−1)]
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These results imply (3.38). To show (3.39) we note that

(2π)
n−1
2 ‖fs‖H−1/2(Rn−1) =

∥∥∥(1 +
∣∣ξ′
∣∣2)−1/4η̂(ξ′ − st′)

∥∥∥
L2(Rn−1)

≤
(∫

|ξ′|≤s/2
(1 +

∣∣ξ′
∣∣2)−1/2

∣∣η̂(ξ′ − st′)
∣∣2 dξ′

)1/2

+
(∫

|ξ′|≥s/2
(1 +

∣∣ξ′
∣∣2)−1/2

∣∣η̂(ξ′ − st′)
∣∣2 dξ′

)1/2

≤
(∫

|ξ′|≤s/2

∣∣η̂(ξ′ − st′)
∣∣2 dξ′

)1/2
+ (s/2)−1/2

(∫

|ξ′|≥s/2

∣∣η̂(ξ′ − st′)
∣∣2 dξ′

)1/2

If |ξ′| ≤ s/2 then |ξ′ − st′| ≥ s− |ξ′| ≥ s/2. Thus

(∫

|ξ′|≤s/2

∣∣η̂(ξ′ − st′)
∣∣2 dξ′

)1/2
≤ 2

s

(∫

Rn−1

∣∣z′
∣∣2 ∣∣η̂(z′)

∣∣2 dz′
)1/2

This proves (3.39). �

Proof of Theorem 3.35. Fix N > 2, t′ ∈ Rn−1 with |t′| = 1, and η ∈
C∞
c (Γ̃). Proposition 3.33 shows that for j = 1, 2 and for s ≥ 1,

s−1〈Λγjφs, φ̄s〉 = −
∫

Γ̃
cj(y

′, 0)f1(y
′)η(y′)2 dy′ + εj(s)

where cj corresponds to γj, and εj(s) → 0 as s → ∞. The estimate (3.38)
implies
∣∣∣∣
∫

Γ̃
(c1 − c2)(y

′, 0)f1(y
′)η(y′)2 dy′

∣∣∣∣

≤ ‖Λγ1 − Λγ2‖H1/2→H−1/2 s
−1 ‖φs‖2H1/2(∂Ω) + |ε1(s)|+ |ε2(s)|

≤ C0 ‖Λγ1 − Λγ2‖H1/2→H−1/2

(
‖η‖2

L2(Γ̃)
+ s−1 ‖η‖2

H1/2(Γ̃)

)
+ |ε1(s)|+ |ε2(s)|

Taking the limit as s→ ∞, we obtain
∣∣∣∣
∫

Γ̃
(c1 − c2)(y

′, 0)f1(y
′)η(y′)2 dy′

∣∣∣∣ ≤ C0 ‖Λγ1 − Λγ2‖H1/2→H−1/2

∥∥η2
∥∥
L1(Γ̃)

Since η is an arbitrary test function this implies

‖(c1 − c2)f1‖L∞(Γ̃) ≤ C0 ‖Λγ1 − Λγ2‖H1/2→H−1/2

The stability estimate (3.36) now follows since
∣∣(c1 − c2

)
(y′, 0)f1(y

′)
∣∣ ≥ α0

∣∣(γ1 − γ2)(F
−1(y′, 0))

∣∣

for some α0 > 0 which only depends on Ω.

The proof of (3.37) is analogous. Proposition 3.34 shows that

〈(Λγj − Λγ1j
)φs, φ̄s〉 =

1

2

∫

Γ̃

∂n(γj ◦ F−1)(y′, 0)

|detDF (F−1(y′, 0))|η(y
′)2 dy′ + εj(s)
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where εj(s) → 0 as s→ ∞. Substracting these identities for j = 1, 2 gives

∣∣∣∣
1

2

∫

Γ̃

∂n((γ1 − γ2) ◦ F−1)(y′, 0)
|detDF (F−1(y′, 0))| η(y′)2 dy′

∣∣∣∣

≤
∥∥∥Λγ1 − Λγ11 − (Λγ2 − Λγ12 )

∥∥∥
H1/2(∂Ω)→H1/2(∂Ω)

‖φs‖H1/2(∂Ω) ‖φs‖H−1/2(∂Ω)

+ |ε1(s)|+ |ε2(s)|

The estimates (3.38) and (3.39) show, upon taking s→ ∞, that

∣∣∣∣
1

2

∫

Γ̃

∂n((γ1 − γ2) ◦ F−1)(y′, 0)
|detDF (F−1(y′, 0))| η(y′)2 dy′

∣∣∣∣

≤ C0

∥∥∥Λγ1 − Λγ11 − (Λγ2 − Λγ12 )
∥∥∥
H1/2(∂Ω)→H1/2(∂Ω)

∥∥η2
∥∥
L1(Γ̃)

This implies (3.37). �

Later, when proving an interior stability result, we will need an alter-
native version of (3.37) which involves the H1/2(∂Ω) → H−1/2(∂Ω) norm
of the difference of Dirichlet-to-Neumann maps. We outline the proof as a
problem.

Exercise 3.38. Let γ1 and γ2 be two positive functions in C∞(Ω), and
assume that ??? MS: More details should be given here. This
might be tricky... ???

(i) 1/E ≤ γj ≤ E,

(ii) ‖γj‖C8(Ω) ≤ E.

There is 0 < σ < 1 such that

‖(∂/∂ν)(γ1 − γ2)‖L∞(∂Ω) ≤ C ‖Λγ1 − Λγ2‖σH1/2(∂Ω)→H−1/2(∂Ω)

where C and σ only depend on Ω, E, and n.

(The proof of this result is more involved than that of Theorem 3.35
partly because one needs to consider behavior for large fixed s instead of
just taking the limit as s→ ∞. For this reason one needs precise information
on certain constants appearing in Proposition 3.30 and Lemma 3.32 ...)

3.7. Anisotropic conductivities

??? Note: This section should be in the chapter on anisotropic
Calderón problem, after the discussion of boundary normal coor-
dinates and Laplace-Beltrami operator. ???
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The point is that the Laplace-Beltrami operator ∆g in boundary normal

coordinates looks like the operator |g|−1/2 Lγ̃ with anisotropic conductivity

γ̃(y) = c(y)

[
h(y) 0
0 1

]

where c = |g|1/2 and hα,β = gα,β . We can then use the results in Sections
3.4 and 3.5, with the exception that here both the scalar function c and
the matrix h depend on the unknown metric g. The proof of the boundary
determination result needs to take this into account.

Theorem 3.39. Let Ω be a bounded domain in Rn with C∞ boundary, and
let g be a Riemannian metric in Ω. Assume that p is a point on ∂Ω, and
let (y′, yn) be boundary normal coordinates for (Ω, g) near p. If n ≥ 3, then
from the knowledge of Λg it is possible to determine ∂lngj,k(y

′, 0) near p for
any integer l ≥ 0 and for all 1 ≤ j, k ≤ n.

We begin with some preparations. Let p be identified with 0, and sup-
pose that the boundary normal coordinates (y′, yn) are defined in B(0, 2r)∩
{yn ≥ 0}. Let Γ̃ = B(0, r) ∩ {yn = 0}, which is identified with the corre-
sponding set in Rn−1. In boundary normal coordinates, the inverse of the
metric has the form

g−1(y) =

[
h(y) 0
0 1

]

where h(y) =
[
gα,β(y)

]n−1

α,β=1
is a symmetric positive definite matrix depend-

ing smoothly on y in Γ̃ × [0, r]. Then, if v is supported in Γ̃ × [0, r], one
has

∆gv = |g|−1/2 Lγ̃v

where γ̃ is the anisotropic conductivity in Γ̃× [0, r] defined by

γ̃(y) = c(y)

[
h(y) 0
0 1

]

and

c(y) = |g(y)|1/2

We have now reduced matters to the situation in Sections 3.4 and 3.5.
Choose a unit vector t′ ∈ Rn−1 and a function η ∈ C∞

c (Γ̃), and let φs be the

explicit boundary value supported in Γ̃ and defined by

φs(y
′, 0) = eisy

′·t′η(y′)

The next result states that certain quantities can be recovered from the
boundary measurements Λg by using the method in Section 3.5.
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Proposition 3.40. In any dimension n ≥ 2, one has

(3.40) lim
s→∞

s−1〈Λgφs, φ̄s〉 =
∫

Γ̃

[ n−1∑
α,β=1

(|g| gα,β)(y′, 0)tαtβ
]1/2

η(y′)2 dy′

Further, if l ≥ 1 and if gl is any C∞ Riemannian metric in Ω so that in the
(y′, yn) coordinates

gl(y) =

[
hl(y) 0
0 1

]

for some matrix hl, and if for all 1 ≤ j, k ≤ n

∂pn(
∣∣∣gl
∣∣∣
1/2

(gl)j,k) = ∂pn(|g|1/2 gj,k) on Γ̃ for 0 ≤ p ≤ l − 1(3.41)

∂ln(
∣∣∣gl
∣∣∣
1/2

(gl)j,k) = 0 on Γ̃(3.42)

then

lim
s→∞

sl−1〈(Λg − Λgl)φs, φ̄s〉

=

∫

Γ̃

(
− 1

2f1(y′)

)l+1
[ n∑
α,β=1

(∂ln(|g|1/2)gα,β + ∂ln(|g|1/2 gα,β))(y′, 0)tαtβ
]
η(y′)2 dy′

(3.43)

Proof. We first take N > 1 and let ṽs be the approximate solution in

Proposition 3.30 with γ̃j,k = |g|1/2 gj,k, satisfying

‖∆gṽs‖L2(Γ̃×[0,δ]) =
∥∥∥|g|−1/2 Lγ̃ ṽs

∥∥∥
L2(Γ̃×[0,δ])

≤ Cs−N+3/2

Following the proof of Lemma 3.31, there is a solution us = vs + rs of
∆gus = 0 in Ω with us|∂Ω = φs and ‖rs‖H1(Ω) ≤ Cs−N+3/2. Then, as in the

proof of Proposition 3.33,

〈Λgφs, φ̄s〉 =
∫

Ω

n∑

j,k=1

|g|1/2 gj,k∂jus∂kv̄s dx

=

∫

Γ̃×[0,δ]

n∑

j,k=1

γ̃j,k∂j ṽs∂kṽs dx+Rs

where |Rs| ≤ Cs−N+2. The computation in the proof of Proposition 3.33
implies that

lim
s→∞

s−1〈Λgφs, φ̄s〉 = −1

2

∫

Γ̃

(γ̃∇Φ · ∇Φ̄) |a0|2
f1

∣∣∣∣∣
Γ̃

dy′

= −
∫

Γ̃
c(y′, 0)f1(y

′)η(y′)2 dy′

Since c = |g|1/2, the expression for f1 in Proposition 3.30 implies (3.40).
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We move to the proof of (3.43), which proceeds in the same way as the
proof of Proposition 3.34. Let gl be the Riemannian metric in Ω given above,
and note that

〈(Λg − Λgl)φs, φ̄s〉 =
∫

Ω

n∑

j,k=1

|g|1/2 gj,k∂jus∂kūls dx−
∫

Ω

n∑

j,k=1

∣∣∣gl
∣∣∣
1/2

(gl)j,k∂jus∂kū
l
s dx

where ∆gus = 0 and ∆glu
l
s = 0 in Ω and us = uls = φs on ∂Ω. Let

ṽs be the approximate solution of Proposition 3.30 where N > l + 1 and

γ̃j,k = |g|1/2 gj,k, and let ṽls be the corresponding function where g is replaced
by gl. Then

〈(Λg −Λgl)φs, φ̄s〉 =
∫

Γ̃×[0,δ]

n∑

j,k=1

(|g|1/2 gj,k −
∣∣∣gl
∣∣∣
1/2

(gl)j,k)∂j ṽs∂kṽls dy +Rs

with |Rs| ≤ Cs−N+2. As a consequence of (3.41), we obtain that

∂pn(|g|1/2 gj,k −
∣∣∣gl
∣∣∣
1/2

(gl)j,k)|Γ̃ = 0 for 0 ≤ p ≤ l − 1

This implies

〈(Λg − Λgl)φs, φ̄s〉 =
∫

Γ̃×[0,δ]

n∑

j,k=1

ylnψ
j,k
l (y′, yn)∂j ṽs∂kṽls dy +Rs

where ψj,kl is a smooth function satisfying

ψj,kl (y′, 0) = ∂ln(|g|1/2 gj,k)(y′, 0)/l!

Here we used (3.42). Then, as in Proposition 3.34,

lim
s→∞

sl−1〈(Λg − Λgl)φs, φ̄s〉

= l!

∫

Γ̃

(
− 1

2f1(y′)

)l+1
[ n∑
j,k=1

ψj,kl (y′, 0)∂jΦ(y
′, 0)∂kΦ̄(y

′, 0)
]
η(y′)2 dy′

The quantity in brackets is equal to

1

l!

[
∂ln(|g|1/2)(y′, 0)f1(y′)2 +

n−1∑
α,β=1

∂ln(|g|1/2 gα,β)(y′, 0)tαtβ
]

The identity (3.43) follows upon substituting the expression for f1. �

The next step is to show that the information contained in (3.40) and

(3.43) is sufficient to determine all derivatives of gα,β on Γ̃. To do this, we use
a basic identity concerning the derivative of the logarithm of a determinant.
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Exercise 3.41. If A(t) is a symmetric n × n invertible matrix depending
smoothly on t in some interval, then

d

dt

(
log det(A(t))

)
=

n∑

j,k=1

(
A(t)−1

)
j,k

d

dt
A(t)j,k

Proposition 3.42. Let n ≥ 3 and l ≥ 1. From the knowledge of

gα,β
∣∣
Γ̃
, ∂ng

α,β
∣∣
Γ̃
, . . . , ∂l−1

n gα,β
∣∣
Γ̃
, and [∂ln(|g|1/2)gα,β + ∂ln(|g|1/2 gα,β)]|Γ̃

it is possible to determine ∂lng
α,β |Γ̃.

Proof. Fix l and assume that one has knowledge of the stated quantities.
The Leibniz rule implies that

∂ln
(
|g|1/2

)
gα,β + ∂ln

(
|g|1/2 gα,β

)
= |g|1/2 ∂lngα,β + 2∂ln

(
|g|1/2

)
gα,β + Tl−1

where Tl−1 denotes an expression depending on ∂jngα,β where 0 ≤ j ≤ l − 1
and 1 ≤ α, β ≤ n− 1. Since

∂n(|g|1/2) =
1

2
|g|−1/2 ∂n(|g|)

we have again by the Leibniz rule

∂ln(|g|1/2)gα,β + ∂ln(|g|1/2 gα,β) = |g|1/2 ∂lngα,β + ∂l−1
n

(
|g|1/2 ∂n(log |g|)

)
gα,β + Tl−1

= |g|1/2
[
∂lng

α,β − ∂ln
(
log

∣∣g−1
∣∣ )gα,β

]
+ Tl−1

The last expression is then known on Γ̃. Denoting the expression in brackets

by kα,β, the fact that |g|1/2 |Γ̃ and Tl−1|Γ̃ are known implies that kα,β |Γ̃ is
also known. By Problem 3.41 we have in fact

kα,β = ∂lng
α,β − ∂l−1

n

( n−1∑
γ,δ=1

gγ,δ∂ng
γ,δ
)
gα,β

= ∂lng
α,β −

( n−1∑
γ,δ=1

gγ,δ∂
l
ng

γ,δ
)
gα,β + Tl−1

Since
∑n−1

α,β=1 gα,βg
α,β = n− 1, it follows that

n−1∑

α,β=1

gα,βk
α,β = (2− n)

n−1∑

γ,δ=1

gγ,δ∂
l
ng

γ,δ + Tl−1.

Therefore (using that n ≥ 3)

∂lng
α,β = kα,β +

1

2− n

( n−1∑
γ,δ=1

gγ,δk
γ,δ
)
gα,β + Tl−1

Since kα,β|Γ̃ was known, this determines ∂lng
α,β|Γ̃ as required. �

The main result now follows from Propositions 3.40 and 3.42.
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Proof of Theorem 3.39. We use boundary normal coordinates (y′, yn) to
identify p with 0 as before, and denote by Γ̃ a flat neighborhood of 0 in ∂Ω.
Since gα,n = 0 for 1 ≤ α ≤ n − 1 and gn,n = 1, it is enough to determine

∂lngα,β|Γ̃ for all l ≥ 0 and 1 ≤ α, β ≤ n−1. Further, to determine the matrix

(gα,β)|Γ̃ it is enough to determine the inverse matrix (gα,β)|Γ̃. For higher
order derivatives the identity

n∑

β=1

gα,βg
β,γ = δγα

and the Leibniz rule show that
n∑

β=1

(
∂lngα,β

)
gβ,γ = T γα

where T γα contains terms depending on ∂jngα,β for 0 ≤ j ≤ l − 1 and ∂jngβ,γ

for 0 ≤ j ≤ l. Consequently

∂lngα,δ =

n∑

β,γ=1

(
∂lngα,β

)
gβ,γgγ,δ =

n∑

γ=1

T γαgγ,δ

This shows that it is sufficient to prove that Λg determines ∂lng
α,β |Γ̃ for all

l and α, β.

By (3.40), since the test function η can be chosen arbitrarily, it follows
that Λg determines

n−1∑

α,β=1

(
|g| gα,β

)
(y′, 0)tαtβ

Also the unit vector t′ ∈ Rn−1 was arbitrary, and therefore we determine for
all 1 ≤ α, β ≤ n− 1 ∣∣g(y′, 0)

∣∣ gα,β(y′, 0)
The (n−1)× (n−1) matrix |g| (gα,β) has determinant |g|n−1 |g|−1 = |g|n−2,

which is also known on Γ̃. Since n ≥ 3 we know |g| on Γ̃ and thus also

gα,β|Γ̃ = |g|−1 (|g| gα,β)|Γ̃.

This determines the boundary values of gα,β on Γ̃. For higher order deriva-
tives, we note that (3.43) shows upon varying η and t′ that Λg determines

on Γ̃ the quantity

∂ln(|g|1/2)gα,β + ∂ln(|g|1/2 gα,β)
Taking l = 1 and using that gα,β |Γ̃ was known, Proposition 3.42 shows that

∂ng
α,β |Γ̃ is determined by Λg. Proceeding inductively, we recover ∂lng

α,β |Γ̃
for all l ≥ 0 and 1 ≤ α, β ≤ n− 1. �
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3.8. Notes

Section 3.2. The treatment is based on an unpublished argument due
to Russell Brown, whom we would like to thank for making this argument
available to us.



Chapter 4

The Calderón problem

in three and higher

dimensions

In this chapter, we prove interior uniqueness, stability, and reconstruction
results for the Calderón problem in dimensions three and higher. To describe
the contents of this chapter, we assume that Ω is a bounded open subset of
Rn, n ≥ 3, with C2 boundary, and all conductivities are positive functions
in C2(Ω).

The linearized version of the Calderón problem is considered in Section
4.1, and we present an argument showing uniqueness in the linearized prob-
lem. The proof is based on special harmonic functions given by the complex
exponentials eiζ·x, where ζ ∈ Cn is a vector satisfying ζ · ζ = 0, In Section
4.2, we construct complex geometrical optics solutions that resemble the
harmonic exponentials, and use these in Section 4.3 to prove that if two
isotropic conductivities γ1 and γ2 in Ω give rise to the same boundary mea-
surements, then γ1 = γ2 throughout Ω. This follows from the corresponding
identifiability result for Schrödinger operators.

4.1. The linearized Calderón problem

The “plane wave” exponential function

u = ex·ζ , ζ ∈ Cn,

is a solution to Laplace’s equation,

∆u = 0,

105
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if and only if
ζ · ζ = 0.

If ζ = η + ik with η, k ∈ Rn, then

(4.1) 0 = ζ · ζ = |η|2 − |k|2 + 2iη · k ⇐⇒ |η| = |k| and η ⊥ k.

So any non–zero ζ obeying ζ ·ζ = 0 will have non–zero real and imaginary
parts and the corresponding solution, ex·ζ , will grow or decay exponentially
in some directions in Rn and will oscillate in some directions. The utility of
exponentially growing solutions in solving the inverse conductivity problem
was first observed by Calderón, and we begin by exhibiting his proof of
injectivity of the linearized inverse boundary value problem.

Theorem 4.1 (Uniqueness of the linearized Calderón problem). The Fréchet
derivative of Λ at γ = 1, δγ 7→ DΛ1[δγ], is injective. That is, if

DΛ1[δγ] = 0

for some δγ ∈ L∞(Ω), then
δγ = 0.

Let us first show that the Fréchet derivative exists.

Theorem 4.2. Let Ω ⊂ Rn be a bounded open set, and let γ ∈ L∞(Ω)
satisfy γ ≥ c > 0 a.e. in Ω. For δγ ∈ L∞(Ω), the identity

〈DΛγ [δγ]f, g〉∂Ω =

∫

Ω
δγ∇u · ∇v dx, f, g ∈ H1/2(∂Ω),

where u, v ∈ H1(Ω) satisfy div(γ∇u) = div(γ∇v) = 0 in Ω with u|∂Ω = f ,
v|∂Ω = g, defines a bounded linear map

DΛγ [δγ] : H
1/2(∂Ω) → H−1/2(∂Ω).

This map gives the Fréchet derivative of the map γ 7→ Λγ in the sense that

lim
t→0

1

t
(Λγ+tδγ − Λγ) = DΛγ [δγ]

in the space of bounded operators from H1/2(∂Ω) to H−1/2(∂Ω).

Proof. Let γ(t) = γt be a C
1 curve of functions in L∞(Ω) that are uniformly

bounded from below. This means that 1/E ≤ γ(t) ≤ E in Ω for t near 0,
and

γ(t) = γ(0) + tγ̇(0) + tε(t)

where γ̇(0) ∈ L∞(Ω) and

lim
t→0

‖ε(t)‖L∞(Ω) = 0.

Let f, g ∈ H1/2(∂Ω), and let ut and vt satisfy

div(γt∇ut) = div(γt∇vt) = 0 in Ω, ut|∂Ω = f, vt|∂Ω = g.
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By the definition of DN maps and symmetry of Λ0,

〈(Λγt − Λγ0)f, g〉∂Ω = 〈Λγtf, g〉∂Ω − 〈f,Λγ0g〉∂Ω

=

∫

Ω
(γt − γ0)∇ut · ∇v0 dx.

Consequently

(4.2) 〈(1
t
Λγt − Λγ0)f, g〉∂Ω =

∫

Ω
(γ̇(0) + ε(t))∇ut · ∇v0 dx.

Using the bounds for γt, we have

‖ut‖H1(Ω) ≤ C(E,Ω) ‖f‖H1/2(∂Ω) .

Also, since ut − u0 solves

div(γt∇(ut − u0)) = −div((γt − γ0)∇u0) in Ω,

ut − u0|∂Ω = 0,

we have

‖ut − u0‖H1(Ω) ≤ C(E,Ω) ‖div((γt − γ0)∇u0)‖H−1(Ω)

≤ C(E,Ω) ‖γt − γ0‖L∞(Ω) ‖∇u0‖L2(Ω)

≤ C(E,Ω) ‖γt − γ0‖L∞(Ω) ‖f‖H1/2(Ω) .

Since ‖γt − γ0‖L∞(Ω) ≤ Ct, we may combine these facts and take the limit

in (4.2) as t → 0 to obtain

〈DΛγ(0)[γ̇(0)]f, g〉∂Ω =

∫

Ω
γ̇(0)∇u0 · ∇v0 dx.

This defines DΛγ(0)[γ̇(0)]f weakly as an element of H−1/2(∂Ω), since

∣∣〈DΛγ(0)[γ̇(0)]f, g〉∂Ω
∣∣ ≤ ‖γ̇(0)‖L∞(Ω) ‖∇u0‖L2(Ω) ‖∇v0‖L2(Ω)

≤ ‖γ̇(0)‖L∞(Ω) ‖f‖H1/2(∂Ω) ‖g‖H1/2(∂Ω) .

It also follows that DΛγ(0)[γ̇(0)] is bounded from H1/2(∂Ω) to H−1/2(∂Ω).
Finally, DΛγ(0)[γ̇(0)] is the Fréchet derivative since by (4.2) one has

〈
[
1

t
(Λγt − Λγ0)−DΛγ(0)[γ̇(0)]

]
f, g〉∂Ω

=

∫

Ω
γ̇(0)(∇ut −∇u0) · ∇v0 dx+

∫

Ω
ε(t)∇ut · ∇v0 dx.
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Thus,
∣∣∣∣〈
[
(
1

t
Λγt − Λγ0)−DΛγ(0)[γ̇(0)]

]
f, g〉∂Ω

∣∣∣∣
≤ C(‖∇ut −∇u0‖L2(Ω) ‖v0‖H1(Ω) + ‖ε(t)‖L∞(Ω) ‖ut‖H1(Ω) ‖v0‖H1(Ω))

≤ C(t+ ‖ε(t)‖L∞(Ω)) ‖f‖H1/2(∂Ω) ‖g‖H1/2(∂Ω) .

The result follows by taking γ(t) = γ + tδγ. �

Proof. of Theorem 4.1 By Theorem 4.2, the equation

DΛγ [δγ] = 0

is equivalent to
(4.3)∫

Ω
δγ∇u1 · ∇u2 dx = 0 for all uj ∈ H1(Ω) obeying div(γ∇uj) = 0.

If we further restrict to γ = 1 then (4.3) must hold for every pair of harmonic
functions u1 and u2. A natural set of choices for u1 and u2 are exponentials
ex·ζ with ζ · ζ = 0. Substituting

u1 = ex·ζ1 , u2 = ex·ζ2

with ζj · ζj = 0, into (4.3) gives

ζ1 · ζ2
∫

Ω
ex·(ζ1+ζ2)δγ dx = 0

By (4.1), we may choose ζ1 = 1
2(η + ik) and ζ2 = 1

2 (−η + ik) with any
k, η ∈ Rn for which |k| = |η| and k ⊥ η. Then

ζ1 + ζ2 = ik and ζ1 · ζ2 = −1
2 |k|2

so that DΛ1[δγ] = 0 implies that

|k|2
∫

Ω
eix·kδγ dx = 0

which, in turn, implies that the Fourier transform ̂(χΩδγ)(k) vanishes for
every nonzero k. Here χΩ denotes the characteristic function of the set Ω.

However, χΩδγ is an element of L2(Rn), so that χ̂Ωδγ is in L2(Rn) and
therefore cannot be supported at a single point. As a consequence

χΩδγ = 0

which proves that DΛ1[ · ] is injective. �
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4.2. Complex geometrical optics solutions: first proof

The approach that we will use to prove identifiability in Section 4.3 is based
on exponential solutions that are perturbations of those for the Laplacian.
These solutions have many names, including exponentially growing solu-
tions, Faddeev type solutions, and Sylvester-Uhlmann type solutions. We
will call these solutions complex geometrical optics (CGO) solutions, since
they are a complex phase analogue of the standard geometrical optics solu-
tions for wave equations.

In this section, we will construct CGO solutions to the Schrödinger equa-
tion

(−∆+ q)u = 0 in Ω.

The potential q is assumed to be in L∞(Ω). To motivate the construction,
first let q = 0. We have seen that there are solutions to the equation
−∆u = 0 having the form of a complex exponential at frequency ζ ∈ Cn,

u(x) = eiζ·x, ζ · ζ = 0.

Now suppose q is nonzero. The function u = eiζ·x is not an exact solution of
(−∆+ q)u = 0 anymore, but we can find solutions which resemble complex
exponentials. These are the CGO solutions, which have the form

(4.4) u(x) = eiζ·x(1 + r(x, ζ)).

Here r is a correction term which is needed to convert the approximate
solution eiζ·x to an exact solution.

In fact, we are interested in solutions in the asymptotic limit as |ζ| → ∞.
This follows the principle that it is usually not possible to obtain explicit
formulas for solutions to variable coefficient equations, but in suitable as-
ymptotic limits explicit expressions for solutions may exist.

The next theorem is the main result on the existence of CGO solutions.
Note that the constant function a ≡ 1 always satisfies the transport equation
ζ · ∇a = 0, so as a special case one obtains the solutions u = eiζ·x(1 + r)
mentioned above.

Theorem 4.3. (CGO solutions) Let Ω ⊂ Rn be a bounded open set, and let
q ∈ L∞(Ω). There is a constant C0 depending only on Ω and n, such that
for any ζ ∈ Cn satisfying ζ · ζ = 0 and |ζ| ≥ max(C0 ‖q‖L∞(Ω) , 1), and for

any function a ∈ H2(Ω) satisfying

ζ · ∇a = 0 in Ω,

the equation (−∆+ q)u = 0 in Ω has a solution u ∈ H2(Ω) of the form

(4.5) u(x) = eiζ·x(a+ r),
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where r ∈ H2(Ω) satisfies

‖r‖Hk(Ω) ≤ C0 |ζ|k−1 ‖(−∆+ q)a‖L2(Ω) , k = 0, 1, 2.

We note that (4.4) is a solution of (−∆+ q)u = 0 if and only if

(4.6) e−iζ·x(−∆+ q)eiζ·x(1 + r) = 0.

It will be convenient to conjugate the exponentials eiζ·x into the Laplacian.
By this we mean that

e−iζ·xDj(e
iζ·xv) = (Dj + ζj)v,

e−iζ·xD2(eiζ·xv) = (D + ζ)2v = (D2 + 2ζ ·D)v.

We can rewrite (4.6) as

(D2 + 2ζ ·D + q)(1 + r) = 0.

This implies the following equation for r:

(4.7) (D2 + 2ζ ·D + q)r = −q.
The solvability of (4.7) is the most important step in the construction of
CGO solutions. We proceed in several steps.

4.2.1. Basic estimate. We first consider the free case in which there is no
potential on the left hand side of (4.7).

Theorem 4.4. There is a constant C0 depending only on Ω and n, such
that for any ζ ∈ Cn satisfying ζ · ζ = 0 and |ζ| ≥ 1, and for any f ∈ L2(Ω),
the equation

(4.8) (D2 + 2ζ ·D)r = f in Ω

has a solution r ∈ H2(Ω) satisfying

‖r‖Hk(Ω) ≤ C0 |ζ|k−1 ‖f‖L2(Ω) , k = 0, 1, 2.

Note in particular that

‖r‖L2(Ω) ≤
C0

|ζ| ‖f‖L2(Ω) .

If ‖f‖L2(Ω) is uniformly bounded in ζ, this shows that r → 0 in L2(Ω) as

|ζ| → ∞. Accordingly, the correction term r in the CGO solution (4.4) will
be very small for large ζ, and the solution (4.4) will look like the complex
exponential eiζ·x then.

The idea of the proof is that (4.7) is a linear equation with constant
coefficients, so one can try to solve it by the Fourier transform. Since
(Dju) ˆ (ξ) = ξjû(ξ), the Fourier transformed equation is

(ξ2 + 2ζ · ξ)r̂(ξ) = f̂(ξ).
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We would like to divide by ξ2 +2ζ · ξ and use the inverse Fourier transform
to get a solution r. However, the symbol ξ2+2ζ ·ξ vanishes for some ξ ∈ Rn,
and the division cannot be done directly.

It turns out that we can divide by the symbol if we use Fourier series in
a large cube instead of the Fourier transform, and moreover take the Fourier
coefficients in a shifted lattice instead of the usual integer coordinate lattice.

Proof of Theorem 4.4. 1. Write ζ = s(ω1 + iω2) where s = |ζ| /
√
2 and

ω1 and ω2 are orthogonal unit vectors in Rn. By rotating coordinates in a
suitable way, we can assume that ω1 = e1 and ω2 = e2 (the first and second
coordinate vectors). Thus we need to solve the equation

(D2 + 2s(D1 + iD2))r = f.

2. We assume for simplicity that Ω is contained in the cube Q =
(−π, π)n. Extend f by zero outside Ω into Q, which gives a function in
L2(Q) also denoted by f . We need to solve

(4.9) (D2 + 2s(D1 + iD2))r = f in Q.

Let wk(x) = ei(k+
1
2
e2)·x for k ∈ Zn. That is, we consider Fourier series in

the lattice Zn + 1
2e2. Writing

(u, v) = (2π)−n
∫

Q
uv̄ dx, u, v ∈ L2(Q),

we see that (wk, wl) = 0 if k 6= l and (wk, wk) = 1, so {wk} is an orthonormal
set in L2(Q). It is also complete: if v ∈ L2(Q) and (v,wk) = 0 for all k ∈ Zn

then (ve−
1
2
ix2 , eik·x) = 0 for all k ∈ Zn, which implies v = 0.

3. Hilbert space theory gives that f can be written as the series f =∑
k∈Zn fkwk, where fk = (f,wk) and ‖f‖2L2(Q) =

∑
k∈Zn |fk|2. Seeking also

r in the form r =
∑

k∈Zn rkwk, and using that

Dwk = (k +
1

2
e2)wk,

the equation (4.9) implies that the Fourier coefficients should satisfy

pkrk = fk, k ∈ Zn,

where

pk := (k +
1

2
e2)

2 + 2s(k1 + i(k2 +
1

2
)).

Note that Im(pk) = 2s(k2+
1
2) is never zero for k ∈ Zn, which was the reason

for considering the shifted lattice. We define

rk :=
1

pk
fk
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and

r(N) :=
∑

k∈Zn,|k|≤N
rkwk.

The Fourier coefficients satisfy

|rk| ≤
1

|pk|
|fk| ≤

1

|Im(pk)|
|fk| ≤

1∣∣2s(k2 + 1
2)
∣∣ |fk| ≤

1

s
|fk| .

Now (r(N)) is a Cauchy sequence in L2(Q), since for M ≥ N

‖rM − rN‖L2(Q) =
( ∑

N<|k|≤M
|rk|2

)1/2
≤ 1

s

( ∑

N<|k|≤M
|fk|2

)1/2

and the last quantity can be made arbitrarily small if M and N are large.
This shows that r(N) → r in L2(Q), where r ∈ L2(Q) satisfies

r =
∑

k∈Zn

rkwk, ‖r‖L2(Q) ≤
1

s
‖f‖L2(Q) .

4. We next show that r ∈ H2(Q). Note that

Dar
(N) =

∑

|k|≤N
(k+

1

2
e2)arkwk, DaDbr

(N) =
∑

|k|≤N
(k+

1

2
e2)a(k+

1

2
e2)brkwk

We claim that for a, b = 1, . . . , n and for k ∈ Zn,

(4.10)

∣∣∣∣(k +
1

2
e2)ark

∣∣∣∣ ≤ 4 |fk| ,
∣∣∣∣(k +

1

2
e2)a(k +

1

2
e2)brk

∣∣∣∣ ≤ 16s |fk| .

Consider two cases: if
∣∣k + 1

2e2
∣∣ ≤ 4s (the small frequency case) we have

∣∣∣∣(k +
1

2
e2)ark

∣∣∣∣ ≤
4s

2s |k2 + 1/2| |fk| ≤ 4 |fk|

and ∣∣∣∣(k +
1

2
e2)a(k +

1

2
e2)brk

∣∣∣∣ ≤
(4s)2

2s |k2 + 1/2| ≤ 16s |fk| .

If
∣∣k + 1

2e2
∣∣ ≥ 4s (the large frequency case) then

∣∣∣∣∣

∣∣∣∣k +
1

2
e2

∣∣∣∣
2

+ 2sk1

∣∣∣∣∣ ≥
∣∣∣∣k +

1

2
e2

∣∣∣∣
2

− 2s

∣∣∣∣k +
1

2
e2

∣∣∣∣ ≥
1

2

∣∣∣∣k +
1

2
e2

∣∣∣∣
2

which implies
∣∣∣∣(k +

1

2
e2)ark

∣∣∣∣ ≤
∣∣k + 1

2e2
∣∣

1
2

∣∣k + 1
2e2
∣∣2 |fk| ≤

1

2s
|fk|

and ∣∣∣∣(k +
1

2
e2)a(k +

1

2
e2)brk

∣∣∣∣ ≤
∣∣k + 1

2e2
∣∣2

1
2

∣∣k + 1
2e2
∣∣2 |fk| ≤ 2 |fk| .
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This proves (4.10). The estimates (4.10) imply that Dar
(N) and DaDbr

(N)

are Cauchy sequences in L2(Q), and thus converge to some va and vab in
L2(Q). Further, the weak derivatives of r satisfy

Dar = va, DaDbr = vab.

To see this, let ϕ ∈ C∞
c (Q) and note that

−
∫

Q
rDaϕdx = − lim

N→∞

∫

Ω
r(N)Daϕdx

= lim
N→∞

∫

Ω
(Dar

(N))ϕdx

=

∫

Ω
vaϕdx.

The proof for DaDbr is analogous.

5. We have proved that r ∈ H2(Q) and that

Dar =
∑

k∈Zn

(k +
1

2
e2)arkwk, DaDbr =

∑

k∈Zn

(k +
1

2
e2)a(k +

1

2
e2)brkwk.

It immediately follows that r solves (4.9), and the norm estimates for r
follow from (4.10) and the Parseval identity. �

4.2.2. Basic estimate with potential. Now we consider the solution of
(4.7) in the presence of a nonzero potential. It will be convenient to give a
name to the solution operator in the free case.

Definition 4.5. Let ζ ∈ Cn satisfy ζ · ζ = 0 and |ζ| sufficiently large. We
denote by Gζ the solution operator

Gζ : L
2(Ω) → H2(Ω), f 7→ r,

where r is the solution to (D2 + 2ζ ·D)r = f provided by Theorem 4.4.

Theorem 4.6. Let q ∈ L∞(Ω). There is a constant C0 depending only
on Ω and n, such that for any ζ ∈ Cn satisfying ζ · ζ = 0 and |ζ| ≥
max(C0 ‖q‖L∞(Ω) , 1), and for any f ∈ L2(Ω), the equation

(4.11) (D2 + 2ζ ·D + q)r = f in Ω

has a solution r ∈ H2(Ω) satisfying

‖r‖Hk(Ω) ≤ C0 |ζ|k−1 ‖f‖L2(Ω) , k = 0, 1, 2.

Proof. If one has q = 0, a solution would be given by r = Gζf . Here q may
be nonzero, so we try a solution of the form

(4.12) r := Gζ f̃ ,
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where f̃ ∈ L2(Ω) is a function to be determined. Inserting (4.12) in the

equation (4.11), and using that (D2 + 2ζ ·D)Gζ = I, we see that f̃ should
satisfy

(4.13) (I + qGζ)f̃ = f in Ω.

By Theorem 4.4, we have the norm estimate

‖qGζ‖L2(Ω)→L2(Ω) ≤
C0 ‖q‖L∞(Ω)

|ζ| .

If |ζ| ≥ max(2C0 ‖q‖L∞(Ω) , 1) then

‖qGζ‖L2(Ω)→L2(Ω) ≤
1

2
.

It follows that I + qGζ is an invertible operator on L2(Ω), and the inverse
is given by a Neumann series

(I + qGζ)
−1 =

∞∑

j=0

(−qGζ)j .

The equation (4.13) has a solution

f̃ := (I + qGζ)
−1f.

The definition (4.12) for r implies

(D2 + 2ζ ·D + q)r = f̃ + qGζ f̃ = (I + qGζ)f̃ = f,

and r indeed solves the equation (4.11). Since
∥∥(I + qGζ)

−1
∥∥
L2(Ω)→L2(Ω)

≤
2, we have

∥∥∥f̃
∥∥∥
L2(Ω)

≤ 2 ‖f‖L2(Ω). The norm estimates in Theorem 4.4 imply

the desired estimates for r, if we replace C0 by 2C0. �

It is now easy to prove the main result on the existence of CGO solutions.

Proof. of Theorem 4.3 The function (4.5) is a solution of (−∆+ q)u = 0 if
and only if

e−iζ·x(−∆+ q)eiζ·x(a+ r) = 0.

As in the beginning of this section, we conjugate the exponentials into the
derivatives and rewrite (4.6) as

(D2 + 2ζ ·D + q)(a+ r) = 0.

Since ζ ·Da = 0, this implies the following equation for r:

(D2 + 2ζ ·D + q)r = −(D2 + q)a.

Theorem 4.6 guarantees the existence of a solution r satisfying the norm
estimates above. Then (4.5) is the required solution to (−∆ + q)u = 0 in
Ω. �
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Exercise 4.7. (Small first order perturbations) Prove the analogue of The-
orem 4.6 for the equation

(D2 + 2ζ ·D + 2A · (D + ζ) + q)r = f in Ω

where A ∈ L∞(Ω ; Cn), q ∈ L∞(Ω), and ‖A‖L∞(Ω) is sufficiently small

(depending on Ω and n).

Exercise 4.8. (CGO solutions for small first order perturbations) Prove
the analogue of Theorem 4.3 for the equation

(−∆+ 2A ·D + q)u = 0 in Ω

where A ∈ L∞(Ω ; Cn), q ∈ L∞(Ω), and ‖A‖L∞(Ω) is sufficiently small. In

this case, the transport equation for a is

ζ · (D +A)a = 0 in Ω.

Exercise 4.9. (Hk to Hk+2 mapping properties) Let Ω ⊂ Rn be a bounded
open set with Ck boundary. Show that there is a constant C0 such that for
any ζ ∈ Cn with ζ · ζ = 0 and |ζ| ≥ 1, there is a solution r ∈ Hk+2(Ω) of
the equation

(D2 + 2ζ ·D)r = f in Ω

satisfying

‖r‖Hk+l(Ω) ≤ C0 |ζ|l−1 ‖f‖Hk(Ω) , l = 0, 1, 2.

(Hint: use the fact that there is a continuous extension operator Hk(Ω) →
Hk
comp(R

n).)

Exercise 4.10. (Additional decay for the H1 norm) If f is a fixed function
in L2(Ω), show that for any ζ ∈ Cn with ζ · ζ = 0 and |ζ| ≥ 1 there is a
solution r = r( · ; ζ) ∈ H2(Ω) of the equation

(D2 + 2ζ ·D)r = f in Ω

satisfying
lim

|ζ|→∞
‖r( · ; ζ)‖H1(Ω) = 0.

(Hint: decompose f into a smooth part and a small part.)

4.3. Interior uniqueness

In the first part of this section, we use the special solutions constructed in
4.2 together with the boundary identifiability result of 4.1 to prove a global
identifiability result for dimension n ≥ 3. This result is originally due to
Sylvester and Uhlmann ([S-U II]). The case n = 2 will be considered in ??.
In the second part of this section, we extend the main ideas of the proof of
the identifiability result in order to establish a result concerning the stable
dependence of the conductivity on the boundary measurements. The main
identifiability result is



116 4. The Calderón problem in three and higher dimensions

Theorem 4.11. (Interior uniqueness for Calderón problem) Let Ω ⊂ Rn,
n ≥ 3, be a bounded open set with C2 boundary, and let γ1, γ2 be positive
functions in C2(Ω). If

Λγ1 = Λγ2 ,

then
γ1 = γ2.

We will obtain Theorem 4.11 as a consequence of the analogous theorem
for the Schrödinger equation. We have seen in that the Dirichlet problem
for the Schrödinger equation need not always have a unique solution, and
the DN map may not exist. It is quite natural to use the Cauchy data set,
introduced already in Definition 2.68:

Cq =
{
(u|∂Ω, ∂νu|∂Ω)

∣∣ u ∈ H1(Ω), (−∆+ q)u = 0 in Ω
}
.

Here, the normal derivative of a solution of (−∆+q)u = 0 in Ω is interpreted

as an element of H−1/2(∂Ω) as in Problem 2.67, and the Cauchy data set is

a subset of H1/2(∂Ω)×H−1/2(∂Ω).

Theorem 4.12. (Interior uniqueness for Schrödinger equation) Let Ω ⊂
Rn, n ≥ 3, be a bounded open set, and let q1, q2 ∈ L∞(Ω). If

Cq1 = Cq2 ,

then
q1 = q2.

If 0 is not a Dirichlet eigenvalue of −∆+ q in Ω, the Cauchy data set Cq
is just the graph of the DN map Λq (Problem 2.69). Therefore, the previous
theorem has an immediate corollary for the DN map:

Theorem 4.13. (Interior uniqueness for Schrödinger equation) Let Ω ⊂
Rn, n ≥ 3, be a bounded open set, let q1, q2 ∈ L∞(Ω), and assume that 0 is
not a Dirichlet eigenvalue of −∆+ q1 or −∆+ q2 in Ω. If

Λq1 = Λq2 ,

then
q1 = q2.

Let us now give the proofs of these results.

Proof of Theorem 4.12. Since Cq1 = Cq2 , we know from Problem 2.73
that

(4.14)

∫

Ω
(q1 − q2)u1u2 dx = 0

for any H1(Ω) solutions uj to the equations (−∆+ qj)uj = 0, j = 1, 2. (In
the case of DN maps, so that Λq1 = Λq2 , the same relation was proved in
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Theorem 2.72.) Thus, to prove that q1 = q2, it is enough to establish that
products u1u2 of such solutions are dense in L1(Ω).

Fix ξ ∈ Rn. We would like to choose the solutions in such a way that
u1u2 is close to eix·ξ, since the functions eix·ξ form a dense set. We begin by
taking unit vectors ω1 and ω2 in Rn such that {ω1, ω2, ξ} is an orthogonal
set (here we need that n ≥ 3). Let

ζ = s(ω1 + iω2),

so that ζ · ζ = 0. By Theorem 4.3, if s is sufficiently large there exist H1

solutions u1 and u2 which satisfy (−∆ + qj)uj = 0, and which are of the
form

u1 = eiζ·x(eix·ξ + r1),

u2 = e−iζ·x(1 + r2),

where ‖rj‖L2(Ω) ≤ C/s for j = 1, 2. For the first solution we chose a = eix·ξ

which satisfies ζ · ∇a = (ζ · ξ)eix·ξ = 0 by orthogonality, and for the second
solution we chose a to be constant.

Inserting these solutions in (4.14), we obtain

(4.15)

∫

Ω
(q1 − q2)(e

ix·ξ + r1)(1 + r2) dx = 0.

In this identity, only r1 and r2 depend on s. Since the L2 norms of r1 and r2
are bounded by C/s, it is possible to take the limit as s→ ∞ in (4.15), and
by Cauchy-Schwarz the terms involving r1 and r2 will vanish. This shows
that ∫

Ω
(q1 − q2)e

ix·ξ dx = 0.

This holds for every ξ ∈ Rn. If q̃ is the function in L1(Rn) which is equal
to q1 − q2 in Ω and vanishes outside Ω, the last identity implies that the
Fourier transform of q̃ vanishes for every frequency ξ ∈ Rn. Consequently
q̃ = 0, and q1 = q2 in Ω. �

Proof. of Theorem 4.11 Since Λγ1 = Λγ2 , Theorems 3.3 and 3.17 imply
that γ1|∂Ω = γ2|∂Ω and ∂νγ1|∂Ω = ∂νγ2|∂Ω. Also, part (b) of Theorem 2.74
guarantees that

Λqjf = γ
−1/2
j Λγj

(
γ
−1/2
j f

)
+ 1

2γ
−1
j (∂νγj)f

∣∣
∂Ω

for all f , where q1 and q2 are defined by

qj =
∆γ

1/2
j

γ
1/2
j

.
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Thus we have

Λq1 = Λq2 ,

and Theorem 4.13 implies that q1 = q2. Consequently, the function

v = log
(γ1
γ2

)
= 2
[
log γ

1
2
1 − log γ

1
2
2

]

satisfies

∇ ·
(
(γ1γ2)

1
2∇v

)
= 2∇ ·

[
γ

1
2
2 ∇γ

1
2
1 − γ

1
2
1 ∇γ

1
2
2

]

= 2(γ1γ2)
1
2 (q2 − q1) = 0

v
∣∣
∂Ω

= 0

Internal remark 1.

∇ ·
(
(γ1γ2)

1
2∇v

)
= ∇ ·

(
(γ1γ2)

1
2 2∇ log

(γ1/21

γ
1/2
2

))

= ∇ ·
(
(γ1γ2)

1
2 2
(
γ
−1/2
1 ∇γ1/21 − γ

−1/2
2 ∇γ1/22

))

= 2∇ ·
(
γ
1/2
2 ∇γ1/21 − γ

1/2
1 ∇γ1/22

)

= 2
(
∇γ1/22 · ∇γ1/21 + γ

1/2
2 ∆γ

1/2
1

−∇γ1/21 · ∇γ1/22 − γ
1/2
1 ∆γ

1/2
2

)

= 2
(
γ
1/2
2 ∆γ

1/2
1 − γ

1/2
1 ∆γ

1/2
2

)

= 2(γ1γ2)
1
2 (−q1 + q2)

and hence

v ≡ 0 in Ω

i.e., γ1 = γ2 in Ω. �

4.4. Stability

A somewhat more carefully crafted version of the uniqueness proof can be
used to prove the stable dependence of γ on Λγ . By stability, or stable
dependence, as opposed to continuous dependence, we mean that, under
the hypothesis of an à priori bound for γ1 and γ2 (or q1 and q2) in a high
norm, we can estimate the difference, γ1 − γ2 (or q1 − q2), in a lower norm
in terms of the difference of the Dirichlet– to Neumann–data maps (or the
Cauchy data). The stable dependence results presented here are, except for
minor modifications, due to Alessandrini ([Al2]). To measure the distance
between the Dirichlet– to Neumann–data maps we use the operator norm
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for bounded operators between H1/2 and H−1/2. To measure the distance
between the spaces of Cauchy data we use

dist(Cq1 , Cq2) = max

{
sup

(f,g)∈Cq1
inf

(f̃ ,g̃)∈Cq2

‖(f, g)− (f̃ , g̃)‖H1/2⊕H−1/2

‖(f, g)‖H1/2⊕H−1/2

,

sup
(f,g)∈Cq2

inf
(f̃ ,g̃)∈Cq1

‖(f, g) − (f̃ , g̃)‖H1/2⊕H−1/2

‖(f, g)‖H1/2⊕H−1/2

}

The norm on the space H1/2(Ω)⊕H−1/2(Ω) is defined by the expression

‖(f, g)‖H1/2⊕H−1/2 =
(
‖f‖21

2
,Ω

+ ‖g‖2− 1
2
,Ω

)1/2

It is not difficult to see that if the spaces Cqj are both graphs of corresponding
Dirichlet– to Neumann–data maps Λqj , then one has the estimates

‖Λq1 − Λq2‖ 1
2
,− 1

2√
1 + ‖Λq1‖21

2
,− 1

2

√
1 + ‖Λq2‖21

2
,− 1

2

≤ dist(Cq1 , Cq2) ≤ ‖Λq1 − Λq2‖ 1
2
,− 1

2

(4.16)

Exercise 4.14. Prove (4.16).

We first show

Proposition 4.15. Suppose that n
2 < s ∈ N, n ≥ 3 and

(4.17) ‖qj‖s,Ω ≤M

then there exists C = C(M) and 0 < σ = σ(n) < 1 such that

(4.18) ‖q1 − q2‖−1,Ω ≤ C
(∣∣log

{
dist(Cq1 , Cq2)

}∣∣−σ + dist(Cq1 , Cq2)
)

Proof. Our point of departure is the identity in Problem 2.73, which states
that ∫

Ω
(q1 − q2)u1u2 dx = −

∫

∂Ω

(
u2
∂u1
∂ν

− u1
∂u2
∂ν

)
dS

for all u1, u2 ∈ H1(Ω) obeying (∆+q1)u1 = 0 and (∆+q2)u2 = 0. If (f, g) is
an arbitrary element of Cq1 then there exists a function v ∈ H1(Ω) obeying

∆v + q1v = 0 in Ω

v = f and
∂v

∂ν
= g on ∂Ω

so that

0 =

∫

Ω
(q1 − q1)u1v d

nx = −
∫

∂Ω

(
v
∂u1
∂ν

− u1
∂v

∂ν

)
dσ

= −
∫

∂Ω

(
f
∂u1
∂ν

− u1g
)
dσ
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and
∫

Ω
(q1 − q2)u1u2 d

nx = −
∫

∂Ω

[∂u1
∂ν

(u2 − f)−
(∂u2
∂ν

− g
)
u1

]
dnx

We continue with

∣∣∣∣
∫

Ω
(q1 − q2)u1u2 d

nx

∣∣∣∣ ≤
∥∥∂u1
∂ν

∥∥
− 1

2
,∂Ω

‖u2 − f‖ 1
2
,∂Ω + ‖u1‖ 1

2
,∂Ω

∥∥∂u2
∂ν

− g
∥∥
− 1

2
,∂Ω

≤
∥∥(u1,

∂u1
∂ν

)∥∥
H

1
2 ⊕H− 1

2

∥∥(u2 − f,
∂u2
∂ν

− g
)∥∥

H
1
2⊕H− 1

2

(4.19)

As this is true for all (f, g) ∈ Cq1 ,

∣∣∣∣
∫

Ω
(q1 − q2)u1u2 d

nx

∣∣∣∣ ≤
∥∥(u1,

∂u1
∂ν

)∥∥
H

1
2 ⊕H− 1

2
inf

(f,g)∈Cq1

∥∥(u2 − f,
∂u2
∂ν

− g
)∥∥
H

1
2 ⊕H− 1

2

≤
∥∥(u1,

∂u1
∂ν

)∥∥
H

1
2 ⊕H− 1

2
· dist(Cq1 , Cq2) ·

∥∥(u2,
∂u2
∂ν

)∥∥
H

1
2⊕H− 1

2

(4.20)

We remark in passing that, if Cq1 and Cq2 are actually the graphs of Dirichlet–
to Neumann–data maps Λq1 and Λq2 , then (4.20) implies
∣∣∣∣
∫

Ω
(q1 − q2)u1u2 d

nx

∣∣∣∣

≤ ‖u1‖ 1
2
,∂Ω ·

(
1 + ‖Λq1‖21

2
,− 1

2

) 1
2 · ‖Λq1 − Λq2‖ 1

2
,− 1

2
· ‖u2‖ 1

2
,∂Ω

(
1 + ‖Λq2‖21

2
,− 1

2

) 1
2

Our next step is to choose u1 and u2 to be the solutions produced in Theorem
4.3. That is

(4.21) uj = ex·ζj
(
1 + ψj(x, ζj)

)

with

ζ1 = l + i
(k
2
+m

)

ζ2 = −l + i
(k
2
−m

)

where k is arbitrary and l and m satisfy the requirements
(4.22)

l·k = l·m = k·m = 0 |m|2 = |l|2−|k|2
4

> 0 |l| > 1

ǫ
max
j=1,2

∥∥(1 + |x|2)
1
2 qj
∥∥
L∞

The functions ψj satisfy the estimates

(4.23) ‖ψj‖L2(Ω) ≤
C

|ζj |
‖qj‖L2(Ω) and ‖ψj‖1,Ω ≤ C‖qj‖L2(Ω)
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Since uj ∈ H1(Ω) are solutions to ∆uj + qjuj = 0 (with qj bounded in L∞)
it follows, by Problem 2.67 and Problem ??, that

∥∥∂uj
∂ν

∥∥
− 1

2
,∂Ω

≤ C‖uj‖1,Ω

Using Theorem ??, Lemma ?? and (4.23) we now get

∥∥(u1,
∂u1
∂ν

)∥∥
H

1
2 ⊕H− 1

2
≤ C‖u1‖1,Ω ≤ C‖ex·ζ1‖C1(Ω) ‖1 + ψ1‖1,Ω ≤ C|ζ1|e|ζ1|D

where D denotes the constant D = supx∈Ω |x| and we have increased the
value of the constant C a few times. Thus, for any fixed D∗ > D

(4.24)
∥∥(u1,

∂u1
∂ν

)∥∥
H

1
2 ⊕H− 1

2
≤ CeD∗|ζ1|

and similarly

(4.25)
∥∥(u2,

∂u2
∂ν

)∥∥
H

1
2 ⊕H− 1

2
≤ CeD∗|ζ2|

Let r denote the parameter r =
( |k|2

4 + |m|2 + |l|2
) 1

2 − |k|. In terms of
r we have that |ζ1| = |ζ2| = |k| + r. The parameter r must be sufficiently
large, i.e.,

r ≥ C ≫ 1

but is otherwise free. A combination of (4.20)–(4.25) now yields

∣∣∣∣
∫

Ω
(q1−q2)eix·k dnx

∣∣∣∣

≤ Ce2D∗(|k|+r)dist(Cq1 , Cq2) +
∫

Ω

∣∣q1 − q2
∣∣ ∣∣ψ1

+ ψ2 + ψ1ψ2

∣∣ dnx
≤ Ce2D∗(|k|+r)dist(Cq1 , Cq2) + ‖q1 − q2‖L2(Ω)

[
‖ψ1‖L2(Ω) + ‖ψ2‖L2(Ω)

]

+ ‖q1 − q2‖L∞(Ω)‖ψ1‖L2(Ω)‖ψ2‖L2(Ω)

or, by use of (4.23), (4.17) and the Sobolev imbedding result, Problem ??,

∣∣(q̃1 − q̃2)
̂(k)

∣∣ ≤ C
(
e2D∗(|k|+r)dist(Cq1 , Cq2) + (M + 1)3

1

|k|+ r

)
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where, as before, q̃j denotes the extension of qj by zero outside Ω. We
therefore have

vq̃1 − q̃2v
2−1,n

=

∫

Rn

∣∣(q̃1 − q̃2)
̂(k)

∣∣2(1 + |k|2)−1
dnk

≤
∫

|k|<ρ
|(q̃1 − q̃2)

̂(k)|2(1 + |k|2)−1
dnk +

∫

|k|>ρ

∣∣(q̃1 − q̃2)
̂(k)

∣∣2(1 + ρ2)
−1

dnk

≤ Cρn
(
e4D∗(ρ+r)dist(Cq1 , Cq2)2 +

1

r2

)
+

1

1 + ρ2
‖q̃1 − q̃2‖2L2(Ω)

≤ Cρne4D∗(ρ+r)dist(Cq1 , Cq2)2 +C
ρn

r2
+
C

ρ2

(4.26)

In order to make the last two terms in the final expression of (4.26) small
and of the same magnitude ( 1

ρ2
), we choose

r = ρ
n+2
2 , for ρ≫ 1

With this choice we also have r > ρ. For the first term in the last line of
(4.26) we get

(4.27) ρne4D∗(ρ+r)dist(Cq1 , Cq2)2 ≤ CeKrdist(Cq1 , Cq2)2

uniformly in ρ, for any fixed constant K > 8D∗. If we now choose

ρ =
( 1

K

∣∣log
{
dist(Cq1 , Cq2)

}∣∣
) 2

n+2

then

r =
1

K

∣∣log
{
dist(Cq1 , Cq2)

}∣∣

and therefore

(4.28) eKr = dist(Cq1 , Cq2)−1 for dist(Cq1 , Cq2) < 1

A combination of the estimates (4.27) and (4.28) gives

(4.29) ρne4D∗(ρ+r)dist(Cq1 , Cq2)2 ≤ C dist(Cq1 , Cq2)
provided dist(Cq1 , Cq2) < 1. Insertion of (4.29) and the definition of ρ (and
r) into the last line of (4.26) yields the estimate

‖q1 − q2‖2−1,Ω ≤ vq̃1 − q̃2v
2
−1,n ≤ C

(∣∣log
{
dist(Cq1 , Cq2)

}∣∣− 4
n+2 + dist(Cq1 , Cq2)

)

≤ C
∣∣log

{
dist(Cq1 , Cq2)

}∣∣− 4
n+2

(4.30)

for dist(Cq1 , Cq2) < 1
2 . This gives (4.18) with σ = 2

n+2 when dist(Cq1 , Cq2) <
1
2 . The estimate (4.18) is trivially satisfied for dist(Cq1 , Cq2) ≥ 1

2 because of
the assumption (4.17). This completes the proof of Proposition 4.15. �
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We now proceed to transform Proposition 4.15 into an analogous result
for the conductivity problem. As we saw in the proof of the interior iden-
tifiability theorem, the proof of the interior stable dependence result makes
use of the continuous dependence result (Theorem 4.62) for the boundary
values. Among other things the proof depends on the following lemma.

Lemma 4.16. Suppose that n
2 < s ∈ N and that γ1 and γ2 are isotropic

conductivities on Ω ⊂ Rn satisfying Hypothesis 4.40 and

(i) 1
E ≤ γj ≤ E

(ii) ‖γj‖s+2,Ω ≤ E.

Let q1 and q2 denote the potentials defined by

(4.31) qj = −
∆γ

1/2
j

γ
1/2
j

There exists C = C(Ω, E, n, s) and 0 < σ = σ(s) < 1 such that

dist(Cq1 , Cq2) ≤ ‖Λq1 − Λq2‖ 1
2
,− 1

2
≤ C

(
‖Λγ1 − Λγ2‖σ1

2
,− 1

2

+ ‖Λγ1 − Λγ2‖ 1
2
,− 1

2

)(4.32)

Proof. The first inequality of (4.32 comes directly from (4.16. Since qj are
related to the conductivities γj by means of (4.31 it follows from Theorem
2.74 that the Cqj are graphs of the corresponding Dirichlet– to Neumann–
data maps and that, by Problem ??,

Λqjφ =
1

γ
1/2
j

(
Λγj
(
γ
− 1

2
j φ

)
+
∂γ

1/2
j

∂ ν
φ
∣∣
∂Ω

)
∀φ ∈ H

1
2 (∂Ω)

so that
∥∥(Λq1 − Λq2)φ

∥∥
− 1

2
,∂Ω

≤ C
∥∥∥γ−

1
2

1 − γ
− 1

2
2

∥∥∥
C1(∂Ω)

∥∥∥Λγ1(γ
− 1

2
1 φ) +

∂γ
1/2
1

∂ ν
φ
∥∥∥
− 1

2
,∂Ω

+ C
∥∥∥γ−

1
2

2

∥∥∥
C1(∂Ω)

( ∥∥∥Λγ1(γ
− 1

2
1 φ)− Λγ2(γ

− 1
2

2 φ)
∥∥∥
− 1

2
,∂Ω

+
∥∥∥∂γ

1/2
1

∂ ν
− ∂γ

1/2
2

∂ ν

∥∥∥
C0(∂Ω)

‖φ‖L2(∂Ω)

)

Assumptions (i) and (ii) provide, via the Sobolev imbedding bound of Prob-
lem ??, bounds on supΩ

1

γ
1/2
1

, supΩ
1

γ
1/2
2

, supΩ γ1, supΩ γ2, supΩ |∇γ1| and
supΩ |∇γ2| that depend only on Ω and E. Since γ1, γ2 ∈ C∞(Ω), these
bounds continue to ∂Ω. As

∥∥Λγ1
∥∥

1
2
,− 1

2
and

∥∥Λγ2
∥∥

1
2
,− 1

2
are bounded by The-

orem 2.64 (with constants depending only on E and Ω by Remark ?? and
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multiplication by γ
−1/2
1 or γ

−1/2
2 is a bounded map onH1/2(∂Ω), by Problem

??,

‖(Λq1−Λq2)φ‖− 1
2
,∂Ω

≤ C
(
‖γ1 − γ2‖C1(∂Ω)‖φ‖ 1

2
,∂Ω +

∥∥Λγ1(γ
− 1

2
1 φ)− Λγ2(γ

− 1
2

2 φ)
∥∥
− 1

2
,∂Ω

)

(4.33)

In a similar fashion we may also bound
∥∥Λγ1(γ

− 1
2

1 φ)−Λγ2(γ
− 1

2
2 φ)

∥∥
− 1

2
,∂Ω

≤
∥∥Λγ1(γ

− 1
2

1 φ− γ
− 1

2
2 φ)

∥∥
− 1

2
,∂Ω

+
∥∥(Λγ1 − Λγ2)(γ

− 1
2

2 φ)
∥∥
− 1

2
,∂Ω

≤ C
(
‖γ1 − γ2‖C1(∂Ω) +

∥∥Λγ1 − Λγ2
∥∥

1
2
,− 1

2

)
‖φ‖ 1

2
,∂Ω

Insertion of this into (4.33) yields

∥∥(Λq1−Λq2)φ
∥∥
− 1

2
,∂Ω

≤ C
(
‖γ1 − γ2‖C1(∂Ω) + ‖Λγ1 − Λγ2‖ 1

2
,− 1

2

)
‖φ‖ 1

2
,∂Ω

(4.34)

Since s − 1
2 > n

2 − 1
2 = n−1

2 we may use Sobolev’s imbedding theorem,
Problem ??, and the logarithmic convexity of the Sobolev norms, Problem
??, to obtain

‖γ1 − γ2‖C1(∂Ω) ≤ C‖γ1 − γ2‖s+ 1
2
,∂Ω

≤ C
∥∥γ1 − γ2

∥∥ 2
2s+3

L2(∂Ω)

∥∥γ1 − γ2
∥∥ 2s+1

2s+3

s+ 3
2
,∂Ω

≤ C
∥∥γ1 − γ2

∥∥ 2
2s+3

L2(∂Ω)

Internal remark 2. We need the index s+ 3
2 in

∥∥γ1−γ2
∥∥ 2s+1

2s+3

s+ 3
2
,∂Ω

to be strictly

bigger than s+ 1
2 in order to give a nonzero power of

∥∥γ1 − γ2
∥∥
L2(∂Ω)

. This

leads to the index in hypothesis (ii) being strictly bigger than s + 1. To
obtain the last inequality we have also used the trace estimate (Theorem ??)

‖γ1 − γ2‖s+ 3
2
,∂Ω ≤ C‖γ1 − γ2‖s+2,Ω

It now follows from the first part, (4.59), of the continuous dependence result
on the boundary that

(4.35) ‖γ1 − γ2‖C1(∂Ω) ≤ C‖Λγ1 − Λγ2‖
2

2s+3
1
2
,− 1

2

After insertion of (4.35) into (4.34) we obtain the desired estimate with
σ = 2

2s+3 �

The stable dependence result for the conductivity problem is
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Theorem 4.17. Suppose that n
2 < s ∈ N, n ≥ 3, and that γ1 and γ2 are

isotropic conductivities on Ω ⊂ Rn satisfying Hypothesis 4.40 and

(i) 1/E ≤ γj ≤ E

(ii) ‖γj‖s+2,Ω ≤ E.

Then there exist C = C(Ω, E, n, s) and 0 < σ = σ(n, s) < 1 such that

(4.36) ‖γ1 − γ2‖L∞(Ω) ≤ C
{∣∣log ‖Λγ1 − Λγ2‖ 1

2
,− 1

2

∣∣−σ + ‖Λγ1 − Λγ2‖ 1
2
,− 1

2

}

Proof. In light of the hypothesis (i) it clearly suffices to prove the estimate
(4.36) for ‖Λγ1 − Λγ2‖ 1

2
,− 1

2
smaller than any strictly positive constant. The

last term in right hand side of (4.36) is there to render the estimate trivially
satisfied for ‖Λγ1 − Λγ2‖ 1

2
,− 1

2
larger than the constant. By (4.32), we can

choose the constant small enough that dist(Cq1 , Cq2) is also smaller than any
desired strictly positive constant.

Consider the function

v = log
(γ1
γ2

)
= log(γ1)− log(γ2)

This function obeys the boundary value problem

∇ ·
(
(γ1γ2)

1
2∇v

)
= 2(γ1γ2)

1
2 (q2 − q1) in Ω

v
∣∣
∂Ω

= log γ1 − log γ2

Internal remark 3.

∇ ·
(
(γ1γ2)

1
2∇v

)
= ∇ ·

(
(γ1γ2)

1
22∇ log

(γ1/21

γ
1/2
2

))

= ∇ ·
(
(γ1γ2)

1
22
(
γ
−1/2
1 ∇γ1/21 − γ

−1/2
2 ∇γ1/22

))

= 2∇ ·
(
γ
1/2
2 ∇γ1/21 − γ

1/2
1 ∇γ1/22

)

= 2
(
∇γ1/22 · ∇γ1/21 + γ

1/2
2 ∆γ

1/2
1 −∇γ1/21 · ∇γ1/22 − γ

1/2
1 ∆γ

1/2
2

)

= 2
(
γ
1/2
2 ∆γ

1/2
1 − γ

1/2
1 ∆γ

1/2
2

)

= 2(γ1γ2)
1
2 (−q1 + q2)

with the q1 and q2 defined in (4.31), and hence, by Theorem ?? (and
Remark ??),

‖ log γ1 − log γ2‖1,Ω = ‖v‖1,Ω ≤ C
(
‖q1 − q2‖−1,Ω + ‖ log γ1 − log γ2‖ 1

2
,∂Ω

)
??
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Now

log γ1 − log γ2 =

[∫ 1

0

dt

tγ1 + (1− t)γ2

]
· (γ1 − γ2)

∇ log γ1 −∇ log γ2 =
1

γ1
∇γ1 −

1

γ2
∇γ2 =

1

γ1

[
∇γ1 −∇γ2

]
+
γ2 − γ1
γ1γ2

∇γ2

and

γ1 − γ2 =

[∫ 1

0
et log γ1+(1−t) log γ2 dt

]
· (log γ1 − log γ2)

∇γ1 −∇γ2 = γ1∇ log γ1 − γ2∇ log γ2 = γ1
[
∇ log γ1 −∇ log γ2

]
+
γ1 − γ2
γ2

∇γ2

By hypothesis (i), 1
E ≤ γj ≤ E. By hypothesis (ii) and the Sobolev imbed-

ding theorem, Problem ??, |∇γj| ≤ CE. It follows that there is a constant
c, depending only on n, Ω and E, such that

‖γ1 − γ2‖1,Ω ≤ c‖ log γ1 − log γ2‖1,Ω
‖ log γ1 − log γ2‖1,∂Ω ≤ c‖γ1 − γ2‖1,∂Ω

Since ‖ log γ1 − log γ2‖ 1
2
,∂Ω ≤ ‖ log γ1 − log γ2‖1,∂Ω, (??) translates into

(4.37) ‖γ1 − γ2‖1,Ω ≤ C
(
‖q1 − q2‖−1,Ω + ‖γ1 − γ2‖1,∂Ω

)

A combination of the estimates (4.18) and (4.32) gives that for some
0 < σ1, σ2 < 1

‖q1 − q2‖−1,Ω ≤ C
∣∣log{dist(Cq1 , Cq2)}

∣∣−σ1

≤ C
∣∣∣log

{∥∥Λγ1 − Λγ2
∥∥σ2

1
2
,− 1

2

}∣∣∣
−σ1

≤ C
∣∣∣log ‖Λγ1 − Λγ2‖ 1

2
,− 1

2

∣∣∣
−σ1

(4.38)

for ‖Λγ1 − Λγ2‖ 1
2
,− 1

2
sufficiently small. In view of Sobolev’s imbedding the-

orem and the logarithmic convexity of the Sobolev norms, we have

‖γ1 − γ2‖L∞(Ω) ≤ C‖γ1 − γ2‖s,Ω

≤ C
∥∥γ1 − γ2‖

s−1
s+1

s+2,Ω

∥∥γ1 − γ2
∥∥ 2

s+1

1,Ω

≤ C
∥∥γ1 − γ2

∥∥ 2
s+1

1,Ω
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and

‖γ1 − γ2‖1,∂Ω ≤ C
∥∥γ1 − γ2

∥∥ 2s+1
2s+3

L2(∂Ω)

∥∥γ1 − γ2
∥∥ 2

2s+3

s+ 3
2
,∂Ω

≤ C
∥∥γ1 − γ2

∥∥ 2s+1
2s+3

L2(∂Ω)

∥∥γ1 − γ2
∥∥ 2

2s+3

s+2,Ω

≤ C
∥∥γ1 − γ2‖

2s+1
2s+3

L∞(∂Ω)

Together with (4.37) and (4.38) these two estimates give

‖γ1 − γ2‖L∞(Ω) ≤ C
(
‖q1 − q2‖−1,Ω + ‖γ1 − γ2‖1,∂Ω

) 2
s+1

≤ C
(∣∣log ‖Λγ1 − Λγ2‖ 1

2
,− 1

2

∣∣−σ1 +
∥∥γ1 − γ2

∥∥ 2s+1
2s+3

L∞(∂Ω)

) 2
s+1

(4.39)

for ‖Λγ1 − Λγ2‖ 1
2
,− 1

2
sufficiently small. By combination with the boundary

continuous dependence result (Theorem 4.62) the estimate (4.39) becomes

‖γ1 − γ2‖L∞(Ω) ≤ C
∣∣log ‖Λγ1 − Λγ2‖ 1

2
,− 1

2

∣∣− 2σ1
s+1

for ‖Λγ1 − Λγ2‖ 1
2
,− 1

2
sufficiently small. This completes the proof of the

theorem. �

Internal remark 4. We need the s+ 2 because of Lemma 4.16.

4.5. Complex geometrical optics solutions: second proof

The construction of complex geometrical optics solutions in Theorem 4.3
was based on considering Fourier series in a slightly shifted lattice, which
avoided the problem of dividing by symbols having zeros. This construction
was sufficient for the interior uniqueness and stability results in the previous
sections. However, to obtain a reconstruction procedure for determining a
conductivity for a DN map, it is useful to give another proof of the existence
of CGO solutions. This proof is valid in Rn instead of just bounded domains,
and it comes with a reasonable uniqueness notion for the CGO solutions upon
fixing a decay condition at infinity. These additional properties will also be
crucial in the inverse scattering problems in 7.CHscattering.

To construct the solutions we shall make use of the following norms,
defined for any u ∈ C∞

0 (Rn) and any −∞ < δ <∞:

‖u‖L2
δ
=

(∫

Rn

(
1 + |x|2

)δ|u|2 dnx
)1/2

The space L2
δ is defined as the completion of C∞

0 (Rn) with respect to the

norm ‖ · ‖L2
δ
. When we say that u = ex·ζ

(
1 + ψ(x, ζ)

)
, with ζ · ζ = 0
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and ψ ∈ L2
δ, solves ∆u + qu = 0, we mean that ψ is a weak solution of

∆ψ + 2ζ · ∇ψ = −q − qψ. The latter means that

〈(∆− 2ζ · ∇)ϕ,ψ〉L2(Rn) = −〈ϕ, q + qψ〉L2(Rn)

for all ϕ ∈ S(Rn). We have encountered weak derivatives before, in part (b)
of Proposition ??. The main theorem in this section is:

Theorem 4.18. Let −1 < δ < 0. There exists ǫ = ǫ(δ) and C = C(δ)

such that, for every q ∈ L2
δ+1 with

(
1 + |x|2

)1/2
q ∈ L∞ and every ζ ∈ Cn

satisfying

ζ · ζ = 0 and
‖(1 + |x|2)1/2q‖L∞ + 1

|ζ| ≤ ǫ

there exists a unique solution to

∆u+ qu = 0 in Rn

of the form

u = ex·ζ
(
1 + ψ(x, ζ)

)

with ψ(x, ζ) ∈ L2
δ . Furthermore,

‖ψ‖L2
δ
≤ C

|ζ|‖q‖L2
δ+1

This theorem has a counterpart for the conductivity problem, which is ob-
tained by invoking the correspondence of Theorem 2.74 between the Schrödinger
equation and the conductivity equation. The statement is

Theorem 4.19. Let −1 < δ < 0. There exists ǫ = ǫ(δ) and C = C(δ) such

that, for every positive γ with ∆γ1/2

γ1/2
∈ L2

δ+1,
(
1 + |x|2

)1/2 ∆γ1/2

γ1/2
∈ L∞ and

every ζ ∈ Cn satisfying

ζ · ζ = 0 and

∥∥(1 + |x|2
)1/2 ∆γ1/2

γ1/2

∥∥
L∞ + 1

|ζ| ≤ ǫ

there exists a unique solution to

Lγu = 0

of the form

u = γ−1/2ex·ζ
(
1 + ψ(x, ζ)

)

with ψ(x, ζ) ∈ L2
δ . Furthermore,

‖ψ(x, ζ)‖L2
δ
≤ C

|ζ|
∥∥∆γ

1/2

γ1/2

∥∥
L2
δ+1

Most of the work necessary for the proof of Theorem 4.18 is associated
with establishing the following proposition.



4.5. Complex geometrical optics solutions: second proof 129

Proposition 4.20. Suppose that ζ ∈ Cn with ζ · ζ = 0, |ζ| ≥ c > 0 and
f ∈ L2

δ+1 with −1 < δ < 0. Then there exists a unique ϕ ∈ L2
δ such that

(∆ + 2ζ · ∇)ϕ = f??

weakly. Moreover,

‖ϕ‖L2
δ
≤ C(δ, c)

|ζ| ‖f‖L2
δ+1

We postpone the proof of this proposition to the end of this section,
instead we first show how it may be applied for the

Proof. of Theorem 4.18 We seek u of the form

u = ex·ζ(1 + ψ)

satisfying

(∆ + q){ex·ζ(1 + ψ)} = 0

or

(4.40) ∆ψ + 2ζ · ∇ψ = −q − qψ

To solve (4.40), we define

ψ−1 = 1

and we recursively define ψj by

(4.41) (∆ + 2ζ · ∇)ψj = −qψj−1 for j ≥ 0

Then, formally,

(4.42) ψ :=
∞∑

j=0

ψj

obeys

∆ψ+2ζ ·∇ψ =

∞∑

j=0

(∆+2ζ ·∇)ψj = −
∞∑

j=0

qψj−1 = −qψ−1−
∞∑

j=0

qψj = −q−qψ

and so is the desired solution. It needs to be proved that the functions ψj ,
j ≥ 0, are well defined, and that the series (4.42) converges appropriately.
We may without loss of generality restrict our attention to ǫ < 1, so that
we only consider ζ for which |ζ| ≥ 1. Since q ∈ L2

δ+1 and ψ−1 = 1 it follows

from Proposition 4.20 that there exists a unique ψ0 ∈ L2
δ that solves (4.41)

with j = 0. This ψ0 satisfies

(4.43) ‖ψ0‖L2
δ
≤ C(δ)

|ζ| ‖q‖L2
δ+1
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If v is an element in L2
δ , then the fact that

(
1+|x|2

)1/2
q is in L∞ immediately

implies that qv is in L2
δ+1 with the estimate

‖qv‖L2
δ+1

≤
∥∥(1 + |x|2

)1/2
q
∥∥
L∞‖v‖L2

δ
??

Using this observation in conjunction with Proposition 4.20 we conclude
that if ψj−1 is in L2

δ then there exists a unique solution, ψj , to (4.41) in L2
δ

and this solution satisfies

‖ψj‖L2
δ
≤ C(δ)

|ζ| ‖qψj−1‖L2
δ+1

≤
(
C(δ)‖(1 + |x|2)1/2q‖L∞

|ζ|

)
‖ψj−1‖L2

δ
??

An induction argument based on the estimates (4.43) and (??) now gives
that ψj, j ≥ 0, are all elements of L2

δ and satisfy the estimates

‖ψj‖L2
δ
≤ C(δ)

|ζ| θ
j‖q‖L2

δ+1
with θ =

C(δ)‖(1 + |x|2)1/2q‖L∞

|ζ|
By selecting ǫ sufficiently small that θ < 1/2, we now obtain that the series
(4.42) is convergent, in L2

δ , with the bound

‖ψ‖L2
δ
≤ 2

C(δ)

|ζ| ‖q‖L2
δ+1

For any ϕ ∈ S(Rn), (∆ − 2ζ · ∇)ϕ ∈ L2
−δ so that

∑∞
j=0 〈(∆− 2ζ · ∇)ϕ,ψj〉

converges to 〈(∆ − 2ζ · ∇)ϕ,ψ〉. By (??), the series
∑∞

j=0 qψj converges in

L2
1+δ to qψ. For any ϕ ∈ S(Rn), ϕ ∈ L2

−1−δ so that
∑∞

j=0 〈ϕ, qψj〉 converges
to 〈ϕ, qψ〉. This completes the proof of the existence part of Theorem 4.18.

To verify the uniqueness of the solution ψ (and therefore of u), suppose
that

∆ψ + 2ζ · ∇ψ = −q − qψ

and

∆ψ̃ + 2ζ · ∇ψ̃ = −q − qψ̃

with ψ and ψ̃ ∈ L2
δ . Then

∆(ψ̃ − ψ) + 2ζ · ∇(ψ̃ − ψ) = q(ψ − ψ̃)

so that, according to Proposition 4.20 and (??)

‖ψ̃ − ψ‖L2
δ
≤ C‖(1 + |x|2)1/2q‖L∞

|ζ| ‖ψ̃ − ψ‖L2
δ
≤ 1

2
‖ψ̃ − ψ‖L2

δ

which can only occur if

‖ψ̃ − ψ‖L2
δ
= 0

�
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Proof. of Theorem 4.3 Define

q̃ =

{
q in Ω

0 in Rn \ Ω

We may apply Theorem 4.18 to q̃, say with δ = −1
2 . In this way we obtain

the existence of a solution to ∆u + q̃u = 0 in Rn (and therefore a solution
to ∆u+ qu = 0 in Ω) of the form u = ex·ζ

(
1 + ψ(x, ζ)

)
with

‖ψ‖L2(Ω) ≤ c1‖ψ‖L2
δ(R

n) ≤
c2
|ζ|‖q̃‖L2

δ+1(R
n) ≤

C

|ζ|‖q‖L2(Ω)??

Similarly, for any η ∈ C∞
0 (Rn), ηψ ∈ L2(Rn) and obeys

∆(ηψ) = −η
(
2ζ · ∇ψ + q̃ + qψ

)
+ 2∇η · ∇ψ + (∆η)ψ ∈ H−1(Rn)

Hence ηψ ∈ H1(Rn) and ψ ∈ H1(Ω). That u ∈ H2(Ω) follows from Propo-
sition ??, since ∆u = −q̃u ∈ L2(Ω′) for all bounded open subsets Ω′ ⊂ Rn.
So it only remains to prove the estimate concerning the H1 norm of ψ.

From equation (4.40), we get that

∆ψ = −2ζ · ∇ψ − q̃ − q̃ψ in Rn

and the interior estimate of Proposition ?? thus gives

‖ψ‖1,Ω ≤ C
(
‖2ζ · ∇ψ + q̃ + q̃ψ‖−1,Ω′ + ‖ψ‖L2(Ω′)

)
??

for Ω ⊂⊂ Ω′. On the other hand, we also have

‖2ζ · ∇ψ + q̃ + q̃ψ‖−1,Ω′ ≤ 2n|ζ|‖ψ‖L2(Ω′) + ‖q̃‖L2(Ω′) + ‖q̃ψ‖L2(Ω′)

≤ 2n|ζ|‖ψ‖L2(Ω′) + ‖q‖L2(Ω) + ‖q‖L∞(Ω)‖ψ‖L2(Ω′)

(4.44)

and

‖ψ‖L2(Ω′) ≤
C

|ζ|‖q̃‖L2(Ω′) =
C

|ζ|‖q‖L2(Ω)??

The estimate (??) is obtained by replacing Ω by Ω′ in the estimate (??) (the
constant C changes). A combination of (??)-(??) yields

‖ψ‖1,Ω ≤ C

(
‖q‖L2(Ω) +

‖q‖L∞(Ω)‖q‖L2(Ω)

|ζ| +
‖q‖L2(Ω)

|ζ|

)

and since the assumption on |ζ| implies that 1
|ζ| ≤ 1 and 1

|ζ|‖q‖L∞(Ω) ≤ 1,

we immediately get

‖ψ‖1,Ω ≤ C‖q‖L2(Ω)

as desired. �

We now return to the
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Proof. of Proposition 4.20 We first prove uniqueness. If w ∈ S(Rn) and
∆w + 2ζ · ∇w = 0

Fourier transformation gives

(−|k|2 + 2ζ · ik) ŵ(k) = 0??

As this equation is invariant under rotations, we may assume, without loss
of generality, that the real part of ζ is in the positive e1 direction and the
imaginary part of ζ is in the span of e1 and e2 with negative e2 component.
By (4.1), the real and imaginary parts of ζ must be mutually perpendicular
and of the same length, so that

ζ = se1 − ise2 with s =
|ζ|√
2

in which case (??) is equivalent to
[
−
(
k21 + (k2 − s)2 + k23 · · · + k2n − s2

)
+ 2isk1

]
ŵ = 0??

Let

M(s) =
{
k ∈ Rn

∣∣ k1 = 0, k21 + (k2 − s)2 + k23 · · ·+ k2n = s2
}

denote the codimension 2 sphere which arises as the intersection of the plane
k1 = 0 and the n-1 dimensional sphere with center se2 and radius s. The
content of (??) is that ŵ is supported on M(s) and so must vanish.

Now let w ∈ L2
δ be any weak solution to ∆w + 2ζ · ∇w = 0. To show

that w = 0, it suffices to show that 〈w,ϕ〉 = 0 for all ϕ ∈ S(Rn). To do so,
we approximate w by wε ∈ L2(Rn). Let

χ ∈ C∞([0,∞)) with suppχ ⊂ [0, 1) and

∫

Rn

χ(|k|2) dnk

(2π)n
= 1

and

β(x) =

∫

Rn

eik·xχ(|k|2) dnk

(2π)n

Then

wε(x) = β(εx)w(x) ∈ L2(Rn)

As ϕ ∈ S(Rn), ϕε(x) = β(εx)ϕ(x) ∈ S(Rn) and

lim
εց0

(
1 + |x|2

)−δ/2
ϕε(x) =

(
1 + |x|2

)−δ/2
ϕ(x) in L2(Rn)

by the Lebesgue dominated convergence theorem. Consequently

〈w,ϕ〉 = lim
εց0

〈w,ϕε〉 = lim
εց0

〈wε, ϕ〉 = lim
εց0

∫

Rn

ŵε(k)ϕ̂(k)
dnk

(2π)n

Observe that
(

1
εn β̂
(
k
ε

))∨
(x) = β(εx). By Problem 4.24, below,

supp ŵε ⊂ Nε

(
M(s)

)
=
{
k
∣∣ dist(k,M(s)) ≤ ε

}
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so that

| 〈w,ϕ〉 | ≤ lim sup
εց0

ε

(∫

Nε

|ŵε(k)|2
dnk

(2π)n

)1/2( 1

ε2

∫

Nǫ

|ϕ̂(k)|2 dnk

(2π)n

)1/2

As ϕ̂ is smooth and 1
ε2
(volume of Nǫ) converges to a constant times the

surface area of M(s),

(4.45) | 〈w,ϕ〉 | ≤ C

(
lim sup
εց0

ε‖ŵε‖L2

) (∫

M(s)
|ϕ̂(k)|2dn−2σ(k)

)1/2

Moreover,

1

(2π)n
‖ŵǫ‖2L2 = ‖wǫ‖2L2 =

∫

Rn

|β(εx)|2 |w(x)|2 dnx ≤ ‖w‖2L2
δ
sup
x
β(εx)2

(
1 + |x|2

)−δ

As β ∈ S(Rn) and δ < 0

‖ŵǫ‖2L2 ≤ C ‖w‖2L2
δ
sup
x

(
1 + ε2|x|2

)δ(
1 + |x|2

)−δ
= C ‖w‖2L2

δ
sup
x

[ 1 + |x|2
1 + ε2|x|2

]|δ|

≤ C ε2δ ‖w‖2L2
δ

Returning to (4.45)

| 〈w,ϕ〉 | ≤ C lim sup
ǫց0

(ε · εδ) ‖w‖L2
δ

(∫

M(s)
|ϕ̂(k)|2dn−1σ(k)

)1/2

Since δ > −1, it therefore follows that

〈w,ϕ〉 = 0

for every ϕ ∈ S, so that w = 0.

We turn to proving existence of a solution to (??). Suppose for now that
f ∈ S(Rn) and define

ŵ(k) =
f̂(k)

−|k|2 + 2iζ · k
We shall prove that w is well defined and satisfies the estimate

‖w‖L2
δ
≤ C

|ζ|‖f‖L2
δ+1

Once this estimate is established we can dispense with the assumption that
f ∈ S(Rn) by continuity. As we did in the uniqueness proof, we may assume
that

ζ = s(e1 − ie2) with s =
|ζ|√
2

and therefore

−|k|2 + 2iζ · k = −
[
k21 + (k2 − s)2 + k23 · · ·+ k2n − s2

]
+ 2isk1 = P (k, s)
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Since the polynomial P (k, s) is homogeneous of degree two,

P (k, s) = s2P (k/s, 1)

As before we denote

Nr

(
M(s)

)
=
{
k ∈ Rn

∣∣ dist(k,M(s)) ≤ r
}

Every point p ∈ M(s) obeys p1 = 0 and |p − se2| = s. Hence for all
k ∈ Rn and p ∈ M(s) we have that |k − p| ≥ |k1| and |k − p| ≥

∣∣|k −
se2| − |p − se2|

∣∣ =
∣∣|k − se2| − s

∣∣ which implies that dist(k,M(s)) ≥ |k1|
and dist(k,M(s)) ≥

∣∣|k − se2| − s
∣∣. As a result, if k ∈ Ns/2n

(
M(s)

)
, then

|k1| ≤ s
2n and |k − se2| ≥ s− s

2n so that at least one component of k − se2
must be at least 1√

n

(
s− s

2n

)
> s

2n . Consequently,

O1(s) = Rn \Ns/2n

(
M(s)

)

O2(s) =
{
|k2 − s| > s

2n

}
∩Ns

(
M(s)

)◦

Oj(s) =
{
|kj | >

s

2n

}
∩Ns

(
M(s)

)◦
for j > 2

is an open cover of Rn. The singularity of f̂(k)
P (k,s) on M(s) has been excluded

from O1(s). The remaining sets O2(s), · · · ,On(s) cover Ns/2n

(
M(s)

)
⊂

Ns

(
M(s)

)◦
with the jth component of |k− se2| being relatively large on Oj .

It is useful to note that M(s) = sM(1) and that Oj(s) = sOj(1). Let χj(k)
be a partition of unity subordinate to this open cover, so that

ŵ(k) =

n∑

j=1

χj(k)f̂(k)

P (k, s)
=

n∑

j=1

ŵj(k)

Since O1(1) is bounded away from M(1) and since P (k, 1) → ∞ as |k| → ∞
there exists a constant c such that

|P (k, 1)| ≥ c > 0 ∀k ∈ O1(1)

For k ∈ O1(s) this leads to the estimate

|P (k, s)| = s2|P (k/s, 1)| ≥ cs2

so that

(4.46) ‖w1‖L2
δ
≤ ‖w1‖L2 ≤ 1

cs2
‖f‖L2 ≤ 1

cs2
‖f‖L2

δ+1

Here we have used the assumptions that δ < 0 and δ + 1 > 0. Since our
hypothesis guarantees that |ζ| =

√
2s is greater than some c > 0, (4.46)

gives the desired estimate for w1.
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To estimate each wj , with j = 2, · · · , n, we first introduce new coordi-
nates in Oj(s) by

η1 = 2k1

ηℓ = kℓ for ℓ 6= 1, j

ηj =
k21 + (k2 − s)2 + k23 + · · ·+ k2n − s2

s

(4.47)

In terms of these new coordinates

ŵj(η) =
χj(k)f̂(k)

s(−ηj + iη1)

Since

∂ ηℓ
∂km

=





2 if ℓ = m = 1

1 if ℓ = m, ℓ 6= 1, j

0 if ℓ 6= m, ℓ 6= j
2km
s if ℓ = j, m 6= 2

2(k2−s)
s if ℓ = j, m = 2

the Jacobian of this coordinate transformation on Oj(s) is

∣∣det
[∂η
∂k

]∣∣ =
{

4|kj |
s ifj 6= 2

4|k2−s|
s ifj = 2

which is bounded above by 8 and below by 2
n on Oj(s), j = 2, ..., n for all s.

At this point we shall make use of the following three results, the proofs of
which will be given later.

Lemma 4.21. For each j = 2, · · · , n, the map Zj defined by

(Zjf)(x) =
( f̂

−kj + ik1

)∨
(x) f ∈ S(Rn)

has a unique continuous extension to a bounded linear operator from L2
δ+1

to L2
δ. For each f ∈ L2

δ+1, Zjf is a weak solution to (∂x1 + i∂xj )w = f .
That is, 〈(

− ∂x1 + i∂xj
)
ϕ,Zjf

〉
= 〈ϕ, f〉

for all ϕ ∈ S(Rn) and f ∈ L2
δ+1.

Lemma 4.22. For any χ ∈ C∞
0 (Rn) and any f ∈ S(Rn)

∥∥(χ(k)f̂(k)
)∨∥∥

L2
δ+1

≤ C‖f‖L2
δ+1

where the constant C depends on χ, but is independent of f .
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Lemma 4.23. Let O and O′ be open subsets of Rn and C be a compact
subset of O′. Let f̂ ∈ C∞

0 (C) and let Ψ be a smooth diffeomorphism from O
to O′. Then,

∥∥(f̂ ◦Ψ−1
)∨∥∥

L2
δ
≤ C‖f‖L2

δ

∥∥(f̂ ◦Ψ
)∨∥∥

L2
δ+1

≤ C‖f‖L2
δ+1

The constant C depends on Ψ and C, but is independent of f .

The proof of Proposition 4.20 now proceeds as follows. If Ψ(η) is the
inverse map of the change of coordinates (4.47), then

ŵj(k) =
χj(k)f̂(k)

P (k, s)
=

1

s

(χj f̂) ◦Ψ
−ηj + iη1

◦Ψ−1(k)

Set

gj(x) =
[(
χj f̂

)
◦Ψ
]∨
(x) hj =

[
χj f̂

]∨
(x)

In this notation

ŵj =
1

s
Ẑjgj ◦Ψ−1

Using, in order, Lemma 4.23, Lemma 4.21, Lemma 4.23 and Lemma 4.22,
we obtain that

‖wj‖L2
δ
≤ c1

s
‖Zjgj‖L2

δ
≤ c2

s
‖gj‖L2

δ+1
≤ c3

s
‖hj‖L2

δ+1
≤ c4

s
‖fj‖L2

δ+1

Recalling that s = |ζ|√
2
and invoking the formula w =

∑n
j=1wj completes

the proof of Proposition 4.20. �

Exercise 4.24. Let w ∈ L2
δ be any weak solution to ∆w+2ζ ·∇w = 0. Let

χ ∈ C∞([0,∞)) with suppχ ⊂ [0, 1) and

∫

Rn

χ(|k|2) dnk

(2π)n
= 1

and

wε(x) = β(εx)w(x) where β(x) =

∫

Rn

eik·xχ(|k|2) dnk

(2π)n

(a) (a) Prove that if the Fourier transform of ϕ ∈ S(Rn) vanishes inNε

(
M(s)

)
={

k
∣∣ dist(k,M(s)) ≤ ε

}
, then there is a ψ ∈ S(Rn) such that

β(εx)ϕ(x) = ∆ψ − 2ζ̄ · ∇ψ
(b) (b) Prove that ŵε(k) is supported in Nε

(
M(s)

)
.

It still remains to prove the three auxiliary Lemmas 4.21–4.23. If we note
that vfvs,n = 1

(2π)n/2 ‖f̂‖L2
s(R

n), then Lemmas 4.22 and 4.23 merely state the

well–known facts that multiplication by smooth, compactly supported func-
tions and composition with smooth diffeomorphisms are bounded operators
on Hs(Rn). The former is Lemma ??. The latter is
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Exercise 4.25. Let s ∈ R. Let O and O′ be open subsets of Rn and C be
a compact subset of O′. Let Ψ be a smooth diffeomorphism from O to O′.
Prove that there is a constant C, depending only on Ψ, s, O and C, such
that

vu ◦Ψ−1vs,n ≤ Cvuvs,n

for all u ∈ C∞
0 (C).

It thus only remains to give the

Proof. of Lemma 4.21 To prove Lemma 4.21, it clearly suffices to consider a
single value of the index j, like j = 2. We furthermore claim that it suffices
to prove the estimate ‖Z2f‖L2

δ
≤ C‖f‖L2

δ+1
in R2. To see this we note that

‖u‖2L2
δ(R

n) =

∫

Rn

(1 + |x|2)δ|u(x)|2 dnx

≤
∫

Rn

(1 + x21 + x22)
δ|u(x)|2 dnx

since δ < 0. Therefore

(4.48) ‖Z2f‖2L2
δ(R

n) ≤
∫
dx3 · · · dxn ‖Z2f( · , · , x3, · · · , xn)‖2L2

δ(R
2)

Here we use the fact that (Z2f)(x1, x2, . . . xn) = [Z2f(·, x̃)](x1, x2), i.e., we
use that x̃ = (x3, · · · , xn) may be treated as parameters untouched by Z2.
At the same time

‖f‖2L2
1+δ(R

n) =

∫

Rn

(1 + |x|2)1+δ|f(x)|2 dnx

≥
∫

Rn

(1 + x21 + x22)
1+δ|f(x)|2 dnx

since 1 + δ > 0. Therefore

(4.49) ‖f‖2L2
δ+1(R

n) ≥
∫
dx3 . . . dxn ‖f( · , · , x3, · · · , xn)‖2L2

δ(R
2)

The estimates (4.48) and (4.49) immediately imply that it suffices to prove
the estimate ‖Z2f‖L2

δ
≤ C‖f‖L2

δ+1
in two dimensions. This latter estimate

is a consequence of the following lemma with p = 2.

We now prove
〈(

− ∂x1 + i∂xj
)
ϕ,Zjf

〉
= 〈ϕ, f〉

for all ϕ ∈ S(Rn) and f ∈ L2
δ+1, assuming the boundedness of the map

Zj : L2
δ+1 → L2

δ . For any ϕ ∈ S(Rn), we have
(
− ∂x1 + i∂xj

)
ϕ ∈ L2

−δ
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and ϕ ∈ L2
−δ−1. So, by continuity, it suffices to consider f ∈ S(Rn). For

ϕ, f ∈ S(Rn)

〈ϕ, f〉 = 1

(2π)n
〈
ϕ̂(k), f̂(k)

〉
=

1

(2π)n

〈
(−kj − ik1)ϕ̂(k),

f̂(k)

−kj + ik1

〉

=
1

(2π)n

〈(
(−∂x1 + i∂xj )ϕ

)̂
(k),

f̂(k)

−kj + ik1

〉

=
〈
(−∂x1 + i∂xj )ϕ,Zjf

〉

The formula 1
(2π)n

〈
ψ̂(k), ĝ(k)

〉
= 〈ψ, g〉 is usually first proven for ψ, g ∈

S(Rn). But, by the Lebesgue dominated convergence theorem, it extends
to ĝ ∈ L1(Rn), since S(Rn) is dense in L1(Rn) and ĝ ∈ L1(Rn) implies
g ∈ L∞(Rn). �

Lemma 4.26. Define Z by

(Zf)(u1, u2) :=

∫

R2

1

−(u2 − v2) + i(u1 − v1)
f(v1, v2) d

2v for f ∈ S(R2)

(a) (a) Then Zf is bounded from Lpδ+1(R
2) to Lpδ(R

2) provided p > 1 and

−2
p < δ < 1− 2

p . The space Lpδ consists of the functions

{
u
∣∣ (1 + |x|2)δ/2u ∈ Lp(Rn)

}

equipped with the norm ‖u‖Lp
δ
= ‖(1 + |x|2)δ/2u‖Lp(Rn).

(b) (b) Furthermore

(Zf)(u1, u2) = −2πi
( f̂

−k2 + ik1

)∨
(u1, u2) for all f ∈ S(R2)

Proof. f (a) Since the spaces Lq(Rn) and Lp(Rn) are dual, provided 1
p+

1
q =

1 and 1 < p <∞, the same is true for Lq−δ and L
p
δ . As a result, it suffices to

verify the estimate | 〈Zf, g〉 | ≤ C‖f‖Lp
δ+1

‖g‖Lq
−δ

for all g ∈ Lq−δ. We have

| 〈Zf, g〉 | =
∣∣∣∣∣

∫

R2

∫

R2

g(u)f(v)

−(u2 − v2) + i(u1 − v1)
dudv

∣∣∣∣∣

≤
∫

R2

∫

R2

(
|g(u)|(1 + |u|2)β/2(1 + |v|2)−α/2

)
·
(
|f(v)|(1 + |u|2)−β/2(1 + |v|2)α/2

)

|u− v|1/p · |u− v|1/q dudv
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where α > 0 and β > 0 will be chosen later. Employing Hölder’s inequality,

| 〈Zf, g〉 | ≤
(∫

R2

{∫

R2

(1 + |u|2)−pβ/2(1 + |v|2)p(α−δ−1)/2

|u− v| du
}
(1 + |v|2)p(δ+1)/2|f(v)|pdv

)1/p

×
(∫

R2

{∫

R2

(1 + |u|2)q(β+δ)/2(1 + |v|2)−qα/2
|u− v| dv

}
(1 + |u|2)−qδ/2|g(u)|qdu

)1/q

≤ C‖f‖Lp
δ+1

· ‖g‖Lq
−δ

provided the constant

C =

(
sup
v

∫

R2

(1 + |u|2)−pβ/2(1 + |v|2)p(α−δ−1)/2

|u− v| du

)1/p

×
(
sup
u

∫

R2

(1 + |u|2)q(β+δ)/2(1 + |v|2)−qα/2
|u− v| dv

)1/q

is finite.

Since 1 + |x|2 ≤ (1 + |x|)2 ≤ 2(1 + |x|2) it suffices to check that

sup
v

∫

R2

(1 + |u|)−pβ(1 + |v|)p(α−δ−1)

|u− v| du and sup
u

∫

R2

(1 + |u|)q(β+δ)(1 + |v|)−qα
|u− v| dv

are finite, for appropriate choices of α, β, p, q and δ, which we now do. We
impose the constraint that δ = α− β − 1

q , which implies that

p(α− δ − 1) = p
(
β +

1

q
− 1
)
= p
(
β − 1

p

)
= pβ − 1

q(β + δ) = q
(
α− 1

q

)
= qα− 1

For each fixed v with |v| ≥ 1, let R be a rotation chosen so that v = |v|Re1.
Making the change of variables u = |v|Rw, we see that the integral

∫

R2

(1 + |u|)−pβ(1 + |v|)p(α−δ−1)

|u− v| d2u = (1 + |v|)p(α−δ−1)|v|
∫

R2

(1 + |v||w|)−pβ
|w − e1|

dw

≤ (1 + |v|)p(α−δ−1)|v|
∫

R2

(|v||w|)−pβ
|w − e1|

dw

= (1 + |v|)pβ−1|v|1−pβ
∫

R2

1

|w − e1| |w|pβ
d2w

converges and is bounded uniformly for |v| ≥ 1 if 1 < pβ < 2. For each
fixed v with |v| < 1, we make the change of variables u = w+ v and use the
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bound 1 + |w + v| ≥ c(1 + |w|) to see that the integral

∫

R2

(1 + |u|)−pβ(1 + |v|)p(α−δ−1)

|u− v| du = (1 + |v|)p(α−δ−1)

∫

R2

(1 + |w + v|)−pβ
|w| dw

≤ c−pβ(1 + |v|)p(α−δ−1)

∫

R2

1

|w|(1 + |w|)pβ dw

again converges and is bounded uniformly for |v| ≤ 1 if pβ > 1. Similarly,
for each fixed u with |u| ≥ 1, let R be a rotation chosen so that u = |u|Re1.
Making the change of variables v = |u|Rw, we see that the integral

∫

R2

(1 + |u|)q(β+δ)(1 + |v|)−qα
|u− v| d2v = (1 + |u|)q(β+δ)|u|

∫

R2

(1 + |u||w|)−qα
|w − e1|

dw

≤ (1 + |u|)q(β+δ)|u|
∫

R2

(|u||w|)−qα
|w − e1|

dw

= (1 + |u|)qα−1|u|1−qα
∫

R2

1

|w − e1| |w|qα
dw

converges and is bounded uniformly for |u| ≥ 1 if 1 < qα < 2. For each
fixed u with |u| < 1, we make the change of variables v = w+u and use the
bound 1 + |w + u| ≥ c(1 + |w|) to see that the integral

∫

R2

(1 + |u|)q(β+δ)(1 + |v|)−qα
|u− v| dv = (1 + |u|)q(β+δ)

∫

R2

(1 + |w + u|)−qα
|w| dw

≤ c−qα(1 + |u|)q(β+δ)
∫

R2

1

|w|(1 + |w|)qα dw

again converges and is bounded uniformly for |u| ≤ 1 if qα > 1.

Thus, in order to guarantee that C is finite, it suffices to require that

(4.50)
1

p
< β <

2

p
and

1

q
< α <

2

q

with

(4.51) δ = α− β − 1

q

As α and β run over the region (4.50), −β runs over −2
p < −β < −1

p and

α− β − 1
q runs over

−2

p
=

1

q
− 2

p
− 1

q
< α− β − 1

q
<

2

q
− 1

p
− 1

q
= 1− 2

p
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Thus, if p > 1 and δ satisfies

−2

p
< δ < 1− 2

p

then it is always possible to select α and β such that (4.50) and (4.51) are
satisfied. This completes the proof of Lemma 4.26 and consequently the
proof of Lemma 4.21.

(b) For f ∈ S(Rn), both
(4.52)∫

R2

1

−(u2 − v2) + i(u1 − v1)
f(v1, v2) d

2v and −2πi
( f̂

−k2 + ik1

)∨
(u1, u2)

are bounded continuous functions. To show that they are equal, it suffices
to show that they have the same inner products with all g ∈ S(Rn). This
follows from Problem 4.27, below.

�

Internal remark 5. Here is the justification for “This follows from Problem
4.27, below.” For f, g ∈ S(Rn), the Lebesgue dominated convergence theorem
gives∫

R4

g(u1, u2)
1

−(u2 − v2) + i(u1 − v1)
f(v1, v2) d

2ud2v

= lim
R→∞

∫

R4

g(u1, u2)
χ(|u− v| < R)

−(u2 − v2) + i(u1 − v1)
f(v1, v2) d

2ud2v

= lim
R→∞

∫

R2

ĝ(k1, k2)CR(k)f̂(k1, k2) d
2k

where CR(k) is the Fourier transform of χ(|x|<R)
−x2+ix1 . By Problem 4.27, the

integrand is bounded by the L1 function ĝ(k1, k2)
4π

|−k2+ik1| f̂(k1, k2) and ap-

proaches ĝ(k1, k2)
−2πi

−k2+ik1 f̂(k1, k2) pointwise as R→ ∞. So the claim follows
by the Lebesgue dominated convergence theorem.

Exercise 4.27. (a) Prove that
∫

|x|≤R

e−ik·x

−x2 + ix1
d2x =

2i

−k2 + ik1

∫ π

0
dθ
[
e−i|k|R cos θ − 1

]

(b) Prove that
∣∣∣∣
∫

|x|≤R

e−ik·x

−x2 + ix1
d2x

∣∣∣∣ ≤
4π

| − k2 + ik1|
and

lim
R→∞

∫

|x|≤R

e−ik·x

−x2 + ix1
d2x =

−2πi

−k2 + ik1
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for all k 6= 0.

4.6. Complex geometrical optics solutions: third proof

4.7. Reconstruction

Earlier we proved a uniqueness result in the Calderón problem, stating that if
two positive conductivities γ1, γ2 ∈ C2(Ω) satisfy Λγ1 = Λγ2 , then necessarily
γ1 = γ2 in Ω. The proof was not constructive and did not give a procedure
to determine γ from Λγ. In this section we will give a constructive proof
that results in a reconstruction procedure for this inverse problem.

Theorem 4.28. Let Ω be a bounded domain in Rn, n ≥ 3, with smooth
boundary and suppose that γ ∈ C2(Ω) is a positive function. From the
knowledge of the map

Λγ : H3/2(∂Ω) → H1/2(∂Ω)

it is possible to determine γ in Ω in a constructive way.

As before, this result will be obtained as a consequence of a reconstruction
procedure for the inverse problem for a Schrödinger equation.

Theorem 4.29. Let Ω be a bounded domain in Rn, n ≥ 3, with smooth
boundary and suppose that q ∈ L∞(Ω). Assume that 0 is not a Dirichlet
eigenvalue of −∆+ q in Ω. From the knowledge of the map

Λq : H
3/2(∂Ω) → H1/2(∂Ω)

it is possible to determine q in Ω in a constructive way.

Let us give an outline of the proof. It is very similar to the uniqueness
proof earlier, and relies on complex geometrical optics solutions uζ(x) =

eζ·x(1 + r(x, ζ)) for ζ ∈ Cn such that ζ · ζ = 0 and |ζ| is large. Even though
the original problem is stated in the domain Ω, we extend q by zero outside
of Ω and consider the solutions uζ in Rn. It is important that the solution
uζ is unique as long as r(x, ζ) satisfies a decay condition as |x| → ∞.

It will be possible to characterize the boundary value uζ |∂Ω as the unique

solution f ∈ H3/2(∂Ω) of the following integral equation on the boundary:

(Id+Sζ(Λq − Λ0))f = eζ·x on ∂Ω.

Here Sζ is a modified single layer potential depending on the complex vector
ζ. The point is that the operator on the left hand side only depends on the
data Λq and other known quantities, so one can compute uζ |∂Ω from the
boundary data by solving this integral equation. Using these functions in a
suitable integral identity and taking a limit as |ζ| → ∞ allows to recover the
Fourier transform of q.
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Before going to the proof of Theorem 4.29, let us see how Theorem 4.28
follows from it.

Proof. Proof of Theorem 4.28 Suppose that one is given the map Λγ :

H3/2(∂Ω) → H1/2(∂Ω). If q is defined by q = ∆γ1/2/γ1/2, it was proved in
Theorem ??? that

Λqf = γ−1/2Λγ(γ
−1/2f) +

1

2
γ−1(∂νγ)f |∂Ω.

From Theorem ???, we know that from the knowledge of Λγ it is possible
to reconstruct the boundary value γ|∂Ω and the normal derivative ∂νγ|∂Ω.
Thus, we have access to the map Λq : H

3/2(∂Ω) → H1/2(∂Ω).

By Theorem 4.29, we can determine q constructively from this informa-
tion. Consider the unique weak solution v ∈ H1(Ω) of the equation

(−∆+ q)v = 0 in Ω

with boundary value v|∂Ω = γ1/2|∂Ω. Since the coefficient q and the bound-

ary value are known, we can compute the solution v. But the function γ1/2

solves this Dirichlet problem, so we also know v = γ1/2. This determines γ
in Ω. �

Assume that q ∈ L∞(Ω) is such that 0 is not a Dirichlet eigenvalue of
−∆+q in Ω. The objective is to reconstruct q in Ω from the knowledge of Λq.
The first step is to extend q by zero into Rn, with the extension also denoted
by q. We then have the following complex geometrical optics solutions.

Proposition 4.30. Let q ∈ L∞
comp(R

n), and fix δ with −1 < δ < 0. There
exists C = C(δ, q) > 0 such that for any ζ ∈ Cn satisfying ζ · ζ = 0 and
|ζ| ≥ C, there exists a unique solution

u(x) = uζ(x) = eζ·x(1 + r(x, ζ))

of the equation (−∆ + q)u = 0 in Rn where r( · , ζ) ∈ L2
δ(R

n). Moreover,
u ∈ H2

loc(R
n), and one has

‖r‖L2
δ(R

n) ≤
C

|ζ| .

In the uniqueness proof of the inverse problem for the Schrödinger equa-
tion, we began from the assumption Λq1 = Λq2 and used the integral identity

〈(Λq1 − Λq2)(u1|∂Ω), u2|∂Ω〉∂Ω =

∫

Ω
(q1 − q2)u1u2 dx

where uj are solutions of (−∆ + qj)uj = 0 in Ω. We then chose complex

geometrical optics solutions uj such that u1u2 ≈ eix·ξ for large values of the
complex vector. Since the left hand side of the identity is zero, this resulted
in the vanishing of the Fourier transform of q1 − q2.
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In the reconstruction problem we are instead given the DN map Λq for an
unknown potential q, and the objective is to determine the Fourier transform
of q from this information. This will be achieved by comparing Λq to Λ0,
the DN map with zero potential. The next result shows how this is precisely
done.

Proposition 4.31. Let q ∈ L∞(Ω) be such that 0 is not a Dirichlet eigen-
value of −∆ + q in Ω. Let also ξ ∈ Rn with ξ 6= 0. If s > 0 is sufficiently
large, there exist ζj = ζj(s, ξ) ∈ Cn with ζj · ζj = 0 and |ζj | = s for j = 1, 2,
such that

lim
s→∞

〈(Λq − Λ0)(uζ1 |∂Ω), eζ2·x|∂Ω〉∂Ω =

∫

Ω
qeix·ξ dx.

Here uζ1 is the solution of (−∆+ q)u = 0 in Rn given in Proposition 4.30.

Proof. Let α, β ∈ Rn be such that {α, β, ξ/ |ξ|} is an orthonormal set in
Rn. We define complex vectors

ζ1 =
s√
2
(α+ i(

ξ

2
+

√
s2

2
− ξ2

4
β)),

ζ2 =
s√
2
(−α+ i(

ξ

2
−
√
s2

2
− ξ2

4
β)).

By using the fact that α, β, ξ/ |ξ| are orthonormal, it follows that ζj · ζj = 0
and |ζj| = s. The main point in the choice of ζ1 and ζ2 is that

ζ1 + ζ2 = iξ.

Let uζ1 be the solution of (−∆ + q)u = 0 in Rn in Proposition 4.30,

and note that eζ2·x solves the same equation with zero potential, that is,
∆(eζ2·x) = 0. The integral identity in Theorem ??? implies that

〈(Λq − Λ0)(uζ1 |∂Ω), eζ2·x|∂Ω〉∂Ω =

∫

Ω
quζ1e

ζ2·x dx

=

∫

Ω
qe(ζ1+ζ2)·x(1 + r(x, ζ1)) dx

=

∫

Ω
qeix·ξ(1 + r(x, ζ1)) dx.

Since ‖r( · , ζ1)‖L2
δ(R

n) ≤ C
s , the result follows by taking the limit as s →

∞. �

From Proposition 4.31 we see that the Fourier transform of q at nonzero
frequencies ξ can be recovered from the map Λq, as long as the boundary
value uζ1 |∂Ω of the solution in Proposition 4.30 can be somehow determined
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from Λq. Since q is compactly supported, its Fourier transform is continuous
and would therefore be determined also at ξ = 0.

The determination of uζ |∂Ω from Λq will require certain facts on layer
potentials. This may be motivated as follows.

Motivation 4.32. Since q is extended by zero outside of Ω, the equation
(−∆+ q)uζ = 0 in Rn implies

−∆uζ = 0 in Rn \ Ω.
Thus uζ is harmonic in the exterior domain Rn \Ω. Note that this equation

does not involve the unknown potential q. Writing uζ = eζ·x + vζ , we see
that also the correction term vζ is harmonic in the exterior domain. Further,

the function e−ζ·xvζ satisfies a decay condition at infinity by construction.

It is known that harmonic functions in the exterior domain satisfying
certain decay conditions can be represented in terms of single layer poten-
tials, which are integral operators mapping functions on ∂Ω to functions in
Rn. In our case we will have

vζ |Rn\Ω = Sζh|Rn\Ω

for some function h ∈ H1/2(∂Ω), where Sζ is a modified (or Faddeev type)

single layer potential that differs from the standard one by factors of eζ·x

in its integral kernel. It will turn out that h = −(Λq − Λ0)(uζ |∂Ω), and
collecting these facts gives that

uζ = eζ·x − Sζ(Λq − Λ0)(uζ |∂Ω) in Ω+.

The integral equation characterizing uζ |∂Ω in terms of Λq follows by restrict-
ing the last identity on ∂Ω.

Let us begin the development of the required layer potentials. We de-
compose Rn in three disjoint parts,

Rn = Ω− ∪ Γ ∪ Ω+,

where Ω− = Ω is the interior domain, Γ = ∂Ω is the boundary of Ω, and
Ω+ = Rn \ Ω is the exterior domain.

Consider the trace operator on Γ,

γ : H1(Rn) → H1/2(Γ), γu = u|∂Ω,
and the corresponding trace operators from the interior and exterior,

γ− : H1(Ω) → H1/2(Γ), γ−u = u|Γ,
γ+ : H1(Ω+) → H1/2(Γ), γ+u = u|Γ.

Since taking traces is a local operation near Γ, the operators γ± can also
be applied to functions that are in H1(U ∩ Ω±) where U is some open set
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containing Γ. If u is a function that is H1 is a full neighborhood U of Γ, it
follows that

γ−u = γ+u = γu.

If u is a H2 function in U ∩ Ω± where U is some neighborhood of Γ, we
denote by (∂νu)± the normal derivative of u from the interior or exterior.
Note that in this case (∂νu)± is in H1/2(Γ).

The standard single layer potential on Rn will be obtained from the
fundamental solution of the Laplacian, given by the Newtonian potential in
the next problem.

Exercise 4.33. Let n ≥ 3, and let

k0(x) = cn |x|2−n , x ∈ Rn.

Show that this function gives rise to a convolution operator

K0 : L
2
comp(R

n) → H2
loc(R

n), K0f(x) =

∫

Rn

k0(x− y)f(y) dy

with the property that

−∆K0f = f, f ∈ L2
comp(R

n).

Proof. 1. Let F1 be a compact set in Rn, and let f ∈ L2(Rn) with
supp (f) = F2 compact. We will show that

(4.53) ‖K0f‖L2(F1)
≤ CF1,F2 ‖f‖L2(F2)

.

This proves that K0f ∈ L2
loc whenever f ∈ L2

comp. Define

F = {x− y ; x ∈ F2, y ∈ F1}.
Then also F is a compact set, and we have

K0f(x) =

∫

Rn

χF (x− y)k0(x− y)f(y) dy, x ∈ F1.

Since χFk0 ∈ L1(Rn), Young’s inequality for convolutions (Lemma ???)
implies that

‖K0f‖L2(F1)
≤ ‖χF k0‖L1(Rn) ‖f‖L2(F2)

≤ C ‖f‖L2(F2)
.

2. We next show that

(4.54) −∆K0f = f, f ∈ C∞
c (Rn).

Do the details...

3. The next step is to show that

(4.55) −∆K0f = f, f ∈ L2
comp(R

n).
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Let f ∈ L2(Rn) with supp (f) compact. Choose a sequence (fj) ⊂ C∞
c (Rn)

so that fj → f in L2(Rn) and supp (fj) lies in a fixed compact set F2 for
each j. By (4.53), we have

K0fj → K0f in L2
loc(R

n).

Then also

−∆K0fj → −∆K0f in H−2
loc (R

n).

Moreover, we have already seen that −∆K0fj = fj, so also

−∆K0fj → f in L2(Rn).

Uniqueness of limits implies (4.55).

4. It remains to show that K0f ∈ H2
loc whenever f ∈ L2

comp. By the
previous arguments, u = K0f satisfies

−∆u = f ∈ L2
comp, u ∈ L2

loc.

Interior elliptic regularity (Theorem ???) readily implies that u ∈ H2
loc. �

Definition 4.34. The standard single layer potential on Rn is defined as
the operator

S0 = K0γ
∗ : H−1/2(Γ) → H1

loc(R
n).

Proposition 4.35. Let ζ ∈ Cn satisfy ζ · ζ = 0 and |ζ| ≥ 1, and let
−1 < δ < 0. There is a linear operator

Gζ : L
2
δ+1(R

n) → H2
δ (R

n)

such that for any f ∈ L2
δ+1(R

n), the function u = Gζf is the unique solution

in L2
δ(R

n) of the equation e−ζ·x(−∆)(eζ·xu) = f in Rn. One has the norm
bounds

‖Gζf‖L2
δ
≤ C

|ζ| ‖f‖L2
δ+1

,

‖Gζf‖H1
δ
≤ C ‖f‖L2

δ+1
,

‖Gζf‖H2
δ
≤ C |ζ| ‖f‖L2

δ+1
.

Proof. Follows from Theorem ???. �

We will obtain the modified single layer potential Sζ from the following
inverse operator Kζ of the Laplacian.

Proposition 4.36. Let ζ ∈ Cn satisfy ζ · ζ = 0 and |ζ| ≥ 1, and let
−1 < δ < 0. The operator

Kζ : L
2
comp(R

n) → H2
loc(R

n), Kζf = eζ·xGζ(e
−ζ·xf)
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satisfies

−∆Kζf = f, in f ∈ L2
comp(R

n).

Proof. This follows directly from Proposition 4.35. If f ∈ L2
comp, then

e−ζ·xf ∈ L2
comp and thus Gζ(e

−ζ·xf) ∈ H2
δ whenever −1 < δ < 0. It follows

that Kζf ∈ H2
loc for any f ∈ L2

comp. Also, if u = Gζ(e
−ζ·xf), we have

e−ζ·x(−∆)(eζ·xu) = e−ζ·xf , showin that −∆Kζf = f . �

The next result shows that the operator Kζ differs from the usual fun-
damental solution K0 of the Laplacian by a smoothing operator.

Proposition 4.37. Let ζ ∈ Cn satisfy ζ · ζ = 0 and |ζ| ≥ 1, and let
−1 < δ < 0. Then

Kζ = K0 +Rζ

where Rζ is an operator satisfying for any k ≥ 0

Rζ : H
−k
comp(R

n) → C∞(Rn).

There is a function rζ ∈ C∞(Rn ×Rn) such that

Rζf(x) =

∫

Rn

rζ(x, y)f(y) dy, f ∈ L1
comp(R

n).

Proof. By the mapping properties of Kζ and K0, we may define

Rζ = Kζ −K0 : L
2
comp(R

n) → H2
loc(R

n).

Since both Kζ and K0 are right inverses of the Laplacian, we also have

−∆Rζf = 0, f ∈ L2
comp(R

n).

Elliptic regularity (Theorem ???) implies that Rζf ∈ Hk
loc(R

n) whenever
f ∈ L2

comp(R
n), and for any bounded open sets U, V ⊆ Rn one has the

estimate

‖Rζf‖Hk(U) ≤ CU ‖f‖L2(V ) , f ∈ L2(Rn), supp (f) ⊆ V.

Let now ϕ and ψ be any functions in C∞
c (Rn).

ϕRζψ : L2(Rn) → Hk(Rn).

�

The next result considers solutions of the equation (−∆ + q)u = 0 in
Rn, where q vanishes outside Ω, having the form

u = u0 + eζ·xr

where u0 is any harmonic function in H2
loc(R

n), and r ∈ H1
δ (R

n). We will

later take u0 = eζ·x, but the following equivalences work for any harmonic
function u0.
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Proposition 4.38. Let q ∈ L∞(Ω) be such that 0 is not a Dirichlet eigen-
value of −∆+ q in Ω, let ζ ∈ Cn satisfy ζ · ζ = 0 with |ζ| sufficiently large,
and let −1 < δ < 0. Further, let u0 ∈ H2

loc(R
n) be such that ∆u0 = 0 in Rn.

Consider the following problems:

(DE)

{
(−∆+ q)u = 0 in Rn

e−ζ·x(u− u0) ∈ H1
δ (R

n),

(IE)

{
u+Kζ(qu) = u0 in Rn

u ∈ H2
loc(R

n),

(EP)





i) ∆u = 0 in Ω+

ii) u = ũ|Ω+ for some ũ ∈ H2
loc(R

n)

iii) e−ζ·x(u− u0)|Ω+ = r̃|Ω+ for some r̃ ∈ H1
δ (R

n)

iv) (∂νu)+ = Λq(γ+u) on Γ,

(BE)

{
(Id+γSζ(Λq − Λ0))f = u0 on Γ

f ∈ H3/2(Γ).

Each of these problems has a unique solution. Further, these problems are
equivalent in the sense that u solves (DE) iff u solves (IE), if u solves (DE)
then u|Ω+ solves (EP), if u solves (EP) then there is a solution ũ of (DE)
with ũ|Ω+ = u, if u solves (DE) then f = u|Γ solves (BE), and finally if f
solves (BE) then there is a solution u of (DE) with u|Γ = f .

Proof. The function u = u0 + eζ·xr solves (−∆+ q)u = 0 in Rn if and only
if

e−ζ·x(−∆+ q)eζ·xr = −e−ζ·xqu0 in Rn.

The right hand side is in L2
c(R

n), so by Proposition 4.35 there is a unique
solution r ∈ H1

δ (R
n) where −1 < δ < 0 if |ζ| is sufficiently large. This proves

that (DE) has a unique solution. It remains to prove that all four problems
are equivalent in the sense described above.

(DE) =⇒ (IE): Assume u solves (DE). Then u = u0 + eζ·xr where
r ∈ H1

δ (R
n), and

e−ζ·x(−∆+ q)eζ·xr = −e−ζ·xqu0 in Rn.

By Proposition 4.35 we have r = Gζv ∈ H2
loc(R

n) where v satisfies

v + qr = −e−ζ·xqu0.
Since q is compactly supported in Rn also v = −q(r+ e−ζ·xu0) is compactly
supported. Thus we may apply Gζ to both sides of the last identity to obtain

r +Gζ(qr) = −Gζ(e−ζ·xqu0).
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Multiplying by eζ·x and adding u0 to both sides gives (IE).

(IE) =⇒ (DE): Assume u solves (IE). Then the function r = e−ζ·x(u−
u0) satisfies

(4.56) r = −Gζ(e−ζ·xqu).
This shows that r ∈ H1

δ (R
n), and (DE) follows by applying −∆ to both

sides of (IE).

(DE) =⇒ (EP): Let ũ solve (DE), and define u = ũ|Ω+ . Clearly
properties i), ii) and iii) of (EP) are valid. We need to show iv). Since ũ
solves the equation (−∆+ q)ũ = 0 in Ω, we have

(∂νu)+ = ∂ν ũ|Γ = Λq(ũ|Γ) = Λq(γ+u).

(EP) =⇒ (DE): Suppose u solves (EP). Define v ∈ H2(Ω) as the unique
solution of the equation (−∆+ q)v = 0 in Ω with v|Γ = γ+u|Γ, and define

ũ(x) =

{
v(x), x ∈ Ω,

u(x), x ∈ Ω+.

Then γ−ũ|Γ = γ+ũ|Γ and

(∂ν ũ)−|Γ = Λq(γ+u|Γ) = (∂ν ũ)+|Γ
by (EP) iv). It follows that ũ ∈ H2

loc(R
n) and (−∆+q)ũ = 0 in Rn. Further,

e−ζ·x(ũ− u0) ∈ H1
δ (R

n) by (EP) iii).

(DE) =⇒ (BE): Let u solve (DE), and let f = u|Γ. We fix a point
x ∈ Ω+ and let v(y) = Kζ(x, y) where y ∈ Ω. This is a smooth function in
Ω by Lemma ???.

Now Green’s theorem implies∫

Γ
(u∂νv − v∂νu) dS =

∫

Ω
(u∆v − v∆u) dy.

By (DE) we have ∆u = qu and ∂νu|Γ = Λqf . Using the properties in Lemma
??? we obtain ∫

Γ
u∂νv dS − SζΛqf(x) = −Kζ(qu)(x),

which is valid for x ∈ Ω+. The function v is harmonic in Ω, hence ∂νv|Γ =
Λ0(v|Γ). The symmetry of Λ0 implies

∫

Γ
u∂νv dS =

∫

Γ
uΛ0(v|Γ) dS =

∫

Γ
Λ0(u|Γ)v dS = SζΛ0f(x).

We obtain

(4.57) Sζ(Λq − Λ0)f = Kζ(qu) in Ω+.

Adding u to both sides, using the fact that u solves (IE), and taking traces
on Γ gives (BE).
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(BE) =⇒ (EP): Let f solve (BE). We define a function ũ ∈ H1
loc(R

n)
by

ũ = u0 − Sζ(Λq − Λ0)f.

This function is harmonic in Rn \ Γ by Lemma ???, and ũ|Γ = f by using
(BE). The jump relation for Sζ implies that on Γ

(∂ν ũ)− − (∂ν ũ)+ = −(Λq − Λ0)f.

But (∂ν ũ)− = Λ0f , so we have (∂ν ũ)+ = Λq(γ+ũ). Therefore ũ|Ω+ satisfies
(EP) i) and iv). Also (EP) ii) is valid by mapping properties of Sζ .

To prove (EP) iii) it is sufficient to show that for any h ∈ H1/2(Γ),

eζ·xSζh|Ω+ = w|Ω+ for some w ∈ H1
δ (R

n).

Formally one has eζ·xSζh = Gζe
ζ·xγ∗h where Gζ maps L2

c(R
n) to H1

δ (R
n).

However, we have not proved that Gζ has good mapping properties on neg-
ative order Sobolev spaces. �

Finally, let us verify that the boundary integral equation (BE) in Propo-
sition 4.38 is indeed Fredholm.

Proposition 4.39. The operator

γSζ(Λq − Λ0) : H
3/2(Γ) → H3/2(Γ)

is compact.

Proof. Let f ∈ H3/2(Γ), and let u = Pqf where Pq : H3/2(Γ) → H2(Ω)
is the Poisson operator mapping h0 to v0 where (−∆ + q)v0 = 0 in Ω and
v0|Γ = h0. The exact same argument leading to (4.57) in the proof of
Proposition 4.38 shows that

Sζ(Λq − Λ0)f = Kζ(qEJu) in Ω+

where E : L2(Ω) → L2(Rn) is extension by zero and J : H2(Ω) → L2(Ω) is
the natural inclusion. Taking traces on Γ, we obtain the factorization

γSζ(Λq − Λ0) = γKζqEJPq.

The result follows since on the right hand side J is compact and all other
operators are bounded. �

4.8. Old problems for n = 2

Hypothesis 4.40. There is a function1As in ??, we have made this assump-
tion stronger than necessary for simplicity of notation. It is easy to generalize
the results of this section to γ ∈ Cℓ(Ω ) for suitable ℓ. γ ∈ C∞(Ω ) such that

11
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the conductivity at x ∈ Ω is γ(x)1 where 1 is the n×n identity matrix. We
also use the notation γ(x) to represent the matrix valued function γ(x)1.

The following problems provide an introduction to the complex deriva-
tive operators

∂̄ = 1
2

(∂
∂x1

+ i
∂

∂x2

)
and ∂ = 1

2

(∂
∂x1

− i
∂

∂x2

)

The differential operator ∂̄ = 1
2

(
∂
∂x1

+ i∂∂x2

)
corresponds, upon Fourier

transforming, to multiplication by 1
2(ik1 − k2). By (4.52), convolution by

2 1
−2πi

1
−x2+ix1 = 1

π
1

x1+ix2
provides an inverse to that differential operator.

Similarly, convolution by 1
π

1
x1−ix2 provides an inverse to the differential op-

erator ∂ = 1
2

(
∂
∂x1

− i∂∂x2

)
. So we define, for various classes of functions f ,

to be made precise below,

∂−1f(z) =
1

π

∫

R2

1

z̄ − ζ̄
f(ζ)dµ(ζ) ∂̄−1f(z) =

1

π

∫

R2

1

z − ζ
f(ζ)dµ(ζ)

where dµ is Lebesgue measure on R2.

Exercise 4.41. Let Ω be an open subset of R2 and let f ∈ L1(R2) vanish in

Ω. Prove that ∂̄−1f(z) and ∂−1f(z) are well–defined and analytic for z ∈ Ω.

Exercise 4.42. Prove that if f ∈ C1
0 (R

2), then

∂−1∂f = f and ∂̄−1∂̄f = f

Many of the regularity properties of ∂−1 and ∂̄−1 will be stated in terms
of the norms

‖f‖Cǫ = ‖f‖L∞ + |f |Cǫ where |f |Cǫ = sup
z 6=w

|u(z) − u(w)|
|z − w|ǫ

for the space Cǫ(R2), with 0 < ǫ < 1. Then C1+ǫ(R2) is the collection of
functions for which the norm ‖u‖L∞(R2) + ‖∇u‖Cǫ(R2) is finite. More gener-

ally, if n ∈ N0, C
n+ǫ(R2) is the collection of functions for which the norm∑

α∈N20
|α|<n

‖∂αu‖L∞(R2) +
∑

α∈N20
|α|=n

‖∂αu‖Cǫ(R2) is finite. The next few problems

concern Cǫ(R2).

Exercise 4.43. Let 0 < ǫ < 1. Prove that it f, g ∈ Cǫ(Rn), then fg ∈
Cǫ(Rn) and

‖fg‖Cǫ(Rn) ≤ ‖f‖Cǫ(Rn)‖g‖Cǫ(Rn)

Exercise 4.44. Let 0 < ǫ < 1. Prove that it f ∈ C1(Rn) is bounded with
bounded first partial derivatives, then f ∈ Cǫ(Rn) and

‖f‖Cǫ(Rn) ≤ ‖f‖1−ǫL∞

(
‖f‖ǫL∞ + 2‖∇f‖ǫL∞

)
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Exercise 4.45. Let 0 < ǫ < 1.

(a) Let the Fourier transform f̂ of f ∈ L1(Rn) obey
(
1+ |k|ǫ

)
f̂(k) ∈ L1(Rn).

Prove that f has a representative in Cǫ(Rn) with

‖f‖Cǫ(Rn) ≤
∥∥(1 + |k|ǫ

)
f̂(k)

∥∥
L1

(b) Let f(x) ∈ Cǫ(Rn) vanish for |x| > R. Prove that there is a constant
C(R,n), depending only on R and n such that

∣∣f̂(k)
∣∣ ≤ C(R,n)

1 + |k|ǫ
∥∥f
∥∥
Cǫ

(c) Let f(x) ∈ Cǫ(Rn) vanish for |x| > R. Prove that if 0 < s < ǫ, then
f ∈ Hs(Rn) and that there is a constant C, depending only on R, n and
ǫ− s such that

vfvs ≤ C‖f‖Cǫ

Now here is a problem which collects together some regularity properties
of ∂−1 and ∂̄−1. Part (c) also contains the result that ∂∂−1f = ∂̄∂̄−1f = f ,
at least for compactly supported f ∈ Cǫ(R2) with ǫ > 0. Recall that we have
already shown, in Problem 4.42, that ∂−1∂f = ∂̄−1∂̄f = f for f ∈ C1

0 (R
2).

Exercise 4.46. Let 0 < ǫ < 1 and K be any compact subset of R2.

(a) Prove that there is a constant C(K, ǫ) such that if f ∈ L∞(R2) is sup-
ported in K, then ∂−1f, ∂̄−1f ∈ Cǫ(R2) and

‖∂−1f‖Cǫ(R2) , ‖∂̄−1f‖Cǫ(R2) ≤ C(K, ǫ)‖f‖L∞

(b) Let n ∈ N. Prove that there is a constant C(K,n, ǫ) such that if f ∈
Cn(R2) is supported in K, then ∂−1f, ∂̄−1f ∈ Cn+ǫ(R2),

∂α∂−1f(z) =
1

π

∫

R2

1

z̄ − ζ̄
∂αf(ζ) dµ(ζ) ∂α∂̄−1f(z) =

1

π

∫

R2

1

z − ζ
∂αf(ζ) dµ(ζ)

for all α ∈ N2
0 with |α| ≤ n, and

‖∂−1f‖Cn+ǫ(R2) , ‖∂̄−1f‖Cn+ǫ(R2) ≤ C(K,n, ǫ)‖f‖Cn(R2)

(c) Let f ∈ Cǫ(R2) be supported in K and let χ ∈ C∞
0 (R2) be identically

one on K. Prove that, for each α ∈ N2
0 with |α| = 1, the first order partial

derivatives ∂α∂−1f and ∂α∂̄−1f exist and
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∂α∂−1f(z) = −(−i)α2

π

∫

R2

1

(z̄ − ζ̄)2
χ(ζ)

[
f(ζ)− f(z)

]
dµ(ζ) + f(z) ∂α∂−1χ(z)

∂α∂̄−1f(z) = − i
α2

π

∫

R2

1

(z − ζ)2
χ(ζ)

[
f(ζ)− f(z)

]
dµ(ζ) + f(z) ∂α∂̄−1χ(z)

Prove furthermore that

∂∂−1f(z) = f(z) and ∂̄∂̄−1f(z) = f(z)

(d) Let n ∈ N0 and 0 < ǫ′ < ǫ. Prove that there is a constant C(K,n, ǫ, ǫ′)
such that if f ∈ Cn+ǫ(R2) is supported inK, then ∂−1f, ∂̄−1f ∈ Cn+1+ǫ′(R2)
and

‖∂−1f‖Cn+1+ǫ′(R2) , ‖∂̄−1f‖Cn+1+ǫ′(R2) ≤ C(K,n, ǫ, ǫ′)‖f‖Cn+ǫ(R2)

We have just seen that if f ∈ Cǫ0(R
2), then ∂−1f and ∂̄−1f are dif-

ferentiable. If we are willing to accept weak derivatives, we can relax the
conditions on f . Recall that, for any 1 ≤ p ≤ ∞ and any −∞ < δ <∞, the
space Lpδ(R

n) is defined as the completion of C∞
0 (Rn) with respect to the

norm

‖u‖Lp
δ
=
∥∥(1 + |x|2

)δ/2
u
∥∥
Lp

and that

Definition 4.47. Let α ∈ Nn0 and let f, g ∈ L1
δ(R

n) for some δ ∈ R. Then

g is said to be the αth weak (or distributional) derivative of f if

for all ϕ ∈ S(Rn). We persist in writing g = ∂αf .

Exercise 4.48. Let 1 ≤ p < q ≤ ∞ and δ, δ′ ∈ R with δ′ < δ − n
p
q−p
q

(when q = ∞, δ′ < δ− n
p ). Prove that if f ∈ Lqδ(R

n), then f ∈ Lpδ′(Rn) and
‖f‖Lp

δ′
≤ C‖f‖Lq

δ
for some constant C that depends only on δ, δ′, p, q and

n.

Exercise 4.49. Let α ∈ Nn0 with |α| = 1 and let ∂α refer to the αth weak
derivative. Let f, u, v ∈ L1

δ(R
n) for some δ ∈ R.

(a) Prove that if ∂αf = u and ∂αf = v, then u = v.

(b) Prove that if f is continuously differentiable and the αth classical deriv-
ative equals u, then ∂αf = u.

Exercise 4.50. Let α ∈ Nn0 with |α| = 1 and let ∂α refer to the αth weak
derivative. Let δ ∈ R and f, u ∈ L1

δ(R
n). Suppose that {fj}j∈N is a sequence

in L1
δ(R

n) such that fj converges to f in L1
δ(R

n) and ∂αfj converges to u in
L1
δ(R

n). Prove that ∂αf = u.
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Exercise 4.51. Let α ∈ Nn0 with |α| = 1 and let ∂α refer to the αth weak
derivative. Let f ∈ L1

δ(R
n) for some δ ∈ R.

(a) Let ψ be once continuously differentiable with polynomially bounded
derivatives. Prove that ∂α(ψf) = ψ∂αf + (∂αψ)f .

(b) Let ψ ∈ C∞
0 (Rn). Prove that ∂α(ψ ∗ f) = ψ ∗ (∂αf).

(c) Let ψ : R → R be once continuously differentiable. Suppose that f is
continuous. Suppose further that there are monotone increasing functions
Ψ, F : [0,∞) such that |ψ(t)|, |ψ′(t)| ≤ Ψ(|t|), |f(x)| ≤ F (|x|) and Ψ ◦ F is
polynomially bounded. Prove that ∂α(ψ ◦ f) = (ψ′ ◦ f)∂αf .

We will later need to consider ∂̄−1f where f only decays sufficiently
quickly at infinity to lie in L2(R2). As 1

z−ζ does not decay quickly enough

as ζ → ∞ to be in L2, ∂̄−1f , as currently defined, will not converge. Fortu-
nately, the inverse of ∂̄ is only defined up to an additive constant. Replacing
the kernel 1

z−ζ in the definition of ∂̄−1f by 1
z−ζ + 1

ζ = z
(z−ζ)ζ only adds a

constant (i.e. a z–independent term) to ∂̄−1f but still increases the decay
rate at infinity from 1

ζ , which is not square integrable to z
ζ2
, which is square

integrable. Unfortunately it also introduces a new singularity at ζ = 0. We

can eliminate the singularity by replacing 1
ζ by χ(ζ)

ζ where χ is any C∞

function that vanishes for |ζ| < 1 and is identically one for |ζ| ≥ 2. To
distinguish the new inverse for ∂̄ from the already defined ∂̄−1f , we denote
it

f̄
−1
f(z) =

1

π

∫

R2

( 1

z − ζ
+
χ(ζ)

ζ

)
f(ζ) dµ(ζ)

Exercise 4.52. The purpose of this problem is to start providing some
intuition concerning the behaviour of f−1f(z). Define

D(z, ζ) =
1

z − ζ
+
χ(ζ)

ζ
Sσ(ζ) =

{
1

|ζ|σ if |ζ| ≤ 1

0 otherwise

Lλ(ζ) =

{
1

|ζ|λ if |ζ| ≥ 2

0 otherwise

Observe that Sσ ∈ Lp(R2) if and only if σ < 2
p and that Lλ ∈ Lp(R2) if and

only if λ > 2
p . Assume that 0 < σ < 2 and that λ > 0. Prove that there are
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constants Cσ and Cλ such that, if |z| ≤ 1, then

∫

R2

|D(z, ζ)|Sσ(ζ) dµ(ζ) ≤ Cσ

{
1

|z|σ−1 if 1 < σ < 2

ln 1
|z| if σ = 1

∫

R2

|D(z, ζ)|Lλ(ζ) dµ(ζ) ≤ Cλ|z|

and if |z| ≥ 2, then
∫

R2

|D(z, ζ)|Sσ(ζ) dµ(ζ) ≤ Cσ
1

|z|
∫

R2

|D(z, ζ)|Lλ(ζ) dµ(ζ) ≤ Cλ





|z|1−λ if 0 < λ < 1

ln |z| if λ = 1

1 if λ > 1

Exercise 4.53. Let 〈X,µ〉 and 〈Y, ν〉 be measure spaces and let k(x, y) =
k1(x, y)k2(x, y) be a measurable function on X × Y . Set

L = sup
x∈X

{∫

Y
|k1(x, y)|2 dν(y)

}1/2

R = sup
y∈Y

{∫

X
|k2(x, y)|2 dµ(x)

}1/2

Prove that, if L <∞ and R <∞, then the map

(Kf)(x) =

∫

Y
k(x, y)f(y) dν(y)

is a bounded linear operator from L2(Y, ν) to L2(X,µ) with operator norm
‖K‖ ≤ LR.

Exercise 4.54. Let

D(z, ζ) =
1

z − ζ
+
χ(ζ)

ζ

and set

Lα1,β1 = sup
z∈R2

{∫

R2

(
1 + |z|2

)α1δ|D(z, ζ)|2β1 dµ(ζ)
}1/2

Rα2,β2 = sup
ζ∈R2

{∫

R2

(
1 + |z|2

)α2δ|D(z, ζ)|2β2 dµ(z)
}1/2

Prove that Lα1,β1 and Rα2,β2 are finite if
1
2 < β1 < 1, β2 < 1, α1(−δ) ≥ 1−β1

and α2(−δ) > 1.
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Exercise 4.55. Let 2 < p <∞, ε < 1− 2
p and let K be any compact subset

of R2. Prove that there is a constant C(K, ǫ, p) such that if f ∈ Lp(R2) is
supported in K, then ∂−1f, ∂̄−1f ∈ Cǫ(R2) and

‖∂−1f‖Cǫ(R2) , ‖∂̄−1f‖Cǫ(R2) ≤ C(K, ǫ)‖f‖Lp(R2)

Exercise 4.56. Let, for each sufficiently small h ∈ C, Ah be a bounded
linear operator on the Banach space B. Suppose that

• 1−A0 has a bounded inverse on B
• limh→0 ‖Ah −A0‖ = 0

• for each f ∈ B, the map h 7→ Ahf is differentiable at h = 0 in B.
Prove that 1 − Ah has a bounded inverse on B for all sufficiently small h
and that for each f ∈ B, the map h 7→ (1−Ah)−1f is differentiable at h = 0
in B, with the derivative being −(1−A0)

−1A′
0(1−A0)

−1f .

Exercise 4.57. Let f ∈ L1(Rn). Prove that

lim
r→0+

sup
c∈Rn

∫

Br(c)
|f(x)| dnx = 0

where Br(c) is the ball of radius r centred on c.

Exercise 4.58. Let u ∈ H1(Ω) where Ω is a convex, bounded, open subset
of R2 with smooth boundary. Let S1 and S2 be two measurable subsets of
Ω. Prove that

∣∣(u)S1 − (u)S2

∣∣ ≤ √
π (diamΩ)2

( 1

|S1|
+

1

|S2|
)
‖∇u‖L2(Ω)

Exercise 4.59. Let δ ∈ R. Let χ ∈ C∞
0 (R2), u ∈ L2

loc ∩ L1
δ and g ∈ L1

δ .
Assume further that u has a weak derivative ∂̄u ∈ L1

δ and that g is continuous
and has a weak derivative ∂̄g ∈ L2

loc. Prove that

∂̄
(
χue−g

)
= ue−g ∂̄χ+ χe−g∂̄u− χue−g∂̄g

Exercise 4.60. Let ϕ(x) be a smooth nonnegative function that vanishes
for |x| > 1 and that is normalized by

∫
ϕ(x) dµ(x) = 1. Let f ∈ Cǫ(R2) and

set, for 0 < t ≤ 1, ft = ϕt ∗ f where ϕt(x) = t−2ϕ
(
x
t

)
. Prove that

‖f − ft‖L∞ ≤ |f |Cǫtǫ

|ft|Cǫ ≤ |f |Cǫ

∥∥∂
αft
∂ xα

∥∥
L∞ ≤ Cα|f |Cǫtǫ−|α| if |α| ≥ 1
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4.9. Identification of Boundary Values of Isotropic

Conductivities

Theorem 4.61. Let Ω be a bounded domain in Rn with smooth boundary
and suppose that γ1 and γ2 are isotropic conductivities in Ω obeying Hypoth-
esis 4.40. If

Λγ1 = Λγ2
then, for any integer ℓ ≥ 0,

(4.58)
(∂
∂ν

)ℓ
γ1 =

(∂
∂ν

)ℓ
γ2 on ∂Ω

Theorem 4.62. Suppose that γ0 and γ1 are isotropic conductivities on Ω ⊂
Rn satisfying Hypothesis 4.40 and

(i) 1/E ≤ γi ≤ E

(ii) ‖γi‖C2(Ω) ≤ E,

Given any 0 < σ < 1
n+3 there exists C = C(Ω, E, n, σ) such that

(4.59)
∥∥γ1 − γ2

∥∥
L∞(∂Ω)

≤ C
∥∥Λγ1 − Λγ2

∥∥
1
2
,− 1

2

and

(4.60)
∥∥∂γ1
∂ν

− ∂γ2
∂ν

∥∥
L∞(∂Ω)

≤ C
∥∥Λγ1 − Λγ2

∥∥σ
1
2
,− 1

2



Chapter 5

The Calderón problem

in the plane

In this chapter we discuss the Calderón problem in two dimensions. The
arguments presented here have a somewhat different flavor compared to the
case n ≥ 3, and will rely heavily on complex analysis. We will give the
proof of Astala and Päivärinta which allows to treat bounded measurable
conductivities. This will involve the theory of quasiconformal mappings, a
generalization of the standard theory of analytic functions.

In this chapter we will denote the conductivity by σ instead of γ. This is
customary in the two-dimensional results and emphasizes the fact that the
conductivity has to be real valued. Let us state more precisely the result
that will be proved.

Theorem 5.1. Let Ω be a bounded domain in R2 with smooth boundary and
suppose that σ1 and σ2 are two positive functions in L∞(Ω). If

Λσ1 = Λσ2

then

σ1 = σ2.

We will begin with a reduction. If B ⊂ R2 is an open ball centered at
the origin such that Ω ⊂ B, we define new conductivities

σ̃j(x) =

{
σj(x) if x ∈ Ω,

1 if x ∈ B \Ω.
Then σ̃j are positive functions in L∞(B), and the condition Λσ1 = Λσ2 on
∂Ω implies that Λσ̃1 = Λσ̃2 on ∂B. (The extension as constant indicates why

159
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it is useful to be able to work with bounded measurable conductivities.) By
a simple rescaling, it is sufficient to prove Theorem 5.1 when the domain is
the unit disc D. We will assume throughout this chapter that Ω = D.

Exercise 5.2. Fill in the details for the reduction to Ω = D.

5.1. Complex derivatives

This section contains a brief review of the complex derivatives ∂ and ∂̄.
Readers who are somewhat familiar with these topics may skip this section
for the time being and return whenever needed.

If x = (x1, x2) ∈ R2 we write z = x1+ ix2 and identify R2 with C in this
way. The complex derivatives are defined by

∂̄ =
1

2

(
∂

∂x1
+ i

∂

∂x2

)
, ∂ =

1

2

(
∂

∂x1
− i

∂

∂x2

)
.

Let Ω ⊂ R2 be an open set, and let f : Ω → C be a C1 function. Write
f = u+ iv where u = Re(f), v = Im(f). Recall that f is said to be analytic
in Ω if it satisfies the Cauchy-Riemann equations

∂1u = ∂2v, ∂2u = −∂1v.
Recall also that any analytic function is C∞. The ∂̄ operator satisfies

∂̄f =
1

2
(∂1 + i∂2)(u+ iv) =

1

2
(∂1u− ∂2v + i(∂1v + ∂2u).

This immediately implies that the ∂̄ operator characterizes analytic func-
tions.

Lemma 5.3. f is analytic in Ω if and only if ∂̄f = 0 in Ω.

Another fact to note is that the Laplacian ∆ = ∂21 + ∂22 factors in terms
of the complex derivatives as

∆ = 4∂∂̄.

Thus, if f = u + iv is analytic then ∆f = 4∂(∂̄f) = 0. Since u and v are
real valued it follows that ∆u = ∆v = 0, that is, the real and imaginary
parts of an analytic function are harmonic.

The next result establishes the existence of conjugate harmonic func-
tions.

Lemma 5.4. Let Ω ⊂ R2 be a simply connected open set, and let u : Ω → R

be a C∞ function with ∆u = 0. There exists a C∞ function v : Ω → R,
unique up to an additive constant, such that ∆v = 0 and f = u + iv is
analytic.
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Exercise 5.5. Let f, g : R2 → C be C1 functions.

(a) Suppose that f(x, y) = F (x+ iy) with F : C → C analytic and g(x, y) =
G(x− iy) with G : C → C analytic. Prove that

∂f(x, y) = F ′(x+ iy), ∂̄f(x, y) = 0,

∂g(x, y) = 0, ∂̄g(x, y) = G′(x− iy).

Prove conversely that, if ∂̄f = 0, then there is an analytic function F (z) such
that f(x, y) = F (x + iy) and if ∂g = 0, then there is an analytic function
G(z) such that g(x, y) = G(x− iy).

(b) Prove that

∂f∂̄g + ∂̄f∂g = 1
2∇f · ∇g.

Prove that, if f is C2, then

4∂∂̄f = 4∂̄∂f = ∆f.

Prove that, if f is C2, then ∆f = 0 if and only if there are analytic functions
F and G such that f(x, y) = F (x+ iy) +G(x− iy).

(c) Prove that

∂(fg) = f∂g + g∂f, ∂(f ◦ g) = (∂f) ◦ g ∂g + (∂̄f) ◦ g ∂ḡ,
∂̄(fg) = f ∂̄g + g∂̄f, ∂̄(f ◦ g) = (∂f) ◦ g ∂̄g + (∂̄f) ◦ g ∂̄ḡ.

(d) Prove that

(∂̄f)(z) = ∂
(
f(z)

)
, ∂

(
f(z̄)

)
= (∂̄f)(z̄), ∂

(
f(z̄)

)
= (∂f)(z̄),

(∂f)(z) = ∂̄
(
f(z)

)
, ∂̄

(
f(z̄)

)
= (∂f)(z̄), ∂̄

(
f(z̄)

)
= (∂̄f)(z̄).

Exercise 5.6. Let Ω ⊂ R2 be a simply connected open set (this means that
Ω is connected and every closed curve in Ω can be continuously deformed to
a point, or equivalently that Ω and S2\Ω are connected where S2 = C∪{∞}
is the Riemann sphere). Let F : Ω → R2 be a C∞ vector field whose curl
vanishes,

∂1F2 − ∂2F1 = 0 in Ω.

Show that F = ∇p for some C∞ function p : Ω → R.

Exercise 5.7. Prove Lemma 5.4.

Exercise 5.8. Let Ω be a bounded open subset of R2 with smooth boundary.
Denote by (ν1, ν2) the unit outer normal to ∂Ω. Give ∂Ω the standard
orientation. That is, when you walk along ∂Ω in the positive direction, ν is
on your right hand side.
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(a) Let each component of the vector field (f1, f2) be in C1(Ω). Prove that
∫

Ω

[
∂f1
∂x1

+ ∂f2
∂x2

]
d2x =

∫

∂Ω

[
ν1f1 + ν2f2

]
ds

where s is arc length.

(b) Let f ∈ C1(Ω). Prove that
∫

Ω
∂f d2x =

∫

∂Ω
νf ds

∫

Ω
∂̄f d2x =

∫

∂Ω
ν̄f ds

where ν = 1
2 (ν1 − iν2) and ν̄ = 1

2 (ν1 + iν2).

Exercise 5.9. Let Ω be a bounded, open, simply connected subset of R2

with smooth boundary. Let each component of the vector field (f1, f2) be

in C1(Ω). Recall that if ∂f1
∂x2

= ∂f2
∂x1

, then there is a function g ∈ C2(Ω)

such that f1 = ∂ g
∂x1

and f2 = ∂ g
∂x2

. Prove that if ∂̄f1 = ∂f2, then there is a

function g ∈ C2(Ω) such that f1 = ∂g and f2 = ∂̄g.

5.2. Reduction to Beltrami equation

In the first step of the proof, we reduce the conductivity equation∇·σ∇u = 0
to a certain first order equation involving the complex derivatives,

∂̄f = µ∂f.

In this section we will also show that the DN map Λσ for the conductivity
equation uniquely determines a corresponding boundary map for this first
order equation, namely the µ-Hilbert transform Hµ.

Proposition 5.10. Let u ∈ H1(D) be a real valued solution of

∇ · σ∇u = 0 in D.

There exists a real valued v ∈ H1(D), unique up to an additive constant,
such that f = u+ iv satisfies the equation

∂̄f = µ∂f in D

where

µ =
1− σ

1 + σ
.

Conversely, if f = u + iv ∈ H1(D) satisfies (5.10) where µ ∈ L∞(D) with
‖µ‖L∞(D) < 1, then

∇ · σ∇u = 0 in D, ∇ · σ−1∇v = 0 in D

where

σ =
1− µ

1 + µ
.
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Proof. Suppose that∇·σ∇u = 0, and define the vector field F = (−σ∂2u, σ∂1u).
Then

∂1F2 − ∂2F1 = 0.

It follows from Problem 5.11 below that there is a real valued v ∈ H1(D),
unique up to an additive constant, such that

(∂1v, ∂2v) = (−σ∂2u, σ∂1u).
Let f = u+ iv. Then

∂̄f =
1

2
(∂1u− ∂2v + i(∂2u+ ∂1v)) =

1

2
(1− σ)(∂1u+ i∂2u),

µ∂f =
1− σ

1 + σ

1

2
(∂1u+ ∂2v + i(∂2u− ∂1v)) =

1

2
(1− σ)(∂1u+ i∂2u).

This shows (5.10).

For the converse direction, if f = u + iv solves (5.10) and if σ = 1−µ
1+µ ,

then

∂̄u+ i∂̄v = ∂̄f = 1−σ
1+σ∂f = 1−σ

1+σ (∂̄u− i∂̄v)

and thus

(1 + σ)(∂̄u+ i∂̄v) = (1− σ)(∂̄u− i∂̄v).

This shows that 2i∂̄v + 2σ∂̄u = 0, and therefore

(∂1v, ∂2v) = (−σ∂2u, σ∂1u).
It follows that

∂1(σ∂1u) + ∂2(σ∂2u) = ∂1∂2v − ∂2∂1v = 0

and

∂1(σ
−1∂1v) + ∂2(σ

−1∂2v) = −∂1∂2u+ ∂2∂1u = 0.

The last computations are easy to justify in the weak sense, which proves
the result. �

Exercise 5.11. Let Ω ⊂ R2 be a bounded simply connected open set, and
let F : Ω → R2 be a vector field with components in L2(Ω) whose curl
vanishes in the weak sense,

∂1F2 − ∂2F1 = 0 in Ω.

Show that F = ∇p for some real valued function p ∈ H1(Ω).

Exercise 5.12. Justify in the weak sense the computations in the end of
the proof in Proposition 5.10.

Several remarks are in order. The first order equation (5.10) is called a
Beltrami equation. There is a one-to-one correspondence between solutions
of∇·σ∇u = 0 and of ∂̄f = µ∂f , where σ and µ are related by the formulas in
Proposition 5.10. It is very important that the complex coefficient µ satisfies
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‖µ‖L∞ < 1; this is the condition for uniform ellipticity of the Beltrami
equation and ensures that the corresponding conductivity stays positive and
bounded.

Solutions of ∇ · σ∇u = 0 are called σ-harmonic functions. The function
v constructed in Proposition 5.10 is called a σ-harmonic conjugate of u. The
situation is symmetric so that the σ-harmonic conjugate v of u is itself a
1/σ-harmonic function.

In a sense, the σ-harmonic conjugate ”completes” the original σ-harmonic
function u into a ”µ-analytic” function f = u+ iv. This generalizes the fact
that a harmonic function u can be ”completed” into an analytic function
f = u + iv by using the harmonic conjugate v (this is also obtained from
Proposition 5.10 in the special case where σ = 1, so that µ = 0 and the
Beltrami equation is just ∂̄f = 0). The theory of analytic functions (so-
lutions of ∂̄f = 0) provides strong complex analysis tools to the study of
harmonic functions (solutions of ∆u = 0). In the same way, the point of
view of the Beltrami equation provides powerful tools (now based on the
theory of quasiconformal mappings) to the analysis of σ-harmonic functions
and also the Calderón problem. For completeness, we will give the definition
of quasiconformal mappings in the end of the section.

Above we have reduced the study of solutions of ∇ · σ∇u = 0 to the
Beltrami equation ∂̄f = µ∂f . Now we make a similar reduction on the level
of boundary measurements. Given a σ-harmonic function u ∈ H1(D), we
specify a unique σ-harmonic conjugate v ∈ H1(D) by requiring that

∫

∂D
v dS = 0.

If µ ∈ L∞(D) with ‖µ‖L∞(D) < 1, we define the µ-Hilbert transform

Hµ : H1/2(∂D;R) → H1/2(∂D;R), u|∂D 7→ v|∂D
where f = u+ iv solves ∂̄f = µ∂f in D and

∫
∂D v dS = 0.

Exercise 5.13. Show that Hµ is a well-defined bounded linear map on

H1/2(∂D;R).

Proposition 5.14. Knowledge of Λσ determines the operators Hµ, H−µ,
and Λ1/σ. Further, one has the identity

H−µHµg = HµH−µg = −g
for any g ∈ H1/2(∂D) with

∫
∂D g dS = 0.

Proof. 1. Let g ∈ H1/2(∂D), let u ∈ H1(D) satisfy ∇ · σ∇u = 0 with
u|∂D = g, and let ϕ ∈ H1(D). We have

〈Λσg, ϕ〉 =
∫

D

σ∇u · ∇ϕdx.
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Letting v be the σ-harmonic conjugate of u with
∫
∂D v dS = 0, so that

(∂1v, ∂2v) = (−σ∂2u, σ∂1u), we have

〈Λσg, ϕ〉 =
∫

D

(∂2v,−∂1v) · ∇ϕdx =

∫

∂D
((−ν2, ν1) · ∇v)ϕdS.

This shows that

Λσ = ∂THµ

in the weak sense, where ∂T = (−ν2, ν1) ·∇ is the tangential derivative along
∂D.

2. We have recovered the tangential derivative of Hµ from the DN map,

and it is enough to prove that any function h ∈ H1/2(D) whose integral
over ∂D vanishes is uniquely determined by ∂Th. This can be done by using
Fourier coefficients (see Problem 5.15 below): one expands h in Fourier series

h(eiθ) =

∞∑

m=−∞
ĥ(m)eimθ

where the Fourier coefficients are given by

ĥ(m) =
1

2π

∫ 2π

0
e−imθh(eiθ) dθ.

The Fourier coefficients of ∂Th are given by

(∂Th) ˆ (m) = imĥ(m).

One has ĥ(0) = 0 since the integral of h over ∂D vanishes. Consequently

h(eiθ) =

∞∑

m=−∞,m6=0

(∂Th) ˆ (m)

im
eimθ.

We have proved that Λσg = ∂THµg determines Hµg.

3. The identity (5.14) is proved in Problem 5.16 below. Assuming this
identity, we see that H±µ are bijective operators on the space of functions

in H1/2(∂D) whose integral vanishes. Therefore

H−µ = −(Hµ)
−1

for such functions. Since H±µ(c) = 0 for any constant c, the operator Hµ

determines H−µ. Noting that

−µ =
σ − 1

σ + 1
=

1− 1/σ

1 + 1/σ

we have Λ1/σ = ∂TH−µ. Thus the operator Λσ indeed determines Hµ, H−µ
and Λ1/σ . �
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Exercise 5.15. If s ≥ 0, show that

Hs(∂D) =

{ ∞∑

m=−∞
ame

imθ ;
∞∑

m=−∞
(1 + |m|)2s |am|2 <∞

}
.

Extend this characterization to all s ∈ R, and show that any element h ∈
Hs(∂D) can be written as the Fourier series

h =
∑

ĥ(m)eimθ, ĥ(m) =
1

2π

∫

∂D
e−imθh(eiθ) dθ

with suitable interpretations for the sum and the integral. Show that

(∂Th) ˆ (m) = imĥ(m).

Exercise 5.16. Prove the identity (5.14) for any g ∈ H1/2(∂D) whose inte-
gral over ∂D vanishes.

We now explain how the previous reduction is related to quasiconformal
mappings. To do this, we first need to give a definition of quasiconformal
mappings. Let Ω ⊂ C be a bounded open set, and let f ∈ W 1,1

loc (Ω). Then
the first partial derivatives of f exist at almost every point in Ω, and at
these points we can define the directional derivative

∂αf(z) = lim
r→0

f(z + reiα)− f(z)

r
= cos(α)∂1f(z) + sin(α)∂2f(z).

For small r, we consider the image of the circle α 7→ z+ reiα under the map
f . The value |∂αf(z)| measures how much f distorts an infinitesimal circle
at z in direction α. The next problem expresses this in terms of the complex
derivatives.

Exercise 5.17. Show that

∂αf(z) = ∂̄f(z)e−2iα + ∂f(z).

Show that ∂αf(z) is independent of α if and only if ∂̄f(z) = 0.

Recall that a map f : Ω → Ω′ between two open sets in C is called
conformal if it is analytic and bijective onto its image (this implies that the
derivative of f is nonvanishing in Ω). The previous problem can be inter-
preted so that conformal functions map infinitesimal circles to infinitesimal
circles: if ∂̄f = 0 then

f(z + reiα) ≈ f(z) + ∂αf(z)re
iα = f(z) + ∂f(z)reiα

This is, in a sense, a very strong requirement. For instance, it follows from
the Schwarz lemma in complex analysis that

f : D → D conformal =⇒ f is a Möbius map, f(z) = az+b
cz+d .
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Quasiconformal mappings relax this requirement, and require that f maps
infinitesimal circles to infinitesimal ellipses with uniformly bounded eccen-
tricity. Thus, instead of the condition that |∂αf(z)| is independent of α, the
condition is

max
α

|∂αf(z)| ≤ Kmin
α

|∂αf(z)| for a.e. z ∈ Ω,

where K is a uniform constant with 1 ≤ K < ∞. The precise definition is
as follows.

Definition 5.18. Let 1 ≤ K < ∞. A mapping f ∈ W 1,2
loc (Ω) is called

K-quasiregular if it is orientation preserving (in the sense that its Jacobian

|∂f |2 −
∣∣∂̄f
∣∣2 is nonnegative almost everywhere) and if the condition (5.2)

holds. If in addition f is a homeomorphism onto its image, then f is called
K-quasiconformal.

Quasiconformal mappings form a much larger class of mappings than
the conformal ones. For instance, compare the result of the next problem to
the fact mentioned above that any conformal map D → D must be a Möbius
map:

Exercise 5.19. Show that any C1 orientation preserving diffeomorphism
f : Ω → Ω′, where Ω and Ω′ are open sets containing D, restricts to a
quasiconformal map D → D.

Despite being a much larger class than conformal mappings, quasicon-
formal mappings still have a powerful and well established theory with many
applications in elliptic PDE (both linear and nonlinear), conformal geom-
etry, complex dynamics, and inverse problems. It is remarkable that qua-
siconformal maps can also be characterized as the solutions of a PDE, the
Beltrami equation, showing that the inequality (5.2) is in effect equivalent
with a partial differential equation. The next problem discusses this equiv-
alence for mappings with C1 regularity.

Exercise 5.20. Let f : Ω → Ω′ be a C1 orientation preserving diffeomor-
phism between two open subsets of C. Show that f is quasiconformal if and
only if

∂̄f = µ∂f in Ω

for some µ ∈ L∞(Ω) with ‖µ‖L∞(Ω) < 1.

Note that the Beltrami equation in (5.10) differs from this Beltrami
equation in the theory of quasiconformal mappings by having ∂f instead of
∂f on the right-hand side. However, one can sometimes make a reduction:
(5.10) can be written formally as

∂̄f = µ̃∂f, µ̃ = µ
∂f

∂f
.



168 5. The Calderón problem in the plane

The last step can often be made rigorous, since in many cases of interest
one has ∂f 6= 0 almost everywhere.

5.3. Cauchy and Beurling transforms

In the previous section, we made a reduction from the conductivity equation

∇ · σ∇u = 0

into the Beltrami equation

∂̄f = µ∂f.

In the study of the Calderón problem in the plane, it will be very useful
to know about properties of solutions of various Beltrami equations. The
simplest such equation is the ∂̄-equation

∂̄u = f in R2.

We will construct a solution operator P , called the Cauchy transform (some-
times also solid Cauchy transform), such that u = Pf will be a unique solu-
tion of this equation in suitable function classes. In fact, we will prove the
following result. If K ⊂ R2 is a compact set write

LpK(R
2) := {f ∈ Lp(R2) ; supp (f) ⊂ K}.

Proposition 5.21. Let p > 2. There is a linear operator

P : Lpcomp(R
2) →W 1,p(R2)

such that for any f ∈ Lpcomp(R2) the function u = Pf is the unique solution
in W 1,p(R2) of the equation

∂̄u = f in R2.

If K ⊂ R2 is a compact set then there is a constant C > 0 such that

‖Pf‖W 1,p(R2) ≤ C ‖f‖Lp(R2) , f ∈ LpK(R
2).

For later purposes, we also record a result for the Cauchy transform
acting on functions that are not compactly supported, but rather lie in the
space

L2±(R2) = {f ∈ L2(R2) ; f ∈ L2+ε(R2) ∩ f ∈ L2−ε(R2) for some ε > 0}.
Proposition 5.22. The Cauchy transform extends as a linear operator

P : L2±(R2) → C0(R
2).

The other main result in this section concerns a somewhat more general
Beltrami type equation, given by

∂̄u− ν∂u = f in R2.
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Here we assume that ν ∈ L∞
comp(R

2) satisfies the ellipticity condition ‖ν‖L∞ < 1.

We can try to solve this equation by treating it as a perturbation of the ∂̄-
equation and by looking for a solution in the form Pw. Since one should
have ∂̄Pw = w, this equation reduces to

(I − νS)w = f in R2

where S is the Beurling operator (or Beurling-Ahlfors operator)

S = ∂P.

This operator turns out to be bounded on Lp spaces, and the ellipticity
condition ‖ν‖L∞ < 1 allows to solve the equation (I − νS)w = f at least
for p close to 2. The Beurling operator has the important property that it
intertwines the ∂ and ∂̄ operators.

Proposition 5.23. Let 1 < p <∞. There is a bounded linear operator

S : Lp(R2) → Lp(R2)

such that for any f ∈W 1,1
loc (R

2) with ∂̄f ∈ Lp(R2),

S∂̄f = ∂f.

If w ∈ Lqcomp(R2) with q > 2 one also has

Sw = ∂Pw.

The norm of this operator satisfies

‖S‖L2→L2 = lim
p→2

‖S‖Lp→Lp = 1.

The rest of this section is devoted to proving Propositions 5.21 and 5.23.
Let us first consider solving the equation

∂̄u = f in R2.

This is a linear partial differential equation with constant coefficients, and we
can formally solve it by Fourier analysis. Fourier transforming this equation
leads to

i

2
(ξ1 + iξ2)û = f̂

and formally dividing by the symbol shows that the solution u should be
given by

u = F−1
{
i
2

1
ξ1+iξ2

f̂
}
.

Since the Fourier transform maps convolutions to products, this formally
implies that u = K ∗ f , where

K = F−1
{
i
2

1
ξ1+iξ2

}
.

It is fortunate that this inverse Fourier transform can be computed explicitly.
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Proposition 5.24. Writing z = x1 + ix2, we have

K =
1

πz
.

Proof. Writing

1

ξ1 + iξ2
= χ{|ξ|≤1}

1

ξ1 + iξ2
+ χ{|ξ|>1}

1

ξ1 + iξ2
∈ L1(R2) + L∞(R2),

we see that 1
ξ1+iξ2

is a tempered distribution and hence its inverse Fourier

transform K is also a tempered distribution. We first give a heuristic argu-
ment that allows to guess what K should be. Formally

K(x) = (2π)−2 2

i

∫

R2

eix·ξ
1

ξ1 + iξ2
dξ.

This expression has the following property under dilations: a change of
variables ξ = λ−1η shows that

K(λx) = (2π)−2 2

i

∫

R2

eix·λξ
1

ξ1 + iξ2
dξ = λ−1K(x), λ > 0.

Also, if Rθ = (cos θ, sin θ,− sin θ, cos θ) is the rotation matrix that corre-
sponds to multiplication by eiθ in the complex notation, a change of variables
ξ = Rθη gives

K(eiθz) = (2π)−2 2

i

∫

R2

eiRθx·ξ 1

ξ1 + iξ2
dξ = e−iθK(z).

Based on these symmetries, one expects that

K(reiθ) = r−1K(eiθ) = r−1e−iθK(1).

Since K(1) is just some constant c, we make the guess that

K(z) = c
1

z
.

We will now prove that this guess is correct, and we also determine the
constant c.

A. �

Issue. [Note: much of Proposition 5.21 is already proved in the
earlier version of the 2D result (Section 5.4 in the book). One
could use all the material and exercises from there that can be
used. The Lpcomp →W 1,p bound follows from convolution estimates
and properties of the kernel.]

Issue. [Note: Proposition 5.23 is proved by noting that the kernel
of ∂P gives rise to a Calderón-Zygmund operator, and by appealing
to their Lp boundedness. The property S∂̄f = ∂f for f in this class
follows by using convolution approximations. The norm bound
on L2 is true because on the Fourier side the operator acts by
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multiplication by a unimodular function, and the Lp statement
follows from the Riesz-Thorin interpolation theorem.]

5.4. Existence and uniqueness of CGO solutions

We are ready to introduce the complex geometrical optics solutions that will
be used to resolve the Calderón problem in the plane. Recall that in dimen-
sions n ≥ 3, we employed exponentially growing solutions to the Schrödinger
equation (−∆+q)u = 0 which resembled the harmonic exponentials depend-
ing on a vector ρ ∈ Cn with ρ · ρ = 0,

u0(x) = eρ·x, ∆u0 = 0.

In the case n = 2 we have reduced the conductivity equation to a Beltrami
equation. The complex geometrical optics solutions to the Beltrami equation
will be based on the analytic exponentials depending on a complex number
k ∈ C,

f0(z) = eikz, ∂̄f0 = 0.

The next proposition is the basic existence and uniqueness result for such
solutions. Their behavior for large values of k is a subtle issue and will be
considered only later.

Proposition 5.25. Let µ ∈ L∞
comp(R

2) with ‖µ‖L∞ < 1. For any k ∈ C,
there is a unique solution fµ = fµ( · , k) of the equation

∂̄f = µ∂f in R2

having the form
fµ(z, k) = eikz(1 + ηµ(z, k))

where

ηµ( · , k) ∈W 1,2
loc (R

2),

ηµ(z, k) = O(
1

z
) as |z| → ∞.

Further, ηµ( · , k) ∈ W 1,p(R2) for some p > 2. In the case k = 0 one has
fµ(z, 0) = 1.

This result is ultimately a consequence of a strong form of Liouville’s
theorem. The usual form of this theorem states that any analytic function
which is uniformly bounded on R2 is constant. It is convenient for later
purposes to define the space of continuous functions vanishing at infinity,

C0(R
2) = {f : R2 → C continuous ; f(z) → 0 as |z| → ∞}.

It follows from the definition that any function in C0(R
2) is uniformly

bounded on R2.

Exercise 5.26. Prove the following forms of Liouville’s theorem:
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(a) Any bounded analytic function on R2 is constant.

(b) Any analytic function in C0(R
2) is identically zero.

(c) Any function f ∈W 1,1
loc (R

2) satisfying ∂̄f = 0 and f(z) = o(1) as |z| → ∞
is identically zero. (The last condition means that

lim
R→∞

ess sup|z|≥R |f(z)| = 0.)

The following is the strong form that we will use.

Lemma 5.27. Let ν ∈ L∞
comp(R

2) with ‖ν‖L∞ < 1, and assume that α ∈
L∞
comp(R

2). Let also p > 2 be such that

‖ν‖L∞ ‖S‖Lp→Lp < 1.

Then for any f ∈ Lpcomp(R2), the equation

∂̄g − ν∂g + αḡ = f in R2

has a unique solution g ∈W 1,2
loc (R

2) with g(z) = o(1) as |z| → ∞. Moreover,
g is in W 1,p(R2)∩C0(R

2) and g(z) = O(1/z) as |z| → ∞. If f is supported
in a fixed compact set K, then

‖g‖W 1,p(R2) ≤ C ‖f‖Lp(R2)

for some constant C independent of f .

At this point, Proposition 5.25 follows easily. In the proof and at many
points below, we will use the notation

ek(z) := ei(kz+kz).

Proof of Proposition 5.25. Note that

∂̄(eikzv) = eikz∂̄v, ∂(eikzv) = eikz(∂ + ik)v.

Inserting the form f = eikz(1 + η) into ∂̄f = µ∂f , we have the equivalences

∂̄f = µ∂f

⇔ eikz∂̄η = µe−ikz(∂η − ik̄η̄ − ik̄)

⇔ ∂̄η − µe−k∂η + ik̄µe−kη̄ = −ik̄µe−k.
Notice that |ek(z)| = 1. Therefore the coefficients of the last equation are
in L∞

comp(R
2) with ‖µe−k‖L∞ < 1, and the right hand side is in Lqcomp(R2)

for any q ≥ 1. Fix p > 2 such that

‖µe−k‖L∞ ‖S‖Lp→Lp < 1.

By Lemma 5.27 the last equation for η has a unique solution with η ∈
W 1,2

loc (R
2) and η(z) = O(1z ) as |z| → ∞, and further η ∈ W 1,p(R2). If k = 0

the right hand side is 0, and then the unique solution is η(z, 0) = 0 showing
that f(z, 0) = 1. �
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To warm up for the proof of Lemma 5.27, we first give a slightly simpler
result for a related equation.

Lemma 5.28. Let ν ∈ L∞
comp(R

2) with ‖ν‖L∞ < 1, and assume that α ∈
L∞
comp(R

2). Let also p > 2 be such that

‖ν‖L∞ ‖S‖Lp→Lp < 1.

Then for any f ∈ Lpcomp(R2), the equation

∂̄g − ν∂g + αg = f in R2.

has a unique solution g ∈W 1,p ∩ C0(R
2).

Proof. 1. The first step is to reduce (5.28) to the case α = 0. To do this,
we find a function β ∈W 1,p(R2) satisfying

∂̄β − ν∂β = α.

A solution is given by β = Pw, provided that w ∈ Lpcomp(R2) satisfies

w − νSw = α.

This has the solution w = (Id−νS)−1α, where Id−νS is invertible on Lp by
the assumption. By writing w = α+νS(Id−νS)−1α we see that w ∈ Lpcomp,
and consequently β ∈W 1,p(R2) as required.

2. To show the existence of a solution, note that the equation (5.28) is
equivalent with

(∂̄ − ν∂)(eβg) = eβf.

We try eβg = Pw. This solves the last equation provided that w satisfies

w − νSw = eβf.

Since β ∈ W 1,p ⊂ L∞, it follows that eβf ∈ Lpcomp and the function w =
(Id−νS)−1(eβf) ∈ Lpcomp satisfies the equation required of w. Then

g = e−βPw

is a solution of (5.28) with g ∈W 1,p ∩ C0(R
2).

3. For uniqueness, assume that g ∈W 1,p ∩ C0(R
2) solves

∂̄g − ν∂g + αg = 0.

Choosing β as in Step 2, this is equivalent with

(∂̄ − ν∂)(eβg) = 0.

Since eβg ∈ W 1,p, the function w = ∂̄(eβg) ∈ Lp satisfies eβg = Pw.
Consequently

w − νSw = 0.

Now Id−νS is invertible on Lp so w = 0. Thus ∂̄(eβg) = 0, and since
eβg ∈ C0 we obtain e

βg = 0 from Liouville’s theorem (Problem 5.26(c)). �
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The proof of Lemma 5.27 is similar to the previous proof, the main
difference being the appearance of complex conjugates of g and ∂g.

Proof of Lemma 5.27. 1. We begin by proving uniqueness of solutions.
Suppose that g ∈W 1,2

loc (R
2), g(z) = o(1) as |z| → ∞, and

∂̄g − ν∂g + αg = 0.

Define

ν̃(z) =

{
ν ∂g∂g , ∂g(z) 6= 0,

0, ∂g(z) = 0,
α̃(z) =

{
α ḡg , g(z) 6= 0,

0, g(z) = 0.

Then ν̃, α̃ ∈ L∞
comp(R

2). These functions are measurable since g and ∂g are.
This may be seen for instance by writing

ḡ

g
χ{g 6=0} = lim

ε→0

ḡ2

|g|2 + ε
χ{g 6=0}.

Note also that

‖ν̃S‖Lp→Lp ≤ ‖νS‖Lp→Lp < 1.

Then g is a solution of

∂̄g − ν̃∂g + α̃g = 0.

Choosing β ∈W 1,p(R2) such that ∂̄β− ν̃∂β = α̃ as in Step 1 of the proof of
Lemma 5.28 and writing h = eβg, we reduce matters to the equation

∂̄h− ν̃∂h = 0.

2. It is sufficient to prove that any solution h ∈ W 1,2
loc (R

2) of (5.4)
satisfying h(z) = o(1) as |z| → ∞ is identically zero. From (5.4) we see
that ∂̄h ∈ L2

comp(R
2) and consequently ∂h = S∂̄h. It follows that w = ∂̄h

satisfies

w − ν̃Sw = 0.

Since Id−ν̃S is invertible on L2, it follows that w = 0. Thus ∂̄h = 0, and
Liouville’s theorem (Problem 5.26(c)) shows that h = 0.

3. It remains to prove existence of solutions. Because of the ḡ term
the reduction to the case α = 0 is not immediately available. However, we
can use the uniqueness of solutions combined with the Fredholm alternative
to get the desired result. Write C : g 7→ ḡ for the complex conjugation
operator. We need to solve

(∂̄ − νC∂ + αC)g = f.

Looking for a solution in the form g = Pw for w ∈ Lpcomp, it follows that
w should satisfy

(Id−νCS + αCP )w = f.
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Since ‖νCS‖Lp→Lp < 1, the real-linear operator Id−νCS has the bounded
inverse

(Id−νCS)−1 =
∞∑

j=0

(νCS)j .

The equation (5.4) for w is equivalent with

(Id+R)w = (Id−νCS)−1f

where

R = (Id−νCS)−1αCP.

4. Let K ⊂ R2 be a compact set containing the supports of ν, α, and f .
Since P is bounded LpK(R

2) →W 1,p(R2) and multiplication by a compactly
supported function is a compact operator fromW 1,p(R2) to Lp(R2) (this is a
consequence of compact Sobolev embedding), it follows that R is a compact
real-linear operator on LpK(R

2). By the Fredholm alternative, (5.4) has a
solution w ∈ LpK(R

2) if and only if Id+R is injective on LpK(R
2). But by

tracing back the steps above, any solution w ∈ LpK(R
2) of (Id+R)w = 0

gives rise to h = Pw ∈W 1,p ∩ C0 satisfying

∂̄h− ν∂h+ αh̄ = 0.

Thus h = 0, and also w = ∂̄h = 0. This shows injectivity of Id+R and
solvability of (5.4), which implies existence of a solution g ∈ W 1,p(R2) ∩
C0(R

2) to the original equation. The Fredholm alternative also implies that
the inverse of Id+R is bounded on LpK(R

2), and the norm bound for g
follows from (5.4) since

g = P (Id+R)−1(Id−νCS)−1f.

5. The final step is to prove that any solution g ∈ C0(R
2) satisfies

g(z) = O(1/z) as |z| → ∞. Since ∂̄g = 0 outside some large disk with radius
R, the function h(z) = g(1/z) is analytic in B \ {0} where B = B(0, 1/R).
By the condition g ∈ C0(R

2), we have that h(z) → 0 as z → 0. The
removable singularities theorem in complex analysis implies that h is analytic
in B with h(0) = 0, and consequently we may write h(z) = zv(z) for some
function v analytic in B. Thus g(z) = v(1/z)/z for |z| large, showing that
g(z) = O(1/z) as |z| → ∞. �

Exercise 5.29. Prove the removable singularities theorem used in the pre-
vious proof: if w is analytic and uniformly bounded in D \ {0}, then w has
a unique extension as an analytic function into D.

We also give a variant of Lemma 5.27 that will be used later.
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Lemma 5.30. Let ν ∈ L∞
comp(R

2) with ‖ν‖L∞ < 1, and assume that α ∈
L∞
comp(R

2). Let also p > 2 be such that

‖ν‖L∞ ‖S‖Lp→Lp < 1.

If g ∈W 1,2
loc (R

2) solves the equation

∂̄g − ν∂g + αḡ = 0 in R2,

then g is continuous. If additionally g is bounded, then g = Ceβ where C is
a constant and β ∈W 1,p(R2).

Exercise 5.31. Prove Lemma 5.30 by modifying the proof of Lemma 5.27.

5.5. Basic properties of CGO solutions

Using Proposition 5.25, we can easily show one basic property of the solu-
tions fµ: their values in R2 \ D are uniquely determined by the DN map.
This will be an important step in the solution of the Calderón problem.

Proposition 5.32. If Λσ1 = Λσ2 , then

f±µ1(z, k) = f±µ2(z, k) for z ∈ R2 \ D.

Proof. Since Λσ1 = Λσ2 , we obtain from Proposition 5.14 that

H±µ1 = H±µ2 .

It is enough to consider the solutions fµj . Decompose fµj = fµj ( · , k) into
real and imaginary parts as

fµj = uj + ivj .

We wish to define a function

f̃(z) =

{
ũ(z) + iṽ(z), z ∈ D,

u2(z) + iv2(z), z ∈ R2 \D,

such that f̃ solves ∂̄f̃ = µ1∂f̃ in R2.

Let first ũ be the unique W 1,2(D) solution of

∇ · σ1∇ũ = 0 in D, ũ|∂D = u2|∂D.
Since v2|D is a σ-harmonic conjugate of u2|D in D, it follows that for some
constant c0 one has

v2|∂D = Hµ2(u2|∂D) + c0.

Let ṽ ∈ W 1,2(D) be a σ1-harmonic conjugate of ũ in D. This is unique up
to an additive constant, and we fix this constant by requiring that∫

∂D
(ṽ − c0) dS = 0.

Then
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ṽ|∂D = (ṽ − c0)|∂D + c0

= Hµ1(ũ|∂D) + c0

= Hµ2(ũ|∂D) + c0

= Hµ2(u2|∂D) + c0

= v2|∂D.

Now define f̃ by (5.5). Since ũ+ iṽ|∂D = u2 + iv2|∂D, the function f̃ is

in W 1,2
loc (R

2). Then

∂̄f̃ = µ1∂f̃ in R2

since f̃ satisfies this equation both in D and R2 \ D. Also, one has

f̃ = eikz(1 + η̃)

where η̃ = e−ikz f̃ − 1 is in W 1,2
loc (R

2). But since f̃ = fµ2 = eikz(1 + η2) in

R2 \ D where η2(z) = O(1/z) for |z| large, it follows that η̃(z) = O(1/z)
for |z| large. We can now invoke the uniqueness part of Proposition 5.25 to
conclude that

f̃ = fµ1 in R2.

This shows that fµ1 = fµ2 in R2 \D. �

Another property of the solutions fµ that follows quite easily is their
smoothness with respect to the parameter k. This will be used in the next
section when deriving the ∂k̄ equation for the scattering transform. Recall
that we write fµ(z, k) = eikz(1 + ηµ(z, k)) where ηµ( · , k) ∈ W 1,p(R2) for
some p > 2.

Proposition 5.33. For some p > 2, k 7→ ηµ( · , k) is a C∞ map from C

into W 1,p(R2) and k 7→ fµ( · , k) is a C∞ map from C into W 1,p
loc (R

2).

The statement for F : k 7→ ηµ( · , k) means that all Frechet derivatives
(DmF )k exist at each k ∈ C, and the maps k 7→ (DmF )k are continuous
C → L(Cm,W 1,p(R2)). The proof is an easy consequence of the next result.

Lemma 5.34. If k ∈ C define

Lµ(k) : W
1,p(R2) →W 1,p(R2), Lµ(k)g = P (µ∂(ekg)).

(a) The map k 7→ e±k|B is a C∞ map from C to W 1,∞(B) for any bounded
open set B ⊂ R2.

(b) The map k 7→ Lµ(k) is a C∞ map from C to L(W 1,p(R2)).

(c) For each k the map Id−Lµ is bounded and invertible on W 1,p(R2), and
k 7→ (Id− Lµ)

−1 is a C∞ map from C to L(W 1,p(R2)).
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Exercise 5.35. If X,Y,Z are normed spaces and F : U → Y is Ck

(resp. C∞) in some open set U ⊂ X, and if A : Y → Z is a bounded
linear map, then A ◦ F is Ck (resp. C∞) and Dm(A ◦ F ) = A ◦DmF .

Exercise 5.36. IfX,Y,Z are normed spaces and F : U → V , G : V → Z are
Ck (resp. C∞) maps where U ⊂ X, V ⊂ Y are open sets, then G◦F : U → Z
is Ck (resp. C∞) and

D(G ◦ F )x = DGF (x) ◦DFx.
Exercise 5.37. IfX is a Banach space and U is the set of invertible elements
of L(X), show that the map U → L(X), A 7→ A−1 is C∞.

Proof of Proposition 5.33. Note that the solutions f = eikz(1+ η) given
in Proposition 5.25 are characterized by

∂̄f = µ∂f ⇐⇒ eikz∂̄η = µ∂(eikzη)− µik̄e−ikz

⇐⇒ ∂̄η = µ∂(ekη)− µik̄e−k.

Since η ∈W 1,p(R2) and the right hand side is in Lpcomp(R2) for some p > 2,
it follows that

η = P (µ∂(ekη))− ik̄P (µe−k).

Equivalently, (I − Lµ(k))η = −ik̄P (µe−k). By Lemma 5.34, we have

ηµ( · , k) = −ik̄(I − Lµ(k))
−1(P (µe−k)).

�

Proof of Lemma 5.34. (a) Let F : k 7→ ek|B from C to W 1,∞(B). If
t ∈ R, the Taylor expansion of f(t) = eit implies that

eit = 1 + it+ . . .+
im

m!
tm +Rm+1(t), Rm+1(t) =

∫ t

0
eis(t− s)m ds.

Since ek+h = ekeh for k, h ∈ C, we have

ek+h = ek

[
1 + i(hz + hz) + . . .+

im

m!
(hz + hz)m

]
+ ekRm+1(hz + hz).

The remainder term satisfies
∥∥ekRm+1(hz + hz)

∥∥
W 1,∞(B)

≤ Cm,B,k |h|m+1 .

(b) Let B = B(0, R) be a ball containing the support of µ. Define

(DLµ)k[h]g = P (µC∂(ek(i(hz + hz))g)).

We have

(Lµ(k + h)− Lµ(k)− (DLµ)k[h])g = P (µC∂(ekR2(hz + hz))).

We leave it as an exercise to check that the higher derivatives also exist and
k 7→ Lµ(k) is a C

∞ map.
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(b) It follows from (a) that I−Lµ is bounded onW 1,p(R2). To show that
it is invertible, we need to show that the equation (I−Lµ)g = f has a unique
solution g ∈W 1,p(R2) for any f ∈W 1,p(R2), and that ‖g‖W 1,p ≤ C ‖f‖W 1,p

for some constant C independent of f .

Writing g = f + h where h ∈W 1,p(R2), the equation is equivalent with

(I − Lµ)h = Lµf.

We write Lµw = P (µek∂w + µ(∂̄ek)w̄). Since µ is compactly supported
and h, f ∈ W 1,p(R2), we may take ∂̄ of the earlier equation and obtain the
equivalent equation

∂̄h− µek∂h− µ(∂̄ek)h̄ = µek∂f + µ(∂̄ek)f̄ .

The right hand side is in Lpcomp(R2) and the coefficients µek, µ(∂̄ek) are in
L∞
comp(R

2) with ‖µek‖L∞ < 1. Thus Lemma 5.27 applies, and it follows that

the last equation has a unique solution h ∈ W 1,p(R2) for any f ∈ W 1,p(R2)
with the norm bound

‖h‖W 1,p ≤ C
∥∥µek∂f + µ(∂̄ek)f̄

∥∥
Lp ≤ C ‖f‖W 1,p .

The invertibility of I − Lµ on W 1,p(R2) follows. �

Exercise 5.38. Complete the details of the proof of part (b) in Lemma
5.34.

5.6. Scattering transform

In the previous sections we have made a reduction from the conductivity
equation ∇ · σ∇u = 0 into a Beltrami equation ∂̄f = µ∂f , where µ and σ
are related by

µ =
1− σ

1 + σ
, −µ =

1− 1/σ

1 + 1/σ
.

Note the symmetry between ±µ and σ±1; from this point on it is convenient
to consider both µ and −µ (or σ and 1/σ) simultaneously.

We have also defined the µ-Hilbert transform Hµ and constructed CGO
solutions fµ to the Beltrami equation, and have proved the following impli-
cations:

Λσ1 = Λσ2

=⇒ H±µ1 = H±µ2
=⇒ f±µ1 |C\D = f±µ2 |C\D.
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The final step in the proof is to show that f±µ1 = f±µ2 also in D. From this
fact, one can conclude (at least formally) that

µ1|D =
∂̄fµ1
∂fµ1

∣∣∣
D
=
∂̄fµ2
∂fµ2

∣∣∣
D
= µ2|D.

Using the relationship between σ and µ, this would immediately imply that
σ1 = σ2 in D.

The proof that f±µ1 |D = f±µ2 |D is involved, and it relies on the fact that
the solutions f±µ = f±µ(z, k) satisfy a ∂̄-type equation also with respect to
the complex variable k. In fact, the ∂k̄ equation for these solutions turns

out to be in a sense simpler than the ∂z̄ equation ∂z̄f±µ = ±µ∂zf±µ that we
have studied before.

To state the ∂k̄ equations, it is convenient to switch from solutions of
the Beltrami equation back to the original conductivity equation. From
Proposition 5.10 and the relation (5.6) we know that Re(fµ) and Im(f−µ)
are solutions of ∇ · σ∇u = 0 in R2, and Im(fµ) and Re(f−µ) are solutions
of ∇ · (1/σ)∇u = 0 in R2. We define two complex valued functions

uσ := Re(fµ) + i Im(f−µ),

u1/σ := Re(f−µ) + i Im(fµ).

Note that the pair (uσ , u1/σ) uniquely determines the pair (fµ, f−µ), and
vice versa.

Proposition 5.39. Let a denote either σ or 1/σ. For any k ∈ C the
function ua(z, k) is the unique complex valued solution of

∇ · a∇ua( · , k) = 0 in R2

having the form

ua(z, k) = eikz(1 + ra(z, k))

where ra( · , k) ∈W 1,2
loc (R

2) and ra(z, k) = o(1) as z → ∞. Further, ua is C
∞

with respect to the k variable, and for any z ∈ C it satisfies the ∂k̄-equation

∂k̄ua(z, · ) = −iτa( · )ua(z, · ) in R2

where τa(k) is a complex function in R2.

The coefficient τa(k) deserves a special name. We will explain the reason
for this terminology in the end of this section.

Definition 5.40. The function τσ(k) is called the scattering transform or
nonlinear Fourier transform of a positive L∞ conductivity σ.

A number of basic properties of τσ(k) for a positive L∞ conductivity σ,
with σ = 1 in R2 \ D, are given in the next proposition.
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Proposition 5.41. The scattering transform is a C∞ function with respect
to k, and it satisfies [Note: formatting]

|τσ(k)| ≤ 1 for any k ∈ C,

τ1/σ(k) = −τσ(k).
It is determined from the special solutions f±µ by [Note: formatting]

τσ(k) =
1

2
(bµ1 (k)− b−µ1 (k)),

b±µ1 (k) := lim
z→∞

z(e−ikzf±µ(z, k) − 1), k ∈ C.

In particular, if Λσ1 = Λσ2 , then τσ1 = τσ2 .

We will begin the proof of Propositions 5.39 and 5.41. Recall that

ηµ(z, k) = e−ikzfµ(z, k) − 1.

The equation ∂̄fµ = µ∂fµ, together with the fact that µ = 0 in R2 \ D,
implies that

∂z̄ηµ( · , k) = 0 in R2 \ D.
Since also ηµ(z, k) = O(1/z) as z → ∞, the function z 7→ ηµ(1/z, k) is an
analytic function in D vanishing at 0 and continuous up to ∂D. It follows
that

ηµ(1/z, k) =

∞∑

m=1

bµm(k)z
k, |z| ≤ 1,

where bµm(k) is obtained as the Fourier coefficient

bµm(k) :=
1

2π

∫ 2π

0
e−imθηµ(e

−iθ, k) dθ.

A similar argument works for η−µ, and we have

η±µ(z, k) =
∞∑

m=1

b±µm (k)z−m, |z| ≥ 1.

Proof of Proposition 5.39. It is enough to consider uσ. Since fµ =

eikz(1 + ηµ), we have

Re(fµ) =
1

2
eikz(1 + ηµ + e−k(1 + ηµ)),

Im(f−µ) =
1

2i
eikz(1 + η−µ − e−k(1 + η−µ)).

Consequently

uσ = Re(fµ) + i Im(f−µ) = eikz
(
1 +

ηµ + η−µ
2

+ e−k
η̄µ − η̄−µ

2

)
.
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Thus uσ is a solution of ∇ · σ∇u = 0 in R2 of the form eikz(1 + rσ) where
rσ(z, k) has the required properties. We leave the uniqueness of solutions of
this type as an exercise. (Note that a slightly weaker statement, namely the
uniqueness of the pair (uσ, u1/σ) satisfying conductivity equations for σ and
1/σ and having asymptotics as above, would reduce easily to the uniqueness
of fµ and f−µ. Also this weaker fact would be sufficient for completing the
proof of the Calderón problem.)

Proposition 5.33 and (5.6) show that uσ is C∞ in k. Computing the ∂k̄
derivative gives

∂k̄uσ = eikz
[
−iz̄e−k

η̄µ − η̄−µ
2

+ ∂k̄

(
ηµ + η−µ

2

)
+ e−k∂k̄

(
η̄µ − η̄−µ

2

)]
.

The expression (5.6) implies that

z̄
η̄µ − η̄−µ

2
=
bµ1 (k) − b−µ1 (k)

2
+ r̃(z, k)

where r̃( · , k) ∈W 1,2
loc (R

2) and r̃ = O(1/z) as z → ∞. Defining τσ(k) by

τσ(k) =
1

2
(bµ1 (k)− b−µ1 (k)),

we obtain

∂k̄uσ = e−ikz [−iτσ(k) + r̂(z, k)]

with r̂( · , k) ∈W 1,2
loc (R

2) and r̂ = O(1/z) as z → ∞.

On the other hand, since uσ solves ∇ · σ∇uσ = 0 in R2 and since it is
smooth in k, also the function ∂k̄uσ solves the same equation. Thus we have
two solutions of this equation,

∂k̄uσ = eikz
[
iτσ(k) + o(1)

]
,

iτσ(k)uσ = eikz
[
iτσ(k) + o(1)

]

as z → ∞. The uniqueness statement for these solutions implies that they
have to be equal, thus resulting in the ∂k̄ equation

∂k̄uσ(z, · ) = −iτσ( · )uσ(z, · ).
�

Exercise 5.42. Show the uniqueness statement for the complex geometrical
optics solutions in Proposition 5.39.

For the proof of the bound (5.41) for the scattering transform, we first
record a number of useful properties of the functions

M±µ(z, k) := e−ikzf±µ.
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We will make use the next elementary fact and also the classical Schwarz
lemma from complex analysis.

Exercise 5.43. If z, w ∈ C, w 6= 0, and Re(z/w) > 0, then one has z+w 6= 0
and ∣∣∣∣

z − w

z + w

∣∣∣∣ < 1.

Exercise 5.44. Prove the Schwarz lemma: if h is analytic in D with h(0) = 0
and |h(z)| ≤ 1 in D, then |h(z)| ≤ |z| in D.

Lemma 5.45. The function M±µ is nonvanishing. Moreover,

M±µ(z, k) = eβ±(z,k)

where, for some p > 2, β±( · , k) ∈W 1,p(R2) for each k. One also has

Re

(
Mµ

M−µ

)
> 0,

so that Mµ +M−µ 6= 0 everywhere and
∣∣∣∣
Mµ −M−µ
Mµ +M−µ

∣∣∣∣ < 1,

∣∣∣∣
fµ − f−µ
fµ + f−µ

∣∣∣∣ < 1.

If |z| ≥ 1 then
∣∣∣∣
Mµ −M−µ
Mµ +M−µ

∣∣∣∣ ≤
1

|z| ,
∣∣∣∣
fµ − f−µ
fµ + f−µ

∣∣∣∣ ≤
1

|z| .

Proof. The Beltrami equation for fµ immediately implies that

∂̄Mµ = µe−k∂Mµ − ik̄µe−kMµ in R2.

Since Mµ = 1 + ηµ where ηµ( · , k) ∈ W 1,p(R2), the function Mµ( · , k) is in

W 1,2
loc and bounded for any k ∈ C. Lemma 5.30 shows that Mµ = Ceβ for

some constant C and some β ∈W 1,p(R2) for some p > 2. Since Mµ → 1 as
z → ∞, we have C = 1. The same proof works for M−µ.

To show the positivity of Re(Mµ/M−µ), assume on the contrary that the
real part is nonpositive at some point in C. SinceMµ/M−µ is continuous and
has limit 1 as z → ∞, it is not possible that Re(Mµ/M−µ) < 0 everywhere.
Thus, Re(Mµ/M−µ) = 0 for some z0 ∈ C, so there is t ∈ R with

Mµ(z0, k) = itM−µ(z0, k).

Writing h(z, k) =Mµ(z, k)− itM−µ(z, k), the equations for M±µ show that

∂̄h = µek∂h− ik̄µe−kh̄ in R2.

Now h is bounded, so by Lemma 5.30 we have h = Ceβ. Using that h(z0) = 0
we must have C = 0, so Mµ = itM−µ. This contradicts the fact that the
limit of M±µ as z → ∞ is 1.
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We have proved that Re(Mµ/M−µ) > 0. Consequently Mµ + M−µ is
nonvanishing, and the conditions (5.45) follow from Problem 5.43. If |z| ≥ 1,
define

m(z, k) :=
Mµ −M−µ
Mµ +M−µ

.

By (5.45) we have

|m(z, k)| < 1.

The function h(z) := m(1/z, k) is then analytic in D, satisfies h(0) = 0 by
the asymptotics for Mµ = 1 + ηµ, and |h(z)| < 1 in D. The Schwarz lemma
(Problem 5.44) implies that |h(z)| ≤ |z|. Consequently |m(z, k)| ≤ 1/ |z|,
which shows the bound (5.45). �

Proof of Proposition 5.41. In the proof of Proposition 5.39 we defined
τσ(k) so that (5.41) is satisfied, and the expression (5.41) follows immediately
from (5.6) and the definition of f±µ. Since Proposition 5.32 shows that Λσ
determines f±µ in R2 \D, we see from (5.41) that Λσ determines b±1 (k) and
thus τσ(k) for all k. The property (5.41) is a direct consequence of (5.41)
since the conductivity 1/σ corresponds to Beltrami coefficient −µ. Also, the
fact that τσ is smooth with respect to k follows since b±µ1 are smooth, using
the Fourier coefficient definition (5.6) and Proposition 5.33.

It remains to prove the bound (5.41). By (5.41), (5.41) the scattering
transform can be expressed in terms of the functions M±µ as

τσ(k) = lim
z→∞

z
Mµ −M−µ

2
= lim

z→∞
z
Mµ −M−µ
Mµ +M−µ

.

Here we used that M±µ → 1 as z → ∞. Now the bound (5.41) follows from
(5.45). �

To explain the origin of the terminology for τσ(k), we describe briefly
and in a formal way a one-dimensional scattering problem where similar
concepts appear. (The multidimensional case will be discussed in Chapter
X.)

Consider an infinite string whose displacement at time t is given by the
function u(x, t). If the string is homogeneous, the displacement function
solves the wave equation

(∂2t − ∂2x)u = 0.

A particular solution is given by the one-dimensional plane wave

u0(t, x) = δ(t − x).

This is a Dirac delta function moving to the right, whose peak at time t is
at the point x = t.
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Consider now an inhomogeneous string, whose displacement function
solves the perturbed wave equation

(∂2t − ∂2x + q)u = 0.

The inhomogeneity is given by the potential q = q(x) ∈ C∞
c (R), and we

assume that supp (q) ⊂ [−R,R]. The free plane wave u0(x, t) solves this
equation if t < −R, and there is a unique solution uq(x, t) satisfying

(∂2t − ∂2x + q)uq = 0, uq = u0 when t < −R.
The function uq is called the (incoming) distorted plane wave corresponding
to u0.

To describe the distorted plane waves in more detail, we take Fourier
transforms with respect to t in (5.6). Writing

ψq(x, k) :=

∫ ∞

−∞
e−iktuq(x, t) dt,

ψ0(x, k) :=

∫ ∞

−∞
e−iktu0(x, t) dt = e−ikx,

this results in the equation

(−∂2x − k2 + q)ψq = 0 in R.

The incoming condition uq − u0 = 0 for t < −R is transformed into analyt-
icity of ψq − ψ0 for Im(k) < 0, and the unique solution ψq(x, k) satisfying
the analyticity condition can be explicitly written in terms of resolvent op-
erators.

The functions ψ0 and ψq are also called plane waves (even though they
are the time Fourier transforms of actual solutions of the wave equation).
They are of fundamental importance in scattering theory, and can be used to
parametrize the generalized eigenfunctions of the operators −∂2x and −∂2x+q
and also to study various scattering measurements. The family of exponen-
tials ψ0(x, k) = e−ikx is related to the usual Fourier transform

f̂(k) =

∫ ∞

−∞
f(x)ψ0(x, k) dx,

while the family ψq(x, k) gives rise to a distorted Fourier transform

Fq{f}(k) :=
∫ ∞

−∞
f(x)ψq(x, k) dx.

Counterparts of the inversion and Plancherel formulas are valid also for the
distorted transform Fq.

Finally, we discuss an analogy between the scattering transform τσ(k)
and the above concepts. Consider the inverse backscattering problem of
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determining the potential q from the measurements

lim
x→−∞

uq(x, t), t ∈ R.

This corresponds to sending a free plane wave from x = −∞ and then
measuring the response also at x = −∞. From these measurements one can
determine limx→−∞ ψq(x, k) for any k by taking the Fourier transform in
time. Simple properties of the resolvent give the asymptotics

ψq(x, k) = ψ0(x, k) +
1

2ik
e−ikx

∫ ∞

−∞
e−ikyq(y)ψq(y, k) dy, x < −R.

Consequently, one determines the backscattering transform of q,

Bq(k) :=

∫ ∞

−∞
e−ikyq(y)ψq(y, k) dy, k ∈ R.

Note that in the Born approximation ψq ≈ ψ0, one recovers the usual Fourier
transform

Bq(k) ≈
∫ ∞

−∞
e−2ikyq(y) dy.

We have shown that backscattering measurements for the equation (−∂2x − k2 + q)ψ = 0
determine a nonlinear Fourier transform of q, via the special solutions ψq,
by

Bq(k) = lim
x→−∞

2ikeikx(ψq(x, k)− ψ0(x, k)), k ∈ R.

Similarly, boundary measurements for the two-dimensional conductivity equa-
tion ∇ · σ∇u = 0 (or equivalently the Beltrami equation ∂̄f = µ∂f) deter-
mine, via the special CGO solutions f±µ, the nonlinear Fourier transform of
σ,

b±µ1 (k) = lim
z→∞

ze−ikz(f±µ(z, k) − f0(z, k)), k ∈ C,

τσ(k) =
1

2
(bµ1 (k)− b−µ1 (k)).

This analogy motivates calling τσ the scattering transform or nonlinear
Fourier transform.

5.7. Uniqueness for C2 conductivities

In this section we show that in the case of C2 conductivities, one can fin-
ish the uniqueness proof of the Calderón problem. The more difficult case
of bounded measurable conductivities will be dealt with in the following
sections.

Theorem 5.46. Let σ1, σ2 be two positive functions in C2(D) with σ1 =
σ2 = 1 near ∂D. If

Λσ1 = Λσ2
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then

σ1 = σ2.

After a standard reduction, the above theorem implies an analogous
result on any smooth domain.

Exercise 5.47. If Ω is a bounded domain in R2 with smooth boundary
and σ1, σ2 ∈ C2(Ω) are positive functions satisfying Λσ1 = Λσ2 , show that
σ1 = σ2.

Assume that σj are extended as functions in C2(R2) so that σj = 1
outside of D. Even for bounded measurable conductivities, up to this point
we have shown that

Λσ1 = Λσ2

=⇒ H±µ1 = H±µ2
=⇒ f±µ1 |C\D = f±µ2 |C\D
=⇒ τσ1 = τσ2

where τσ(k) is the scattering transform appearing as a coefficient in the ∂k̄
equation (where z ∈ C is fixed)

∂k̄uσ(z, · ) = −iτσ( · )uσ(z, · ) in R2.

Here uσ is the unique solution of∇·σ∇u = 0 in R2 of the form u = eikz(1+r)

where r ∈W 1,2
loc (R

2) and r = o(1) as z → ∞.

In particular, writing

τ(k) = τσ1(k) = τσ2(k),

the functions uσ1 and uσ2 both solve the same ∂k̄ equation:

∂k̄uσ1(z, · ) = −iτ( · )uσ1(z, · ) in R2,

∂k̄uσ2(z, · ) = −iτ( · )uσ2(z, · ) in R2.

Using that uσ = eikz(1 + rσ), the equations become

∂k̄rσ1(z, k) = −iτ(k)e−k(z)rσ1(z, k) − iτ(k)e−k(z) for k ∈ R2,

∂k̄rσ2(z, k) = −iτ(k)e−k(z)rσ2(z, k) − iτ(k)e−k(z) for k ∈ R2.

Under the assumption that σj are C2 functions, we can show that for any
fixed z ∈ C solutions to this equation are unique. We need the following
Liouville type result, which differs from Lemma 5.27 (the case ν = 0) by
involving a coefficient α that is not compactly supported but that lies in the
space

L2±(R2) = {f ∈ L2(R2) ; f ∈ L2+ε(R2) ∩ L2−ε(R2) for some ε > 0}.
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Proposition 5.48. Let α ∈ L2±(R2). If g ∈W 1,2
loc (R

2) is a bounded solution
of

∂̄g = αḡ in R2,

then g = Ceβ for some constant C and some β ∈ C0(R
2). If further g(z) → 0

as z → ∞, then g = 0.

Proof. We make the same reduction as in the proof of Lemma 5.27: define

α̃(z) =

{
α ḡg , g(z) 6= 0,

0, g(z) = 0

so α̃ ∈ L2±(R2) and g solves

∂̄g − α̃g = 0 in R2.

We wish to find an integrating factor β such that

∂̄β = α̃ in R2.

If α̃ were in Lpcomp(R2) for some p > 2, we could use Proposition 5.21 and
take β = Pα̃. However, it is not hard to see that the Cauchy transform P
is also well defined on L2±(R2): decompose

α̃ = χα̃+ (1− χ)α̃

where χ is the characteristic function of the unit disc. Then χα̃ ∈ Lpcomp(R2)
for some p > 2, and β1 = P (χα̃) is in W 1,p(R2). Further, (1−χ)α̃ ∈ Lq(R2)
for some q < 2, and the function

β2 =
1

πz
∗ (1− χ)α̃

is in C0(R
2) as the convolution of functions in Lq and Lq

′
. Then β =

β1 + β2 ∈ C0(R
2) satisfies ∂̄β = α̃ in the weak sense. We have

∂̄(e−βg) = 0

in the weak sense. Since e−βg is bounded, the Liouville theorem implies
that g = Ceβ. Further, if g → 0 as z → ∞, it follows that g = 0. �

We also need certain boundedness and decay conditions for rσ and τσ.

Proposition 5.49. Let σ ∈ C2(R2) with σ = 1 for |z| > 1. Then, for fixed
z ∈ C,

|rσ(z, · )| ≤ Cz,

lim
k→∞

rσ(z, k) = σ−1/2(z) − 1.

Also, there is ε > 0 such that

|τσ(k)| ≤ C(1 + |k|)−1−ε, k ∈ R2.
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Given this result, we can complete the proof of uniqueness for C2 con-
ductivities.

Proof of Theorem 5.46. We have seen that Λσ1 = Λσ2 implies τσ1 = τσ2 .
By the discussion in the beginning of this section, and writing τ = τσ1 = τσ2 ,
for any fixed z ∈ C the function r = rσ1 − rσ2 solves the equation

∂k̄r(z, k) = −iτ(k)e−k(z)r(z, k) for k ∈ R2.

By Propositions 5.39 and 5.41, the functions r(z, · ) and τ( · ) are C∞. Then

by Proposition 5.49 we have r(z, · ) ∈W 1,2
loc (R

2)∩L∞(R2), and τ ∈ L2±(R2).
The Liouville theorem, Proposition 5.48, shows that

r(z, k) = C(z)eβ(z,k)

where β(z, · ) ∈ C0(R
2).

We will evaluate the last condition at k = 0. Recall that

f±µj (z, 0) = 1

and thus uσj (z, 0) = 1 so rσj (z, 0) = 0. Thus C(z) = 0 for all z ∈ C. But
also

0 = lim
k→∞

C(z)eβ(z,k) = lim
k→∞

(rσ1(z, k) − rσ2(z, k)) = σ
−1/2
1 (z) − σ

−1/2
2 (z).

This shows that σ1 = σ2. �

It remains to show the estimates in Proposition 5.49. This is most
conveniently done by reducing the conductivity equation to the Schrödinger
equation, as we did in the uniqueness proof for the Calderón problem in
three and higher dimensions. Recall that

∇ · σ∇u = 0 ⇐⇒ (−∆+ qσ)ψ = 0

where u = σ−1/2ψ, and the potential qσ is given by

qσ =
∆σ1/2

σ1/2
.

Proposition 5.50. Let σ ∈ C2(R2) with σ = 1 for |z| > 1. For any k ∈ C,
the equation

(−∆+ qσ)ψ = 0 in R2

has a unique solution ψσ(z, k) = eikz(1 + sσ(z, k)) with sσ ∈ W 1,2
loc (R

2) and
sσ(z, k) → 0 as z → ∞. The solution ψσ is related to uσ by

ψσ = σ1/2uσ, sσ = σ1/2 − 1 + σ1/2rσ.
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Proof. This follows immediately from Proposition 5.39: if uσ is the solution
of ∇ · (σ∇u) = 0 in R2 with uσ = eikz(1 + rσ), then ψσ = σ1/2uσ solves
(−∆+ qσ)ψσ = 0 in R2 and

ψσ = eikz(σ1/2 + σ1/2rσ) = eikz(1 + sσ)

where sσ is as above. For uniqueness, if ψ = eikz(1 + s) and ψ̃ = eikz(1 + s̃)
are two solutions of (−∆ + qσ)v = 0 with s, s̃ = o(1) as z → ∞, then

u = σ−1/2ψ and ũ = σ−1/2ψ̃ are two solutions of ∇ · σ∇v = 0 and

u = eikz(1 + (σ−1/2 − 1 + σ−1/2s)), ũ = eikz(1 + (σ−1/2 − 1 + σ−1/2s̃)).

The uniqueness part of Proposition 5.39 implies that s = s̃. �

We will next show that the correction term sσ(z, k) in the Schrödinger
solution goes to zero as k → ∞, when z is kept fixed. To do this, we give a
representation of sσ in terms an inverse of the conjugated Laplacian. Note
that

e−ikz∆(eikzv) = 4∂̄e−ikz∂(eikzv) = 4∂̄(∂ + ik)v.

Proposition 5.51. Let 1 < p < 2. The equation

∂̄u = f

has a unique solution u ∈ Lp
∗
(R2) for any f ∈ Lp(R2), and

‖u‖Lp∗ ≤ Cp ‖f‖Lp .

Proposition 5.52. Let k ∈ C and let 1 < p < 2. The equation

(∂ + ik)u = f

has a unique solution u ∈ Lp
∗
(R2) for any f ∈ Lp(R2), and

‖u‖Lp∗ ≤ Cp ‖f‖Lp .

Further, if f ∈ Lp
∗
and ∂f ∈ Lp, the solution is of the form

u =
1

ik
(f − (∂ + ik)−1∂f).

Proposition 5.53. Let k ∈ C \ {0} and let 1 < p < 2. For any f ∈ Lp(R2)
the equation

e−ikz∆(eikzu) = f

has a unique solution u ∈W 1,p∗(R2). Further,

‖u‖Lp∗ ≤ C

|k| ‖f‖Lp , ‖u‖W 1,p∗ ≤ C ‖f‖Lp .



5.7. Uniqueness for C2 conductivities 191

Proof. The equation reads

4∂̄(∂ + ik)u = f.

Choose

v = ∂̄−1(f/4).

Then ‖v‖Lp∗ ≤ C ‖f‖Lp . Now choose u to solve

(∂ + ik)u = v.

We have

u =
1

ik
(v − (∂ + ik)−1∂v) =

1

4ik
(∂̄−1f − (∂ + ik)−1Sf).

�

Proposition 5.54. If 2 < q < ∞, one has ψ = eikz(1 + s) where s ∈ W 1,q

and

s = Gk(I − qσGk)
−1qσ.

Further,

‖s‖Lq ≤ C

|k| , ‖s‖W 1,q ≤ C

and for any ε > 0

‖s( · , k)‖L∞ ≤ C(1 + |k|)−1+ε.

Proposition 5.55.

∂k̄ψσ =
1

4πk̄
t(k)ψσ

where

t(k) =

∫

R2

eikzqσ(z)ψσ(z, k) dm(z).

Proof.

∂k̄(Gkf) = − 1

4πk̄
f̂(k)e−k.

�

−iτσ(k) =
1

4πk̄
t(k).
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5.8. Topological methods

Recall the ∂k̄ equation for the solutions uσ,

∂k̄uσ(z, k) = −iτσ(k)uσ(z, k) in R2.

We would like to conclude that solutions to this equation are unique. How-
ever, in the case where σ is only bounded and measurable, the solutions uσ
will not have sufficient decay properties as k → ∞ to have uniqueness. The
logarithm of uσ will have some decay properties, and we will eventually use
nonlinear ∂k̄ equations for the logarithms to obtain a uniqueness statement.

Topological methods will be the main tool for dealing with the nonlinear
partial differential equations that arise in this process. The first result is a
simple surjectivity statement.

Lemma 5.56. Let λ ∈ C \{0}, and let F : C → C be a continuous function
such that

F (z) = λz + zε(z) when |z| > 1, ε(z) → 0 as z → ∞.

Then F is surjective.

Intuitively, Lemma 5.56 should be true since for large r > 0 the curves
t 7→ F (reit) look like circles with large radius, and for very small r > 0 the
same curves are close to the point F (0). By continuously deforming these
curves with large r into the curves for small r, one should pass through any
given point of C (the point F (0) is obtained as the limit when r → 0).

The second result is a version of the argument principle for certain so-
lutions of ∂̄F + κF = 0 where κ ∈ L∞(R2). It shows that one has some
control of the zeros of F even if there is no decay for κ at infinity.

Lemma 5.57. Let λ ∈ C \{0}, and let F : C → C be a continuous function
such that

F (z) = λz + zε(z) when |z| > 1, ε(z) → 0 as z → ∞.

If additionally F ∈W 1,p
loc (C) for some p > 2 and for some C > 0

∣∣∂̄F
∣∣ ≤ C |F | almost everywhere in C,

then F has exactly one zero in C.

Let us give some definitions to prepare for the proofs.

Definition 5.58. Let Ω be a connected open subset of C. A curve in Ω is
a continuous map γ : [0, 1] → Ω. The curve is closed if γ(0) = γ(1), and the
image of the curve is

γ∗ := γ([0, 1]).
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Definition 5.59. Let Ω be a connected open subset of C. Two closed
curves γ0 and γ1 in Ω are homotopic in Ω if there is a continuous map
H : [0, 1] × [0, 1] → Ω satisfying for all s, t ∈ [0, 1]

H(0, t) = γ0(t), H(1, t) = γ1(t),

H(s, 0) = H(s, 1).

Writing γs(t) := H(s, t), we say that curve γ0 is continuously deformed into
γ1 through the family {γs}s∈[0,1].

We also need a way of detecting if a given point is ”inside” or ”outside”
a closed curve. This is given by the index of a point.

Definition 5.60. Let γ be a closed C1 curve in C. The index (or winding
number) of a point z ∈ C \ γ∗ relative to the curve γ is defined as

Indγ(z) :=
1

2πi

∫

γ

1

w − z
dw.

The next set of problems contains some basic facts about the index
required for the proof of Lemma 5.56.

Exercise 5.61. If γ(t) = Re2πit for t ∈ [0, 1], show that Indγ(z) = 1 when
|z| < R and Indγ(z) = 0 for |z| > R.

Exercise 5.62. Prove that the map z 7→ Indγ(z) assumes only integer
values, is constant on the connected components of C \ γ∗, and is equal to 0
on the unbounded component.

Exercise 5.63. If γ0, γ1 : [0, 1] → C are closed C1 curves and if z ∈ C is
such that

|γ0(t)− γ1(t)| < |γ0(t)− z| , t ∈ [0, 1],

show that Indγ0(z) = Indγ1(z).

Exercise 5.64. Prove that if Ω is a connected open subset of C and if γ0
and γ1 are closed C1 curves homotopic to each other in Ω, then

Indγ0(z) = Indγ1(z), z /∈ Ω.

Exercise 5.65. Show that Indγ(z) is well defined for any closed curve γ
(which may not be C1) by

Indγ(z) := lim
j→∞

Indγj (z)

where γj are trigonometric polynomials that approximate γ in the L∞([0, 1])
norm. Show also that the results of Problems 5.62 and 5.64 remain valid for
continuous curves.
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Proof of Lemma 5.56. Given w0 ∈ C, it is required to show that F (z0) =
w0 for some z0 ∈ C. Replacing F by F − w0, we may assume that w0 = 0.
We argue by contradiction and suppose that F (z) 6= 0 for all z ∈ C. Since
F is continuous, the curves

γ0(t) = F (δeit), γ1(t) = F (Reit)

are homotopic in C \ {0} for any δ,R > 0. It follows that

Indγ0(0) = Indγ1(0).

Now, using that F (0) 6= 0, we may find some small δ > 0 so that
F (∂B(0, δ)) ⊂ B(F (0), |F (0)| /2). Then 0 is in the unbounded component
of C \ γ∗0 , and

Indγ0(0) = 0.

However, using the assumption on F we also see that F (∂B(0, R)) is ho-
motopic to the circle ∂B(0, R) in C \ {0} for some R > 0 sufficiently large.
This implies that

Indγ1(0) = Ind∂B(0,R)(0) = 1.

We have reached a contradiction. �

The next problems contain the proof of Lemma 5.57.

Exercise 5.66. Prove a version of the argument principle: if F is a holo-
morphic function in a ball B(0, R), if γ(t) = reit for some r < R, and if F
has no zeros on γ∗, then the number of zeros N of F in B(0, r) (counted
with multiplicities) is equal to

N =
1

2πi

∫

γ

F ′(z)
F (z)

dz = IndF (γ)(0).

Exercise 5.67. Prove another version of the argument principle: if F is a
holomorphic function in {|z| < R} that is continuous on {|z| ≤ R}, and if
the curve t 7→ F (Re2πit) is homotopic to t 7→ Re2πit in C \ {0}, then the
function F has exactly one zero in {|z| < R}.

Exercise 5.68. Prove Lemma 5.57 by filling in the details of the following
outline: reduce the inequality

∣∣∂̄F
∣∣ ≤ C |F | to the equation ∂̄F + κF = 0

for some κ ∈ L∞, let β ∈ W 1,p(R2) with p > 2 satisfy ∂̄β = κχB where
χB is the characteristic function of a suitable large disc B, and apply the
argument principle to the function eβF that is holomorphic in B.
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5.9. Uniqueness for bounded measurable conductivities

In this section we consider the case of bounded measurable conductivities,
and give the proof of Theorem 5.1 modulo the fundamental subexponential
growth estimate for the complex geometrical optics solutions. Assume that
σ1, σ2 ∈ L∞(D) are positive functions such that Λσ1 = Λσ2 . In Proposition
5.39 we have constructed CGO solutions uσj to the corresponding conductiv-
ity equations. Since these solutions are uniquely determined by f±µj (where
µj is the complex coefficient related to σj), Proposition 5.32 implies that

uσ1(z, k) = uσ2(z, k), z ∈ R2 \ D, k ∈ C.

The next proposition gives a similar result in the interior of D.

Proposition 5.69. If Λσ1 = Λσ2 , then

uσ1(z, k) = uσ2(z, k), z, k ∈ C.

The solution of the Calderón problem is an immediate consequence of
this result and a basic fact on quasiregular mappings.

Proposition 5.70. Let Ω ⊂ R2 be a connected open set. If f ∈ W 1,2
loc (R

2)
satisfies

∂̄f = µ∂f in Ω

where µ ∈ L∞(Ω) and ‖µ‖L∞(Ω) < 1, then ∂f 6= 0 almost everywhere in Ω

unless f is constant.

Proof. See Astala-Iwaniec-Martin. �

In the case where µ ∈ C1(Ω) is real valued (corresponding to a C1 con-
ductivity), we can prove a slightly weaker result that would still be sufficient
for completing the uniqueness proof.

Proposition 5.71. Let Ω ⊂ R2 be a connected open set. If f ∈ W 1,2
loc (R

2)
satisfies

∂̄f = µ∂f in Ω

where µ ∈ C1(Ω) is real valued and ‖µ‖L∞(Ω) < 1, then ∂f 6= 0 in a dense

subset of Ω unless f is constant.

Proof. Let S = {x ∈ Ω ; ∂f(x) = 0}. If Ω \ S is not dense, there is a point
x0 ∈ Ω and a ball B centered at x0 such that ∂f |B = 0. Then also ∂̄f |B = 0,
so the Jacobian matrix of f vanishes a.e. on B. Then f is a constant map
on B, and also u = Re(f) and v = Im(f) are constant on B. But u and v
satisfy the conductivity equations

∇ · σ∇u = 0, ∇ · σ−1∇v = 0
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where

σ =
1− µ

1 + µ
.

By unique continuation, it follows that u and v must be constant in Ω, and
consequently f is a constant map in Ω. �

Proof of Theorem 5.1. Since Λσ1 = Λσ2 implies Λ1/σ1 = Λ1/σ2 , Propo-
sition 5.69 is valid also with σj replaced by 1/σj . The pair (fµj , f−µj ) is
uniquely determined by the pair (uσj , u1/σj ), so it follows that

fµ1(z, k) = fµ2(z, k), z, k ∈ C.

The Beltrami equations ∂̄fµj = µj∂fµj imply that

µ1 =
∂̄fµ1
∂fµ1

=
∂̄fµ2
∂fµ2

= µ2

at all those points of D where ∂fµ1 and ∂fµ2 are nonzero. By Proposi-
tion 5.71 this is true almost everywhere. It follows that µ1 = µ2 almost
everywhere in D, and since

σ1 =
1− µ1
1 + µ1

, σ2 =
1− µ2
1 + µ2

we see that also σ1 = σ2 almost everywhere in D. �

We now focus on proving Proposition 5.69. Due to Proposition 5.39, the
solutions uσj satisfy the ∂k̄ equations

∂k̄uσj (z, · ) = −iτσj ( · )uσj (z, · ).
Also, from the fact that Λσ1 = Λσ2 and from Proposition 5.41 we know that

τσ1(k) = τσ2(k), k ∈ C.

Let τ(k) := τσ1(k) = τσ2(k). It follows that for fixed z ∈ C, both uσ1(z, · )
and uσ2(z, · ) are solutions of the equation

∂k̄u(k) = −iτ(k)u(k).
If both the coefficient τ and the solution u (or the function e−ikzu) would
have suitable decay properties as k → ∞, solutions to this equation would
be unique and one would obtain that uσ1 = uσ2 as required. (Lemma 5.27
is one example of such a uniqueness result.)

It turns out that when the conductivities are only bounded and mea-
surable, one cannot expect any decay with respect to k in the solutions uσ.
However, one can prove that at least e−ikzuσ(z, k) does not grow exponen-
tially in k. The proof is deferred to the next section.
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Proposition 5.72. We have

uσ(z, k) = eδσ(z,k)

where, for fixed k ∈ C, one has δσ( · , k) ∈W 1,p
loc (R

2) for some p > 2 and

δσ(z, k) = ikz + vk(z), vk(z) → 0 as z → ∞.

Also, for fixed z ∈ C, the function δσ(z, · ) is C∞ and

δσ(z, k) = ikz + kεz(k), εz(k) → 0 as k → ∞.

Not discouraged by the lack of decay with respect to k in the solution
uσ, we will try to exploit the decay in its logarithm δσ. The ∂k̄ equations
(5.9) for uσj imply the following nonlinear equations for δσj :

∂k̄δσj (z, k) = −iτ(k)eδσj (z,k)−δσj (z,k)

= −iτ(k)e−2i Im(δσj (z,k)).

This shows that we have two families of solutions {δσj (z, · )}z∈C to the same
nonlinear ∂k̄ equation. Moreover, the two families have the same asymptotics
as k → ∞ by Proposition 5.72. This turns out to be sufficient for uniqueness.

Proof of Proposition 5.69. To have uσ1(z, k) = uσ2(z, k) for all z, k ∈ C,
it is enough to show that

δσ1(z, k) = δσ2(z, k), z, k ∈ C.

We generalize the setup a little bit, and consider the function

Fk(z, w) := δσ1(z, k) − δσ2(w, k), z, w, k ∈ C.

It is enough to prove that Fk vanishes on the diagonal for any k.

If k = 0, we know by Proposition 5.25 that f±µ(z, 0) = 1. This implies
that uσ(z, 0) = 1, so the logarithm satisfies δσ(z, 0) = 0. This proves that

F0(z, z) = 0, z ∈ C.

Let now k0 6= 0, and suppose that z0 ∈ C is fixed. We do the proof that
Fk0(z0, z0) = 0 in two steps. The first step is to show that

Fk0(z0, w0) = 0 for some w0 ∈ C.

To see this, it is enough to observe that by Proposition 5.72 and Lemma
5.56 the map w 7→ δσ2(w, k0) is a surjective map from C to C. This shows
that there exists some w0 ∈ C such that δσ2(w0, k0) = δσ1(z0, k0), which
gives (5.9).

The second step is to show that for any z, w ∈ C, one has

Fk0(z, w) = 0 =⇒ z = w.
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Assume that Fk0(z, w) = 0, and note that the map k 7→ Fk(z, w) satisfies
the ∂k̄ equation

∂k̄Fk(z, w) = −iτ(k)(e−2i Im(δσ1 (z,k)) − e−2i Im(δσ2 (w,k))).

We now use the bound |τ(k)| ≤ 1 from Proposition 5.41 and the elementary
fact that ∣∣eis − eit

∣∣ ≤ |s− t| , s, t ∈ R.

Taking absolute values in the previous equation for Fk(z, w) yields

|∂k̄Fk(z, w)| ≤ 2 |Im(δσ1(z, k)) − Im(δσ2(w, k))|
≤ 2 |Fk(z, w)| .

We also know from Proposition 5.72 that

Fk(z, w) = i(z − w)k + kε̃(k), ε̃(k) → 0 as k → ∞.

If z 6= w, it follows from Lemma 5.57 that the map k 7→ Fk(z, w) has only
one zero. However, we always have F0(z, w) = 0, which contradicts the
assumption that Fk0(z, w) = 0 where k0 6= 0. It must follow that z = w,
finishing the proof of (5.9).

Finally, combining (5.9) and (5.9) yields Fk0(z0, z0) = 0. Since k0 6= 0
and z0 ∈ C were arbitrary, this concludes the proof that Fk vanishes on the
diagonal. �

5.10. Subexponential growth

To complete the uniqueness result for bounded measurable conductivities,
it remains to prove Proposition 5.72 from the previous section concerning
subexponential growth of e−ikzuσ with respect to k. To prove this, it will be
useful to go back to the Beltrami equation and the solutions fµ. This makes
it possible to make efficient use of the theory of quasiconformal mappings.
In the following we will use some facts from this theory without proof, but
we will give a precise reference each time we do so.

In order to pass from growth properties of solutions of Beltrami equa-
tions back to the conductivity equation, it is useful to generalize the setup
slightly. If λ ∈ ∂D, we denote by fλµ the solution of the Beltrami equation

∂̄fλµ = λµ∂fµ in R2

satisfying fλµ( · , k) ∈W 1,2
loc (R

2) and

fλµ(z, k) = eikz(1 + ηλµ(z, k)),

ηλµ(z, k) = O(1/z) as z → ∞.
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Here µ = (1−σ)/(1+σ) as before. Precisely the same proof as in Proposition
5.25 shows that such solutions exist, are unique, and satisfy ηλµ( · , k) ∈
W 1,p(R2) for some p > 2. The following result states that the functions
e−ikzfλµ(z, k) have subexponential growth with respect to k.

Proposition 5.73. For fixed z ∈ C, we have

fλµ(z, k) = eikφλµ(z,k)

where φλµ is C∞ in k and, for any k ∈ C,

φλµ(z, k) = z + v1(z, k), v1( · , k) ∈W 1,p(R2)

for some p > 2. For any z ∈ C the function φλµ(z, · ) satisfies

φλµ(z, k) = z + εz(k), εz(k) → 0 as k → ∞.

After some work, Proposition 5.72 will now follow.

Proof of Proposition 5.72. We need to show that

uσ = eikz+v(z,k)

where

v(z, k) → 0 as z → ∞, when k isfixed,

and

v(z, k) = |k| o(1) as k → ∞, when z isfixed.

To warm up, let us show that uσ never vanishes. We argue by contra-
diction and assume that uσ(z0, k0) = 0 for some z0, k0 ∈ C. Since

uσ(z0, k0) = Re(fµ(z0, k0)) + i Im(f−µ(z0, k0))

it follows that fµ(z0, k0) = it and f−µ(z0, k0) = s for some t, s ∈ R. But
then

1 =

∣∣∣∣
it− s

it+ s

∣∣∣∣ =
∣∣∣∣
fµ(z0, k0)− f−µ(z0, k0)
fµ(z0, k0) + f−µ(z0, k0)

∣∣∣∣ .

The last quantity is < 1 by (5.45). This is not possible, so uσ must be
nonvanishing.

More generally, we show that in fact uσ has a well-defined logarithm.
Write
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uσ =
1

2
(fµ + fµ + f−µ − f−µ)

=
1

2
(fµ + f−µ)

(
1 +

fµ − f−µ
fµ + f−µ

)

= fµ
fµ + f−µ

2fµ

(
1 +

fµ − f−µ
fµ + f−µ

)

= fµ

(
1 +

fµ − f−µ
fµ + f−µ

)−1(
1 +

fµ − f−µ
fµ + f−µ

)
.

If D(z, r) is the open disc centered at z with radius r, then by (5.45)

1 +
fµ − f−µ
fµ + f−µ

∈ D(1, 1), 1 +
fµ − f−µ
fµ + f−µ

∈ D(1, 1).

Consider the principal branch of the complex logarithm,

Log : C \ (−∞, 0] → {z ∈ C ; |Im(z)| < π}.
Since z/w ∈ C \ (−∞, 0] whenever Re(z),Re(w) > 0, we may define

g := Log

[(
1 +

fµ − f−µ
fµ + f−µ

)−1(
1 +

fµ − f−µ
fµ + f−µ

)]
.

Proposition 5.73 shows that fµ(z, k) = eikz+β(z,k) where β( · , k) ∈W 1,p(R2)
for some p > 2, when k ∈ C is fixed. We choose

δσ(z, k) := ikz + β(z, k) + g(z, k).

It follows that uσ = eδσ . It is also clear that δσ is C∞ in k, since this is true
for β and g by Propositions 5.73 and 5.33.

Let now k ∈ C be fixed, and consider the asymptotics as z → ∞. Define

v(z, k) := β(z, k) + g(z, k).

Here β( · , k) ∈W 1,p(R2), and g( · , k) is in W 1,p
loc (R

2) since it is the logarithm

of a W 1,p
loc (R

2) function. By (5.45) we have

g(z, k) = o(1) as z → ∞.

This shows that v( · , k) ∈W 1,p
loc (R

2) with v(z, k) = o(1) as z → ∞.

Finally, let z ∈ C be fixed and consider the asymptotics as k → ∞. We
have

uσ(z, k) = eikz+v(z,k)

and we need to show that

v(z, k) = |k| oz(1) as k → ∞.

Here we write oz(1) for any quantity converging to 0 as k → ∞.
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Using that v(z, k) = β(z, k) + g(z, k), we have

|Im(v)| ≤ |β|+ |g| ≤ |k| oz(1) + π = |k| oz(1).
To bound Re(v), we note that

uσ =
1

2
(fµ + fµ + f−µ − f−µ)

which implies

ev = e−ikzuσ =
1

2
(Mµ + e−kMµ +M−µ − e−kM−µ)

and consequently, by the triangle inequality,

eRe(v) = |ev | ≤ |Mµ|+ |M−µ| ≤ e|k|oz(1).

This shows that

Re(v) ≤ |k| oz(1).
It remains to prove that

Re(v) ≥ − |k| oz(1),
or equivalently, ∣∣∣e−ikzuσ

∣∣∣ ≥ e−|k|oz(1).

This is the only point where we need to use the more general solutions fλµ
with λ not equal to 1. We write

uσ =
fµ + f−µ

2

(
1 +

fµ − f−µ
fµ + f−µ

)
=
fµ + f−µ

2

[
1 + eit

fµ − f−µ
fµ + f−µ

]

where t ∈ R is chosen so that

e−it =
fµ + f−µ
fµ + f−µ

.

Therefore ∣∣∣e−ikzuσ
∣∣∣ =

∣∣∣∣
Mµ +M−µ

2

∣∣∣∣
∣∣∣∣1 + eit

fµ − f−µ
fµ + f−µ

∣∣∣∣ .

Here ∣∣∣∣
Mµ +M−µ

2

∣∣∣∣ =
∣∣∣∣
1 +M−µ/Mµ

2Mµ

∣∣∣∣ ≥ e−|k|oz(1)

since Re(M−µ/Mµ) > 0 by Lemma 5.45 and by Proposition 5.73. The result
will follow if we can prove that

inf
t∈R

∣∣∣∣1 + eit
fµ − f−µ
fµ + f−µ

∣∣∣∣ ≥ e−|k|oz(1).

To see the last inequality, note that

1 + eit
fµ − f−µ
fµ + f−µ

=
2f̃t

fµ + f−µ
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where the function

f̃t :=
1

2

[
(1 + eit)fµ + (1− eit)f−µ

]

satisfies, by a direct computation, the equation

∂̄f̃t = eitµ∂f̃t.

The properties of f±µ imply that f̃t is a W 1,2
loc (R

2) function satisfying f̃t =

eikz(1 + O(1/z)) as z → ∞. The uniqueness of complex geometrical optics

solutions, as discussed in the beginning of this section, shows that f̃t = fλµ
for λ = eit. Consequently, by Proposition 5.73,∣∣∣∣1 + eit

fµ − f−µ
fµ + f−µ

∣∣∣∣ =
∣∣∣∣

2Mλµ

Mµ +M−µ

∣∣∣∣ ≥ e−|k|oz(1).

This concludes the proof. �



Chapter 6

Partial Data

In §??, we showed in dimensions n ≥ 3 that if the boundary measurements
for two C2 conductivities coincide on the whole boundary, then the conduc-
tivities are equal. Here we consider the case where measurements are made
only on part of the boundary.

The first result that we will prove is due to Isakov. It states that if
one knows the Dirichlet-to-Neumann map on a open subset Γ ⊂ ∂Ω for any
Dirichlet data supported in the same set, and if the inaccessible part Γ0 =
∂Ω \ Γ is part of a hyperplane, then this data determines the conductivity.

Theorem 6.1. Let Ω ⊂ Rn be a bounded open set with smooth boundary,
where n ≥ 3, and let γ1 and γ2 be two positive functions in C2(Ω). Assume
that Ω ⊂ {xn > 0}, let Γ0 = ∂Ω ∩ {xn = 0}, and let Γ = ∂Ω \ Γ0. If

Λγ1f |Γ = Λγ2f |Γ for all f ∈ H1/2(∂Ω) with supp (f) ⊂ Γ,

then γ1 = γ2 in Ω.

The result follows quite easily from the full data results in ?? by us-
ing a reflection argument. We will also show a similar theorem where the
inaccessible set Γ0 is part of a sphere.

For more general domains, the first partial result was proved by Bukhgeim
and Uhlmann. It involves a unit vector α in Rn and the subset of the bound-
ary

∂Ω−,ε =
{
x ∈ ∂Ω

∣∣ α · ν(x) < ε
}

The theorem is as follows.

Theorem 6.2. Let Ω ⊂ Rn be a bounded open set with smooth boundary,
where n ≥ 3, and let γ1 and γ2 be two positive functions in C2(Ω). If α ∈ Rn

203
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is a unit vector, if γ1|∂Ω = γ2|∂Ω, and if for some ε > 0 one has

Λγ1f |∂Ω−,ε = Λγ2f |∂Ω−,ε for all f ∈ H1/2(∂Ω),

then γ1 = γ2 in Ω.

The proof is based on complex geometrical optics solutions, but requires
new elements since we need some control of the solutions on parts of the
boundary. The main tool is a weighted norm estimate known as a Carleman
estimate. This estimate also gives rise to a new construction of complex
geometrical optics solutions, which does not involve Fourier analysis.

6.1. Reflection approach

As before, we will obtain the partial data result for the conductivity equation
by proving a uniqueness result for the Schrödinger equation.

Theorem 6.3 (Partial data for Schrödinger). Let Ω ⊂ {xn > 0} be a
bounded open set with smooth boundary, let Γ0 = ∂Ω ∩ {xn = 0}, and let
Γ = ∂Ω \Γ0. Let q1, q2 ∈ L∞(Ω) be such that 0 is not a Dirichlet eigenvalue
for −∆+ qj in Ω. If one has

Λq1f |Γ = Λq2f |Γ for all f ∈ H1/2(∂Ω) with supp (f) ⊂ Γ,

then q1 = q2 in Ω.

Theorem 6.1 is an immediate consequence of Theorem 6.3 and the unique
continuation result proved later in Theorem 6.19.

Proof of Theorem 6.1. Define qj = ∆(γ
1/2
j )/γ

1/2
j . By Theorem 2.74 the

Dirichlet problem for −∆ + qj in Ω is well-posed, and the Dirichlet-to-
Neumann maps are related by

Λqjf = γ
−1/2
j Λγj (γ

−1/2
j f) +

1

2
γ−1
j (∂νγj)f |∂Ω.

Recall from the boundary determination results, Theorems 3.3 and 3.17,
that the knowledge of Λγ on Γ for any f supported in Γ determines γ|Γ and
∂νγ|Γ uniquely. The assumption

Λγ1f |Γ = Λγ2f |Γ for all f ∈ H1/2(∂Ω) with supp (f) ⊂ Γ,

therefore implies that

γ1|Γ = γ2|Γ, ∂νγ1|Γ = ∂νγ2|Γ.
The expression for Λqj above shows that

Λq1f |Γ = Λq2f |Γ for all f ∈ H1/2(∂Ω) with supp (f) ⊂ Γ.
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By Theorem 6.3, we have q1 = q2 in Ω. Define q = q1 = q2. Since

qj = ∆γ
1/2
j /γ

1/2
j , we have

(−∆+ q)γ
1/2
j = 0 in Ω.

We also have the boundary conditions

γ
1/2
1 |Γ = γ

1/2
2 |Γ, ∂νγ

1/2
1 |Γ = ∂νγ

1/2
2 |Γ.

By Theorem 6.19, any two solutions of (−∆ + q)u = 0 having the same
Cauchy data on an open subset of the boundary must be equal in Ω. This
proves that γ1 = γ2. �

We move to the proof of Theorem 6.3. In the present setting where the
inaccessible part of the boundary is part of the hyperplane {xn = 0}, it is
natural to use the reflection which takes a complex vector z = (z1, . . . , zn) ∈
Cn to the vector

z∗ = (z1, . . . , zn−1,−zn).

Proof of Theorem 6.3. Recall from Theorem 2.72 the integral identity

〈(Λq1 − Λq2)(u1|∂Ω), u2|∂Ω〉∂Ω =

∫

Ω
(q1 − q2)u1u2 dx

valid for any uj ∈ H1(Ω) with (−∆+ qj)uj = 0 in Ω. Assume that u1|∂Ω is
supported in Γ. In this case we know that

Λq1(u1|∂Ω)|Γ = Λq2(u1|∂Ω)|Γ,
and consequently (Λq1 − Λq2)(u1|∂Ω) vanishes on Γ. If also u2|∂Ω is sup-
ported in Γ, the whole boundary integral is zero. Therefore, our partial
data assumption implies that

(6.1)

∫

Ω
(q1 − q2)u1u2 dx = 0

for any uj ∈ H1(Ω) with (−∆+ qj)uj = 0 in Ω and supp (uj |∂Ω) ⊂ Γ.

We now use the reflection idea and consider the open set

U = Ω ∪ int(Γ0) ∪ Ω∗

where the interior of Γ0 is relative to {xn = 0}, and
Ω∗ = {x∗ ; x ∈ Ω}.

We also define the even extensions of the potentials,

qej(x) =

{
qj(x) if x ∈ Ω,

qj(x
∗) if x ∈ Ω∗.

These are L∞ functions in U .
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If ζ1, ζ2 ∈ Cn satisfy ζj ·ζj = 0 with |ζj| large enough, Theorem 4.3 shows
that there exist wj ∈ H1(U) satisfying

(−∆+ qj)wj = 0 in U,

having the form

wj = eζj ·x(1 + ψj)

where

‖ψj‖L2(U) ≤
C

|ζj |
.

In fact, after extending qej by zero to Rn \U , we obtain solutions of this type
in Rn and the functions wj are obtained just by taking the restrictions to
U .

We now define functions uj(x) = wj(x) − w∗
j (x) in the original domain

Ω, where we write

f∗(x) = f(x∗).

An easy computation shows that uj satisfies (−∆ + qj)uj = 0 in Ω and
uj ∈ H1(Ω). Since the set {xn = 0} is invariant under reflection, we have
uj|Γ0 = 0. Thus (6.1) is valid for these choices of uj.

We wish to compute the product u1u2. Since

uj = eζj ·x(1 + ψj)− eζj ·x
∗
(1 + ψ∗

j ),

we have

u1u2 = e(ζ1+ζ2)·x(1 + ψ1)(1 + ψ2)− e(ζ
∗
1+ζ2)·x(1 + ψ∗

1)(1 + ψ2)

− e(ζ1+ζ
∗
2 )·x(1 + ψ1)(1 + ψ∗

2) + e(ζ1+ζ2)·x
∗
(1 + ψ∗

1)(1 + ψ∗
2).

We would like to arrange u1u2 to look like eix·ξ for given ξ ∈ Rn when |ζj|
are large. In particular, we do not want u1u2 to grow exponentially with
respect to |ζj |. It will be useful to choose ζj so that

ζj · ζj = 0, ζ1 + ζ2 = iξ, Re(ζ∗1 + ζ2) = Re(ζ1 + ζ∗2 ) = 0.

Write ξ = (ξ′, ξn) where ξ′ = (ξ1, . . . , ξn−1). We assume for the moment
that |ξ′| > 0. It will be convenient to use the reflection invariant unit vector

v1 =
1

|ξ′| (ξ
′, 0).

Let v3 = en be the nth coordinate vector, and choose some unit vector
v2 ∈ Rn such that

v2 · v1 = v2 · v3 = 0.
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Then {v1, v2, v3} are orthogonal unit vectors (here we used that n ≥ 3). If
τ > 0 is large, define the complex vectors

ζ1 = |ξ|
√
τ2 +

1

4
v2 + i

[(
1

2

∣∣ξ′
∣∣+ τξn

)
v1 +

(
1

2
ξn − τ

∣∣ξ′
∣∣
)
v3

]
,

ζ2 = − |ξ|
√
τ2 +

1

4
v2 + i

[(
1

2

∣∣ξ′
∣∣− τξn

)
v1 +

(
1

2
ξn + τ

∣∣ξ′
∣∣
)
v3

]
.

It is easy to check that ζ1·ζ1 = ζ2·ζ2 = 0 and |ζ1| = |ζ2| =
√
2 |ξ|

√
τ2 + 1/4.

We also have

ζ1 + ζ2 = i(
∣∣ξ′
∣∣ v1 + ξnv3) = iξ

and, since v1 and v2 are reflection invariant,

ζ∗1 + ζ2 = i(
∣∣ξ′
∣∣ v1 + 2τ

∣∣ξ′
∣∣ v3),

ζ1 + ζ∗2 = i(
∣∣ξ′
∣∣ v1 − 2τ

∣∣ξ′
∣∣ v3).

Thus ζ1 and ζ2 satisfy all the properties mentioned above.

Keeping ξ fixed and using that ‖ψj‖L2(Ω) ≤ C/τ and
∥∥∥ψ∗

j

∥∥∥
L2(Ω)

≤ C/τ ,

all terms involving the remainder terms ψj will be small as τ → ∞. By (6.1)
we have

0 =

∫

Ω
(q1−q2)u1u2 dx =

∫

Ω
(q1−q2)(eix·ξ−eix·η1(τ)−eix·η2(τ)+eix

∗·ξ) dx+o(1)

as τ → ∞, where η1(τ) = |ξ′| v1 + 2τ |ξ′| v3 and η2(τ) = |ξ′| v1 − 2τ |ξ′| v3.
Defining q(x) = q1(x)− q2(x) when x ∈ Ω and q(x) = 0 otherwise, we have

∫

Ω
qeix·ηj(τ) dx = q̂(−ηj(τ)).

Now q ∈ L1(Rn), so q̂(η) → 0 as |η| → ∞ by the Riemann-Lebesgue lemma
(Theorem ???). Since |ηj(τ)| → ∞ as τ → ∞, we have

lim
τ→∞

∫

Ω
qeix·ηj(τ) dx = 0.

Therefore∫

Ω
(q1−q2)(eix·ξ+eix

∗·ξ) dx = lim
τ→∞

∫

Ω
(q1−q2)(eix·ξ−eix·η1(τ)−eix·η2(τ)+eix

∗·ξ) dx = 0.

In the integral involving eix
∗·ξ, we can make the change of variables x→ x∗

to obtain the following statement for even extensions of qj in the double
domain U : ∫

U
(qe1 − qe2)e

ix·ξ dx = 0.

Thus (qe1 − qe2)̂.(−ξ) = 0. This is true for any fixed ξ ∈ Rn with |ξ′| > 0.
But since qe1 − qe2 is compactly supported in Rn, its Fourier transform is
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continuous, and we have (qe1− qe2)̂.(−ξ) = 0 for any ξ ∈ Rn. This shows that
q1 = q2. �

Note that in the previous proof, one of the crucial points was the fact that
a solution of the Schrödinger equation in the double domain Ω∪ int(Γ0)∪Ω∗

can be reflected from Ω∗ to produce a solution of the Schrödinger equation
back in Ω. That is, the Schrödinger operator −∆ + q should be preserved
under reflection. This is quite clear for the reflection (x′, xn) 7→ (x′,−xn),
but one can ask if there are other reflection operators that have this property.

This question can be answered by using some differential (or Riemann-
ian) geometry facts as in Chapter ???. However, to keep things simple, we
will describe the argument in a self-contained way. Let F : U → V be a C∞

bijective map between two open subsets of Rn (the map F is our reflection
operator). We denote the Euclidean Laplacian in V by

∆e =

n∑

j=1

∂2

∂x2j
.

Here e is the Euclidean metric, corresponding to the identity matrix e(x) =
I = [δj,k]

n
j,k=1. We want to compute how ∆e transforms under the reflection

F . To do this, we will ”pull back” quantities on V by the map F into
quantities on U .

First, define the pullback of a function v ∈ C∞(V ) as the function

F ∗v(x) = (v ◦ F )(x), x ∈ U.

Next, define the pullback of the Euclidean metric e on V as the matrix
function

F ∗e(x) = (DF (x))tDF (x), x ∈ U.

Also, if g = [gjk(x)]
n
j,k=1 is a positive definite matrix function whose entries

are C∞ functions on U , we define the Laplace-Beltrami operator

∆gu = |g|−1/2
n∑

j,k=1

∂

∂xj

[
|g|1/2 gj,k ∂u

∂xk

]
, u ∈ C∞(U).

Here [gj,k]nj,k=1 is the inverse matrix of [gj,k]
n
j,k=1, and |g| = det[gj,k].

The next problem shows that under a map F , the Euclidean Laplacian
∆e transforms into the Laplace-Beltrami operator ∆F ∗e.

Exercise 6.4. Let F : U → V be a bijective C∞ map between open sets of
F . If v ∈ C∞(V ), show that

F ∗(∆ev)(x) = (∆F ∗eF
∗v)(x), x ∈ U.
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Our question was to find those reflection operators F such that the
Euclidean Schrödinger operator −∆e+ q transforms into another Euclidean
Schrödinger operator −∆e+ q̃ under F . This is true when F

∗e = e, or equiv-
alently when (DF )tDF is the identity matrix. The reflection F (x′, xn) =
(x′,−xn) satisfies this property. However, we also know that it is possible
to convert conductivity operators v 7→ div(γ∇v) into Schrödinger operators

by choosing v = γ−1/2u. Thus we could ask to find reflections F such that
F ∗e = ce for some positive scalar function c. Using the definition of F ∗e
and taking determinants, the last condition is equivalent with

(DF (x))tDF (x) = det(DF (x))2/nI.

Any C∞ bijective map satisfying this equation is called a conformal trans-
formation.

It is a theorem of Liouville that any conformal transformation between
two open subsets of Rn, n ≥ 3, is obtained by composing rotations, transla-
tions, scalings, reflections (x′, xn) 7→ (x′,−xn), and Kelvin transforms

F (x) =
x

|x|2
, x ∈ Rn \ {0}.

In the same way that (x′, xn) 7→ (x′,−xn) reflects across the hyperplane
{xn = 0}, the Kelvin transform acts as a reflection across the unit sphere
{|x| = 1}. It also has the property that it maps hyperplanes and spheres in
Rn \ {0} to hyperplanes and spheres.

Exercise 6.5. Show that F maps the set {x ∈ Rn ; 0 < |x| < 1} onto {x ∈
Rn ; |x| > 1} and preserves the set {|x| = 1}. Show also that F (F (x)) = x,
and that

F ∗e(x) = |x|−4 I.

Exercise 6.6. Show that F maps the spherical set

{x = (x′, xn) ∈ Rn ;
∣∣x′
∣∣2 + (xn − 1/2)2 = (1/2)2, x 6= 0}

onto the hyperplane {(x′, xn) ; xn = 1}.

We now give the partial data results for the conductivity and Schrödinger
equations for the case where the inaccessible part of the boundary of part
of a sphere. The first theorem follows from the second one exactly as in the
case where part of the boundary is flat, so we will only prove the Schrödinger
case.

Theorem 6.7. Let Ω ⊂ Rn be a bounded open set with smooth boundary,
where n ≥ 3, and let γ1 and γ2 be two positive functions in C2(Ω). Assume
that Ω ⊂ B for some open ball B in Rn, let Γ0 = ∂Ω ∩ ∂B, and let Γ =
∂Ω \ Γ0. Assume also that ∂B \ ∂Ω 6= ∅. If

Λγ1f |Γ = Λγ2f |Γ for all f ∈ H1/2(∂Ω) with supp (f) ⊂ Γ,
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then γ1 = γ2 in Ω.

Theorem 6.8. Let Ω ⊂ Rn be a bounded open set with smooth boundary,
where n ≥ 3, and let q1, q2 ∈ L∞(Ω) be such that 0 is not a Dirichlet
eigenvalue of −∆+ q1 or −∆+ q2 in Ω. Assume that Ω ⊂ B for some open
ball B in Rn, let Γ0 = ∂Ω ∩ ∂B, and let Γ = ∂Ω \ Γ0. Assume also that
∂B \ ∂Ω 6= ∅. If

Λq1f |Γ = Λq2f |Γ for all f ∈ H1/2(∂Ω) with supp (f) ⊂ Γ,

then q1 = q2 in Ω.

Proof. Since ∂B \ ∂Ω 6= ∅, there is some x0 ∈ ∂B with x0 /∈ Ω. Thus there
is a small ball centered at x0 which does not intersect Ω. We may choose
coordinates so that x0 = 0 and B ⊂ {xn > 0}. If B has radius r, it follows
that

B = {x = (x′, xn) ;
∣∣x′
∣∣2 + |xn − r|2 < r2}.

For simplicity we will assume that r = 1/2 (the general case can be reduced
to this by scaling).

Let F (x) = x/ |x|2 be the Kelvin transform as above. Define Ω̃ =

F−1(Ω), and note that Ω̃ is a bounded domain with C∞ boundary such
that F−1(Γ0) is contained in the hyperplane {(x′, xn) ; xn = 1} by Problem
6.6. If u ∈ H1(Ω) solves (−∆e + q)u = 0 in Ω, then by Problem 6.4,

ũ = F ∗u ∈ H1(Ω̃) solves

(−∆F ∗e + F ∗q)ũ = 0 in Ω̃.

Using Problem 6.5, we have

∆F ∗ev = ∆|x|−4ev = |x|2n
n∑

j=1

∂j(|x|−2n+4 ∂jv).

This looks like the conductivity operator div(γ∇v) with γ(x) = |x|−2n+4.

The substitution ũ = γ−1/2ṽ = |x|n−2 ṽ gives, as in Theorem 2.74, that

∆F ∗e(|x|n−2 ṽ) = |x|n+2 (∆e − c)ṽ

where

c(x) =
∆(|x|2−n)
|x|2−n

.

However, since |x|2−n is harmonic when n ≥ 3, we have c = 0. Combining
these facts, we have seen that if u ∈ H1(Ω) solves (−∆e + q)u = 0 in Ω,

then ṽ = |x|2−n F ∗u ∈ H1(Ω̃) solves

(−∆e + |x|−4 F ∗q)ṽ = 0 in Ω̃.

Tracing back the steps, we see that if ṽ solves the above equation, then
u = F ∗(|x|n−2 ṽ) solves (−∆e + q)u = 0 in Ω (recall that F (F (x)) = x). It
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also follows that the Dirichlet problem for (−∆e+q)u = 0 in Ω is well-posed
if and only if the Dirichlet problem for the corresponding equation for ṽ is
well-posed in Ω̃.

Denote by Λq the DN map for the equation (−∆e + q)u = 0 in Ω, and

by Λ̃q̃ the DN map for the equation (−∆e + q̃)ṽ = 0 in Ω̃. We will prove
that if

Λq1f |Γ = Λq2f |Γ for all f ∈ H1/2(∂Ω) with supp (f) ⊂ Γ,

then

Λ̃|x|−4F ∗q1
f̃ |Γ̃ = Λ|x|−4F ∗q2

f̃ |Γ̃ for all f̃ ∈ H1/2(∂Ω̃) with supp (f̃) ⊂ Γ̃.

Here Γ̃ = F−1(Γ). Since ∂Ω̃ \ Γ̃ = F−1(Γ0) is contained in the hyperplane

{xn = 1} and since Ω̃ is contained in {xn > 1}, this would imply by Theorem

6.3 that |x|−4 F ∗q1 = |x|−4 F ∗q2 in Ω̃, and therefore q1 = q2 in Ω.

Let f̃ ∈ H1/2(∂Ω̃) with supp (f̃) ⊂ Γ̃, and let ṽj ∈ H1(Ω̃) solve

(−∆e + |x|−4 F ∗qj)ṽj = 0 in Ω̃

with boundary condition ṽj|∂Ω̃ = f̃ . Define uj = F ∗(|x|n−2 ṽj) ∈ H1(Ω), so

that (−∆e+qj)uj = 0 in Ω with uj|∂Ω = F ∗(|x|n−2 f̃). Since supp (F ∗(|x|n−2 f̃)) ⊂
Γ, the assumption on the DN maps Λq1 and Λq2 implies that

Λq1f |Γ = Λq2f |Γ.
We now note that, by Theorem 2.72,

〈(Λ̃|x|−4F ∗q1
− Λ̃|x|−4F ∗q2

)f̃ , f̃〉∂Ω̃ =

∫

Ω̃
|x|−4 F ∗(q1 − q2)ṽ1ṽ2 dx.

Changing variables x = F−1(y) and noting that
∣∣detD(F−1)(y)

∣∣ = |y|−2n,
the previous expression becomes
∫

Ω
|y|4 (q1 − q2)(y) |y|n−2 u1(y) |y|n−2 u2(y) |y|−2n dy =

∫

Ω
(q1 − q2)u1u2 dy

= 〈(Λq1 − Λq2)f, f〉∂Ω.

This concludes the proof that Λ̃|x|−4F ∗q1
f̃ |Γ̃ = Λ̃|x|−4F ∗q2

f̃ |Γ̃ whenever supp (f̃) ⊂
Γ̃. �

6.2. Carleman estimate approach

Again, we first consider the Schrödinger equation, (−∆+q)u = 0 in Ω, where
q ∈ L∞(Ω) and Ω ⊂ Rn is a bounded open set with smooth boundary.

Motivation. Recall from Theorem ??? cgo solvability ??? that in
the construction of complex geometrical optics solutions, which depend on



212 6. Partial Data

a large vector ζ ∈ Cn satisfying ζ · ζ = 0, we needed to solve equations of
the form

(D2 + 2ζ ·D + q)r = f in Ω,

or written in another way,

e−iζ·x(−∆+ q)eiζ·xr = f in Ω.

In particular, Theorem ??? cgo solvability ??? shows the existence of
a solution and implies the estimate

‖r‖L2(Ω) ≤
C0

|ζ| ‖f‖L2(Ω) .

We write

ζ =
1

h
(β + iα),

where α and β are orthogonal unit vectors in Rn, and h > 0 is a small
parameter. The estimate for r may be written as

‖r‖L2(Ω) ≤ C0h
∥∥∥e 1

h
α·x(−∆+ q)e−

1
h
α·xr

∥∥∥
L2(Ω)

It is possible to view this as a uniqueness result: if the right hand side is
zero, then the solution r also vanishes. It turns out that such a uniqueness
result can be proved directly without Fourier analysis, and this is sufficient
to imply also existence of a solution.

Remark. We will systematically use a small parameter h instead of a large

parameter |ζ| (these are related by h =
√
2

|ζ| ). This is of course just a matter of

convention, but has the benefit of being consistent with semiclassical calculus
which is a well-developed theory for the analysis of certain asymptotic limits.
We will also arrange so that our basic partial derivatives will be hDj instead

of ∂
∂xj

. The usefulness of these choices will hopefully be evident below.

6.2.1. Carleman estimates for test functions. We begin with the sim-
plest Carleman estimate, which is valid for test functions and does not in-
volve boundary terms.

Theorem 6.9. (Carleman estimate) Let q ∈ L∞(Ω), let α be a unit vector
in Rn, and let ϕ(x) = α · x. There exist constants C > 0 and h0 > 0 such
that whenever 0 < h ≤ h0, we have

‖u‖L2(Ω) ≤ Ch
∥∥∥eϕ/h(−∆+ q)e−ϕ/hu

∥∥∥
L2(Ω)

, u ∈ C∞
c (Ω).
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We introduce some notation which will be used in the proof and also
later. If u, v ∈ L2(Ω) we write

(u|v) =
∫

Ω
uv̄ dx

‖u‖ = (u|u)1/2 = ‖u‖L2(Ω)

Consider the semiclassical Laplacian

P0 = −h2∆ = (hD)2

and the corresponding Schrödinger operator

P = h2(−∆+ q) = P0 + h2q

The operators conjugated with exponential weights will be denoted by

P0,ϕ = eϕ/hP0e
−ϕ/h

Pϕ = eϕ/hPe−ϕ/h = P0,ϕ + h2q

We will also need the concept of adjoints of differential operators. If

L =
∑

|α|≤m
aα(x)D

α

is a differential operator in Ω, with aα ∈ W |α|,∞(Ω) (that is, all partial
derivatives up to order |α| are in L∞(Ω)), then L∗ is the differential operator
which satisfies

(Lu|v) = (u|L∗v), u, v ∈ C∞
c (Ω)

For L of the above form, an integration by parts shows that

L∗v =
∑

|α|≤m
Dα(aα(x)v)

Proof of Theorem 6.9. Using the notation above, the desired estimate
can be written as

h ‖u‖ ≤ C ‖Pϕu‖ , u ∈ C∞
c (Ω).

First consider the case q = 0, that is, the estimate

h ‖u‖ ≤ C ‖P0,ϕu‖ , u ∈ C∞
c (Ω).

We need an explicit expression for P0,ϕ. On the level of operators, one has

eϕ/hhDje
−ϕ/h = hDj + i∂jϕ.
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Since ϕ(x) = α · x where α is a unit vector, we obtain

P0,ϕ =
n∑

j=1

(eϕ/hhDje
−ϕ/h)(eϕ/hhDje

−ϕ/h) =
n∑

j=1

(hDj + iαj)
2

= (hD)2 − 1 + 2iα · hD

The objective is to prove a positive lower bound for

‖P0,ϕu‖2 = (P0,ϕu|P0,ϕu).

To this end, we decompose P0,ϕ in a way which is useful for determining
which parts in the inner product are positive and which may be negative.
Write

P0,ϕ = A+ iB

where A∗ = A and B∗ = B. Here, A and iB are the self-adjoint and
skew-adjoint parts of P0,ϕ. Since

P ∗
0,ϕ = (eϕ/hP0e

−ϕ/h)∗ = e−ϕ/hP0e
ϕ/h = P0,−ϕ

= (hD)2 − 1− 2iα · hD
we obtain A and B from the formulas (cf. the real and imaginary parts of a
complex number)

A =
P0,ϕ + P ∗

0,ϕ

2
= (hD)2 − 1

B =
P0,ϕ − P ∗

0,ϕ

2i
= 2α · hD

Now we have

‖P0,ϕu‖2 = (P0,ϕu|P0,ϕu) = ((A+ iB)u|(A+ iB)u)

= (Au|Au) + (Bu|Bu) + i(Bu|Au)− i(Au|Bu)
= ‖Au‖2 + ‖Bu‖2 + (i[A,B]u|u)

where [A,B] = AB − BA is the commutator of A and B. This argument
used integration by parts and the fact that A∗ = A and B∗ = B. There are
no boundary terms since u ∈ C∞

c (Ω).

The terms ‖Au‖2 and ‖Bu‖2 are nonnegative, so the only negative con-
tributions could come from the commutator term. But in our case A and
B are constant coefficient differential operators, and these operators always
satisfy

[A,B] ≡ 0

Therefore

‖P0,ϕu‖2 = ‖Au‖2 + ‖Bu‖2
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By the Poincaré inequality (see [Ola])1 In fact, if α ∈ Rn is a unit vector,
then the proof given in [Ola] implies the following Poincaré inequality in the
unbounded strip S = { x ∈ Rn | a < x · α < b }:

‖u‖L2(S) ≤
b− a√

2
‖α ·Du‖L2(S) , u ∈ C∞

c (S).

,

‖Bu‖ = 2h ‖α ·Du‖ ≥ ch ‖u‖ ,
where c depends on Ω. This shows that for any h > 0, one has

h ‖u‖ ≤ C ‖P0,ϕu‖ , u ∈ C∞
c (Ω).

Finally, consider the case where q may be nonzero. The last estimate
implies that for u ∈ C∞

c (Ω), one has

h ‖u‖ ≤ C ‖P0,ϕu‖ ≤ C
∥∥(P0,ϕ + h2q)u

∥∥+ C
∥∥h2qu

∥∥

≤ C ‖Pϕu‖+Ch2 ‖q‖L∞(Ω) ‖u‖

Choose h0 so that C ‖q‖L∞(Ω) h0 =
1
2 , that is,

h0 =
1

2C ‖q‖L∞(Ω)

.

Then, if 0 < h ≤ h0,

h ‖u‖ ≤ C ‖Pϕu‖+
1

2
h ‖u‖ .

The last term may be absorbed in the left hand side, which completes the
proof. �

Exercise 6.10. (H1 Carleman estimate) Let ϕ(x) = α·x and let q ∈ L∞(Ω).
Show that there are C > 0 and h0 > 0 such that for any h with 0 < h ≤ h0,
one has

‖u‖+ ‖hDu‖ ≤ Ch
∥∥∥eϕ/h(−∆+ q)e−ϕ/hu

∥∥∥ , u ∈ C∞
c (Ω).

Exercise 6.11. (Large first order perturbations) Let ϕ(x) = α · x, let A =
(A1, . . . , An) ∈ L∞(Ω ; Rn) be a vector field, and let q ∈ L∞(Ω). Show that
there are C > 0 and h0 > 0 such that for any h with 0 < h ≤ h0, one has

‖u‖+ ‖hDu‖ ≤ Ch
∥∥∥eϕ/h(−∆+A · ∇+ q)e−ϕ/hu

∥∥∥ , u ∈ C∞
c (Ω).

(Hint: use the convexified weight ϕε = ϕ + h
ε
ϕ2

2 , where ε > 0 is small but
fixed.)

11
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6.2.2. Complex geometrical optics solutions. Here, we show how the
Carleman estimate gives a new method for constructing complex geometrical
optics solutions. We first establish an existence result for an inhomogeneous
equation, analogous to Theorem ??? cgo solvability ??? .

Theorem 6.12. Let q ∈ L∞(Ω), let α be a unit vector in Rn, and let
ϕ(x) = α · x. There exist constants C > 0 and h0 > 0 such that whenever
0 < h ≤ h0, the equation

eϕ/h(−∆+ q)e−ϕ/hr = f in Ω

has a solution r ∈ L2(Ω) for any f ∈ L2(Ω), satisfying

‖r‖L2(Ω) ≤ Ch ‖f‖L2(Ω)

Remark. With some knowledge of unbounded operators on Hilbert space,
the proof is immediate. Consider P ∗

ϕ : L2(Ω) → L2(Ω) with domain C∞
c (Ω).

It is a general fact that

T injective
range of T closed

}
=⇒ T ∗ surjective.

Since the Carleman estimate is valid for P ∗
ϕ one obtains injectivity and closed

range for P ∗
ϕ, and thus solvability for Pϕ. Below we give a direct proof based

on duality and the Hahn–Banach theorem, and also obtain the norm bound.

Proof of Theorem 6.12. Note that P ∗
ϕ = P0,−ϕ + h2q̄. If h0 is as in The-

orem 6.9, for h ≤ h0 we have

‖u‖ ≤ C

h

∥∥P ∗
ϕu
∥∥ , u ∈ C∞

c (Ω)

Let D = P ∗
ϕC

∞
c (Ω) be a subspace of L2(Ω), and consider the linear func-

tional

L : D → C, L(P ∗
ϕv) = (v|f), for v ∈ C∞

c (Ω)

This is well defined since any element of D has a unique representation
as P ∗

ϕv with v ∈ C∞
c (Ω), by the Carleman estimate. Also, the Carleman

estimate implies

∣∣L(P ∗
ϕv)
∣∣ ≤ ‖v‖ ‖f‖ ≤ C

h
‖f‖

∥∥P ∗
ϕv
∥∥

Thus L is a bounded linear functional on D.

The Hahn-Banach theorem ensures that there is a bounded linear func-
tional L̂ : L2(Ω) → C satisfying L̂|D = L and

∥∥∥L̂
∥∥∥ ≤ Ch−1 ‖f‖. By the

Riesz representation theorem, there is r̃ ∈ L2(Ω) such that

L̂(w) = (w|r̃), w ∈ L2(Ω),
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and ‖r̃‖ ≤ Ch−1 ‖f‖. Then, for v ∈ C∞
c (Ω), by the definition of weak

derivatives we have

(v|Pϕr̃) = (P ∗
ϕv|r̃) = L̂(P ∗

ϕv) = L(P ∗
ϕv) = (v|f),

which shows that Pϕr̃ = f in the weak sense.

Finally, set r = h2r̃. This satisfies eϕ/h(−∆ + q)e−ϕ/hr = f in Ω, and
‖r‖ ≤ Ch ‖f‖. �

We now give a construction of complex geometrical optics solutions to
the equation (−∆ + q)u = 0 in Ω, based on Theorem 6.12. This is slightly
more general than the discussion in Chapter 3, and is analogous to the
WKB construction used in finding geometrical optics solutions for the wave
equation.

Our solutions are of the form

(6.2) u = e−
1
h
(ϕ+iψ)(a+ r).

Here h > 0 is small and ϕ(x) = α · x as before, ψ is a real valued phase
function, a is a complex amplitude, and r is a correction term which is small
when h is small.

Writing ρ = ϕ+ iψ for the complex phase, using the formula

eρ/hhDje
−ρ/h = hDj + i∂jρ

which is valid for operators, and inserting (6.2) in the equation, we have

(−∆+ q)u = 0

⇔ eρ/h((hD)2 + h2q)e−ρ/h(a+ r) = 0

⇔ eρ/h((hD)2 + h2q)e−ρ/hr = −((hD + i∇ρ)2 + h2q)a

The last equation may be written as

eϕ/h(−∆+ q)e−ϕ/h(e−iψ/hr) = f

where

f = −e−iψ/h
(
− h−2(∇ρ)2 + h−1[2∇ρ · ∇+∆ρ] + (−∆+ q)

)
a.

Now, Theorem 6.12 ensures that one can find a correction term r satisfy-
ing ‖r‖ ≤ Ch, thus showing the existence of complex geometrical optics
solutions, provided that

‖f‖ ≤ C

with C independent of h. Looking at the expression for f , we see that it is
enough to choose ψ and a in such a way that

(∇ρ)2 = 0

2∇ρ · ∇a+ (∆ρ)a = 0
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Since ϕ(x) = α ·x with α a unit vector, expanding the square in (∇ρ)2 =
0 gives the following equations for ψ:

|∇ψ|2 = 1, α · ∇ψ = 0.

This is an eikonal equation (a certain nonlinear first order PDE) for ψ. We
obtain one solution by choosing ψ(x) = β · x where β ∈ Rn is a unit vector
satisfying α · β = 0. It would be possible to use other solutions ψ, but this
choice is close to the discussion in Chapter ??? ??? .

If ψ(x) = β · x, then the second equation becomes

(α+ iβ) · ∇a = 0.

This is a complex transport equation (a first order linear equation) for a,
analogous to the equation for a in Theorem ??? thm:cgo construction
??? . One solution is given by a ≡ 1. Again, other choices would be
possible.

This ends the construction of complex geometrical optics solutions based
on Carleman estimates. There is one additional difference with the analo-
gous result in Theorem ??? thm:cgo construction ??? : the correction
term r given by this argument is only in L2(Ω), not in H1(Ω). The same is
true for the solution u. One can in fact obtain r and u in H1(Ω) (and even
in H2(Ω)), but this requires a slightly stronger Carleman estimate and some
additional work. Some details for this were given ??? in the exercises
and lectures ??? .

6.2.3. Carleman estimates with boundary terms. We will continue
by deriving a Carleman estimate for functions which vanish at the boundary
but are not compactly supported. The estimate will include terms involving
the normal derivative. We will use the notation

(u|v)∂Ω =

∫

∂Ω
uv̄ dS

∂νu = ∇u · ν|∂Ω
and

∂Ω± = ∂Ω±(α) =
{
x ∈ ∂Ω

∣∣ ± α · ν(x) ≥ 0
}

Theorem 6.13. (Carleman estimate with boundary terms) Let q ∈ L∞(Ω),
let α be a unit vector in Rn, and let ϕ(x) = α · x. There exist constants
C > 0 and h0 > 0 such that whenever 0 < h ≤ h0, we have

− h((α · ν)∂νu|∂νu)∂Ω− + ‖u‖2L2(Ω)

≤ Ch2
∥∥∥eϕ/h(−∆+ q)e−ϕ/hu

∥∥∥
2

L2(Ω)
+Ch((α · ν)∂νu|∂νu)∂Ω+

for any u ∈ C∞(Ω) with u|∂Ω = 0.
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Note that the sign of α ·ν on ∂Ω± ensures that all terms in the Carleman
estimate are nonnegative.

Proof. We first claim that

(6.3) ch2 ‖u‖2 − 2h3((α · ν)∂νu|∂νu)∂Ω ≤ ‖P0,ϕu‖2

for u ∈ C∞(Ω) with u|∂Ω = 0. It is easy to see that this implies the desired
estimate in the case q = 0.

As in the proof of Theorem 6.9, we decompose

P0,ϕ = A+ iB

where A = (hD)2 − 1 and B = 2α · hD, and A∗ = A, B∗ = B. Then

‖P0,ϕu‖2 = (P0,ϕu|P0,ϕu) = ((A+ iB)u|(A+ iB)u)

= ‖Au‖2 + ‖Bu‖2 + i(Bu|Au)− i(Au|Bu)

We wish to integrate by parts to obtain the commutator term involving
i[A,B], but this time boundary terms will arise. We have

i(Bu|(hD)2u) =
n∑

j=1

i(Bu|(hDj)
2u)

=

n∑

j=1

[
i(Bu|h

i
νjhDju)∂Ω + i(hDjBu|hDju)

]

= −2h3(α · ∇u|∂νu)∂Ω +

n∑

j=1

[
i(hDjBu|

h

i
νju)∂Ω + i((hDj)

2Bu|u)
]

But u|∂Ω = 0, so the boundary term involving h
i νju is zero. For the first

boundary term we use the decomposition

∇u|∂Ω = (∂νu)ν + (∇u)tan
where (∇u)tan := ∇u − (∇u · ν)ν|∂Ω is the tangential part of ∇u, which
vanishes since u|∂Ω = 0. By these facts, we obtain

i(Bu|Au) = i(ABu|u)− 2h3((α · ν)∂νu|∂νu)∂Ω
Similarly, using that u|∂Ω = 0,

i(Au|Bu) = i(Au|2α · h
i
νu)∂Ω + i(BAu|u)

= i(BAu|u)
We have proved that

‖P0,ϕu‖2 = ‖Au‖2 + ‖Bu‖2 + (i[A,B]u|u) − 2h3((α · ν)∂νu|∂νu)∂Ω
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Again, since A and B are constant coefficient operators, we have [A,B] =
AB −BA ≡ 0. The Poincaré inequality gives ‖Bu‖ ≥ ch ‖u‖, which proves
(6.3).

Writing (6.3) in a different form, we have

− 2h((α · ν)∂νu|∂νu)∂Ω− + c ‖u‖2

≤ h2
∥∥∥eϕ/h(−∆)e−ϕ/hu

∥∥∥
2
+ 2h((α · ν)∂νu|∂νu)∂Ω+

Adding a potential, it follows that

− 2h((α · ν)∂νu|∂νu)∂Ω− + c ‖u‖2

≤ h2
∥∥∥eϕ/h(−∆+ q)e−ϕ/hu

∥∥∥
2
+ h2 ‖q‖2L∞(Ω) ‖u‖2 + 2h((α · ν)∂νu|∂νu)∂Ω+

Choosing h small enough (depending on ‖q‖L∞(Ω)), the term involving ‖u‖2
on the right can be absorbed to the left hand side. This concludes the
proof. �

Exercise 6.14. (Solvability with vanishing data on part of boundary) Show
that there are C > 0 and h0 > 0 such that whenever 0 < h ≤ h0, the
equation {

eϕ/h(−∆+ q)e−ϕ/hr = f in Ω

r = 0 on ∂Ω+

has a solution r ∈ L2(Ω) for any f ∈ L2(Ω), with ‖r‖ ≤ Ch ‖f‖. (Hint: use
test functions which vanish, along with their normal derivative, on suitable
parts of the boundary.)

6.3. Uniqueness with partial data

Let Ω be a bounded open set in Rn with smooth boundary, where n ≥ 3. If
α ∈ Rn, recall the subsets of the boundary

∂Ω± =
{
x ∈ ∂Ω

∣∣ ± α · ν(x) > 0
}

∂Ω−,ε =
{
x ∈ ∂Ω

∣∣ α · ν(x) < ε
}

Also, let ∂Ω+,ε =
{
x ∈ ∂Ω

∣∣ α · ν(x) > ε
}
. We first consider a partial data

uniqueness result for the Schrödinger equation.

Theorem 6.15. Let q1 and q2 be two functions in L∞(Ω) such that the
Dirichlet problems for −∆+ q1 and −∆+ q2 are well-posed. If α is a unit
vector in Rn and if

Λq1f |∂Ω−,ε = Λq2f |∂Ω−,ε for all f ∈ H1/2(∂Ω)

then q1 = q2 in Ω.
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Given this result, it is easy to prove the corresponding theorem for the
conductivity equation.

Proof that Theorem 6.15 implies Theorem 6.2. Define qj = ∆
√
γj/

√
γj.

By Lemma ??? lemma:dn conductivity schrodinger ??? , we have
the relation

Λqjf = γ
−1/2
j Λγj (γ

−1/2
j f) +

1

2
γ−1
j

∂γj
∂ν

f
∣∣∣
∂Ω
.

Since Λγ1f |∂Ω−,ε = Λγ2f |∂Ω−,ε for all f , boundary determination results (see
[Ola]) imply that

γ1|∂Ω−,ε = γ2|∂Ω−,ε ,
∂γ1
∂ν

|∂Ω−,ε =
∂γ2
∂ν

|∂Ω−,ε

∆
√
γ1√
γ1

=
∆
√
γ2√
γ2

in Ω.

Now also γ1|∂Ω = γ2|∂Ω, so the arguments in Section ??? sec:uniqueness reduction
??? imply that γ1 = γ2 in Ω. �

We proceed to the proof of Theorem 6.15. The main tool is the Carleman
estimate in Theorem 6.13, which will be applied with the weight −ϕ instead
of ϕ. The estimate then has the form

h((α · ν)∂νu|∂νu)∂Ω+ + ‖u‖2L2(Ω)

≤ Ch2
∥∥∥e−ϕ/h(−∆+ q)eϕ/hu

∥∥∥
2

L2(Ω)
− Ch((α · ν)∂νu|∂νu)∂Ω−

with u ∈ C∞(Ω) and u|∂Ω = 0. Choosing v = eϕ/hu and noting that
v|∂Ω = 0, this may be written as

h
(
(α · ν)e−ϕ/h∂νv

∣∣e−ϕ/h∂νv
)
∂Ω+

+
∥∥∥e−ϕ/hv

∥∥∥
2

L2(Ω)

≤ Ch2
∥∥∥e−ϕ/h(−∆+ q)v

∥∥∥
2

L2(Ω)
− Ch

(
(α · ν)e−ϕ/h∂νv

∣∣e−ϕ/h∂νv
)
∂Ω−

(6.4)

This last estimate is valid for all v ∈ H2 ∩ H1
0 (Ω), which follows by an

approximation argument (or can be proved directly).

Proof of Theorem 6.15. Recall from Lemma ??? lemma:identity schrodinger
??? that

(6.5)

∫

Ω
(q1 − q2)u1u2 dx =

〈
(Λq1 − Λq2)(u1|∂Ω) , u2|∂Ω

〉
∂Ω

whenever uj ∈ H1(Ω) are solutions of (−∆ + qj)uj = 0 in Ω. By the
assumption on the DN maps, the boundary integral is really over ∂Ω+,ε. If
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further u1 ∈ H2(Ω), then

Λq1(u1|∂Ω) = ∂νu1|∂Ω
since ∇u1 ∈ H1(Ω) and ∂νu1|∂Ω = (tr∇u1) · ν|∂Ω ∈ H1/2(∂Ω). Also,

Λq2(u1|∂Ω) = ∂ν ũ2|∂Ω,
where ũ2 solves {

(−∆+ q2) ũ2 = 0 in Ω

ũ2 = u1 on ∂Ω

We have ũ2 ∈ H2(Ω) since u1|∂Ω ∈ H3/2(∂Ω). Therefore, (6.5) implies
∫

Ω
(q1 − q2)u1u2 dx =

∫

∂Ω+,ε

∂ν(u1 − ũ2)u2 dS

for any uj ∈ H2(Ω) which solve (−∆+ qj)uj = 0 in Ω.

Given the unit vector α ∈ Rn, let ξ ∈ Rn be a vector orthogonal to α,
and let β ∈ Rn be a unit vector such that {α, β, ξ} is an orthogonal triplet.
Write ϕ(x) = α ·x and ψ(x) = β ·x. Theorem ??? thm:cgo construction
??? ensures that there exist CGO solutions to (−∆ + qj)uj = 0 of the
form

u1 = e
1
h
(ϕ+iψ)eix·ξ(1 + r1)

u2 = e−
1
h
(ϕ+iψ)(1 + r2),

where ‖rj‖ ≤ Ch, ‖∇rj‖ ≤ C, and uj ∈ H2(Ω) (the part that rj ∈ H2(Ω)
??? was in the exercises ??? ). Then, writing u := u1 − ũ2 ∈
H2 ∩H1

0 (Ω), we have

(6.6)

∫

Ω
eixξ̇(q1 − q2)(1 + r1 + r2 + r1r2) dx =

∫

∂Ω+,ε

(∂νu)u2 dS.

By the estimates for rj , the limit as h→ 0 of the left hand side is
∫
Ω e

ix·ξ(q1−
q2) dx. We wish to show that the right hand side converges to zero as h→ 0.

By Cauchy–Schwarz, one has

∣∣∣
∫

∂Ω+,ε

(∂νu)u2 dS
∣∣∣
2
=
∣∣∣
∫

∂Ω+,ε

e−ϕ/h(∂νu)e
ϕ/hu2 dS

∣∣∣
2

≤
( ∫

∂Ω+,ε

∣∣∣e−ϕ/h∂νu
∣∣∣
2
dS
)( ∫

∂Ω+,ε

∣∣∣eϕ/hu2
∣∣∣
2
dS
)
.

(6.7)

To use the Carleman estimate, we note that ε ≤ α · ν on ∂Ω+,ε, By (6.4)
applied to u and with potential q2, and using that ∂νu|∂Ω−,ε = 0 by the
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assumption on DN maps, we obtain for small h that∫

∂Ω+,ε

∣∣∣e−ϕ/h∂νu
∣∣∣
2
≤ 1

ε

∫

∂Ω+,ε

(α · ν)
∣∣∣e−ϕ/h∂νu

∣∣∣
2
dS

≤ 1

ε
Ch
∥∥∥e−ϕ/h(−∆+ q2)u

∥∥∥
2

L2(Ω)

The reason for choosing the potential q2 is that

(−∆+ q2)u = (−∆+ q2)u1 = (q2 − q1)u1

Thus, the solution ũ2 goes away, and we are left with an expression involving
only u1 for which we know exact asymptotics. We have∫

∂Ω+,ε

∣∣∣e−ϕ/h∂νu
∣∣∣
2
≤ 1

ε
Ch
∥∥∥(q2 − q1)e

iψ/heix·ξ(1 + r1)
∥∥∥
2

L2(Ω)
≤ Ch

This takes care of the first term on the right hand side of (6.7). For the
other term we compute∫

∂Ω+,ε

∣∣∣eϕ/hu2
∣∣∣
2
dS =

∫

∂Ω+,ε

|1 + r2|2 dS

≤ 1

2

∫

∂Ω+,ε

(1 + r22) dS ≤ C(1 + ‖r2‖2L2(∂Ω))

By the trace theorem, ‖r2‖L2(∂Ω) ≤ C ‖r2‖H1(Ω) ≤ C. Combining these

estimates, we have for small h that
∣∣∣
∫

∂Ω+,ε

(∂νu)u2 dS
∣∣∣ ≤ C

√
h.

Taking the limit as h→ 0 in (6.6), we are left with

(6.8)

∫

Ω
eix·ξ(q1 − q2) dx = 0.

This is true for all ξ ∈ Rn orthogonal to α. However, since the DN maps
agree on ∂Ω−,ε(α) for a fixed constant ε > 0, they also agree on ∂Ω−,ε′(α′)
for α′ sufficiently close to α on the unit sphere and for some smaller constant
ε′. Thus, in particular, (6.8) holds for ξ in an open cone in Rn. Writing
q for the function which is equal to q1 − q2 in Ω and which is zero outside
of Ω, this implies that the Fourier transform of q vanishes in an open set.
But since q is compactly supported, the Fourier transform is analytic by the
Paley–Wiener theorem, and this implies that q ≡ 0. We have proved that
q1 ≡ q2. �

Exercise 6.16. Let f : Ω → C be continuous, where Ω ⊂ Rn is bounded.
Show that there is a modulus of continuity ω such that |f(x)− f(y)| ≤
ω(|x− y|).
Exercise 6.17. Assuming the claim in Problem 6.17, determine Λγf .
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Exercise 6.18. Let γ ≡ 1 in the unit disc D ⊂ R2. Show that the solution
in H1(D) to ∇ · γ∇u = 0 in D, with u|∂D = f ∈ H1/2(∂D), is given by

u(reiθ) =

∞∑

k=−∞
r|k|f̂(k)eikθ

Below, q ∈ L∞(Ω), and ϕ(x) = α · x where α is a unit vector in Rn.

6.4. Unique continuation

In this section we prove the unique continuation result required in the proof
of Theorem 6.1. The uniqueness results below are true for rather general
elliptic equations, but for simplicity we restrict our attention to solutions of
the Schrödinger equation (−∆+ q)u = 0.

Theorem 6.19. (Unique continuation from local Cauchy data) Let Ω ⊂ Rn

be a bounded connected open set with smooth boundary, and let q ∈ L∞(Ω).
Assume that Γ is a nonempty open subset of ∂Ω. If u ∈ H2(Ω) satisfies

(−∆+ q)u = 0 in Ω

and

u|Γ = ∂νu|Γ = 0,

then u = 0 in Ω.

As an immediate corollary, if two solutions to the Schrödinger equation
(−∆+ q)u = 0 have the same Cauchy data on an open subset of the bound-
ary, then the solutions are identical in the whole domain. This is an instance
of the unique continuation principle for elliptic equations. We also state two
closely related variants. The first one is called weak unique continuation and
it concerns uniqueness of solutions which vanish in some ball. (One also has
strong unique continuation meaning that any solution vanishing to infinite
order at a point in a suitable sense must vanish everywhere, but we will not
need this.)

Theorem 6.20. (Weak unique continuation) Let Ω ⊂ Rn be a connected
bounded open set, and let q ∈ L∞(Ω). If u ∈ H2(Ω) satisfies

(−∆+ q)u = 0 in Ω

and

u = 0 in some ball B contained in Ω,

then u = 0 in Ω.

The next variant states that a solution to a Schrödinger equation that
vanishes on one side of a hypersurface must vanish also on the other side.
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Theorem 6.21. (Unique continuation across a hypersurface) Let Ω ⊂ Rn

be an open set, and let q ∈ L∞(Ω). Suppose that S is a C∞ hypersurface
such that Ω = S+ ∪ S ∪ S− where S+ and S− denote the two sides of S.
If x0 ∈ S and if V is an open neighborhood of x0 in Ω, and if u ∈ H2(V )
satisfies

(−∆+ q)u = 0 in V

and

u = 0 in V ∩ S+,
then u = 0 in some neighborhood of x0.

We will in fact prove Theorem 6.21 and deduce the other unique con-
tinuation results from that. The standard tool in the proof is a Carleman
estimate. Recall first the simple Carleman estimate from Theorem 6.9, stat-
ing that whenever ϕ is a linear function and h > 0 is sufficiently small we
have ∥∥∥eϕ/hu

∥∥∥
L2(Ω)

≤ Ch
∥∥∥eϕ/h(−∆+ q)u

∥∥∥
L2(Ω)

, u ∈ C∞
c (Ω).

This is already a sort of uniqueness statement: it implies that any solution
u ∈ C∞

c (Ω) of the equation (−∆ + q)u = 0 in Ω must be identically zero
in the whole domain. To obtain Theorem 6.21 we will need a Carleman
estimate suitable for proving local uniqueness of solutions, and for this it
will be useful to consider more general weight functions than linear ones.

We begin by recalling some notation from the proof of Theorem 6.9. Let
(u|v) be the inner product in L2(Ω) and ‖u‖ the corresponding norm, and
let P0 = (hD)2 be the semiclassical Laplacian. If ψ ∈ C∞(Ω) is a real valued
function, we define the conjugated Laplacian

P0,ψ = eψ/hP0e
−ψ/h.

We also write ψ′′ for the Hessian matrix

ψ′′(x) = [∂xjxkψ(x)]
n
j,k=1.

The following is an analogue of Theorem 6.9 for a general weight func-
tion. The point is that a Carleman estimate of the type ‖P0,ψu‖ ≥ ch ‖u‖
may follow if the weight ψ is chosen so that (i[A,B]u|u) is at least nonnega-
tive. In the case when ψ was a linear function, both A and B were constant
coefficient operators and the commutator i[A,B] was identically zero. How-
ever, if ψ is convex (meaning that the Hessian ψ′′ is positive definite) one
obtains a better lower bound.

Theorem 6.22. (Carleman estimate with general weight) Let Ω ⊂ Rn be a
bounded open set and let ψ ∈ C∞(Ω). Then

P0,ψ = A+ iB
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where A and B are the formally self-adjoint operators

A = (hD)2 − |∇ψ|2 ,
B = ∇ψ ◦ hD + hD ◦ ∇ψ.

If u ∈ C∞
c (Ω) one has

‖P0,ψu‖2 = ‖Au‖2 + ‖Bu‖2 + (i[A,B]u, u)

where the commutator i[A,B] satisfies

(i[A,B]u, u) = 4h(ψ′′hDu, hDu) + 4h((ψ′′∇ψ · ∇ψ)u, u) − h3((∆2ψ)u, u).

Proof. The first step is to decompose P0,ψ into self-adjoint and skew-adjoint
parts as

P0,ψ = A+ iB

where A and B are the formally self-adjoint operators

A =
P0,ψ + P ∗

0,ψ

2
,

B =
P0,ψ − P ∗

0,ψ

2i
.

We have

P0,ψ =

n∑

j=1

(eψ/hhDje
−ψ/h)2 =

n∑

j=1

(hDj+i∂jψ)
2 = (hD)2−|∇ψ|2+i∇ψ◦hD+ihD◦∇ψ,

and

P ∗
0,ψ = (eψ/hP0e

−ψ/h)∗ = e−ψ/hP0e
ψ/h = (hD)2−|∇ψ|2−i∇ψ◦hD−ihD◦∇ψ.

The required expressions for A and B follow.

If u ∈ C∞
c (Ω) we compute

‖P0,ψu‖2 = ((A+ iB)u|(A + iB)u) = ‖Au‖2 + ‖Bu‖2 + (i[A,B]u|u).
It remains to compute the commutator:

i[A,B]u = h
[
((hD)2 − |∇ψ|2)(2∇ψ · ∇u+ (∆ψ)u)

− (2∇ψ · ∇+∆ψ)((hD)2u− |∇ψ|2 u)
]

= h
[
2∇(hD)2ψ · ∇u+ 4hD∂kψ · hD∂ku+ ((hD)2∆ψ)u

+ 2hD∆ψ · hDu+ 2∇ψ · ∇(|∇ψ|2)u
]

= h
[
4(ψ′′∇ψ · ∇ψ)u− 4h2∂jkψ∂jku− 4h2∇∆ψ · ∇u
− h2(∆2ψ)u

]
.
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Integrating by parts once, using that u|∂Ω = 0, yields

(i[A,B]u, u) = 4h3(ψ′′∇u,∇u) + 4h((ψ′′∇ψ · ∇ψ)u, u)
− h3((∆2ψ)u, u).

�

The next result shows that if one starts with any function ϕ with nonva-
nishing gradient, the convexified weight function ψ = eλϕ for λ sufficiently
large will have a good Carleman estimate.

Theorem 6.23. (Carleman estimate with weight eλϕ) Let Ω ⊂ Rn be a
bounded open set, let q ∈ L∞(Ω), and assume that ϕ ∈ C∞(Ω) satisfies
ϕ ≥ 0 and ∇ϕ 6= 0 in Ω. Let

ψ = eλϕ.

There exist C0, λ0, h0 > 0 such that whenever λ > λ0 and 0 < h < h0, one
has

λ2 ‖u‖+ λ ‖hDu‖ ≤ C0h
3/2
∥∥∥eψ/h(−∆+ q)e−ψ/hu

∥∥∥ , u ∈ H2
comp(Ω).

Proof. In the following, the positive constants c and C are always indepen-
dent of λ, h and u and they may change from line to line. (We understand
that c is small and C may be large.) Since ψ = eλϕ, we have

∇ψ = λeλϕ∇ϕ, ψ′′ = λ2eλϕ∇ϕ⊗∇ϕ+ λeλϕϕ′′

where ∇ϕ ⊗ ∇ϕ denotes the matrix [∂jϕ∂kϕ]
n
j,k=1. Assuming that λ ≥ 1,

we also have ∣∣∆2ψ
∣∣ ≤ Cλ4eλϕ.

By Theorem 6.22, we have

‖P0,ψu‖2 = ‖Au‖2 + ‖Bu‖2 + (i[A,B]u, u)

where

(i[A,B]u, u) = 4h(ψ′′hDu, hDu) + 4h((ψ′′∇ψ · ∇ψ)u, u)− h3((∆2ψ)u, u)

= 4hλ4(e3λϕ |∇ϕ|4 u, u) + 4hλ3(e3λϕ(ϕ′′∇ϕ · ∇ϕ)u, u)− h3((∆2ψ)u, u)

+ 4hλ2(eλϕ∇ϕ · hDu,∇ϕ · hDu) + 4hλ(eλϕϕ′′hDu, hDu).

Consequently

(i[A,B]u, u) ≥ 4hλ3(e3λϕ[λ |∇ϕ|4 − ϕ′′∇ϕ · ∇ϕ]u, u) −Ch3λ4(e3λϕu, u)

− Chλ(eλϕhDu, hDu).
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We used that 1 ≤ eλϕ and that (eλϕ∇ϕ · hDu,∇ϕ · hDu) ≥ 0. Now choose

λ so large that λ |∇ϕ|4 − ϕ′′∇ϕ · ∇ϕ ≥ λ |∇ϕ|4 /2 in Ω (and λ ≥ 1), or

λ ≥ max

{
1, 2 sup

x∈Ω

ϕ′′∇ϕ · ∇ϕ
|∇ϕ|4

}
.

This is possible since ∇ϕ is nonvanishing in Ω. If h is chosen sufficiently
small (independent of λ), it follows that

(i[A,B]u, u) ≥ chλ4(e3λϕu, u)− Chλ(eλϕhDu, hDu).

We have proved the inequality

‖P0,ψu‖2 ≥ ‖Au‖2 + ‖Bu‖2 + chλ4(e3λϕu, u)− Chλ(eλϕhDu, hDu).

The last negative term can be absorbed in the positive term ‖Au‖2 as follows.
The argument is elementary but slightly tricky. Write

(eλϕhDu, hDu) = (eλϕ(hD)2u, u) + (hD(eλϕ) · hDu, u)
= (eλϕAu, u) + (eλϕ |∇ψ|2 u, u)− ihλ(eλϕ∇ϕ · hDu, u)
= (Au, eλϕu) + λ2(e3λϕ |∇ϕ|2 u, u)− ihλ(eλϕ∇ϕ · hDu, u).

By Young’s inequality we have (Au, eλϕu) ≤ 1
δ ‖Au‖

2 + δ
4

∥∥eλϕu
∥∥2 where

δ > 0 is a number to be determined later. We obtain

(eλϕhDu, hDu) ≤ 1

δ
‖Au‖2 + δ

4

∥∥∥eλϕu
∥∥∥
2
+ Cλ2(e3λϕu, u) + Chλ

∥∥∥eλϕ/2hDu
∥∥∥
∥∥∥eλϕ/2u

∥∥∥ .

Multiplying by δ and rearranging, we have

‖Au‖2 ≥ δ(eλϕhDu, hDu)− δ2

4

∥∥∥eλϕu
∥∥∥
2
− Cδλ2(e3λϕu, u)

− Chλδ
∥∥∥eλϕ/2hDu

∥∥∥
∥∥∥eλϕ/2u

∥∥∥ .

Combining the above inequalities gives that

‖P0,ψu‖2 ≥ δ(eλϕhDu, hDu)− δ2

4
(e3λϕu, u)− Cδλ2(e3λϕu, u)

− Chλδ
∥∥∥eλϕ/2hDu

∥∥∥
∥∥∥eλϕ/2u

∥∥∥+ chλ4(e3λϕu, u)− Chλ(eλϕhDu, hDu).

We used that 1 ≤ eλϕ and ‖Bu‖2 ≥ 0.

The idea is to choose δ so that the last expression is positive. By inspec-
tion, we arrive at the choice

δ = εhλ2

where ε is a fixed constant independent of h and λ. If ε is chosen sufficiently
small, it holds that

‖P0,ψu‖2 ≥ chλ4(e3λϕu, u)+(ελ−C)hλ(eλϕhDu, hDu)−Cεh2λ3
∥∥∥eλϕ/2hDu

∥∥∥
∥∥∥eλϕ/2u

∥∥∥ .
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Choosing λ large enough (only depending on ε and C) gives

‖P0,ψu‖2 ≥ chλ4(e3λϕu, u)+chλ2(eλϕhDu, hDu)−Cεh2λ3
∥∥∥eλϕ/2hDu

∥∥∥
∥∥∥eλϕ/2u

∥∥∥ .

Now

2λ3
∥∥∥eλϕ/2hDu

∥∥∥
∥∥∥e3λϕ/2u

∥∥∥ ≤ λ4(eλϕu, u) + λ2(e3λϕhDu, hDu).

If h is sufficiently small depending on C and ε, we have

‖P0,ψu‖2 ≥ chλ4(e3λϕu, u) + chλ2(eλϕhDu, hDu)

Since eλϕ ≥ 1, this implies

hλ4 ‖u‖2 + hλ2 ‖hDu‖2 ≤ C ‖P0,ψu‖2

and consequently

λ2 ‖u‖+ λ ‖hDu‖2 ≤ Ch3/2
∥∥∥eψ/h(−∆)e−ψ/hu

∥∥∥ .

Adding the potential q gives

λ2 ‖u‖+ λ ‖hDu‖2 ≤ Ch3/2
∥∥∥eψ/h(−∆+ q)e−ψ/hu

∥∥∥+ Ch3/2 ‖u‖ .

Choosing h so small that Ch3/2 ≤ 1/2 and using that λ ≥ 1 gives the re-
quired estimate for u ∈ C∞

c (Ω). The same estimate is true for u ∈ H2
comp(Ω)

since any such function can be approximated in the H2(Ω) norm by C∞
c (Ω)

functions. �

We move now to the proof of unique continuation across a hypersurface.
To obtain some intuition into the proof, it is useful to stare at Figure ???
and keep in mind the special case where S is the hypersurface {xn = 0}
and ϕ(x) = xn. The ingenious idea of forcing the solution to vanish in a
neighborhood of x0 by using a L2 estimate with slightly bent exponential
weights is originally due to Carleman.

Proof of Theorem 6.21. Let x0 ∈ S and let V be a neighborhood of x0 in
Ω. The statement is local, so we may assume that V is a small ball centered
at x0 and that there is a real valued function ϕ ∈ C∞(V ), with ϕ 6= 0 in V ,
such that

S ∩ V = {x ∈ V ; ϕ(x) = ϕ(x0)},
S ∩ V+ = {x ∈ V ; ϕ(x) > ϕ(x0)},
S ∩ V− = {x ∈ V ; ϕ(x) < ϕ(x0)}.

In fact, ϕ is just a defining function for the hypersurface S, given near x0
by ϕ(x′, xn) = xn − g(x′) if S is locally the graph (x′, g(x′)). By adding
a constant we may assume that ϕ ≥ 0 in V . Also, write {ϕ = ϕ(x0)} for
S ∩ V , {ϕ > ϕ(x0)} for S ∩ V+, and {ϕ < ϕ(x0)} for S ∩ V−.
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Assume that u ∈ H2(V ) satisfies (−∆ + q)u = 0 in V and u = 0 in
{ϕ > ϕ(x0)}. We need to show that u vanishes in some neighborhood of
x0. This will be done by applying a Carleman estimate to χu for a suitable
cutoff function χ ∈ C∞

c (V ). Given ϕ, we have seen that the function

ψ = eλϕ

for λ large admits a good Carleman estimate and also satisfies

{ψ = ψ(x0)} = {ϕ = ϕ(x0)}, {ψ > ψ(x0)} = {ϕ > ϕ(x0)}, {ψ < ψ(x0)} = {ϕ < ϕ(x0)}.
However, to obtain the conclusion that u = 0 near x0 we need to bend the
weights a little bit. Define

ϕ̃(x) = ϕ(x) +
1

2
|x− x0|2 .

Then ∇ϕ̃(x) = ∇ϕ(x) + x − x0, and by shrinking V if necessary we have
∇ϕ̃ 6= 0 in V . Also ϕ̃ ≥ 0, and by Theorem 6.23 the weight

ψ̃ = eλϕ̃

admits for h small (and for λ fixed but sufficiently large) the Carleman
estimate

‖v‖+ ‖hDv‖ ≤ Ch3/2
∥∥∥eψ̃/h(−∆+ q)e−ψ̃/hv

∥∥∥ , v ∈ H2
comp(V ).

Let V ′ be an open ball centered at x0 and strictly contained inside V ,
and choose χ ∈ C∞

c (V ) so that χ = 1 near V ′. The Carleman estimate

applied to v = eψ̃/hχu implies
∥∥∥eψ̃/hχu

∥∥∥+
∥∥∥eψ̃/hχhDu

∥∥∥

=
∥∥∥eψ̃/hχu

∥∥∥+
∥∥∥hD(eψ̃/hχu)− hD(eψ̃/hχ)u

∥∥∥

≤
∥∥∥eψ̃/hχu

∥∥∥+
∥∥∥hD(eψ̃/hχu)

∥∥∥+ C
∥∥∥eψ̃/hχu

∥∥∥+ h
∥∥∥eψ̃/h(∇χ)u

∥∥∥

≤ Ch3/2
∥∥∥eψ̃/h(−∆+ q)(χu)

∥∥∥ + h
∥∥∥eψ̃/h(∇χ)u

∥∥∥

≤ Ch3/2
∥∥∥eψ̃/hχ(−∆+ q)u

∥∥∥+ Ch3/2
∥∥∥eψ̃/h[∆, χ]u

∥∥∥ + h
∥∥∥eψ̃/h(∇χ)u

∥∥∥ .

Since (−∆ + q)u = 0 in V , the first term on the right vanishes. Also, the
properties of χ and the fact that u = 0 in {ψ > ψ(x0)} show that the
functions [∆, χ]u and (∇χ)u are supported in the set

W = (V \ V ′) ∩ {ψ ≤ ψ(x0)}.
Using that ψ < ψ̃ in V \ {x0}, we can find ε > 0 so that

W ⊂ {x ∈ V ; ψ̃(x) < ψ̃(x0)− ε}.
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Choose some small ball B centered at x0 and contained in V ′ \ {ψ̃ <

ψ̃(x0)− ε}. The previous inequality implies
∥∥∥eψ̃/hu

∥∥∥
L2(B)

≤ Ch
∥∥∥eψ̃/hu

∥∥∥
L2(W )

.

But now ψ̃ ≥ ψ̃(x0)− ε in B and ψ̃ ≤ ψ̃(x0)− ε in W . This shows that

e(ψ̃(x0)−ε)/h ‖u‖L2(B) ≤ Che(ψ̃(x0)−ε)/h ‖u‖L2(W ) .

Canceling the exponentials and letting h → 0 we see that u = 0 in B, and
so u indeed vanishes in a neighborhood of x0. �

We can now prove the other unique continuation statements. Weak
unique continuation follows easily from Theorem 6.21 by using a connected-
ness argument. We first prove a special case.

Theorem 6.24. (Weak unique continuation for concentric balls) Let B =
B(x0, R) be an open ball in Rn, and let q ∈ L∞(B). If u ∈ H2(B) satisfies

(−∆+ q)u = 0 in B

and

u = 0 in some ball B(x0, r0) with r0 < R,

then u = 0 in B.

Proof. Let

I = {r ∈ (0, R) ; u = 0 in B(x0, r)}.
By assumption, I is nonempty. It is closed in (0, R) since whenever u van-
ishes on B(x0, rj) and rj → r, then u vanishes on B(x0, r). We will show
that I is open, which implies I = (0, R) by connectedness and therefore
proves the result.

Suppose r ∈ I, so u = 0 in B(x0, r). Let S be the hypersurface ∂B(x0, r).
We know that u = 0 on one side of this hypersurface. Now Theorem 6.21
implies that for any z ∈ S, there is some open ball B(z, rz) contained in B
so that u vanishes in B(z, rz). Define the open set

U = B(x0, r) ∪
(⋃

z∈S
B(z, rz)

)
.

The distance between the compact set S and the closed set B(x0, R) \ U is
positive. In particular, there is some ε > 0 such that u = 0 in B(x0, r + ε).
This shows that I is open. �

Proof of Theorem 6.20. Suppose u ∈ H2(Ω) satisfies (−∆ + q)u = 0 in
Ω and u = 0 in some open ball contained in Ω. Set

A = {x ∈ Ω ; u = 0 in some neighborhood of x in Ω}.



232 6. Partial Data

By assumption, A is a nonempty open subset of Ω. We will show that it is
also closed. This implies by connectedness that A = Ω, so indeed u vanishes
in Ω as required.

Suppose on the contrary that A is not closed as a subset of Ω. Then
there is some point x0 on the boundary of A relative to Ω, for which x0 /∈ A.
Choose r0 > 0 so that B(x0, r0) ⊂ Ω and choose some point y ∈ B(x0, r0/4)
with y ∈ A. Since y ∈ A, we know that u vanishes on some ball B(y, s0) with
s0 < r0/2. By Theorem 6.24, we see that u vanishes in the ball B(y, r0/2) ⊂
Ω. But x0 ∈ B(y, r0/2), so u vanishes near x0. This contradicts the fact
that x0 /∈ A. �

In turn, unique continuation from Cauchy data on a subset follows from
weak unique continuation upon extending the domain slightly near the set
where the Cauchy data vanishes.

Proof of Theorem 6.19. Assume that u ∈ H2(Ω), (−∆ + q)u = 0 in
Ω, and u|Γ = ∂νu|Γ = 0. Choose some x0 ∈ Γ, and choose coordinates
x = (x′, xn) so that x0 = 0 and for some r > 0,

Ω ∩B(0, r) = {x ∈ B(0, r) ; xn > g(x′)}
where g : Rn−1 → R is a C∞ function. We extend the domain near x0 by
choosing ψ ∈ C∞

c (Rn−1) with ψ = 0 for |x′| ≥ r/2 and ψ = 1 for |x′| ≤ r/4,
and by letting

Ω̃ = Ω ∪ {x ∈ B(0, r) ; xn > g(x′)− εψ(x′)}.
Here ε > 0 is chosen so small that {(x′, xn) ; |x′| ≤ r/2, xn = g(x′)−εψ(x′)}
is contained in B(0, r). Then Ω̃ is a bounded connected open set with C∞

boundary.

Define the function

ũ(x) =

{
u(x) if x ∈ Ω,

0 if x ∈ Ω̃ \ Ω.
.

Then ũ|Ω ∈ H2(Ω) and ũ|Ω̃\Ω ∈ H2(Ω̃ \ Ω). Since u|Γ = ∂νu|Γ = 0, we also

have that the traces of ũ and ∂ν ũ on the interface ∂Ω \ ∂Ω̃ vanish when
taken both from inside and outside Ω.

It follows from Theorem ??? that ũ ∈ H2(Ω̃). Defining q̃(x) = q(x) for

x ∈ Ω and q̃(x) = 0 for Ω̃ \ Ω, one also gets that (−∆ + q̃)ũ = 0 almost

everywhere in Ω̃. But ũ = 0 in some open ball contained in Ω̃ \ Ω, so we

know from Theorem 6.20 that ũ = 0 in the connected domain Ω̃. Thus also
u = 0. �



Chapter 7

Scattering Theory

This chapter has two main parts. In the first, up to and including §7.3, we
give a brief description of scattering theory for a Schrödinger operator. In
the second, §7.4, we prove that the scattering amplitude of a Schrödinger
operator uniquely determines its potential.

First, fix λ > 0 and note that, for each ω ∈ Sn−1, the function

ψ0(x, ω) = ei
√
λx·ω

obeys

H0ψ0 = (−∆− λ)ψ0(ω) = 0

The functions ψ0( · , ω) are the “eigenfunctions” of −∆ with eigenvalue λ,
and are parametrized by the unit sphere Sn−1 in Rn. The corresponding
solution of the time–dependent Schrödinger equation i∂∂tψ = −∆ψ, namely

ψ(x, t) = e−iλtei
√
λx·ω, has phase velocity

√
λω. That is, if you move with

x(t) = x(0) +
√
λω t, you always see the same value of ψ(x, t). We think of

ψ0(x, ω) as an incoming wave in direction ω.

If we consider the perturbed operator

Hqψq = (−∆− λ+ q)ψq = 0

— we shall assume that q is bounded and compactly supported in Rn—
then, as we will demonstrate in §7.2, the eigenfunctions ψq(x, ω) are also
parametrized by the sphere. They are unique if we insist that they have the
form

ψq(x, ω) = ei
√
λx·ω + ϕq(x, ω)

with the conditions that ϕq( · , ω) ∈ L2
δ for some δ < −1

2 and that ϕq( · , ω) is
outgoing. In §??, we defined, for any −∞ < δ <∞, L2

δ to be the completion

233
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of C∞
0 (Rn) with respect to the norm

‖u‖L2
δ
=

(∫

Rn

(
1 + |x|2

)δ|u|2 dnx
)1/2

There are several equivalent definitions of outgoing. The one we shall use
is that ϕq is in the range of a certain linear operator, G0, which we will
introduce in the next section. In Corollary 7.19, we shall show that, asymp-
totically for large |x|,

(7.1) ψq(λ, x, ω) = ei
√
λx·ω +

aq(
√
λ, θ, ω)

|x|n−1
2

ei
√
λ |x| +O

(
|x|−n−1

2
−1
)

where θ = x
|x| . We think of the first term as an incoming wave in direction ω

and of the second term as an outgoing radially expanding wave that arises
when the incoming wave scatters off of the potential q. The amplitude,
aq(

√
λ, θ, ω), of this outgoing wave depends on the direction of view, θ, and

is called the scattering amplitude. We saw a similar setup in §??.3.

7.1. Outgoing Solutions to (−∆− λ)u = f

Our first step (Theorem 7.1 and Proposition 7.2) is to solve the constant
coefficient equation

(7.2) (−∆− λ)u = f ∈ L2
δ δ > 1

2

by employing the Fourier transform and simply writing

û(k) =
f̂(k)

|k|2 − λ

If Imλ 6= 0, the denominator does not vanish and û is an unambiguously
defined element of L2 with

‖u‖L2(Rn) =
1

(2π)n/2
‖û‖L2(Rn) ≤

1

(2π)n/2| Imλ|‖f̂‖L2(Rn) =
1

| Im λ|‖f‖L2(Rn)

For real nonzero λ we shall define the unique outgoing solution to (7.2) by

(7.3) û(k) = lim
ǫ↓0

f̂(k)

|k|2 − λ− iǫ

Letting ǫ increase to zero in (7.3) would define the unique incoming solution
to (7.2). We will not need to consider incoming solutions. We begin with

Theorem 7.1. Let λ ∈ C\R+, |λ| > ǫ > 0, δ > 1
2 and n ≥ 2. There exists

a unique weak solution u ∈ L2
−δ(R

n) to

(7.4) (−∆− λ)u = f ∈ L2
δ(R

n)
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Moreover, there is a constant C = C(n, δ, ǫ) such that

(7.5) ‖u‖L2
−δ

≤ C

|λ|1/2 ‖f‖L2
δ

We shall denote the solution operator to (7.4) by

u = G0(λ)f

In order to extend G0(λ) to nonzero real values of λ we shall prove

Proposition 7.2. For every f ∈ L2
δ(R

n) and g ∈ L2
δ(R

n), the map

λ 7→ 〈G0(λ)f, g〉
has unique limiting values as λ approaches the real axis from above. Use
Oδ,−δ to denote the Banach space of bounded linear operators from L2

δ to
L2
−δ. Then G0(λ) extends to a weakly continuous Oδ,−δ–valued function of

λ on Imλ ≥ 0.

Definition 7.3. For λ ∈ R+\{0} and f ∈ L2
δ , define

G0(λ)f = lim
ǫ↓0

G0(λ+ iǫ)f

to be the outgoing solution to (7.2). A function u ∈ L2
δ(R

n) is said to be
outgoing if it belongs to the range of G0(λ).

Proof of Theorem 7.1. Let u and f obey (7.4). Then

(|k|2 − λ)û(k) = f̂(k)

and as the denominator does not vanish

û(k) =
f̂(k)

|k|2 − λ

and is therefore unique.

We now define a smooth partition of unity X2
0 (k, λ), X

2
1 (k, λ), · · · ,

X2
n(k, λ) with X0 supported away from |k| =

√
|λ|, the other Xj ’s sup-

ported near |k| =
√

|λ| and, for 1 ≤ j ≤ n,
|kj |2
|k|2 ≥ 1

2n on the support of Xj .

To do so, let
≈
X
0
(k), . . . ,

≈
X
n
(k) be non-negative smooth functions which take

values in [0, 1] and satisfy

≈
X
0
(k) =

{
0 1

2 ≤ |k| ≤ 3
2

1 |k| ≤ 1
4 or |k| ≥ 2

and, for j = 1, . . . , n,

≈
X
j
(k) =

{
1 |kj |2 ≥ 1

n |k|2

0 |kj |2 ≤ 1
2n |k|2
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Let

X̃0(k, λ) =
≈
X
0

(
k/
√

|λ|
)

X̃j(k, λ) =
(
1− X̃0(k, λ)

) ≈
X
j
(k) for j = 1, . . . , n

and, finally, define

Xk(k, λ) =
X̃k(k, λ)√∑n
j=0(X̃j(k, λ))2

for k = 0, . . . , n

so that
n∑

j=0

X2
j (k, λ) = 1

For any 0 6= k ∈ Rn, we must have |kj |2 ≥ 1
n |k|2 for at least one 1 ≤ j ≤ n

so that
∑n

j=1

≈
X
j
(k)2 ≥ 1 for all k 6= 0 and

n∑
j=0

X̃j(k, λ)
2 ≥ X̃0(k, λ)

2 +
(
1− X̃0(k, λ)

)2 ≥ 1

4

Combining this with

sup
|λ|≥ǫ
k∈Rn

0≤j≤n

|Dm
λ D

α
k X̃j(k, λ)| <∞

yields that, for |λ| ≥ ǫ,

(7.6) |Dm
λ D

α
kXj(k, λ)| ≤ C(α,m, ǫ)

We now write

(7.7) (G0(λ)f)
ˆ= q0f̂ +

n∑

j=1

qjmj f̂

with

q0 =
X0

|k|2 − λ
(7.8)

qj =
Xj

|k|+
√
λ

for j = 1, · · · , n(7.9)

mj =
Xj

|k| −
√
λ

for j = 1, · · · , n(7.10)

where we choose
√
λ to have positive imaginary part. In the remainder of

the proof, we shall assume that Re
√
λ is also nonnegative (as is the case for

Imλ ≥ 0), so that the magnitude of the denominator in (7.9) is bounded

below by
√

|λ| ≥ √
ǫ for all k ∈ Rn and |λ| ≥ ǫ. On the other hand, |k| may
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get arbitrarily close to
√
λ and the denominator in (7.10) is not bounded

away from zero. If Re
√
λ is negative (as is the case for Imλ ≤ 0), we

interchange the definitions of the qj and the mj . It follows from (7.6), (7.8),
and (7.9) that, for |λ| > ǫ,

|Dm
λ D

α
k qj(k, λ)| ≤

C(m,α, ǫ)√
|λ|

with a new constant C(α,m, ǫ). By Lemmas ?? and (when δ is not an
integer) ??,

‖qif̂‖Hδ(Rn) ≤
C(δ, ǫ)√

|λ|
‖f̂‖Hδ(Rn)

for any δ and 0 ≤ i ≤ n. Therefore the operators

Qi : f 7→ (qif̂)
∨

satisfy the estimate

‖Qif‖L2
δ
≤ C(δ, ǫ)√

|λ|
‖f‖L2

δ

Moreover, the norms of the derivatives of the operators Qi with respect to λ
are also bounded, so that the Qi are continuous functions of λ in the uniform
operator topology. The estimate (7.5), as well as Proposition 7.2, will now
follow from the following estimate of the operators

Mj : f 7→ (mj f̂j)
∨

combined with Problem 7.7. �

Lemma 7.4. Let δ > 1
2 , |λ| > ǫ > 0. For all 1 ≤ i ≤ n,

‖Mif‖L2
−δ

≤ C(ǫ, δ)‖f‖L2
δ

Moreover, for f, g ∈ L2
δ, the map

λ 7→ 〈Mif, g〉
has unique limiting values as λ approaches the real axis from above.

Proof. We will prove the lemma for M1. Let η = ψ(k) define the change of
coordinates

η1 = |k|
ηj = kj for j = 2, . . . , n

By construction the Jacobian, Dψ = k1
|k| , is bounded and bounded away

from zero on an open set Ω containing the support of X1. Let X̃1 be a C∞

function, taking values in [0, 1], that is supported in Ω and is identically
one on the support of X1. By Lemma ?? and Lemma ?? (when δ is not an

integer) u 7→ Φu = (X1u)◦ψ−1 and u 7→ Φ̃u =
(
X̃1u
Dψ

)
◦ψ−1 are bounded maps
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on Hδ(Rn) with operator norms depending only on δ and ǫ. Furthermore
these operators are norm continuous in λ. (They depend on λ only through

X1 and X̃1.) Since

〈M1f, g〉 =
∫

X1(k)

|k| −
√
λ
f̂(k) ĝ(k)

dnk

(2π)n

=

∫
1

|k| −
√
λ
X̃1(k)f̂(k)X1(k)ĝ(k)

dnk

(2π)n

=

∫
1

η1 −
√
λ
X̃1(ψ

−1(η))f̂ (ψ−1(η))X1(ψ−1(η))ĝ(ψ−1(η))
1

(Dψ)(ψ−1(η))

dnη

(2π)n

=

∫
1

η1 −
√
λ
(Φ̃f̂)(η) (Φĝ)(η)

dnη

(2π)n

=
〈
N1(Φ̃f̂)

ˇ, (Φĝ)
〉̌

where N1f =

(
f̂

η1 −
√
λ

)∨

it suffices to prove that

(7.11) | 〈N1f, g〉 | ≤ C̃(δ, ǫ)‖f‖L2
δ
‖g‖L2

δ

and that 〈N1f, g〉 converges as λ approaches the real axis from above. Now,
by Problem 7.5, N1 can be also expressed as
(7.12)

N1f(x1, x
′) = i

∫ x1

−∞
ei
√
λ(x1−y1)f(y1, x

′) dy1 with x′ ∈ Rn−1

Because Im
√
λ ≥ 0 and x1 − y1 ≥ 0 on the domain of integration, the

exponential in (7.12) is uniformly bounded. Fixing x′ for the moment and
applying the Cauchy-Schwartz inequality in R1, we see that, since δ > 1

2 ,

|N1f(x1, x
′)|2 ≤

∫ x1

−∞
(1 + y21)

−δ
dy1

∫ ∞

−∞
|f(y1, x′)|2(1 + y21)

δ
dy1

≤ C(δ)‖f(·, x′)‖2L2
δ(R

1)

so that

‖N1f(·, x′)‖2L2
−δ(R

1) ≤ C(δ)

∫ ∞

−∞
(1 + x21)

−δ
dx1 ‖f(·, x′)‖2L2

δ(R
1)

The integral C̃(δ) = C(δ)
∫∞
−∞ (1 + x21)

−δ
dx1 is finite as long as δ >

1
2 . Since,

for δ > 0,

(1 + x21 + |x′|2)−δ ≤ (1 + x21)
−δ

(1 + x21 + |x′|2)δ ≥ (1 + x21)
δ
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we have that

‖N1f‖2L2
−δ(R

n) =

∫ ∞

−∞
dx1

∫

Rn−1

dx′ (1 + x21 + |x′|2)−δ|N1f(x1, x
′)|2

≤
∫

Rn−1

dx′
∫ ∞

−∞
dx1 (1 + x21)

−δ|N1f(x1, x
′)|2

=

∫

Rn−1

dx′ ‖N1f(·, x′)‖2L2
−δ(R

1)

≤ C̃(δ)

∫

Rn−1

dx′
∫ ∞

−∞
dx1 (1 + x21)

δ|f(x1, x′)|2

≤ C̃(δ)

∫

Rn−1

dx′
∫ ∞

−∞
dx1 (1 + x21 + |x′|2)δ|f(x1, x′)|2

which implies (7.11). Finally, the existence of limiting values of

〈N1f, g〉 = i

∫

Rn

∫ u1

−∞
ei
√
λ(u1−y1)f(y1, u

′) g(u) dy1d
nu

as Imλ decreases to zero follows from the dominated convergence theorem

and the existence of pointwise limits for the function ei
√
λ(x1−y1).

This, together with Problem 7.7, completes the proof of the lemma,
Theorem 7.1 and Proposition 7.2. �

Exercise 7.5. Let λ ∈ C \ R+ and choose Im
√
λ > 0. Define the map

N1 : L
2(Rn) → L2(Rn)

f 7→ N1f =

(
f̂

η1 −
√
λ

)∨

Prove that

N1f(x1, x
′) = i

∫ x1

−∞
ei
√
λ(x1−y1)f(y1, x

′) dy1 with x′ ∈ Rn−1

Exercise 7.6. Let λ > 0, δ > 1
2 and f ∈ L2

δ(R
n).

(a) Prove that G0(λ)f is a weak solution of the differential equation (−∆−
λ)u = f . In other words, prove that u = G0(λ)f obeys 〈(−∆− λ)g, u〉 =
〈g, f〉 for all g ∈ S(Rn).

(b) Prove that if u is a weak solution of the differential equation (−∆−λ)u =
f and if u is in the range of G0(λ), then u = G0(λ)f .

Exercise 7.7. Let B1, B2 and B3 be Banach spaces with B3 the dual space to
B2. Let {fi}i∈N ⊂ B1 and {gi}i∈N ⊂ B3 be (strongly) convergent sequences
and let Ai : B1 → B2 be a sequence of operators with uniformly bounded
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operator norms that converges weakly in the sense that limi→∞ 〈Aif, g〉 ex-
ists for each f ∈ B1 and g ∈ B3. Here 〈Aif, g〉 means the value of g, viewed
as an element of B∗

2, at Aif ∈ B2. Prove that limi→∞ 〈Aifi, gi〉 converges.

In §7.2 we shall make use of the following lemma. Before stating the
lemma we define

Mλ =
{
k ∈ Rn

∣∣ k · k − λ = 0
}

Lemma 7.8. Let λ > 0 and f ∈ L2
δ(R

n) with δ > 1
2 . Then

(7.13) Im

∫

Rn

(
G0(λ)f

)
(x) f̄(x) dnx =

1

2n+1πn−1
√
λ

∫

Mλ

|f̂(ω)|2dS√λ(ω)

where dS√λ(ω) is the surface measure on the sphere Mλ of radius
√
λ.

Proof. We apply the Plancherel theorem (?? b) to

〈G0(λ+ iǫ)f, f〉L2(Rn,dnx) =
〈 f̂

k · k − λ− iǫ
, f̂
〉
L2(Rn, dnk

(2π)n
)

so that

Im 〈G0(λ+ iǫ)f, f〉 =
∫

Rn

|f̂(k)|2ǫ
(k · k − λ)2 + ǫ2

dnk

(2π)n
=

1

(2π)n

∫ ∞

0

∫

Mρ2

|f̂(ω)|2ǫ
(ρ2 − λ)2 + ǫ2

dSρ(ω) dρ

=

∫ ∞

0

F̃ (ρ)ǫ

(ρ2 − λ)2 + ǫ2
dρ where F̃ (ρ) =

1

(2π)n

∫

Mρ2

|f̂(ω)|2 dSρ(ω)

Now make the change of variables ρ2 − λ = ǫt. This gives

Im 〈G0(λ+ iǫ)f, f〉 =
∫ ∞

−λ/ǫ

Fǫ(t)

t2 + 1
dt where Fǫ(t) =

1

2ρ
F̃ (ρ)

∣∣
ρ=

√
λ+ǫt

Since f ∈ L2
δ(R

n), we have that f̂ ∈ Hδ(Rn). Applying Lemma ?? and

Problem ??, in ρ, ω coordinates, yields that F̃ (ρ) is uniformly bounded and
continuous. Hence

lim
ε↓0

∫ −λ/(2ǫ)

−λ/ǫ

Fǫ(t)

t2 + 1
dt = lim

ε↓0

∫ √
λ/2

0

F̃ (ρ)ǫ

(ρ2 − λ)2 + ǫ2
dρ = 0

and, by the Lebesgue dominated convergence theorem,

lim
ε↓0

∫ ∞

−λ/(2ǫ)

Fǫ(t)

t2 + 1
dt =

∫ ∞

−∞

F0(t)

t2 + 1
dt

Hence

Im 〈G0(λ)f, f〉 =
F̃ (

√
λ)

2
√
λ

∫ ∞

−∞

1

t2 + 1
dt =

π

2
√
λ(2π)n

∫

Mλ

|f̂(ω)|2 dS√λ(ω)

�
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The following theorem, originally due to Rellich, will play an impor-
tant role both in proving the existence of eigenfunctions of Hq and in our
treatment of the inverse scattering problem in §7.4.

Theorem 7.9 (Rellich Uniqueness Theorem). Let λ > 0, R > 0 and f ∈ L2,
with supp f ⊂ B̄R, the closed ball of radius R. The following are equivalent.

(i)G0(λ)f ∈ L2
µ for some µ > −1

2

(ii)
∫
Rn f(x)ψ0(x, ω) d

nx = 0 for all ω ∈ Sn−1

(iii)supp (G0(λ)f) ⊂ B̄R

Proof. We shall show that (i) ⇒ (ii) ⇒ (iii) ⇒ (i).

(i) ⇒ (ii) Suppose first that (ii) is false. That is, there exists k0 ∈ Mλ

such that f̂(k0) 6= 0. As G0(λ) commutes with rotations, we may assume

that k0 = (
√
λ, 0, · · · , 0). Let U be an open neighbourhood of k0 in Rn that

is sufficiently small that it does not intersect the support of any Xj(k) with
0 ≤ j ≤ n, j 6= 1. The Xj’s were defined in the proof of Theorem 7.1. Let
χU be a C∞ function that takes values in [0, 1], is one on a neighbourhood
of k0 and is supported in U . In the notation of (7.7)

χU(k)(G0(λ)f)
ˆ(k) = χU (k)q0(k)f̂(k)+

n∑

j=1

χU (k)qj(k)mj(k)f̂(k) = χU (k)q1(k)f̂(k)m1(k)

Now, if (i) is true, (G0(λ)f)
ˆ(k) ∈ Hµ(Rn) so that,

χU(k)q1(k)f̂(k)m1(k) ∈ Hµ(Rn)

Since we are assuming that f has compact support, f̂ and hence q1f̂ is C∞

in U . Furthermore we are free to choose U small enough that q1f̂ is bounded
away from zero on U . Hence (χUm1) ◦ψ−1, which is the product of 1

q1f̂
and

χUq1f̂m1 composed with ψ−1, is still in Hµ(Rn). Denote by ζ the inverse
Fourier transform of χU ◦ψ−1 and observe that the inverse Fourier transform

of m1 ◦ψ−1 = 1
η1−

√
λ
is −iδ(x′) ei

√
λx1H(x1) where H is the one dimensional

Heaviside function and δ(x′) is the n − 1 dimensional delta function. We
have now shown that, under the assumptions that (ii) is false and (i) is true,
the inverse Fourier transform of

(
χUm1

)
◦ ψ−1, namely

(7.14) −i
∫
ei
√
λ(x1−y1)H(x1 − y1)ζ(y1, x

′) dy1

is in L2
µ. But (1 + x21)

s
is not in L1(R) for any s ≥ −1

2 . So, by Problem

7.10, the function of (7.14) is not in L2
s for any s ≥ −1

2 , contradicting our
initial hypothesis and proving the implication (i) ⇒ (ii). (ii) ⇒ (iii) For
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any function f , which is supported is supported inside the ball of radius R,
and any k ∈ Cn,

∣∣f̂(k)
∣∣ =

∣∣∣∣
∫

B̄R

e−ik·xf(x) dnx

∣∣∣∣ ≤ eR| Im k|
∫

B̄R

|f(x)| dnx

If f is C∞, then the usual integration by parts game gives that

(7.15)
∣∣f̂(k)

∣∣ ≤ CN
1 + |k|2N e

R| Im k|

for all N ∈ N. In fact, according to the Paley-Wiener theorem, Problem
B.13, a function f is C∞ and supported in B̄R if and only if f̂(k) extends
to a holomorphic function on Cn which obeys (7.15).

Start by assuming that f is C∞. We claim first that f̂ restricted to
the complex manifold MC

λ =
{
ζ
∣∣ ζ · ζ = λ

}
is identically zero. To see

this consider the power series expansion of f |MC

λ
near ζ = (

√
λ, 0, . . . , 0).

Let ζ̃ = (ζ2, . . . , ζn). Now, g(ζ̃) = f̂
(√

λ− ζ̃ · ζ̃ , ζ̃
)

is holomorphic in a

neighborhood of zero and, by hypothesis (ii), vanishes whenever ζ̃ is real.
Hence all the coefficients in the power series expansion of g are zero. Thus,
g and, since MC

λ is connected by Problem 7.11, f |MC

λ
, are identically zero.

Now consider û =
(
G0(λ)f

)̂
, which automatically extends to ζ ∈ Ch via

(7.16) û(ζ) =
f̂(ζ)

ζ · ζ − λ

By the Cauchy integral formula

(7.17) |f̂(ζ)| ≤ C ′
N

1 + |ζ|2N e
R| Im ζ| dist(ζ,MC

λ )

within a distance one, for example, of MC
λ . If |ζ · ζ| ≥ λ

2 , then, choosing√
ζ · ζ to have non–negative real part, we have that

√
λ√
ζ·ζ ζ is on MC

λ so that

dist(ζ,MC
λ ) ≤

∣∣∣ζ−
√
λ√
ζ · ζ ζ

∣∣∣ =
∣∣∣
√
ζ · ζ −

√
λ√

ζ · ζ
∣∣∣ |ζ| =

∣∣∣ ζ · ζ − λ√
ζ · ζ(√ζ · ζ +

√
λ )

∣∣∣ |ζ| ≤
√
2

λ
|ζ|
∣∣ζ·ζ−λ

∣∣

On the other hand, if |ζ · ζ| ≤ λ
2 , then

∣∣ζ · ζ − λ
∣∣ ≥ λ

2
≥ λ

2

dist(ζ,MC
λ )√

λ+ |ζ|
since (

√
λ, 0, · · · , 0) ∈ MC

λ . In both cases there is a λ–dependent constant
D so that

(7.18)
1

|ζ · ζ − λ| ≤ D
1 + |ζ|2

dist(ζ,MC
λ )
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so that (7.16) can have no poles. Hence û(ζ) is holomorphic and satisfies a
bound of the form (7.15), so that the Paley-Wiener theorem implies (iii).

Now we extend to a general f ∈ L2 that is supported in B̄R. Let ϕ be a
nonnegative C∞

0 function that is supported in the unit ball B̄1 and has total
mass one. That is,

∫
ϕ(x) dnx = 1. Set, for each ε > 0, ϕε(x) = 1

εnϕ
(
x
ε

)

and fε = ϕε ∗ f . Then fε is C∞ and is supported in B̄R+ε. Since f̂ε(k) =

ϕ̂ε(k)f̂(k), fε satisfies condition (ii). So by the part of (ii)⇒ (iii) that
we have already proven, uε ≡ G0(λ)fε also vanishes outside of B̄R+ε. Since
convolution with ϕε commutes with application of the Laplacian, uε = ϕε∗u
where u = G0(λ)f . Since uε converges to u, locally in L2, as ε → 0, u
vanishes outside of B̄R+ε for all ε > 0. This is all we need.

(iii) ⇒ (i) Since f vanishes outside B̄R it is in L2
δ for any δ > 1

2 . By

Proposition 7.2, G0(λ)f ∈ L2
−δ so that the restriction of G0(λ)f to any

bounded set is in L2. Since we are assuming that G0(λ)f vanishes outside
of B̄R, it is itself in L

2(Rn).

�

Exercise 7.10. Let

H(x) =

{
1 if x ≥ 0

0 if x < 0

be the Heavyside step function.

(a) Let ζ ∈ S(R) obey ζ̂(α) =
∫
e−iαxζ(x) dx 6= 0 for some α ∈ R. Prove

that z(x) =
∫
e−iαyH(x− y)ζ(y) dy is not in L2

s(R) for any s ≥ −1
2 .

(b) Let ζ ∈ S(Rn) obey
∫
e−iαx1ζ(x1, 0) dx =

∫
Rn−1 ζ̂(α, k

′) dn−1k′

(2π)n−1 6= 0 for

some α ∈ R. Prove that z(x1, x
′) =

∫
e−iαy1H(x1− y1)ζ(y1, x′) dy1 is not in

L2
s(R

n) for any s ≥ −1
2 .

Exercise 7.11. Prove that if λ 6= 0, then MC
λ is a smooth connected man-

ifold.

We shall need one more estimate and its corollary in the next section.

Proposition 7.12 ([Ho, Vol 2, Proposition 14.7.1]). Let λ, τ > 0 and let u
be a compactly supported L2 function with (−∆− λ)u ∈ L2(Rn), then

(7.19) 2λτ

∫

Rn

|u|2|x|τ dnx ≤
∫

Rn

|(−∆− λ)u|2|x|2+τ dnx

Proof. In polar coordinates

−∆− λ = −∂
2

∂r2
− n− 1

r

∂

∂r
− 1

r2
∆s − λ
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where ∆s is the Laplacian on the unit sphere. If we set r = et, then ∂
∂r =

e−t ∂∂t and

−∆− λ = e−2t
(
− ∂2

∂t2
− (n− 2)

∂

∂t
−∆s − λe2t

)

Letting

v(t, ω) = e(
τ+n
2

−1)tu(etω)

the integrand of the right hand side of (7.19) becomes

|(−∆− λ)u|2|x|2+τ = e(2+τ)t
∣∣e−2t

(
− ∂2

∂t2
− (n− 2)

∂

∂t
−∆s − λe2t

)(
e−(

τ+n
2

−1)tv(t, ω)
)∣∣2

= e(2+τ)t
∣∣e−( τ+n

2
+1)t(− ∂2

∂t2
− (n− 2− τ − n+ 2)

∂

∂t
−∆s + µ− λe2t

)
v(t, ω)

∣∣2

= e−nt
∣∣(− ∂2

∂t2
+ τ

∂

∂t
−∆s + µ− λe2t

)
v(t, ω)

∣∣2

= e−nt
∣∣(L1 + L2)v(t, ω)

∣∣2

where µ = (n − 2)
(
τ+n
2 − 1

)
−
(
τ+n
2 − 1

)2
is a real number and

L1 = −∂
2

∂t2
+ µ−∆s − λe2t

L2 = τ
∂

∂t

Since dnx = rn−1 drdω = ent dtdω, the right hand side of (7.19) becomes

M =

∫ ∫
|L1v + L2v|2 dtdω =

∥∥L1v + L2v
∥∥2

Since

L∗
1L2 + L∗

2L1 = L1L2 − L2L1 = 2λτe2t

we have

M =
∥∥L1v

∥∥2 +
∥∥L2v

∥∥2 +
(
v, (L∗

1L2 + L∗
2L1)v

)

≥
(
v, (L∗

1L2 + L∗
2L1)v

)

= 2λτ

∫
e2t|v|2dtdw

= 2λτ

∫
|u|2|x|τdnx

�

Corollary 7.13. Let µ > −1
2 , λ > 0 and q ∈ L∞(Rn). Suppose that

u ∈ L2
µ(R

n) is outgoing (i.e. u ∈ Range(G0(λ))) and is a weak solution of

(−∆− λ+ q)u = 0

If q has compact support, then u ≡ 0.
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Proof. Pick and δ > 1
2 . Since q is of compact support, qu ∈ L2

δ , and u is
a weak solution of (−∆ − λ)u = −qu. By Problem 7.6, u = G0(λ)f with
f = −qu. Applying Theorem 7.9 with f = −qu, we conclude that u has
compact support and is in L2. Since (−∆− λ)u = −qu is also in L2 (7.19)
applies and yields
∫

Rn

|u|2|x|τdx ≤ 1

2λτ

∫

Rn

|qu|2|x|2+τdx ≤ supx∈Rn(|x|2|q|2)
2λτ

∫

Rn

|u|2|x|τdx

Choosing τ large enough that
supx∈Rn(|x|2|q|2)

2λτ < 1 implies that
∫

Rn

|u|2|x|τdx = 0

so that u ≡ 0. �

7.2. Eigenfunctions for Hq

Theorem 7.14. Let λ,R > 0 and δ > 1
2 . Let f ∈ L2

δ and q ∈ L∞(Rn)

with supp q ⊂ B̄R. Then there exists a unique L2
−δ outgoing (i.e. u ∈

Range(G0(λ))) weak solution u = Gq(λ)f to

(7.20) (−∆− λ+ q)u = f

Moreover, we have the formulas

Gq(λ) = G0(λ)
(1+ qG0(λ)

)−1
(7.21)

Gq(λ) =
(1+G0(λ)q

)−1
G0(λ)(7.22)

Proof. A function u ∈ L2
−δ is outgoing if and only if there is a v ∈ L2

δ such
that u = G0(λ)v. By Problem 7.6, the (weak) equation (7.20) for outgoing
u is thus equivalent to the equation

(1+ qG0(λ)
)
v = f

for v. So we must establish the invertability of

(7.23)
(1+ qG0(λ)

)
: L2

δ → L2
δ

to prove (7.21). Then (7.22) will follow from writing (7.20) as

(−∆− λ)
(1+G0(λ)q

)
u = f

and observing that
(1+G0(λ)q

)
: L2

−δ → L2
−δ has a bounded inverse because

it is the Banach space adjoint1Let X and Y be Banach spaces and X∗ and
Y ∗ be their respective dual spaces. If T is a bounded linear operator from X
to Y , then the Banach space adjoint of T , denoted T ′ is the bounded linear
operator from Y ∗ to X∗ defined by (T ′ℓ)(x) = ℓ(Tx) for all ℓ ∈ Y ∗ and
x ∈ X. In the current application, we have X = Y = L2

δ(R
n), X∗ = Y ∗ =

1(1)
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L2
−δ(R

n) and ℓ(x) =
∫
Rn ℓ(y)x(y)d

ny. In this case, the Banach space adjoint

is the “L2–adjoint without the complex conjugate”. of
(1+ qG0(λ)

)
.

It remains to establish the invertability of (7.23). We need one additional
estimate for G0(λ). If

(−∆− λ)w = g

then, by Theorem 7.1,

‖ −∆w‖L2
−δ

≤ λ‖w‖L2
−δ

+ ‖g‖L2
−δ

≤ (C
√
λ+ 1)‖g‖L2

δ

Let χ(x) be a smooth cutoff function which is one on the support of q and
is supported inside the ball of radius R. If {fi} is a bounded sequence in
L2
δ(R

n), then both {χG0(λ)fi} and {−∆χG0(λ)fi} are bounded sequences in
L2
−δ(R

n). So {χG0(λ)fi} is a bounded sequence in H2
0 (BR) and, by Rellich’s

Theorem (Problem ??), has a subsequence that converges in L2(BR) and
hence in L2

δ(R
n). Therefore

χG0(λ) : L
2
δ(R

n) → L2
δ(R

n)

is a compact operator (see Definition A.56). Since multiplication by q is a
bounded operator, qG0(λ) = qχG0(λ) is also compact, by Proposition ??.

For large λ, it follows from (7.5) that

‖qG0(λ)‖ ≤
∣∣(1 + |x|2)δq(x)

∥∥
L∞‖G0(λ)‖

≤ ‖(1 + |x|2)δq(x)‖L∞
C√
λ

so that 1 + qG0(λ) is invertible for λ sufficiently large. By the Fredholm
Alternative (Proposition A.70), to the prove bounded invertability of 1 +
qG0(λ) at any λ we need only prove that the kernel is empty. This can be
seen as follows:

Suppose that

f + qG0(λ)f = 0

then

(7.24) 〈f,G0(λ)f〉 = −〈qG0(λ)f,G0(λ)f〉

and, because the right hand side of (7.24) is real, we may conclude via (7.13)

that f̂
∣∣
Mλ

= 0. According to Theorem 7.9, u = G0(λ)f is a compactly

supported and hence L2 solution to (−∆−λ)u = f = −qu. Hence u ≡ 0 by
Corollary 7.13. By Problem 7.6, f = 0 as well and the theorem is proved. �

The existence of the generalized eigenfunctions for Hq now follows easily.
We have
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Corollary 7.15. Let λ > 0 and ω ∈ Sn−1. Let q ∈ L∞ be of compact sup-
port. There exists a unique λ–outgoing eigenfunction for Hq in the direction
ω. That is, there exists a unique ψq(λ, x, ω) satisfying

(−∆− λ+ q)ψq = 0

of the form

ψq = ψ0(λ, x, ω) + ϕq(λ, x, ω)

such that ϕq(λ, · , ω) ∈ L2
µ, for all µ < −1

2 , and is λ–outgoing. Moreover,

(7.25) ψq(λ, · , ω) =
(1−Gq(λ)q

)
ψ0(λ, · , ω)

and

ψq(λ, · , ω) = ψ0(λ, · , ω)−G0(λ)qψq(λ, · , ω)

Proof. In terms of ϕq, the equation (−∆− λ+ q)ψq = 0 is

(7.26) (−∆− λ+ q)ϕq = −qψ0

By Theorem 7.14, this equation has a unique outgoing solution and that
solution is

(7.27) ϕq = −Gq(λ)(qψ0(λ, · , ω))

Rewriting (7.26) as

(−∆− λ)ϕq = −qψ0 − qϕq = −qψq
yields the last claim. �

Our next step is to extend Theorem 7.9 to Hq. We prove

Theorem 7.16. Let λ > 0, R > 0 and f ∈ L2, with supp f ⊂ BR and
supp q ⊂ BR. The following are equivalent

(i)Gq(λ)f ∈ L2
µ for some µ > −1

2

(ii)
∫
Rn f(x)ψq(λ, x, ω) d

nx = 0 for all ω ∈ Sn−1

(iii)supp (Gq(λ)f) ⊂ BR

Proof. We first note, from (7.22), that
(1+G0(λ)q

)
Gq(λ)f = G0(λ)f

so that

(7.28) Gq(λ)f = G0(λ)
(1− qGq(λ)

)
f = G0(λ)F
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where F =
(1− qGq(λ)

)
f . If (i) is satisfied, then Theorem 7.9 yields

0 =

∫

Rn

F (x)ψ0(x, ω) d
nx

=

∫

Rn

([1− qGq(λ)
]
f
)
(x)ψ0(x, ω) d

nx

=

∫

Rn

f(x)
([1−Gq(λ)q

]
ψ0

)
(x, ω) dnx

=

∫

Rn

f(x)ψq(λ, x, ω) d
nx

which proves that (i) ⇒ (ii).

The previous calculation along with Theorem 7.9 implies that

supp (G0(λ)F ) ⊂ BR

which, in view of (7.28), shows that (ii) ⇒ (iii). As before, (iii) ⇒ (i) is
trivial. �

7.3. Asymptotics and the Scattering Amplitude

Let Gq(λ, x, y) denote the outgoing Green’s kernel defined by

(
Gq(λ)f

)
(x) =

∫

Rn

Gq(λ, x, y)f(y) d
ny

It is, for each fixed y, the solution of

(7.29) (−∆x + q(x)− λ)Gq(λ, x, y) = δ(x − y)

subject to the Sommerfeld radiation condition (see (1.9))

∂

∂r
Gq − i

√
λGq = o

( 1

|x|n−1
2

)
as |x| → ∞

The “unperturbed” outgoing Green’s kernel G0(λ, x, y) can be computed
using

G0(λ, x, y) = lim
ǫ↓0

∫

Rn

eik·(x−y)

|k|2 − (λ+ iǫ)

dnk

(2π)n

Lemma 7.17. If λ > 0, then

G0(λ, x, y) =
i

4

( √
λ

2π|x− y|
)n−2

2 H
(1)
n−2
2

(
√
λ |x− y| )

where H
(1)
ν (z) = Jν(z) + iYν(z) is a Hankel function. In particular, for

n = 3,

G0(λ, x, y) =
ei
√
λ |x−y|

4π|x− y|
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Asymptotically, for large r,

G0(λ, x, y) =
1

2
√
λ

( √
λ

2π|x− y|
)n−1

2 ei(
√
λ |x−y|−n−3

4
π) +O

( 1

|x− y|n−1
2

−1

)

Proof. By rotation invariance, we may assume, without loss of generality,
that x− y = (|x− y|, 0, · · · , 0). By scaling k →

√
λ k,

G0(λ, x, y) = lim
ǫ↓0

λ
n
2
−1

∫

Rn

eik1
√
λ|x−y|

|k|2 − 1− iǫ/λ

dnk

(2π)n
= lim

ǫ↓0
λ

n
2
−1

∫

Rn

eik1r

|k|2 − 1− iǫ

dnk

(2π)n

where r =
√
λ |x− y|. By residues

∫

R

eik1r

k21 + p2 − 1− iǫ

dk1
2π

= 2πi
1

2π

e−r
√
p2−1−iǫ

2i
√
p2 − 1− iǫ

=
e−r

√
p2−1−iǫ

2
√
p2 − 1− iǫ

where p = (k2, · · · , kn) and
√
p2 − 1− iǫ denotes the square root with pos-

itive real part. The corresponding imaginary part is negative. As
√
p2 − 1

has an integrable, square root, singularity at |p| = 1 and e−r
√
p2−1 decays

exponentially quickly for large |p|, the Lebesgue dominated convergence the-
orem gives

G0(λ, x, y) =
1
2λ

n
2
−1

∫

Rn−1

e−r
√
p2−1

√
p2 − 1

dn−1p

(2π)n−1

Now
√
p2 − 1 is positive for |p| > 1 and is i times a negative number when

|p| < 1. Going to spherical coordinates in Rn−1

G0(λ, x, y) =
Ωn−1

2nπn−1
λ

n
2
−1

∫ ∞

0

e−r
√
ρ2−1

√
ρ2 − 1

ρn−2dρ

where Ωm = 2πm/2

Γ(m/2) denotes the surface area of a unit sphere in Rm. For ρ ≥
1, make the change of variables ρ = cosh τ , 1√

ρ2−1
dρ = 1

sinh τ sinh τ dτ = dτ

∫ ∞

1

e−r
√
ρ2−1

√
ρ2 − 1

ρn−2dρ =

∫ ∞

0
e−r sinh τ coshn−2τ dτ

For 0 ≤ ρ ≤ 1, make the change of variables ρ = sinα,
√
ρ2 − 1 = −i cosα,

dρ = cosα dα

∫ 1

0

e−r
√
ρ2−1

√
ρ2 − 1

ρn−2dρ = i

∫ π
2

0
eir cosα sinn−2 α dα
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Poisson’s integral representation [MO, Third Chapter, §5] for the Bessel
functions of the first and second kind are (for ν > −1

2 and Re z > 0)

Jν(z) =
2(z2 )

ν

√
π Γ(ν + 1

2)

∫ π
2

0
cos
(
z cosα

)
sin2ν α dα

Yν(z) =
2(z2 )

ν

√
π Γ(ν + 1

2)

[ ∫ π
2

0
sin
(
z cosα

)
sin2ν α dα−

∫ ∞

0
e−z sinh τ cosh2ν τ dτ

]

The Hankel function

H(1)
ν (r) = Jν(r) + iYν(r)

=
2( r2 )

ν

√
π Γ(ν + 1

2)

[ ∫ π
2

0
eir cosα sin2ν α dα− i

∫ ∞

0
e−r sinh τ cosh2ν τ dτ

]

=
2( r2 )

ν

√
π Γ(ν + 1

2)

[
− i

∫ ∞

0

e−r
√
ρ2−1

√
ρ2 − 1

ρn−2dρ

]

with ν = n−2
2 . Thus

G0(λ, x, y) =
Ωn−1

2nπn−1
λ

n
2
−1i

√
π Γ(n−1

2 )

2( r2 )
n−2
2

H
(1)
n−2
2

(r)

=
i

4

( √
λ

2π|x− y|
)n−2

2 H
(1)
n−2
2

(
√
λ |x− y| )

Internal remark 6. Now making the change of variables s = ρ2 − 1,

G0(λ, x, y) =
1

2nπ(n−1)/2Γ(n−1
2 )

λ
n
2
−1

∫ ∞

−1

e−r
√
s

√
s

(s + 1)
n−3
2 ds

For s > 0, we make the change of variables t =
√
s

∫ ∞

0

e−r
√
s

√
s

(s + 1)
n−3
2 ds = 2

∫ ∞

0
e−rt(t2 + 1)

n−3
2 dt

and for s < 0, we make the change of variables
√
s = −it

∫ 0

−1

e−r
√
s

√
s

(s + 1)
n−3
2 ds = 2i

∫ 1

0
eirt(1− t2)

n−3
2 dt

In particular

H
(1)
1
2

(z) = −i
√

2

πz
eiz

so that, for n = 3,

G0(λ, x, y) =
ei
√
λ |x−y|

4π|x− y|
We already saw the n = 3 case in Problem 1.20.
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Asymptotically, for large r,

H(1)
ν (

√
λ r) =

√
2

π
√
λ r

ei(
√
λ r−1

2νπ−
1
4
π) +O

( 1

r3/2
)

This is formula (9.2.3) in [AS]. So

G0(λ, x, y) =
i

4

( √
λ

2π|x− y|
)n−2

2

√
2

π
√
λ |x− y|

ei(
√
λ |x−y|−n

4
π+ 1

4
π) +O

( 1

|x− y|n+1
2

)

=
1

2
√
λ

( √
λ

2π|x− y|
)n−1

2 ei(
√
λ |x−y|−n−3

4
π) +O

( 1

|x− y|n+1
2

)

�

Internal remark 7. Alternatively, we can observe that, by rotation invari-
ance G0 depends on x and y only through r = |x− y| and obeys, for r > 0,

0 = (−∆ − λ)G0 = −
(∂2
∂r2

+
n− 1

r

∂

∂r
+ λ

)
G0

This, up to a change of variables, Bessel’s equation. It’s general solution
may be found choosing a = n− 1, b = λ, d = 2 and c = 0, and consequently,
α = ν = −n−2

2 , β =
√
λ and γ = 1 in

Exercise 7.18. Let β, γ > 0. Prove that Zν(x) obeys Bessel’s equation

x2y′′ + xy′ + (x2 − ν2)y = 0

if and only if y(x) = xαZν(βx
γ) obeys

x2y′′ + axy′ + (bxd + c)y = 0

with

α =
1− a

2
β =

2
√
b

d
γ =

d

2
ν =

2

d

√(1− a

2

)2 − c

The general solution of the Bessel equation of order ν is cJν(x)+dYν(x)
where Jν and Yν are Bessel functions of the first and second kind, respec-
tively. For our purposes, it is more convenient to use the Hankel functions

H(1)
ν (x) = Jν(x) + iYν(x) H(2)

ν (x) = Jν(x)− iYν(x)

as a basis for the space of solutions. So far, we know that

G0(λ, x, y) = cn,λ
1

|x− y|n−2
2

H
(1)
n−2
2

(
√
λ |x−y|)+dn,λ

1

|x− y|n−2
2

H
(2)
n−2
2

(
√
λ |x−y|)
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for some constants cn,λ and dn,λ. Asymptotically, for large r,

H(1)
ν (

√
λ r) =

√
2

π
√
λ r

ei(
√
λ r−1

2νπ−
1
4
π) +O

( 1

r3/2

)

H(2)
ν (

√
λ r) =

√
2

π
√
λ r

e−i(
√
λ r−1

2νπ−
1
4
π) +O

( 1

r3/2
)

These are formulae (9.2.3) and (9.2.4) in [AS]. To satisfy the Sommerfeld
radiation condition we need to choose dn,λ = 0. The coefficient cn,λ is chosen
to give a unit delta function at the origin, or, equivalently, to give the correct
coefficient in the asymptotic behaviour for large |x− y|.
Corollary 7.19. Let λ > 0 and ω ∈ Sn−1. Let q ∈ L∞ be of compact
support.

(a) There is a C∞ function aq(
√
λ, · , ω) : Sn−1 → C such that, asymptoti-

cally for large |x|,

ψq(λ, x, ω) = ei
√
λx·ω +

aq(
√
λ, θ, ω)

|x|n−1
2

ei
√
λ |x| +O

(
|x|−n−1

2
−1
)

where θ = x
|x| . ??? Regularity in λ, ω? ???

(b) There is a constant C√
λ,n such that

Gq(λ, x, y) = C√
λ,n

ei
√
λ |x|

|x|n−1
2

ψq(λ, y,−
x

|x| ) +O
(
|x|−n−1

2
−1
)

Proof. (a) Rewriting the last conclusion of Corollary 7.15 in terms of the
Green’s kernel gives the Lipman–Schwinger equation (see (1.10))

(7.30) ψq(λ, x, ω) = ei
√
λx·ω −

∫
G0(λ, x, y) q(y)ψq(λ, y, ω) d

ny

For y in the support of q and large |x|,

(x−y)2 = x2−2x·y+y2 = x2
(
1−2

θ · y
|x| +

y2

x2
)

=⇒ |x−y| = |x|−θ·y+O
( 1

|x|
)

so that

G0(λ, x, y) = C√
λ,n

1

|x|n−1
2

ei
√
λ (|x|−θ·y) +O

( 1

|x|n+1
2

)
(7.31)

Substituting this into (7.30), defining

aq(
√
λ, θ, ω) = −C√

λ,n

∫
e−i

√
λθ·y q(y)ψq(λ, y, ω) d

ny

and noting that ψq is locally L2 and hence locally L1 gives part (a).
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(b) By (7.21),

Gq = (1−Gqq)G0

From (7.31)

G0(λ, y, x) = G0(λ, x, y) = C√
λ,n

ei
√
λ |x|

|x|n−1
2

ψ0(y,−θ) +O
( 1

|x|n+1
2

)

so that, by (7.25)

Gq(λ, x, y) = Gq(λ, y, x) = C√
λ,n

ei
√
λ |x|

|x|n−1
2

(1−Gqq)ψ0( · ,−θ) +O
( 1

|x|n+1
2

)

= C√
λ,n

ei
√
λ |x|

|x|n−1
2

ψq(y,−θ) +O
( 1

|x|n+1
2

)

Internal remark 8. In the y variable, qO
(

1

|x|
n+1
2

)
is of compact support

and L∞ with L∞ norm O
(

1

|x|
n+1
2

)
. Consequently GqqO

(
1

|x|
n+1
2

)
is L2

−δ and

hence locally L2 in y.

�

7.4. Inverse Scattering at Fixed Energy

Let n ≥ 3 and q ∈ L∞(Rn) be supported in BR =
{
x ∈ Rn

∣∣ |x| < R
}
. Let

λ ∈ R\{0} and ω ∈ Sn−1 =
{
x ∈ Rn

∣∣ |x| = 1
}
. In the stationary approach

to scattering theory by a potential [RS3, §XI.6] one shows that there exists
a unique outgoing solution ψq(λ, x, ω) of

(7.32) Lqψ =
(
−∆+ q − λ2

)
ψ(λ, x, ω) = 0

of the form

(7.33) ψq(λ, x, ω) = eiλx·ω +
aq(λ, θ, ω)

|x|n−1
2

eiλ|x| +O
(
|x|−n−1

2
−1
)

where θ = x
|x| . We have done this, but with λ replaced by

√
λ, in Corollaries

7.15 and 7.19.

Definition 7.20. The function aq(λ, θ, ω) in (7.33) is called the scattering
amplitude. The function ψq(λ, x, ω) is called an outgoing eigenfunction.

The scattering amplitude measures, roughly speaking, the amplitude, mea-
sured in the direction θ = x

|x| , of a spherical wave produced by the potential

q when it interacts with plane waves of energy λ2 moving in the direction ω.
We discussed a classical analog of this picture in §??.3. In particular (7.33)
is the analog for the Schrödinger equation of (1.11).
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We now fix λ0 ∈ R\{0}. The subject of inverse scattering at fixed energy
is the study of the invertibility of the map

(7.34) q 7→ Aλ0(q) = aq(λ0, · , · )
Novikov [No] proved that Aλ0 is injective. Several approachs [No,Ra,W]
have been used to prove this result and various extensions. In this section
we outline a proof that reduces the problem to proving the injectivity of the
Dirichlet–to–Neumann map Λq−λ20 acting on a large ball.

Theorem 7.21. Let n ≥ 3 and q1, q2 ∈ L∞(Rn) both be supported in BR.
Assume that

Aλ0(q1) = Aλ0(q2)

Then

(7.35) E(u1, u2) =

∫

BR

(q1 − q2)u1u2 d
nx = 0

for all ui ∈ H2(BR) obeying

(7.36)
(
−∆+ q1 − λ20

)
u1 = 0

(
−∆+ q2 − λ20

)
u2 = 0

Consequently q1 = q2.

By the divergence theorem, for all ui obeying (7.36),

E(u1, u2) =

∫

BR

(
(∆u1)u2 − u1(∆u2)

)
dnx =

∫

BR

∇ ·
(
(∇u1)u2 − u1(∇u2)

)
dnx

=

∫

∂BR

(∂u1
∂ r

u2 − u1
∂u2
∂ r

)
dS

(7.37)

where dS denotes the surface measure on ∂BR. Note, in particular, that the
outgoing eigenfunctions ψqi satisfy (7.36). We first show

Lemma 7.22. Under the hypotheses of Theorem 7.21,

E
(
ψq1(λ0, · , ω), ψq2(λ0, · , ω)) = 0 for all ω ∈ Sn−1

Lemma 7.23. Let q ∈ L∞(Rn) be supported in the closed ball B̄R′ ⊂ BR
and define

E = span
{
ψq(λ0, · , ω)

∣∣ ω ∈ Sn−1
}

Then E is dense in

N(Lq) =
{
u ∈ H2(BR)

∣∣ (−∆+ q − λ20)u = 0
}

with respect to the H2(BR′) topology.

These two lemmata imply (7.35). That q1 = q2 then follows by applying
the portion of the proof of Theorem 4.12 that starts with (4.14).
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Internal remark 9. (4.14) applies to all H1 solutions. But the special
solutions used later in the proof were all H2.

Proof of Lemma 7.22. Since aq1(λ0, θ, ω) = aq2(λ0, θ, ω) for all θ and ω,
it follows from (7.33) that

ψq1(λ0, x, ω)− ψq2(λ0, x, ω) = O
(
|x|−n−1

2
−1
)

is in L2(Rn). We also have that
(
−∆−λ20

)(
ψq1(λ0, · , ω)−ψq2(λ0, · , ω)

)
= −q1ψq1(λ0, · , ω)+q2ψq2(λ0, · , ω)

is supported in BR. By (7.27) and (7.21), both ψqj(λ0, · , ω)−eiλx·ω, j = 1, 2

are G0(λ
2
0)–outgoing so that ψq1(λ0, · , ω) − ψq2(λ0, · , ω) is as well. Hence,

by the Rellich uniqueness theorem (Theorem 7.9) with f = −q1ψq1 + q2ψq2 ,

ψq1(λ0, x, ω)− ψq2(λ0, x, ω) = 0 for all |x| > R

Let χ(x) be a smooth cutoff function which is one on a neighbourhood of
∂BR and is supported inside B2R \ B1

2R
. Then, as we saw in the proof of

Theorem 7.14, χψqj(λ0, · , ω) ∈ H2
0 (B2R\B1

2R
) and hence ∂

∂rχψqj(λ0, · , ω) ∈
H1

0 (B2R \B1
2R

) for j = 1, 2. So by the restriction to the boundary theorem

(Theorem ??)

ψq1(λ0, · , ω)
∣∣
∂BR

= ψq2(λ0, · , ω)
∣∣
∂BR

∂

∂r
ψq1(λ0, · , ω)

∣∣
∂BR

=
∂

∂r
ψq2(λ0, · , ω)

∣∣
∂BR

as elements ofH
1
2 (∂BR) ⊂ L2(∂BR). So the Lemma follows from (7.37). �

Proof of Lemma 7.23. First we prove that E is dense in N(Lq) with re-
spect to the L2(BR) topology. To do so it suffices to prove that if f ∈ N(Lq)
obeys

(7.38)

∫

BR

f(x)ψq(λ0, x, ω) d
nx = 0 for all ω ∈ Sn−1

then f must vanish. Define

(7.39) w(x) =

∫

BR

Gq(λ0, x, y)f(y) d
ny

Then, by (7.29),

−∆w − λ20w = χBR
f − qw

vanishes outside BR and, by Corollary ?? and (7.38),

w(x) = O
(
|x|−n−1

2
−1
)
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is in L2(Rn). As χBR
f − qw is also in L2(Rn), we have that, as in the proof

of Theorem 7.14, w ∈ H2(B2R). By the Rellich uniqueness theorem, we
obtain that w vanishes outside BR and therefore

(7.40) w
∣∣
∂BR

=
∂w

∂r

∣∣
BR

= 0

Now using the divergence theorem and (−∆+ q − λ20)w = χBR
f we have

∫

BR

|f |2 dnx =

∫

BR

f̄(x) (−∆+ q − λ20)w dnx

=

∫

BR

w(x) (−∆ + q − λ20)f̄(x) d
nx−

∫

∂BR

(∂w
∂r
f̄ − w

∂f̄

∂r

)
dS

Since q is real–valued and f ∈ N(Lq), we have that (−∆+ q − λ20)f̄ = 0 in
BR and conclude that f = 0.

Now we finish the proof by showing density in H2(BR′). By the interior
regularity Proposition ??, with γ = 1 and ℓ = 2, there is a constant C =
C(R,R′) such that

‖u‖H2(BR′ ) ≤ C
(
‖ −∆u‖L2(BR) + ‖u‖L2(BR)

)

≤ C
(
‖(−∆+ q − λ20)u‖L2(BR) + ‖(q − λ20)u‖L2(BR) + ‖u‖L2(BR)

)

≤ C ′
(
‖(−∆+ q − λ20)u‖L2(BR) + ‖u‖L2(BR)

)

(7.41)

for all u ∈ H2(BR). Now let f ∈ N(Lq). We already know that there exists
a sequence {fj}j∈N ⊂ E such that

lim
j→∞

‖f − fj‖L2(BR) = 0

Then from (7.41) we conclude that

lim
j→∞

‖f − fj‖H2(BR′ ) = 0

concluding the proof of Lemma 7.23. �



Appendix A

Functional Analysis

In this appendix we provide a summary (mostly without proofs) of the most
basic definitions and results concerning Banach and Hilbert spaces (§A.1)
and bounded operators (§A.2). We also develop (with proofs) the most basic
results concerning compact operators (§A.3).

A.1. Banach and Hilbert Spaces

Definition A.1 (Vector Space). A vector space over C is a set V equipped
with two operations,

(v,w) ∈ V × V 7→ v +w ∈ V (α,v) ∈ C× V 7→ αv ∈ V

called addition and scalar multiplication, respectively, that obey the follow-
ing axioms.

Additive Axioms:
There is an element 0 ∈ V and, for each x ∈ V there is an element
−x ∈ V such that, for all x,y, z ∈ V,
(1) x+ y = y + x
(2) (x+ y) + z = x+ (y + z)
(3) 0+ x = x+ 0 = x
(4) (−x) + x = x+ (−x) = 0

Multiplicative Axioms:
For every x ∈ V and α, β ∈ C,
(5) 0x = 0
(6) 1x = x
(7) (αβ)x = α(βx)

257
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Distributive Axioms:
For every x,y ∈ V and α, β ∈ C,
(8) α(x+ y) = αx+ αy
(9) (α+ β)x = αx+ βx

Definition A.2 (Subspace). A subset W of a vector space V is called a
linear subspace of V if it is closed under addition and scalar multiplication.
That is, if x+ y ∈ W and αx ∈ W for all x,y ∈ W and all α ∈ C. Then W
is itself a vector space over C.

Definition A.3 (Inner Product).
(a) An inner product on a vector space V is a function

(x,y) ∈ V × V 7→ 〈x,y〉 ∈ C

that obeys

(1) 〈αx, z〉 = α 〈x, z〉, 〈x+ y, z〉 = 〈x, z〉 + 〈y, z〉 (linearity in the first
argument)

(2) 〈x,y〉 = 〈y,x〉 (conjugate symmetry)

(3) 〈x,x〉 > 0 if x 6= 0 (positive–definiteness)

for all x,y, z ∈ V and α ∈ C.

(b) Two vectors x and y are said to be orthogonal with respect to the inner
product 〈 · , · 〉 if 〈x,y〉 = 0.

(c) We’ll use the terms “inner product space” or “pre–Hilbert space” to
mean a vector space over C equipped with an inner product.

Definition A.4 (Norm).
(a) A norm on a vector space V is a function x ∈ V 7→ ‖x‖ ∈ [0,∞) that
obeys

(1) ‖x‖ = 0 if and only if x = 0.

(2) ‖αx‖ = |α|‖x‖
(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

for all x,y ∈ V and α ∈ C.

(b) A sequence
{
vn
}
n∈N ⊂ V is said to be Cauchy with respect to the norm

‖ · ‖ if

∀ε > 0 ∃N ∈ N s.t. m, n > N =⇒ ‖vn − vm‖ < ε

(c) A sequence
{
vn
}
n∈N ⊂ V is said to converge to v in the norm ‖ · ‖ if

∀ε > 0 ∃N ∈ N s.t. n > N =⇒ ‖vn − v‖ < ε
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(d) A normed vector space is said to be complete if every Cauchy sequence
converges.

(e) A subset D of a normed vector space V is said to be dense in V if D = V,
where D is the closure of D. That is, if every element of V is a limit of a
sequence of elements of D.

Theorem A.5. Let 〈 · , ·〉 be an inner product on a vector space V and set

‖x‖ =
√

〈x,x〉 for all x ∈ V.

(a) The inner product is sesquilinear. That is,

〈αx+ βy, z〉 = α 〈x, z〉+ β 〈y, z〉
〈x, αy + βz〉 = α 〈x,y〉+ β 〈x, z〉

for all x,y, z ∈ V and α, β ∈ C.1

(b) ‖x‖ is a norm.

(c) The inner product and associated norm obeys

(1) (Cauchy–Schwarz inequality)
∣∣ 〈x,y〉

∣∣ ≤ ‖x‖ ‖y‖
(2) (Parallelogram law) ‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2
(3) (Polarization identities)

〈x,y〉
= 1

2

{
‖x+ y‖2 − ‖x‖2 − ‖y‖2

}
+ 1

2i

{
‖x+ iy‖2 − ‖x‖2 − ‖y‖2

}

= 1
4

{
‖x+ y‖2 − ‖x− y‖2

}
+ 1

4i

{
‖x+ iy‖2 − ‖x− iy‖2

}

for all x,y ∈ V

Proof. (a) is obvious.

(b) See [RS, Theorem II.2] or [Co, Corollary 1.5].

(c) (1) See [RS, Corollary to Theorem II.1] or [Co, paragraph 1.4].

(c) (2) and (3) are obvious.

�

Lemma A.6. Let ‖ · ‖ be a norm on a vector space V. There exists an
inner product 〈 · , · 〉 on V such that

〈x,x〉 = ‖x‖2 for all x ∈ V
if and only if ‖ · ‖ obeys the parallelogram law.

1Physicists and mathematical physicists tend to use the convention that inner products are
linear in the second argument and conjugate linear in the first.
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Proof. This is Excercise A.7, below. �

Exercise A.7. Let ‖ · ‖ be a norm on a vector space V. Prove that there
exists an inner product 〈 · , · 〉 on V such that

〈x,x〉 = ‖x‖2 for all x ∈ V
if and only if ‖ · ‖ obeys the parallelogram law.

Definition A.8 (Banach Space).
(a) A Banach space is a complete normed vector space.

(b) Two Banach spaces B1 and B2 are said to be isometric if there exists a
map U : B1 → B2 that is

(1) linear (meaning that U(αx+βy) = αU(x)+βU(y) for all x,y ∈ B1

and α, β ∈ C)

(2) surjective (also called onto )

(3) isometric (meaning that ‖Ux‖B2 = ‖x‖B1 for all x ∈ B1). This
implies that U is injective (also called 1–1).

Definition A.9 (Hilbert Space).
(a) A Hilbert space H is a complex inner product space that is complete
under the associated norm.

(b) Two Hilbert spaces H1, H2 are said to be isomorphic (denoted H1
∼= H2)

if there exists a map U : H1 → H2 that is

(1) linear

(2) onto

(3) inner product preserving (meaning that 〈Ux, Uy〉H2
= 〈x,y〉H1

for
all x,y ∈ H1)

Such a map, U , is called unitary.

Theorem A.10 (Completion). If
(
V, 〈 · , · 〉V

)
is any inner product space,

then there exists a Hilbert space
(
H, 〈 ·, , · 〉H

)
and a map U : V → H such

that

(1) U is 1–1,

(2) U is linear,

(3) 〈Ux, Uy〉H = 〈x,y〉V for all x,y ∈ V and

(4) U(V) =
{
Ux

∣∣ x ∈ V
}

is dense in H. If V is complete, then
U(V) = H.

H is called the completion of V.

Proof. See [RS, Theorem I.3 and Problem 1 of Chapter II]. �
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Example A.11.
(a) Cn =

{
x = (x1, · · · xn)

∣∣ x1, · · · xn ∈ C
}
together with the inner product

〈x,y〉 =
n∑
ℓ=1

xℓȳℓ is a Hilbert space.

(b) If 1 ≤ p < ∞, then ℓp =
{
(xn)n∈N

∣∣ ∑∞
n=1 |xn|p < ∞

}
together with

the norm
∥∥(xn)n∈N

∥∥
p
=
[∑∞

n=1 |xn|p
]1/p

is a Banach space. Here, and in

the next two examples, each entry xn in the sequence (xn)n∈N is to be a
complex number.

(c) ℓ2 =
{
(xn)n∈N

∣∣ ∑∞
n=1 |xn|2 < ∞

}
is a Hilbert space with the inner

product
〈
(xn)n∈N, (yn)n∈N

〉
=
∑∞

n=1 xn yn.

(d) ℓ∞ =
{
(xn)n∈N

∣∣ sup
n
|xn| < ∞

}
and c0 =

{
(xn)n∈N

∣∣ lim
n→∞

xn = 0
}

are both Banach spaces with the norm
∥∥(xn)n∈N

∥∥
∞ = sup

n
|xn|.

(e) Let X be a metric space (or more generally a topological space) and

C(X ) =
{
f : X → C

∣∣ f continuous, bounded
}

C0(X ) =
{
f : X → C

∣∣ f continuous, compact support
}

If X is a subset of Rn or Cn for some n ∈ N, let

C∞(X ) =
{
f : X → C

∣∣ f continuous, lim
|x|→∞

f(x) = 0
}

Then C(X ) and C∞(X ) are Banach spaces with the norm ‖f‖ = sup
x∈X

|f(x)|.
C0(X ) is a normed vector space, but need not be complete.

(f) Let 1 ≤ p ≤ ∞. Let (X,M, µ) be a measure space, with X a set, M a
σ–algebra and µ a measure. For p <∞, set

Lp(X,M, µ) =
{
ϕ : X → C

∣∣ ϕ M–measurable,
∫
|ϕ(x)|p dµ(x) <∞

}

‖ϕ‖p =
[ ∫

|ϕ(x)|p dµ(x)
]1/p

For p = ∞, set2

L∞(X,M, µ) =
{
ϕ : X → C

∣∣ ϕ M–measurable, ess sup |ϕ(x)| <∞
}

‖ϕ‖∞ = ess sup |ϕ(x)|
This is not quite a Banach space because any function ϕ that is zero al-
most everywhere has “norm” zero. So we define an equivalence relation on

2The essential supremum of |ϕ|, with respect to the measure µ, is denoted ess supx∈X |ϕ(x)|
and is defined to be inf{ a ≥ 0 | |ϕ(x)| ≤ a almost everywhere with respect to µ }.
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Lp(X,M, µ) by

ϕ ∼ ψ ⇐⇒ ϕ = ψ a.e.

As usual, the equivalence class of ϕ ∈ Lp(X,M, µ) is

[ϕ] =
{
ψ ∈ Lp(X,M, µ)

∣∣ ψ ∼ ϕ
}

Then

Lp(X,M, µ) =
{
[ϕ]
∣∣ ϕ ∈ Lp(X,M, µ)

}

is a Banach space with

[ϕ] + [ψ] = [ϕ+ ψ] a[ϕ] = [aϕ]
∥∥[ϕ]

∥∥
p
= ‖ϕ‖p

for all ϕ,ψ ∈ Lp(X,M, µ) and a ∈ C, and L2(X,M, µ) is a Hilbert space
with inner product

〈[ϕ], [ψ]〉 =
∫
ϕ(x)ψ(x) dµ(x)

for all ϕ,ψ ∈ L2(X,M, µ). It is standard to write ϕ in place of [ϕ].

(g) Let D be an open subset of C. Then

A2(D) =
{
ϕ : D → C

∣∣ ϕ analytic,
∫
D|ϕ(x+ iy)|2 dx dy <∞

}

is a Hilbert space with the inner product

〈ϕ,ψ〉 =
∫

D
ϕ(x+ iy)ψ(x + iy) dxdy

(h) Let ℓ ≥ 0 be an integer and Ω be an open subset of Rn for some n ∈ N. If
α = (α1, · · · , αn) ∈ Nn0 , where N0 = {0} ∪N, we shall use ∂αϕ(x) to denote

the partial derivative ∂α1

∂x
α1
1

· · · ∂αn

∂xαn
n
ϕ(x). The order of this partial derivative

is |α| = α1 + · · ·+ αn. Define

‖ϕ‖Hℓ(Ω) =

{ ∑

|α|≤ℓ

∫

Ω

∣∣∂αϕ(x)
∣∣2 dnx

}1/2

for each ϕ ∈ Cℓ(Ω) for which the right hand side is finite. The Sobolev space
Hℓ(Ω) is the completion of the vector space

{
ϕ ∈ Cℓ(Ω)

∣∣ ‖ϕ‖Hℓ(Ω) <∞
}

equipped with the inner product

〈ϕ,ψ〉Hℓ(Ω) =
∑

|α|≤ℓ

∫

Ω
∂αϕ(x) ∂αψ(x) dnx

Similarly, Hℓ
0(Ω) is the completion of C∞

0 (Ω).
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Theorem A.12. Let −∞ < a < b <∞ and 1 ≤ p <∞. The following sets
of functions are dense in Lp

(
[a, b]

)
.

(a) simple functions (functions of the form
∑n

j=1 ajχEj(x) with n ∈ N and

the sets Ej measurable)

(b) step functions (functions of the form
∑n

j=1 ajχEj(x) with n ∈ N and the

sets Ej intervals)

(c) continuous functions that vanish at a and b

(d) periodic C∞ functions of period b− a

(e) C∞ functions that are supported in (a, b)

Here χE(x) denotes the characteristic function of the set E.

Proof. See Exercises A.13 and A.14, below. �

Exercise A.13. Let ǫ > 0 and −∞ < a < b < ∞. Let m be Lebesgue
measure and f : [a, b] → R be a Lebesgue–measurable function.

(a) Prove that there exists an M ∈ [0,∞) such that

m
{
x ∈ [a, b]

∣∣ |f(x)| ≥M
}
≤ ǫ

(b) Assume that f : [a, b] → [c, C]. Prove that there exists a simple function
s such that c ≤ s(x) ≤ C and |f(x) − s(x)| ≤ ǫ for all x ∈ [a, b]. A simple
function is, by definition, of the form

∑n
j=1 ajχEj (x) with n ∈ N and the

sets Ej measurable.

(c) Let s : [a, b] → [c, C] be a simple function. Prove that there exists a step
function g : [a, b] → [c, C] such that the measure

m
{
x ∈ [a, b]

∣∣ s(x) 6= g(x)
}
< ǫ

A step function is, by definition, of the form
∑n

i=1 aiχEi(x) with n ∈ N and
the sets Ei intervals.

(d) Let g : [a, b] → [c, C] be a step function. Prove that there exists a
continuous function h : [a, b] → [c, C] such that h(a) = h(b) = 0 and

m
{
x ∈ [a, b]

∣∣ g(x) 6= h(x)
}
< ǫ

Exercise A.14. Let −∞ < a < b < ∞ and 1 ≤ p < ∞. Prove that the
following sets of functions are dense in Lp

(
[a, b]

)
.

(a) simple functions

(b) step functions

(c) continuous functions that vanish at a and b

(d) periodic C∞ functions of period b− a
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(e) C∞ functions that are supported in (a, b)

Definition A.15 (Basis). Let B be a Banach space and H a Hilbert space.

(a) A subset S of H is an orthonormal subset if each vector in S is of length
one and each pair of distinct vectors in S is orthogonal.

(b) An orthonormal basis (or complete orthonormal system) for H is an or-
thonormal subset of H, which is maximal in the sense that it is not properly
contained in any other orthonormal subset of H.

(c) A Schauder basis for B is a sequence
{
en
}
n∈N of elements of B such

that for each v ∈ B there is a unique sequence
{
αn
}
n∈N ⊂ C such that

v =
∑∞

n=1 αnen.

(d) An algebraic basis (or Hamel basis) for B is a subset S ⊂ B such that
each x ∈ B has a unique representation as a finite linear combination of
elements of S. This is the case if and only if every finite subset of S is
linearly independent and each x ∈ B has some representation as a finite
linear combination of elements of S.
Theorem A.16. Every Hilbert space has an orthonormal basis.

Proof. See [RS, Theorem II.5] or [Co, Proposition 4.2]. �

Theorem A.17. Every vector space has an algebraic basis.

Proof. This is Exercise A.19, below. �

Theorem A.18. Let
{
ei
}
i∈I be an orthonormal basis for the Hilbert space

H. Then, for each x ∈ H,
{
i ∈ I

∣∣ 〈ei,x〉 6= 0
}
is countable3 and

x =
∑

i∈I
〈x, ei〉 ei ‖x‖2 =

∑

i∈I
| 〈x, ei〉 |2

(The right hand sides converge independent of order.)

Conversely, if
{
ci
}
i∈I ⊂ C and

∑
i∈I |ci|2 < ∞, then

∑
i∈I ci ei con-

verges to an element of H.

Proof. See [RS, Theorem II.6] or [Co, Theorem 4.13]. �

Exercise A.19. Prove that every vector space has an algebraic basis.

Hint: Use Zorn’s Lemma (which is equivalent to the axiom of choice). It
says that if a nonempty set S

(1) is partially ordered and

3We’ll include finite in countable.
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(2) has the property that every linearly ordered subset has an upper
bound

then S has a maximal element.

Exercise A.20. Prove that B =
{
en(x) =

1√
2π
einx

}
n∈Z is an orthonormal

basis for L2
(
[0, 2π]

)
.

Definition A.21 (Separable). A metric space is said to be separable if it
has a countable dense subset.

Lemma A.22. A metric space
(
M, d

)
fails to be separable if and only if

there is an ε > 0 and an uncountable subset
{
mi

}
i∈I ⊂ with d(mi,mj) ≥ ε

for all i, j ∈ I with i 6= j.

Proof. This is Exercise A.23, below. �

Exercise A.23. Prove that a metric space
(
M, d

)
fails to be separable if

and only if there is an ε > 0 and an uncountable subset
{
mi

}
i∈I ⊂ M with

d(mi,mj) ≥ ε for all i, j ∈ I with i 6= j.

Theorem A.24. Let H be a Hilbert space.

(a) H is separable if and only if it has a countable orthonormal basis.

(b) If dimH = n ∈ N, then H ∼= Cn.

(c) If H is separable but is not of finite dimension, then H ∼= ℓ2.

Proof. See [RS, Theorem II.7] or [Co, Theorem 5.4 and Corollary 5.5] �

Example A.25.
(a) As L2([0, 2π]) has a countable, orthonormal basis, it is separable and
isomorphic to ℓ2.

(b) ℓ∞ is not separable. To see this define, for each subset S ⊂ N,

x(S) =
(
x(S)n

)
n∈N ∈ ℓ∞

by

x(S)n =

{
1 if n ∈ S

0 if n /∈ S

This is an uncountable family of elements of ℓ∞ with ‖x(S) − x(T )‖∞ = 1
for all distinct subsets S, T of N.

Definition A.26 (Orthogonal Complement). The orthogonal complement,
M⊥, of any subset M of a Hilbert space H, is defined to be

M⊥ =
{
y ∈ H

∣∣ 〈x,y〉 = 0 for all x ∈ M
}
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Theorem A.27. Let M be a linear subspace of a Hilbert space H. Then

(a) M⊥ is a closed linear subspace of H.

(b) M∩M⊥ = {0}

(c)
(
M⊥)⊥ = M (the closure of M)

Proof. See [RS, Problem 6 of Chapter 2] and [Co, Corollary 2.9]. �

Theorem A.28 (Projection). Let M be a closed linear subspace of a Hilbert

space H. Then each x ∈ H has a unique representation x = x‖ + x⊥ with
x‖ ∈ M and x⊥ ∈ M⊥.

Proof. See [RS, Theorem II.3] or [Co, Theorem 2.6]. �

A.2. Bounded Linear Operators

Definition A.29 (Linear Operator). Let B, B̃ be Banach spaces and H, H̃
be Hilbert spaces.

(a) Let D be a linear subspace of B. A map A : D → B̃ is called a linear
operator if it obeys

A(αx + βy) = αA(x) + βA(y) for all α, β ∈ C and x,y ∈ D
One usually denotes the image of x under A as Ax, rather than A(x). The
set D is called the domain of A and is generally denoted D(A). One often
calls A a “linear operator on B” even when its domain is a proper subset of
B.

(b) A linear operator A : D → B̃ is said to be bounded if

(A.1) ‖A‖ = sup
0 6=x∈D

‖Ax‖B̃
‖x‖B

= sup
x∈D

‖x‖B=1

‖Ax‖B̃

is finite. The set of all bounded, linear operators defined on B and taking
values in B̃ is denoted L(B, B̃). With the norm (A.1), it is itself a Banach
space. The set of all bounded, linear operators defined on B and taking
values in B is denoted L(B).

(c) A linear functional on B is a linear operator f : B → C. A bounded linear
functional on B is a linear operator f : B → C for which

sup
0 6=x∈B

|f(x)|
‖x‖B
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is finite.

(d) The dual space of a Banach space B is the space B′ of all bounded linear
functionals on B. The dual space is itself a Banach space.

(e) Let T : D(T ) ⊂ H → H̃ be a linear operator. Denote

D(T ∗) =
{
ϕ ∈ H̃

∣∣ ∃! η ∈ H s.t. 〈ϕ, Tψ〉H̃ = 〈η, ψ〉H ∀ ψ ∈ D(T )
}

If ϕ ∈ D(T ∗) the corresponding η is denoted T ∗ϕ. Thus T ∗ϕ is the unique
vector in H such that

〈ϕ, Tψ〉H̃ = 〈T ∗ϕ,ψ〉H for all ψ ∈ D(T )

The operator T ∗ is called the adjoint of T .

Proposition A.30. The normed vector space L(B, B̃), with the norm (A.1),
is a Banach space.

Proof. See [RS, Theorem III.2]. �

Lemma A.31. Let H be an infinite dimensional Hilbert space. Then there
is a linear operator W : H → H which is defined on all of H, but is not
bounded.

Proof. This is Exercise A.32, below. �

Exercise A.32. Let H be an infinite dimensional Hilbert space. Construct
a linear operator W : H → H which is defined on all of H, but is not
bounded. (Hint: use an algebraic basis.)

Example A.33. (a) Matrices: Let n ∈ N. An n× n matrix
[
Mi,j

]
1≤i,j≤n

is naturally associated to the operator M : Cn → Cn determined by

(Mx)i =
n∑

j=1

Mi,jxj

The adjoint operator is associated to the matrix
[
M∗
i,j =Mj,i

]
1≤i,j≤n.

(b) Multiplication Operators: Let 1 ≤ p <∞. Let (X,M, µ) be a measure
space and let f : X → C be measurable. If the essential supremum of f is
finite, then

Mf : Lp(X,M, µ) → Lp(X,M, µ)

ϕ(x) 7→ (fϕ)(x) = f(x)ϕ(x)

is a bounded linear operator with ‖Mf‖ = ess sup
x∈X

|f(x)|. On the other

hand, if the essential supremum of f is infinite, then Mf will not be defined
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on all of Lp(X,M, µ) (as a map into Lp(X,M, µ)) and will not be bounded
(as a map into Lp(X,M, µ)). In the case p = 2, M∗

f =Mf .

(c) Projection Operators: Let H be Hilbert space and let M be a nonempty,
closed, linear subspace of H. Define the map P : H → H by

Px = x‖

where x = x⊥ +x‖ is the decomposition of Theorem A.28.a It is a bounded
linear operator with ‖P‖ = 1, called the orthogonal projection on M. It
obeys

P 2 = P P ∗ = P

where P ∗ is the adjoint of P . We’ll see, in Lemma A.35 below, that con-
versely, if P : H → H is a bounded linear operator that obeys P 2 = P and
P ∗ = P , then P is orthogonal projection on M = range(P ).

(d) Integral Operators: Let (X,M, µ) and (Y,N , ν) be measure spaces and
T : X × Y → C be a function that is measurable with respect to M⊗N .
Let 1 ≤ p ≤ ∞ and ϕ ∈ Lp(Y,N , ν). Define, for each x ∈ X for which the
function y 7→ T (x, y)ϕ(y) is in L1(Y,N , ν),

(A.2) (Tϕ)(x) =

∫

Y
T (x, y)ϕ(y) dν(y)

(1) If

M1 = ess sup
x∈X

∫

Y
|T (x, y)| dν(y)<∞

M2 = ess sup
y∈Y

∫

X
|T (x, y)| dµ(x)<∞

then (A.2) is a bounded operator T : Lp(Y,N , ν) → Lp(X,M, µ)

with norm ‖T‖ ≤M
1−1

p
1 M

1
p
2 .

(2) If the Hilbert–Schmidt norm

‖T‖H.S. =
[ ∫

X×Y
|T (x, y)|2 dµ × ν(x, y)

]1/2
<∞

then (A.2) is a bounded operator T : L2(Y,N , ν) → L2(X,M, µ)
with norm ‖T‖ ≤ ‖T‖H.S..

In the case p = 2,

(T ∗ψ)(y) =
∫

x
T (x, y)ψ(x) dµ(x)
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(e) Differential Operators: Let Ω be an open subset of Rn for some n ∈ N.
Recall that if α = (α1, · · · , αn) ∈ Nn0 , where N0 = {0} ∪ N, we use ∂αu(x)

to denote the partial derivative ∂α1

∂x
α1
1

· · · ∂αn

∂xαn
n
u(x) and |α| = α1 + · · ·+αn to

denote the order of this partial derivative. For any finite subset I ⊂ Nn0 and
any family

{
aα(x)

}
α∈I of bounded, measurable functions on Ω the map

ϕ(x) 7→
∑

α∈I
aα(x) ∂

αϕ(x)

is a linear map on C∞(Ω) ⊂ L2(Ω). But it is not bounded as a map from
L2(Ω) to L2(Ω).

Exercise A.34. Let (X,M, µ) and (Y,N , ν) be σ–finite measure spaces and
T : X × Y → C be a function that is measurable with respect to M⊗N .

(a) Assume that

M1 = ess sup
x∈X

∫

Y
|T (x, y)| dν(y)<∞

M2 = ess sup
y∈Y

∫

X
|T (x, y)| dµ(x)<∞

Let 1 ≤ p ≤ ∞. Prove that

(Tϕ)(x) =

∫

Y
T (x, y)ϕ(y) dν(y)

defines a bounded operator T : Lp(Y,N , ν) → Lp(X,M, µ) with norm

‖T‖ ≤M
1−1

p
1 M

1
p
2 .

(b) Assume that

‖T‖H.S. =
[ ∫

X×Y
|T (x, y)|2 dµ × ν (x, y)

]1/2
<∞

Prove that (Tϕ)(x) =
∫
Y T (x, y)ϕ(y) dν(y) defines a bounded operator from

L2(Y,N , ν) to L2(X,M, µ) with norm ‖T‖ ≤ ‖T‖H.S..
Lemma A.35. Let H be a Hilbert space. Let P : H → H be a bounded
operator that obeys

P 2 = P P ∗ = P

Then P is orthogonal projection on the range of P .

Proof. This is Exercise A.36, below. �

Exercise A.36. Let H be a Hilbert space. Let P : H → H be a bounded
linear operator that obeys

P 2 = P P ∗ = P

Prove that P is orthogonal projection on the range of P .
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Lemma A.37. Let E and F be orthogonal projections onto closed subspaces
of a Hilbert space H. Then E + F is again an orthogonal projection if and
only if EF = FE = 0.

Proof. This is Exercise A.38, below. �

Exercise A.38. Let E and F be orthogonal projections onto closed sub-
spaces of a Hilbert space H. Prove that E + F is again an orthogonal
projection if and only if EF = FE = 0. What is the geometric significance
of the condition EF = FE = 0?

Theorem A.39. Let V and Ṽ be normed vector spaces and let T : V → Ṽ
be a linear operator. The following are equivalent.

(1) T is continuous at every x ∈ V.
(2) T is continuous at one x0 ∈ V.
(3) T is bounded.

Proof. The proof is trivial. �

Theorem A.40. Let B be a Banach space.

(a) Let S be a subspace of B and λ ∈ S ′. Then there is a Λ ∈ B′ such that
‖Λ‖B′ = ‖λ‖S′ and Λ(x) = λ(x) for all x ∈ S.

(b) Let x ∈ B. There is a nonzero Λ ∈ B′ such that
∣∣Λ(x)

∣∣ = ‖Λ‖B′ ‖x‖B.

(c) Let Y be a subspace of B and x ∈ B with the distance from x to Y being
d. There is a Λ ∈ B′ such that ‖Λ‖B′ ≤ 1, Λ(x) = d and Λ(y) = 0 for all
y ∈ Y.

(d) Let x ∈ B. Then

‖x‖B = sup
Λ∈B′

‖Λ‖B′=1

∣∣Λ(x)
∣∣

Proof. Part (a) is [RS, Corollary 1 of Theorem III.6 (the Hahn–Banach
theorem)]. The other parts follow easily from part (a) and, in the case of
part (d), the definition of ‖Λ‖B′ and part (b). �

Theorem A.41 (The B.L.T. Theorem). Let V be a dense linear subspace

of a Banach space B. Let B̃ be a second Banach space and T : V → B̃ be
a bounded linear operator. Then there is a unique bounded linear operator
T̃ : B → B̃ such that Tx = T̃x for all x ∈ V. Furthermore ‖T‖ = ‖T̃‖.

Proof. See [RS, Theorem I.7]. �
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Example A.42. We define the Fourier transform as a unitary operator
F : L2(R) → L2(R). To start we define Schwartz space to be

S(R) =
{
ϕ : R → C

∣∣ ϕ is C∞, ‖ϕ‖n,m <∞ for all integers n,m ≥ 0
}

where ‖ϕ‖n,m = supx∈R
∣∣xn dmϕdxm (x)

∣∣. Next we define the Fourier transform
and inverse Fourier transform on S(R) by

ϕ̂(ξ) =

∫ ∞

−∞
e−iξxϕ(x) dx

ψ̌(x) = 1
2π

∫ ∞

−∞
eiξxψ(ξ) dξ

and verify that the linear operators ϕ 7→ ϕ̂ and ψ 7→ ψ̌ each map S(R) into
(in fact onto) S(R) and are inverses of each other and obey

∫ ∞

−∞
ϕ(x)ψ(x) dx = 1

2π

∫ ∞

−∞
ϕ̂(ξ) ψ̂(ξ) dξ

for all ϕ,ψ ∈ S(R). Then the B.L.T. theorem provides us with the unique
bounded extension of the map ϕ 7→ ϕ̂ to L2(R), which we call F . For the
details, see Appendix B.

Theorem A.43 (Riesz Representation Theorem). Let H be a Hilbert space
and λ ∈ H∗ be a bounded linear functional on H. Then there is a unique
yλ ∈ H such that

λ(x) = 〈x,yλ〉
for all x ∈ H. Furthermore ‖λ‖H∗ = ‖yλ‖H.

Proof. See [RS, Theorem II.4] or [Co, Theorem 3.4]. �

Corollary A.44. Let B : H×H → C and C ≥ 0 obey

(1) B(αx+ βy, z) = αB(x, z) + βB(y, z)

(2) B(x, αy + βz) = ᾱB(x,y) + β̄B(x, z)

(3)
∣∣B(x,y)

∣∣ ≤ C‖x‖ ‖y‖
for all x,y, z ∈ H and α, β ∈ C. Then there is a unique A ∈ L(H) such that
B(x,y) = 〈Ax,y〉 for all x,y ∈ H. Furthermore ‖A‖ ≤ C.

Corollary A.45. Let H and H̃ be Hilbert spaces and T : H → H̃ be a
bounded linear operator. Then the adjoint T ∗ of T is a bounded linear op-
erator defined on all of H̃.

Proof. This is Exercise A.46, below. �

Exercise A.46. Let H and H̃ be Hilbert spaces and T : H → H̃ be a
bounded linear operator. Prove that the adjoint, T ∗, of T is a bounded
linear operator defined on all of H̃.
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Definition A.47 (Operator Topologies). Let B and B̃ be Banach spaces.

Let T : B → B̃ and, for each n ∈ N, Tn : B → B̃ be bounded linear operators.

(a) The sequence of
{
Tn
}
n∈N of operators is said to converge uniformly or

in norm to T if

lim
n→∞

‖T − Tn‖ = 0

(b) The sequence of
{
Tn
}
n∈N of operators is said to converge strongly to T

if

lim
n→∞

‖Tx− Tnx‖B̃ = 0 for each x ∈ B

(c) The sequence of
{
Tn
}
n∈N of operators is said to converge weakly to T if

lim
n→∞

ℓ
(
Tnx

)
= ℓ
(
Tx
)

for each x ∈ B and each ℓ ∈ B̃′

In the event that B̃ is a Hilbert space, this is equivalent to

lim
n→∞

〈Tnx,y〉B̃ = 〈Tx,y〉B̃ for each x ∈ B and each y ∈ B̃

Remark A.48 (Operator Topologies). Since
∣∣ℓ
(
(Tn − T )x

)∣∣ ≤ ‖ℓ‖B̃′

∥∥(Tn − T )x
∥∥
B̃

and ∥∥(Tn − T )x
∥∥
B̃ ≤ ‖Tn − T‖ ‖x‖B

we have

norm convergence =⇒ strong convergence =⇒ weak convergence

In general the other implications are false, unless B and B̃ are finite dimen-
sional. This is illustrated by the following

Example A.49 (Operator Topologies). Let B = B̃ = ℓ2.

(a) Let

Pn
(
x1, x2, x3 · · ·

)
=
( n places︷ ︸︸ ︷
0, · · · , 0, xn+1, xn+2, xn+3, · · ·

)

be projection on the orthogonal complement of the first n components. Then
for each fixed x ∈ ℓ2, limn→∞ Pnx = 0 so that Pn converges strongly to 0
as n→ ∞. But, for any n > m,

(Pn − Pm)
(
x1, x2, x3 · · ·

)
=
( m places︷ ︸︸ ︷
0, · · · , 0, xm+1, xm+2, · · · , xn, 0, · · ·

)
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so that there is a vector x ∈ ℓ2 with (Pn − Pm)x = x. Consequently
‖Pn − Pm‖ = 1 and the sequence

{
Pn
}
n∈N is not Cauchy and does not

converge in norm.

(b) Let

Rn
(
x1, x2, x3 · · ·

)
=
( n places︷ ︸︸ ︷
0, · · · , 0, x1, x2, x3, · · ·

)

be right shift by n places. For any x,y ∈ ℓ2

∣∣ 〈Rnx,y〉
∣∣ =

∣∣ 〈Rnx, Pny〉
∣∣ ≤ ‖Rnx‖ ‖Pny‖ = ‖x‖ ‖Pny‖ n→∞−−−→ 0

So Rn converges weakly to zero as n→ ∞. On the other hand, ‖Rnx‖ = ‖x‖
for all n ∈ N and x ∈ ℓ2. So the Rn does not converge strongly or in norm.
(If Rn did converge either strongly or in norm to some R, the fact that

Rn
weakly−−−−→ 0 would force R = 0.)

Theorem A.50 (Neumann Expansion). Let T be a bounded linear operator
on the Banach space B whose operator norm ‖T‖ < 1. Then 1−T is bijective
and has a bounded inverse and furthermore

(1− T )−1 =
∞∑

n=0

T n
∥∥(1− T )−1

∥∥ ≤ 1
1−‖T‖

∥∥(1− T )−1 −1∥∥ ≤ ‖T‖
1−‖T‖

The series
∑∞

n=0 T
n converges in norm.

Theorem A.51 (Adjoints). Let H be a Hilbert space and S, T ∈ L(H).

(a) The map A 7→ A∗ is a conjugate linear isometric isomorphism of L(H)
onto L(H). In particular

(αA+ βB)∗ = αA∗ + βB∗ ‖A∗‖ = ‖A‖
for all A,B ∈ L(H) and all α, β ∈ C.

(b) (TS)∗ = S∗T ∗

(c) (T ∗)∗ = T

(d) If T has a bounded inverse, then T ∗ has a bounded inverse and (T ∗)−1 =
(T−1)

∗
.

(e) The map A 7→ A∗ is continuous in the weak and uniform topologies. That
is, if

{
An
}
n∈N converges to A weakly (in norm), then

{
A∗
n

}
n∈N converges to

A∗ weakly (in norm). The map A 7→ A∗is continuous in the strong topology
if and only if H is finite dimensional.

(f) ‖T ∗T‖ = ‖T‖2
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(g) If T = T ∗, then ‖T‖ = sup
{
| 〈Tx,x〉 |

∣∣ x ∈ H, ‖x‖ = 1
}
.

Proof. See [RS, Theorem VI.3] and Example A.54 and Proposition A.52,
below, or [Co, Propositions 2,6, 2.7, 2.13]. �

Proposition A.52. Let H be a Hilbert space and T : H → H be a bounded
linear operator.

(a) We have

‖T‖ = sup
x,vy∈H
x,y 6=0

|〈Tx,y〉|
‖x‖ ‖y‖

(b) Assume in addition that T = T ∗. Then

‖T‖ = sup
x∈H
x6=0

|〈Tx,x〉|
‖x‖2

Proof. This is Exercise A.53, below. �

Exercise A.53. Let H be a Hilbert space and T : H → H be a bounded
linear operator.

(a) Prove that

‖T‖ = sup
x,y∈H
x,y 6=0

|〈Tx,y〉|
‖x‖ ‖y‖

(b) Assume in addition that T = T ∗. Prove that

‖T‖ = sup
x∈H
x6=0

|〈Tx,x〉|
‖x‖2

(c) Find an example which shows that the equation of part (b) can fail if
T 6= T ∗.

Example A.54. Let H = ℓ2 and define the right and left shift operators by

L(x1, x2, x3, · · · ) = (x2, x3, · · · )
R(x1, x2, x3, · · · ) = (0, x1, x2, x3, · · · )

First observe that ‖L‖ = ‖R‖ = 1 and that

〈Lx,y〉 =
∞∑

j=1

(Lx)j yj =
∞∑

j=1

xj+1 yj =
∞∑

i=2

xi yi−1 =
∞∑

i=1

xi (Ry)i = 〈x, Ry〉
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so that L∗ = R and R∗ = L. Next observe that, for each n ∈ N and x ∈ ℓ2,

‖Lnx‖2 =
∞∑

m=n+1

|xm|2 n→∞−−−→ 0

‖Rnx‖2 =
∞∑

m=1

|xm|2 = ‖x‖2

Thus, as n → ∞, Ln converges strongly to zero, but Ln∗ = Rn does not
converge strongly to anything. On the other hand, Ln∗ does converge weakly
to zero since, for all x,y ∈ ℓ2,

∣∣ 〈Rnx,y〉
∣∣ =

∣∣ 〈Ln∗x,y〉
∣∣ =

∣∣ 〈x, Lny〉
∣∣ ≤ ‖x‖ ‖Lny‖ n→∞−−−→ 0

Theorem A.55 (Principle of Uniform Boundedness etc.). Unless otherwise
stated, X and Y are Banach spaces and T : X → Y is linear and has domain
X .

(a) T is bounded if and only if

T−1
{
y ∈ Y

∣∣ ‖y‖Y ≤ 1
}
=
{
x ∈ X

∣∣ ‖Tx‖Y ≤ 1
}

has nonempty interior. (X ,Y need not be complete.)

(b) Principle of Uniform Boundedness: Let F ⊂ L(X ,Y).
If, for each x ∈ X,

{
‖Tx‖

∣∣ T ∈ F
}
is bounded,

then
{
‖T‖

∣∣ T ∈ F
}
is bounded,

(Y need not be complete.)

(c) If B : X × Y → C is bilinear and continuous in each variable separately
(i.e. B(x,y) is continuous in x for each fixed y and vice versa), then B(x,y)
is jointly continuous (i.e. if limn→∞ xn = 0 and limn→∞ yn = 0, then
limn→∞B(xn,yn) = 0).

(d) Open Mapping Theorem: If T ∈ L(X ,Y) is surjective (i.e. onto) and if
O is an open subset of X , then TO =

{
Tx

∣∣ x ∈ O
}
is an open subset of

Y.

(e) Inverse Mapping Theorem: If T ∈ L(X ,Y) is bijective (i.e. 1–1 and
onto), then T−1 is bounded.

(f) Closed Graph Theorem: The graph of T is defined to be

Γ(T ) =
{
(x,y) ∈ X × Y

∣∣ y = Tx
}

Then

T is bounded ⇐⇒ Γ(T ) is closed
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In other words, T is bounded if and only if

lim
n→∞

xn = x, lim
n→∞

Txn = y =⇒ y = Tx

(g) Hellinger–Toeplitz Theorem: Let T be an everywhere defined linear oper-
ator on H that obeys 〈x, Ty〉 = 〈Tx,y〉 for all x,y ∈ H. Then T is bounded.

Proof. (a) See Proposition at the beginning of [RS, §III.5].

(b) See [RS, Theorem III.9] or [Co, Theorem 14.1].

(c) See the Corollary to [RS, Theorem III.9].

(d) See [RS, Theorem III.10] or [Co, Theorem 12.1].

(e) See [RS, Theorem III.11] or [Co, Theorem 12.5].

(f) See [RS, Theorem III.12] or [Co, Theorem 12.6].

(g) See the Corollary to [RS, Theorem III.12]. �

A.3. Compact Operators

In this section we provide an introduction to compact linear operators on
Banach and Hilbert spaces. These operators behave very much like familiar
finite dimensional matrices, without necessarily having finite rank. For more
thorough treatments, see [RS, §VI.5, VI.6] or[Y].

Definition A.56. Let X and Y be Banach spaces. A linear operator
C : X → Y is said to be compact if for each bounded sequence {xi}i∈N ⊂ X ,
there is a subsequence of {Cxi}i∈N that is convergent.

Example A.57. Let a < b and c < d. If C : [c, d]× [a, b] → C is continuous,
then the integral operator

(Cf)(y) =

∫ b

a
C(y, x)f(x) dx

is compact as an operator from X = C[a, b], the space of continuous func-
tions on [a, b] with supremum norm, to Y = C[c, d].

Exercise A.58. Use the Arzelà–Ascoli theorem ([RS, Theorem 1.28] or
[Co, Theorem 3.8]) to prove that the operator C of Example A.57 is com-
pact.
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Example A.59 (Hilbert–Schmidt Operators). Let 〈X,µ〉 and 〈Y, ν〉 be
measure spaces and let k(x, y) be a measurable function on X × Y with

∫

X×Y
|k(x, y)|2 dµ(x)dν(y) <∞

Then

(Kf)(x) =

∫

Y
k(x, y)f(y) dν(y)

is a compact map from L2(Y, dν) to L2(X, dµ). Such an operator is called
Hilbert–Schmidt.

Proof. Let {fi}i∈N be a bounded sequence in L2(Y, dν). By part (c) of
Exercise A.60, below, {fi}i∈N has a weakly convergent subsequence. By
throwing away all but this subsequence, we may assume that {fi}i∈N con-
verges weakly to f ∈ L2(Y, dν).

We now show that {Kfi}i∈N converges strongly to Kf ∈ L2(X, dµ).
Since

∫
X×Y |k(x, y)|2 dµ(x)dν(y) <∞ we have that

∫
Y |k(x, y)|2 dν(y) <∞

for almost every x ∈ X. For any such x ∈ X,

lim
i→∞

∫

Y
k(x, y)fi(y) dν(y) = lim

i→∞

〈
fi , k(x, · )

〉
L2(Y,dν)

=
〈
f , k(x, · )

〉
L2(Y,dν)

=

∫

Y
k(x, y)f(y) dν(y)

Furthermore, by Cauchy–Schwarz,

∣∣(Kfi)(x)
∣∣ ≤

∫

Y

∣∣k(x, y)fi(y)
∣∣ dν(y)

≤ ‖fi‖L2(Y,dν)

√∫

Y

∣∣k(x, y)
∣∣2 dν(y)

≤ sup
i

‖fi‖L2(Y,dν)

√∫

Y

∣∣k(x, y)
∣∣2 dν(y) ≡ H(x)

Thus we have shown that (Kfi)(x) converges pointwise to (Kf)(x) for al-
most every x and is bounded, for all i by the function H(x) which is square
integrable with respect to dµ(x). Thus, by the Lebesgue dominated conver-
gence theorem,

lim
i→∞

‖Kf −Kfi‖2L2(X,dµ) = lim
i→∞

∫

X

∣∣(Kf)(x)− (Kfi)(x)
∣∣2 dµ(x) = 0

�
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Exercise A.60. Let H be a Hilbert Space. A sequence {fi}i∈N ⊂ H is said
to converge weakly to f ∈ H if

lim
i→∞

〈fi, g〉 = 〈f, g〉

for all g ∈ H.

(a) Give an example of a sequence that converges weakly but not strongly.

(b) Prove that if {fi}i∈N converges weakly to f , then ‖f‖ ≤ lim inf i→∞ ‖fi‖.
Prove that if {fi}i∈N converges weakly to f and ‖f‖ = limi→∞ ‖fi‖, then
{fi}i∈N converges strongly to f .

(c) Prove that H is weakly sequentially compact. That is, every bounded
sequence in H has a weakly convergent subsequence.

Example A.61 (Nuclear Operators). Let X and Y be Banach spaces and
denote by X ′ the dual space of X . That is, the space of bounded linear
functionals on X . If {x′i}i∈N is a bounded sequence in X ′, {yi}i∈N is a
bounded sequence in Y and {ci}i∈N is a set of complex numbers obeying∑

i |ci| <∞, then

Kx =

∞∑

i=1

ci x
′
i(x) yi

is called a nuclear operator from X to Y. Since
∞∑

i=1

|ci|
∣∣x′i(x)

∣∣ ‖yi‖Y ≤ ‖x‖X sup
i

‖yi‖Y sup
i

‖x′i‖X ′

∞∑

i=1

|ci|

the series defining Kx converges strongly and K is a bounded operator of
norm at most supi ‖yi‖Y supi ‖x′i‖X ′

∑∞
i=1 |ci|.

Exercise A.62. Prove that any nuclear operator is compact.

Proposition A.63. Let X , Y and Z be Banach spaces.

(a) If C : X → Y is a compact operator, then C is a bounded operator.

(b) If C1, C2 : X → Y are compact operators and α1, α2 ∈ C, then the
operator α1C1 + α2C2 is compact.

(c) If C : X → Y is a compact operator and BX : Z → X and BY : Y → Z
are bounded operators, then CBX and BYC are compact.

(d) Let, for each i ∈ N, Ci : X → Y be a compact operator. If the Ci’s
converge in operator norm to an operator C : X → Y, then C is compact.
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Proof. Let {xi}i∈N be a bounded sequence in X .

(a) This is Exercise A.64, below.

(b) Since C1 is compact, there is a subsequence
{
xiℓ
}
ℓ∈N such that C1xiℓ

converges in Y. Since C2 is compact, there is a subsequence
{
xiℓm

}
m∈N

of the bounded sequence
{
xiℓ
}
ℓ∈N such that C2xiℓm converges in Y. Then

α1C1xiℓm + α2C2xiℓm also converges in Y.

(c) Let {zi}i∈N be a bounded sequence inZ. SinceBX is bounded, {BX zi}i∈N
is a bounded sequence in X . Since C is compact, there is a subsequence{
BX ziℓ

}
ℓ∈N such that CBX ziℓ converges in Y.

Since C is compact, there is a subsequence
{
xiℓ
}
ℓ∈N such that Cxiℓ

converges in Y. Since CY is bounded, BYCxiℓ converges in Y.

(d) Let {xj}j∈N be a bounded sequence in X and set

X = sup
j

‖xj‖X

For each fixed i ∈ N,
{
Cixj

}
j∈N has a convergent subsequence, since Ci

is compact by hypothesis. By taking subsequences of subsequences and
using the diagonal trick, we can find a subsequence {xjℓ}ℓ∈N such that
limℓ→∞Cixjℓ exists for each i ∈ N. It suffices for us to prove that {Cxjℓ}ℓ∈N
is Cauchy. Let ε > 0. Since the Ci’s converge in operator norm to C, there
is an I ∈ N such that ‖C − Ci‖ < ε

3X for all i ≥ I. Since {CIxjℓ}ℓ∈N is

Cauchy, there is an L ∈ N such that
∥∥CIxjℓ −CIxjm

∥∥
Y
< ε

3 for all ℓ,m > L.

Hence if ℓ,m > L, then
∥∥Cxjℓ − Cxjm

∥∥
Y
≤
∥∥Cxjℓ − CIxjℓ

∥∥
Y
+
∥∥CIxjℓ − CIxjm

∥∥
Y

+
∥∥CIxjm − Cxjm

∥∥
Y

≤ X‖C − CI‖+
∥∥CIxjℓ − CIxjm

∥∥
Y
+X‖CI − C‖

< X ε
3X + ε

3 +X ε
3X

= ε

�

Exercise A.64. Prove that compact operators are necessarily bounded.

Proposition A.65. Let X and Y be Banach spaces. Denote by X ′ and Y ′

their dual spaces. That is, X ′ (resp. Y ′) is the Banach space of bounded
linear functionals on X (resp. Y). The adjoint, C∗ : Y ′ → X ′, of a bounded
operator C : X → Y is determined by

(C∗η)(x) = η(Cx) for all η ∈ Y ′ and x ∈ X
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A bounded operator C : X → Y is compact if and only if C∗ is compact.

Proof. First assume that C is compact. Let {ηi}i∈N be a bounded subset
of Y ′ and set

Y ′ = sup
i

‖ηi‖Y ′

Let B =
{
x ∈ X

∣∣ ‖x‖X ≤ 1
}
be the unit ball in X . Since C is compact,

CB, which is the closure of
{
Cx ∈ X

∣∣ ‖x‖X ≤ 1
}
, is a compact subset

of Y. We shall apply Arzelà–Ascoli ([RS, Theorem 1.28] or [Co, Theorem
3.8]) to the sequence of functions

fi : y ∈ CB 7→ ηi(y) ∈ C

Since ∣∣fi(y)
∣∣ ≤ Y ′‖y‖Y ≤ Y ′‖C‖

the sequence is uniformly bounded. Since
∣∣fi(y)− fi(ỹ)

∣∣ ≤ Y ′‖y − ỹ‖Y
it is equicontinuous. So, by Arzelà–Ascoli, there is a subsequence fiℓ that

converges uniformly on CB. Since

‖C∗ηi − C∗ηj‖X ′ = sup
x∈B

∣∣(C∗ηi)(x) − (C∗ηj)(x)
∣∣ = sup

x∈B

∣∣ηi(Cx)− ηj(Cx)
∣∣

= sup
x∈B

∣∣fi(Cx)− fj(Cx)
∣∣ = sup

y∈CB

∣∣fi(y)− fj(y)
∣∣

the sequence {C∗ηiℓ}ℓ∈N is Cauchy in X ′.

Conversely, assume that C∗ is compact. Let {xi}i∈N be a bounded se-
quence in X . By the implication that we have already proven, the adjoint,
C∗∗ : X ′′ → Y ′′, of C∗ is compact. We may naturally view X as a closed
subspace of X ′′ and Y as a closed subspace of Y ′′. So we may view {xi}i∈N as
a bounded sequence in X ′′. Then {C∗∗xi}i∈N has a subsequence {C∗∗xiℓ}ℓ∈N
that converges in Y ′′. For any η ∈ Y ′ and x ∈ X (we’ll write X for x, when
we want to think of it as an element of X ′′),

(C∗∗X)(η) = X(C∗η) by the definition of “adjoint”

= (C∗η)(x) by the identification of X with a subset of X ′′

= η(Cx) by the definition of “adjoint”

Thus C∗∗x ∈ Y ′′ is Cx ∈ Y, viewed as an element of Y ′′ and {Cxiℓ}ℓ∈N
converges in Y. �

It is the spectral properties of compact operators that make them act very
much like matrices. Perhaps it is more appropriate to say that the spectral
properties of noncompact operators are often very different from those of
matrices. A simple, yet typical, example of this is given in Exercise A.68,
below. We start with careful definitions of “eigenvalue” like terms. For a
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thorough, but still readable, treatment of the spectral theory of self–adjoint
operators on Hilbert spaces, see [RS].

Definition A.66. Let X be a Banach space and B : X → X be a linear
operator defined on X .

(a) The number λ ∈ C is said to be in the resolvent set of B if the operator
B − λ1 is bijective (one–to–one and onto) with bounded inverse. We shall
use ρ(B) to denote the resolvent set of B.

(b) The number λ ∈ C is said to be in the spectrum of B if it is not in the
resolvent set of B. We write σ(B) = C \ ρ(B).

(c) The number λ ∈ C is said to be an eigenvalue of B if there is a nonzero
vector x ∈ X , called an eigenvector corresponding to λ, such that Bx = λx.
The set of all eigenvalues of B is called the point spectrum of B.

Proposition A.67. Let X be a Banach space and B : X → X be a linear
operator defined on X .

(a) If |λ| > ‖B‖, then λ ∈ ρ(B).

(b) ρ(B) is an open subset of C.

(c) If λ is an eigenvalue of B, then λ ∈ σ(B).

Proof. (a) Since ‖B‖
|λ| < 1, the series − 1

λ

∑∞
m=0

(
B
λ

)m
converges in operator

norm to a bounded operator R on X . As

(B − λ1)R = R(B − λ1) = −
∞∑

m=0

(
B
λ

)m+1
+

∞∑

m=0

(
B
λ

)m
= 1

R =
(
B − λ1)−1

and λ ∈ ρ(B).

(b) Let µ ∈ ρ(B) and denote by
(
B − µ1)−1

the inverse of B − µ1. By
hypothesis, this inverse is a bounded operator on X . If

|λ− µ| <
∥∥(B − µ1)−1∥∥

then the series
(
B−µ1)−1∑∞

m=0(µ−λ)m
(
B−µ1)−m converges in operator

norm to a bounded operator R̃ on X . As

(B − λ1)R̃ = R̃(B − λ1) = R̃(B − µ1) + (µ − λ)R̃

=

∞∑

m=0

(µ− λ)m
(
B − µ1)−m +

∞∑

m=0

(µ− λ)m+1
(
B − µ1)−m−1

= 1
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R̃ is the operator inverse of
(
B − λ1) and λ ∈ ρ(B). This shows that

{
λ ∈ C

∣∣ λ− µ| <
∥∥(B − µ1)−1∥∥ } ⊂ ρ(B)

and that ρ(B) is open.

(c) If λ is an eigenvalue of B, then B − λ1 has a nontrivial kernel, namely
all of the eigenvectors corresponding to λ. Thus λ /∈ ρ(B). �

The next example shows that, for operators acting on infinite dimen-
sional spaces, even nice operators, the bulk of the spectrum need not consist
of eigenvalues.

Exercise A.68. Let H = L2(X,µ) for some measure space 〈X,µ〉 . Let
f : X → C be a bounded measurable function on X. Let A be the bounded
linear operator on H given by multiplication by f(x).

(a) Prove that λ ∈ σ(A) if and only if

∀ǫ > 0 µ
{
x ∈ X

∣∣ |f(x)− λ| < ǫ
}
> 0

(b) Prove that λ is an eigenvalue of A if and only if

µ
{
x ∈ X

∣∣ f(x) = λ
}
> 0

(c) Let X be the open interval (0, 1), µ be Lebesgue measure on (0, 1) and
f(x) = x. Find the spectrum of A, the operator onH given by multiplication
by x. Also find all of the eigenvalues of A.

We next prove that if C is a compact operator, then σ(C) \ {0} consists
only eigenvalues of finite multiplicity. If there are infinitely many different
eigenvalues, they must converge to zero. We first need the following technical
lemma.

Lemma A.69. Let X be a Banach space and B : X → X be a compact
operator. If λ is a nonzero complex number, then the range of C − λ1 is a
closed linear subspace of X .

Proof. Denote byR andK the range and kernel, respectively, of C−λ1. Let
y ∈ R and let {xn}n∈N be a sequence in X such that (C − λ1)xn converges
to y. Denote by ρn the distance from xn to K. For each n ∈ N, there is a
zn ∈ K such that ρn ≤ ‖xn − zn‖ < ρn +

1
n . Then x̃n = xn − zn obeys

lim
n→∞

(C − λ1)x̃n = lim
n→∞

(C − λ1)xn = y

We first consider the case that {ρn}n∈N is bounded. Then the se-
quence {x̃n}n∈N is bounded, and, since C is compact, there is a subsequence
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{x̃nℓ
}ℓ∈N such that Cx̃nℓ

converges in X , say to ỹ. Then

x̃nℓ
= 1

λ

[
Cx̃nℓ

−
(
C − λ1)x̃nℓ

]

converges in X to x = 1
λ(ỹ − y). Since C is bounded, ỹ = Cx and y =

(C − λ1)x ∈ R.

Finally, we consider the case that {ρn}n∈N is not bounded. Then, pos-
sibly restricting to a subsequence, we may assume that limn→∞ ρn = ∞.
As the sequence

{
x̃n

‖x̃n‖
}
n∈N is bounded and C is still compact, there is a

subsequence
{ x̃nℓ
‖x̃nℓ

‖
}
ℓ∈N such that C

x̃nℓ
‖x̃nℓ

‖ converges in X , say to z̃. As

lim
n→∞

(C − λ1) x̃nℓ
‖x̃nℓ

‖ = y
limn→∞ ‖x̃nℓ

‖ = 0

we have

lim
n→∞

x̃nℓ
‖x̃nℓ

‖ = 1
λ lim
n→∞

[
C

x̃nℓ
‖x̃nℓ

‖ −
(
C − λ1) x̃nℓ

‖x̃nℓ
‖
]
= z̃

λ

and hence (
C − λ1)z̃ = λ lim

n→∞
(C − λ1) x̃nℓ

‖x̃nℓ
‖ = 0

In other words, z̃ ∈ K. This provides a contradiction, since x̃n is a dis-
tance ρn from K so that x̃n

‖x̃n‖ is a distance ρn
‖x̃n‖ ≥ ρn

ρn+1/n from K. As

limn→∞
ρn

ρn+1/n = 1,
x̃nℓ

‖x̃nℓ
‖ cannot converge to a point of K. �

Proposition A.70 (The Fredholm Alternative). Let C : X → X be a
compact operator on the Banach space X . If λ is a nonzero complex number,
then either λ is an eigenvalue of C or λ ∈ ρ(C).

Proof. Suppose that λ is not an eigenvalue of C. Then, by definition,
C − λ1 is one–to–one. By lemma A.69, the range of C − λ1 is closed. We
now claim that the range of C − λ1 is all of X . If not, X1 = (C − λ1)X
is a proper closed subspace of X . Since the restriction of C to X1 is still
compact, X2 = (C−λ1)X1 is a closed subspace of X1. If X2 were not a proper
subspace of X1, then for each x ∈ X \ X1, there would be a vector x′ ∈ X1

with (C−λ1)x′ = (C−λ1)x and this would contradict the assumption that
C − λ1 is one–to–one. Thus X2 = (C − λ1)X1 is a proper closed subspace
of X1. Continuing in this way, we can generate a sequence {Xn}n∈N of
subspaces of X with Xn+1 = (C−λ1)Xn and Xn+1 a proper closed subspace
of Xn. By Exercise A.71, below, there is, for each n ∈ N, a unit vector
xn ∈ Xn \ Xn+1 whose distance from Xn+1 is at least 1

2 . If n > m,

1
λ

(
Cxm − Cxn

)
= xm − x̃m

with

x̃m = − 1
λ

(
C−λ1)xm+ 1

λCxn = − 1
λ

(
C−λ1)xm+ 1

λ (C−λ1)xn+xn ∈ Xm+1
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Hence ‖Cxm − Cxn‖ ≥ |λ|
2 for all n > m and {Cxn}n∈N may not contain

any convergent subsequence, contradicting the compactness of C.

So C−λ1 is both one–to–one and onto. The boundedness of the inverse
map is an immediate consequence of the inverse mapping theorem (part (e)
of Theorem A.55), But it is also easy to prove boundedness directly and

we do that now. If
(
C − λ1)−1

is not bounded, there is a sequence of unit
vectors xn ∈ X such that

lim
n→∞

∥∥(C − λ1)xn∥∥ = 0 =⇒ lim
n→∞

(C − λ1)xn = 0

Since C is compact, there is a subsequence
{
xnm

}
m∈N such that Cxnm

converges, say to y. But then

lim
m→∞

xnm = lim
m→∞

1
λCxnm − lim

m→∞
1
λ(C − λ1)xnm = y

λ

and
Cy = λC lim

m→∞
xnm = λy

As ‖y‖ = |λ| 6= 0, this contradicts the assumption that λ is not an eigenvalue
of C. �

Exercise A.71. Let X be a Banach space and Y a proper closed subspace
of X . Let 0 < ρ < 1. Prove that there is a unit vector x ∈ X \ Y whose
distance from Y is at least ρ.

Exercise A.72. Let X be an infinite dimensional Banach space. Prove that
the identity operator on X is not compact.

Proposition A.73 (The Spectrum of Compact Operators). Let C : X → X
be a compact operator on the Banach space X . The spectrum of C consists
of at most countably many points. For any ε > 0,

{
λ ∈ σ(C)

∣∣ |λ| > ε
}
is

finite. If 0 6= λ ∈ σ(C), then λ is an eigenvalue of C of finite multiplicity.

Proof. We have already proven, in Proposition A.70, that any nonzero num-
ber in the spectrum of C is an eigenvalue and we have also already proven,
in Proposition A.67, that σ(C) ⊂

{
λ ∈ C

∣∣ |λ| ≤ ‖C‖
}
. Since eigen-

vectors corresponding to different eigenvalues are necessarily independent,
it suffices to prove that there cannot exist a sequence {xn}n∈N of indepen-
dent eigenvectors of C whose corresponding eigenvalues {λn}n∈N converge
to λ 6= 0.

Denote by Xn the span of {x1, x2, · · · , xn}. By Exercise A.71, there
is, for each n ≥ 2, a unit vector yn ∈ Xn whose distance from Xn−1 is at
least 1

2 . If n > m,
1
λn
Cyn − 1

λm
Cym = yn − ỹn

with
ỹn = − 1

λn

(
C − λn1)yn + 1

λm
Cym ∈ Xn−1
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since
(
C − λn1)Xn ⊂ Xn−1 and CXm ⊂ Xm ⊂ Xn−1. Hence∥∥ 1

λn
Cyn − 1

λm
Cym

∥∥ ≥ 1
2 for all n > m

By assumption limn→∞ λn = λ 6= 0, so that
∥∥Cyn − Cym

∥∥ ≥ |λ|
4 for all

n > m sufficiently large. Thus {Cyn}n∈N may not contain any convergent
subsequence, contradicting the compactness of C. �

Exercise A.74. Let X be an infinite dimensional Banach space and let
C : X → X a compact operator. Prove that 0 ∈ σ(C).

Exercise A.75. Let H be a separable Hilbert space and let {en}n∈N be an
orthonormal basis for H. Let {µn}n∈N be any sequence of complex numbers
that converges to 0. Prove that the operator defined by

C
( ∞∑
n=1

αnen

)
=

∞∑
n=1

µnαnen+1

is compact and has σ(C) = {0}.





Appendix B

The Fourier

Transform and

Tempered

Distributions

In this appendix, we provide a summary of the most basic definitions and
results concerning the Fourier transform

f̂(ξ) =

∫

Rn

e−iξ·xf(x) dnx

and tempered distributions. For a more extensive treatment of Fourier trans-
forms, see, for example, [RS2, §IX.1]. For a more extensive treatment
of tempered distributions see, for example, [RS, §V.3]. We shall use the
standard multi–index notation that if α = (α1, · · · , αn) ∈ Nn0 , where N0 =
{0}∪N, then xα denotes xα1

1 · · · xαn
n and ∂αu(x) denotes the partial derivative

∂α1

∂x
α1
1

· · · ∂αn

∂xαn
n
u(x). The order of this partial derivative is |α| = α1+ · · ·+αn.

B.1. Schwartz Space

Definition B.1. (a) Schwartz space is the vector space

S(Rn) =
{
u ∈ C∞(Rn)

∣∣ sup
x∈Rn

∣∣(1 + |x|m)∂αu(x)
∣∣ <∞ ∀ m ∈ N0, α ∈ Nn0

}

of all C∞ functions on Rn all of whose derivatives (including the function
itself) decay faster than any polynomial at infinity.

287
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(b) Define, for each α, β ∈ Nn0 and each ϕ ∈ S(Rn)
‖ϕ‖α,β = sup

x∈Rn

∣∣xα∂βϕ(x)
∣∣

Then

(1) ‖ϕ‖α,β ≥ 0

(2) ‖aϕ‖α,β = |a| ‖ϕ‖α,β
(3) ‖ϕ+ ψ‖α,β ≤ ‖ϕ‖α,β + ‖ψ‖α,β

for all ϕ,ψ ∈ S(Rn) and a ∈ C. These are precisely the defining conditions
for ‖ · ‖α,β to be a semi–norm. In order for ‖ · ‖α,β to be a norm it must
also obey ‖ϕ‖α,β = 0 ⇐⇒ ϕ = 0. This is the case if and only if |β| = 0. If
|β| 6= 0 the constant function ϕ(x) = 1 has ‖ϕ‖α,β = 0.

Example B.2.

(a) For any polynomial P (x), the function ϕ(x) = P (x)e−|x|2 is in Schwartz
space. This is because, firstly, for any α, β ∈ N0, x

α∂βϕ is again a polynomial

times e−|x|2 and, secondly,

(B.1) e−|x|2 =
1

e|x|2
≤ 1

1 + |x|2 + 1
2! |x|4 + · · · + 1

p! |x|2p

for every p ∈ N. Consequently, xα∂βϕ is bounded.

(b) If ϕ is C∞(Rn) and of compact support then ϕ ∈ S(Rn). One such
function, with n = 1, is

ϕ(x) =

{
0 if |x| ≥ 1

e
− 1

(x−1)2 e
− 1

(x+1)2 if −1 < x < 1

The heart of the proof that this function really is C∞ at x = ±1 is the

observation that, for any p ≥ 0, lim
y→0

1
|y|p e

− 1
y2 = 0, which follows immediately

from (B.1) with x = 1
y .

Next, we introduce a metric on S(Rn) which is chosen so that ϕ and
ψ are close together if and only if ‖ϕ − ψ‖α,β is small for every α, β. The
details are given in the following

Theorem B.3. Define d : S(Rn)× S(Rn) → R by

d(ϕ,ψ) =
∑

α,β∈Nn
0

2−|α|−|β| ‖ϕ− ψ‖α,β
1 + ‖ϕ − ψ‖α,β

Then

(a) d(ϕ,ψ) is well–defined for all ϕ,ψ ∈ S(Rn) and is a metric.

(b) With this metric, S(Rn) is a complete metric space.
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(c) In this metric ϕ = lim
k→∞

ϕk if and only if lim
k→∞

‖ϕk −ϕ‖α,β = 0 for every

α, β ∈ Nn0 .

Proof. (a) To prove that
∑

α,β∈Nn
0

2−|α|−|β| ‖ϕ−ψ‖α,β

1+‖ϕ−ψ‖α,β
is well–defined it suffices

to observe, firstly, that A
1+A ≤ 1 for every A ≥ 0 and, secondly, that

∞∑

α,β∈Nn
0

2−|α|−|β| =
[ ∞∑

ℓ=0

2−ℓ
]2n

converges because the geometric series converges.

• The metric axiom d(ϕ,ψ) ≥ 0 is obvious.

• The metric axiom that d(ϕ,ψ) = 0 =⇒ ϕ = ψ is obvious because
d(ϕ,ψ) = 0 forces the α = β = 0 term in its definition, namely
‖ϕ−ψ‖0,0

1+‖ϕ−ψ‖0,0 , to vanish. And that first term is zero if and only if its

numerator ‖ϕ− ψ‖0,0 = supx∈Rn |ϕ(x)− ψ(x)| is zero.
• The metric axiom d(ϕ,ψ) = d(ψ,ϕ) is obvious.

• The triangle inequality follows from

‖ϕ− ψ‖α,β
1 + ‖ϕ− ψ‖α,β

≤ ‖ϕ− ζ‖α,β
1 + ‖ϕ− ζ‖α,β

+
‖ζ − ψ‖α,β

1 + ‖ζ − ψ‖α,β
which is proven as follows. We supress the subscripts α, β. Because
x

1+x = 1− 1
1+x is an increasing function of x

‖ϕ−ψ‖
1+‖ϕ−ψ‖ ≤ ‖ϕ−ζ‖+‖ζ−ψ‖

1+‖ϕ−ζ‖+‖ζ−ψ‖

= ‖ϕ−ζ‖
1+‖ϕ−ζ‖+‖ζ−ψ‖ + ‖ζ−ψ‖

1+‖ϕ−ζ‖+‖ζ−ψ‖

≤ ‖ϕ−ζ‖
1+‖ϕ−ζ‖ + ‖ζ−ψ‖

1+‖ζ−ψ‖

(c) For the “only if” part, assume that ϕ = lim
k→∞

ϕk and let α, β ∈ N0. Then

d(ϕ,ϕk) ≥ 2−|α|−|β| ‖ϕ− ϕk‖α,β
1 + ‖ϕ− ϕk‖α,β

=⇒ lim
k→∞

‖ϕ− ϕk‖α,β
1 + ‖ϕ− ϕk‖α,β

= 0

For any 0 < ε < 1
2 and x > 0,

x
1+x < ε =⇒ x < ε(1 + x) =⇒ x− εx < ε =⇒ x < ε

1−ε < 2ε

Hence limk→0 ‖ϕ− ϕk‖α,β = 0 too.

For the “if” part assume that lim
k→∞

‖ϕk − ϕ‖α,β = 0 for every α, β ∈ N0.

We must prove that, as a consequence, ϕ = lim
k→∞

ϕk. The idea is that, in

the definition of d(ϕ,ψ), the sum of all terms with |α| or |β| large is small,
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regardless of what ϕ and ψ are. Precisely, write ψk = ϕ−ϕk and note that,
for every M ∈ N

d(ϕk, ϕ) =
∑

α,β∈Nn
0

2−|α|−|β| ‖ψk‖α,β
1 + ‖ψk‖α,β

=
∑

α,β∈Nn
0

|α|,|β|≤Mn

2−|α|−|β| ‖ψk‖α,β
1 + ‖ψk‖α,β

+
∞∑

α,β∈Nn
0

|α| or |β|>Mn

2−|α|−|β| ‖ψk‖α,β
1 + ‖ψk‖α,β

≤
∑

α,β∈Nn
0

|α|,|β|≤Mn

2−|α|−|β| ‖ψk‖α,β
1 + ‖ψk‖α,β

+
∞∑

α,β∈Nn
0

|α| or |β|>Mn

2−|α|−|β|

≤
∑

α,β∈Nn
0

|α|,|β|≤Mn

2−|α|−|β| ‖ψk‖α,β
1 + ‖ψk‖α,β

+ 2n

{ ∞∑

m=M+1

2−m
}{ ∞∑

m=0

2−m
}2n−1

=
∑

α,β∈Nn
0

|α|,|β|≤Mn

2−|α|−|β| ‖ψk‖α,β
1 + ‖ψk‖α,β

+ 2n
{ 1

2M

}
{2}2n−1

Let ε > 0 and choose M so that 1
2M

≤ ε
4n22n−1 and hence

2n
{ 1

2M

}
{2}2n−1 ≤ ε

2

For each α, β ∈ N0, lim
k→∞

‖ψk‖α,β = 0 so that there is a Kα,β for which

k ≥ Kα,β implies ‖ψk‖α,β < ε
22n+1 . Set

K = max
{
Kα,β

∣∣ α, β ∈ N0, |α|, |β| ≤M
}

If k ≥ K, then

d(ϕk, ϕ) ≤
∑

α,β∈N0
|α|,|β|≤Mn

2−|α|−|β| ‖ψk‖α,β
1 + ‖ψk‖α,β

+ 2n
{ 1

2M

}
{2}2n−1

< ε
2 +

∑

α,β∈N0

2−|α|−|β| ε
22n+1

= ε

(b) Let
{
ϕk
}

be a Cauchy sequence with respect to the metric d. Then,

as in part (c), for each α, β ∈ N0, lim
k,k′→∞

∥∥ϕk − ϕk′
∥∥
α,β

= 0. In particu-

lar, lim
k,k′→∞

∥∥ϕk − ϕk′
∥∥
0,0

= 0, so that the sequence
{
ϕk
}
is Cauchy in the

set, C(Rn), of all bounded, continuous functions on Rn equipped with the
uniform metric. Since C(Rn) is complete, there exists a continuous func-
tion ϕ such that

{
ϕk
}
converges uniformly to ϕ. As well, for each β ∈ N0,
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lim
k,k′→∞

∥∥ϕk − ϕk′
∥∥
0,β

= 0 so that the sequence
{
∂βϕk

}
of βth derivatives is

Cauchy in C(Rn) and there exists a continuous function ϕβ such that
{
∂βϕk

}

converges uniformly to ϕβ . This ensures that ϕ is C∞ with ∂βϕ = ϕβ for
each β ∈ N0. Finally, we have that, for each α, β ∈ N0, there is a Kα,β

such that
∣∣xα∂βϕk(x)−xα∂βϕk′(x)

∣∣ < ε for all k, k′ ≥ Kα,β and all x ∈ Rn.
Consequently, if k ≥ Kα,β,∥∥ϕk − ϕ

∥∥
α,β

= sup
x∈Rn

∣∣xα
(
∂βϕk(x)− ∂βϕ(x)

)∣∣

= sup
x∈Rn

lim
k′→∞

|xα|
∣∣∂βϕk(x)− ∂βϕk′(x)

∣∣

≤ sup
x∈Rn

ε = ε

So, by part (c),
{
ϕk
}
converges to ϕ with respect to the metric d. �

Lemma B.4. Let ϕ,ψ ∈ S(Rn). Then

(a) aϕ+ bψ ∈ S(Rn) for all a, b ∈ C and

(b) ∂γϕ ∈ S(Rn) for all γ ∈ Nn0 and

(c) ϕζ ∈ S(Rn) for all C∞ functions ζ that are polynomially bounded and
have polynomially bounded derivatives and

(d) the convolution (ϕ ∗ ψ)(x) =
∫
Rn ϕ(y)ψ(x − y) dny ∈ S(Rn).

Proof. These are all pretty obvious. Parts (a) and (b) are immediate con-
sequences of the bounds

‖aϕ+ bψ‖α,β ≤ |a| ‖ϕ‖α,β + |β| ‖ψ‖α,β
‖∂γϕ‖α,β = ‖ϕ‖α,β+γ

which are true for all α, β, γ ∈ N0 and a, b ∈ C.

For part (c), let α, β ∈ Nn0 . By hypothesis, there is an L ∈ N such that[∑
α′∈Nn0
|α′|≤L

∣∣xα′∣∣
]−1

∂β
′
ζ is uniformly bounded for all β′ ≤ β. (Here, β′ ≤ β

means that β′j ≤ βj for each 1 ≤ j ≤ n. Also recall that, when α′ is the zero

vector, xα
′
= 1.) By the product rule

∂β(ϕζ) =
∑

β′∈Nn
0

β′≤β

(
β
β′

)
∂β−β

′
ϕ ∂β

′
ζ

where
(β
β′

)
=
∏n
j=1

βj !
β′
j !(β−β′)j !

, and part (c) follows from

‖ϕζ‖α,β ≤
∑

α′,β′∈Nn
0

|α′|≤L, β′≤β

(β
β′

)∥∥∥
[ ∑

α′′∈Nn
0

|α′′|≤L

∣∣xα′′∣∣
]−1

∂β
′
ζ
∥∥∥
L∞(Rn)

‖ϕ‖α+α′,β−β′

The proof of part (d) is similar to that of part (c) but uses that
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◦ the function
[∑

α′∈Nn0
|α′|≤n+1

∣∣yα′∣∣
]−1

∈ L1(Rn) and

◦ |xα| ≤
∑

α′∈Nn0
α′≤α

(α
α′

)
|yα′ ||(x− y)α−α

′ |

◦ All derivatives of ϕ(y)ψ(x− y) with respect to x are absolutely integrable
with respect to y, so that we are allowed to move derivatives with respect
to x inside the integral

∫
Rn ϕ(y)ψ(x − y) dny. �

B.2. The Fourier Transform

Definition B.5. The Fourier transform f̂(ξ) of a function f ∈ S(Rn) is
defined by

(B.2a) f̂(ξ) =

∫

Rn

e−iξ·xf(x) dnx

Since f(x), and hence e−iξ·xf(x), is a continuous function of x which is

bounded by a constant times 1
1+|x|2n , the integral exists and f̂(ξ) is a well–

defined complex number for each ξ ∈ Rn. We shall show in Theorem B.9,

below that the map f 7→ f̂ is a continuous, linear map from S(Rn) to S(Rn)
and furthermore that this map is one–to–one and onto with the inverse map
being the inverse Fourier transform given by

(B.2b) ǧ(x) =

∫

Rn

eiξ·xg(ξ) dnξ
(2π)n

The computational properties of the Fourier transform are given in

Theorem B.6. Let f, g ∈ S(Rn) and α, β ∈ C. Then

(a) The Fourier transform of af(x)+bg(x) is af̂(ξ) + bĝ(ξ).

(b) If β ∈ N0, then the Fourier transform of ∂βf(x) is i|β|ξβ f̂(ξ).

(c) The Fourier transform, f̂(ξ), of f(x) is infinitely differentiable and, for

each β ∈ N0,
∂β

∂ξβ
f̂(ξ) is the Fourier transform of (−i)|β|xβf(x).

(d) Let a ∈ Rn. The Fourier transform of the translated function (Taf)(x) =

f(x− a) is e−ia·ξ f̂(ξ).

(e) The Fourier transform of f(x) = e−|x|2/2 is f̂(ξ) =
(
2π
)n/2

e−|ξ|2/2.

(f)
∫
Rn f(x) g(x) d

nx =
∫
Rn f̂(ξ) ĝ(ξ)

dnξ
(2π)n

(g) The Fourier transform of the convolution h = f ∗ g is ĥ(ξ) = f̂(ξ)ĝ(ξ).

Proof. (a) is obvious.
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(b) By induction, it suffices to prove the case |β| = 1. We do so for n = 1.
By integration by parts, the Fourier transform of the first derivative f ′(x)
is ∫ ∞

−∞
e−iξxf ′(x) dx = −

∫ ∞

−∞
f(x)

(
d
dxe

−iξx) dx = iξ

∫ ∞

−∞
e−iξxf(x) dx

= iξf̂(ξ)

The boundary terms vanished because lim
x→∞

e−iξxf(x) = lim
x→−∞

e−iξxf(x) = 0.

(c) Again, by induction, it suffices to prove the case |β| = 1. Again, we do
so for n = 1.

d
dξ f̂(ξ) =

d
dξ

∫ ∞

−∞
e−iξxf(x) dx =

∫ ∞

−∞
∂
∂ξ

(
e−iξxf(x)

)
dx

=

∫ ∞

−∞
(−ix)e−iξxf(x) dx

is indeed −i times the Fourier transform of xf(x). The second equality, in
which the derivative with respect to ξ was moved past the integral sign is
justified by Problem B.7, below.

(d) is obvious — just make the change of variables x′ = x−a in the integral
defining the Fourier transform of Taf .

(e) Since the integral defining f̂(ξ) factorizes, it suffices to condsider n = 1.

By part (c) of this Theorem, ddξ f̂(ξ) is the Fourier transform of −ixf(x) =
−ixe−x2/2 = iddxe

−x2/2 = if ′(x). Thus by parts (a) and (b) of this Theorem,
d
dξ f̂(ξ) = −ξf̂(ξ) and

d
dξ

{
f̂(ξ)eξ

2/2
}
= eξ

2/2
{
d
dξ f̂(ξ) + ξf̂(ξ)

}
= 0

for all ξ ∈ R. Consequently f̂(ξ)eξ
2/2 must be some constant, independent

of ξ. Hence to determine f̂(ξ) we need only to determine the value of

that constant, which we may do by computing f̂(ξ)eξ
2/2
∣∣
ξ=0

= f̂(0). Since

f̂(0) =
∫∞
−∞ e−x

2/2 dx > 0, it is determined by

f̂(0)2 =

[ ∫ ∞

−∞
e−x

2/2 dx

]2
=

[ ∫ ∞

−∞
e−x

2/2 dx

][ ∫ ∞

−∞
e−y

2/2 dx

]

=

∫∫

R2

e−(x2+y2)/2dxdy

Changing to polar coordinates,

f̂(0)2 =

∫ ∞

0
dr r

∫ 2π

0
dθ e−r

2/2 = 2π

∫ ∞

0
dr re−r

2/2 = 2π
[
− e−r

2/2
]∞
0

= 2π
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Thus f̂(0) =
√
2π which tells us that f̂(ξ)eξ

2/2 =
√
2π and hence that

f̂(ξ) =
√
2πe−ξ

2/2 for all ξ.

(f) By the definition in (B.2a),
∫
f̂(ξ) ĝ(ξ) dnξ

(2π)n =

∫
dnξ
(2π)n

∫
dnx e−iξ·xf(x) ĝ(ξ)

=

∫
dnx

∫
dnξ
(2π)n e−iξ·xf(x) ĝ(ξ)

=

∫
dnx f(x)

[ ∫
dnξ
(2π)n eiξ·xĝ(ξ)

]
=

∫
dnx f(x) g(x)

The last equality uses Theorem B.9, below.

(g) By the definition in (B.2a) and Lemma B.4.d,

ĥ(ξ) =

∫

Rn

dnx e−iξ·xh(x) =
∫

Rn

dnx

∫

Rn

dny e−iξ·yf(y) e−iξ·(x−y)g(x− y)

=

∫

Rn

dny e−iξ·yf(y)
∫

Rn

dnx e−iξ·(x−y)g(x− y) by Fubini

=

∫

Rn

dny e−iξ·yf(y)
∫

Rn

dnx′ e−iξ·x
′
g(x′) with x′ = x− y

= f̂(ξ) ĝ(ξ)

�

Exercise B.7. Let f : (−∞,∞) × [c, d] → C be continuous. Assume that
∂f
∂y exists and is continuous and that there is a constant C such that

|f(x, y)|,
∣∣∂f
∂y (x, y)

∣∣ ≤ C
1+x2

and
∣∣∂f
∂y (x, y)−

∂f
∂y (x, y

′)
∣∣ ≤ C |y−y′|

1+x2

for all −∞ < x <∞ and c ≤ y, y′ ≤ d. Prove that g(y) =
∫∞
−∞ f(x, y) dx is

differentiable with g′(y) =
∫∞
−∞

∂f
∂y (x, y) dx.

Exercise B.8. Let f ∈ S(Rn). Set
r(x) = f(−x) c(x) = f(x)

Prove that

r̂(ξ) = ĉ(ξ) ĉ(ξ) = f̂(−ξ)
Theorem B.9. The maps

f(x) ∈ S(Rn) 7→ f̂(ξ) =

∫

Rn

e−iξ·xf(x) dnx

g(ξ) ∈ S(Rn) 7→ ǧ(x) =

∫

Rn

eiξ·xg(ξ) dnξ
(2π)n
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are one–to–one, continuous, linear maps from S(Rn) onto S(Rn) and are
inverses of each other.

Proof. That f̂ is linear in f was Theorem B.6.a.

We now assume that f ∈ S(Rn) and prove that f̂(ξ) ∈ S(Rn). For simplicity
of notation, we assume that n = 1. Let α, β be nonnegative integers. By

parts (b) and (c) of Theorem B.6 followed by the product rule, ξα d
β

dξβ
f̂(ξ) is

the Fourier transform of

(−i)α dαdxα
[
(−ix)βf(x)

]
= (−i)α+β

min{α,β}∑

ℓ=0

(
α
ℓ

)(
dℓ

dxℓ
xβ
)(

dα−ℓ

dxα−ℓ f(x)
)

= (−i)α+β
min{α,β}∑

ℓ=0

(α
ℓ

) β!
(β−ℓ)!x

β−ℓf (α−ℓ)(x)

Hence

‖f̂(ξ)‖α,β = sup
ξ∈R

∣∣ξα dβ
dξβ

f̂(ξ)
∣∣

= sup
ξ∈R

∣∣∣∣
∫ ∞

−∞
e−iξx

[min{α,β}∑

ℓ=0

(
α
ℓ

) β!
(β−ℓ)!x

β−ℓf (α−ℓ)(x)
]
dx

∣∣∣∣

≤
min{α,β}∑

ℓ=0

(α
ℓ

) β!
(β−ℓ)!

∫ ∞

−∞

∣∣xβ−ℓf (α−ℓ)(x)
∣∣dx

=

min{α,β}∑

ℓ=0

(α
ℓ

) β!
(β−ℓ)!

∫ ∞

−∞
1

1+x2

{
|x|β−ℓ + |x|β−ℓ+2

}∣∣f (α−ℓ)(x)
∣∣dx

≤
min{α,β}∑

ℓ=0

(
α
ℓ

) β!
(β−ℓ)!

{
‖f‖β−ℓ,α−ℓ + ‖f‖β−ℓ+2,α−ℓ

} ∫ ∞

−∞
1

1+x2
dx

=

min{α,β}∑

ℓ=0

π
(
α
ℓ

) β!
(β−ℓ)!

{
‖f‖β−ℓ,α−ℓ + ‖f‖β−ℓ+2,α−ℓ

}

(B.3)

Since f ∈ S(R), the right hand side is finite. The corresponding argument

for general n proves that, when f ∈ S(Rn), ‖f̂‖α,β is finite for all α, β ∈ Nn0 ,

so that f̂ ∈ S(Rn).

It also proves that the map f 7→ f̂ is continuous, since if the sequence
{fj}j∈N converges to f in S(Rn), then replacing f by f − fj in (B.3), or its

analog for general n, shows that ‖f̂ − f̂j‖α,β converges to zero as j → ∞,

for all α, β ∈ Nn0 . So {f̂j}j∈N converges to f̂ in S(R) too.
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The proof that the map g(ξ) 7→ ǧ(x) is a continuous, linear map from S(Rn)
into S(Rn) is similar.

We now assume that f(x) ∈ S(Rn) and prove that the inverse Fourier trans-

form of f̂(ξ) is f(x). In symbols, we prove that

(B.4) f(x) =

∫

Rn

eiξ·xf̂(ξ) dnξ
(2π)n

We first prove the (x = 0, n = 1) special case that

(B.5) f(0) =

∫ ∞

−∞
f̂(ξ) dξ

2π

Write

f(x) = f(0)e−x
2/2+xh(x) where h(x) =

{
1
x

(
f(x)− f(0)e−x

2/2
)

if x 6= 0

f ′(0) if x = 0

By Problem B.10, below, the function h ∈ S(R). So, by parts (e) and (c) of
Theorem B.6,

f̂(ξ) =
√
2πf(0)e−ξ

2/2 + iddξ ĥ(ξ)

and

1
2π

∫ ∞

−∞
f̂(ξ) dξ = f(0)√

2π

∫ ∞

−∞
e−ξ

2/2 dξ + i
2π

∫ ∞

−∞
d
dξ ĥ(ξ) dξ

The first term
f(0)√
2π

∫ ∞

−∞
e−ξ

2/2 dξ = f(0)

by the computation at the end of the proof of Theorem B.6.e. The second
term is i

2π times
∫ ∞

−∞
d
dξ ĥ(ξ) dξ = lim

A,B→∞

∫ B

−A
d
dξ ĥ(ξ) dξ = lim

A,B→∞

[
ĥ(B)− ĥ(−A)

]
= 0

Here we have used the fundamental theorem of calculus and the decay at
±∞ which follows from the fact that ĥ ∈ S(R), which, in turn, follows from
h ∈ S(R). This completes the proof of (B.5). The proof of the analog
of (B.5) for general n is similar. Replacing f by T−xf and using f(x) =(
T−xf

)
(0) and T̂−xf(ξ) = eiξ·xf̂(ξ) gives (B.4).

The proof that

(B.6) g(ξ) =

∫

Rn

e−iξ·xǧ(x) dnx

is similar. The formulae (B.4) and (B.6) show that the maps f(x) 7→ f̂(ξ)
and g(ξ) 7→ ǧ(x) are onto S(R) and are inverses of each other. �
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Exercise B.10. Let f ∈ S(R) and define

h(x) =

{
1
x

(
f(x)− f(0)e−x

2/2
)

if x 6= 0

f ′(0) if x = 0

Prove that h ∈ S(R).
Theorem B.11. The Fourier transform (B.2a) has a unique continuous
extension to L2(Rn). The inverse Fourier transform (B.2b) has unique con-
tinuous extension to L2(Rn). The two extensions are inverses of each other.

Proof. This is an immediate consequence of the B.L.T. Theorem A.41,
Theorem B.9, Theorem B.6.f (which implies that the Fourier and inverse
Fourier tranforms are bounded operators with respect to the L2(Rn) norm)
and a simple extension of Problem A.14 (which implies that S(Rn) is dense
in L2(Rn)). �

Lemma B.12 (the Riemann–Lebesgue lemma). The Fourier transform
(B.2a) extends uniquely to a bounded map from L1(Rn) to C∞(Rn), the
space of continuous functions on Rn that vanish at infinity.

Proof. By Theorem B.9, the Fourier transform maps S(Rn), which is dense
in L1(Rn) (by a simple extension of Problem A.14), into S(Rn) ⊂ C∞(Rn).
It now suffices to observe that

‖f̂‖L∞(Rn) ≤ ‖f‖L1(Rn)

and apply the B.L.T. Theorem A.41. �

Exercise B.13. The goal of this problem is to prove the Paley–Wiener
theorem, which says that a function f is C∞ and supported in the closed
ball B̄R =

{
x ∈ Rn

∣∣ |x| ≤ R
}
if and only if f̂(ξ) extends to a holomorphic

function on Cn which obeys

(B.7)
∣∣f̂(ξ)

∣∣ ≤ CN

1+|ξ|2N e
R| Im ξ| for all N ∈ N

(a) Let f ∈ C∞
0 (Rn) be supported in B̄R. Prove that f̂(ξ) extends to a

holomorphic function on Cn and that, for each N ∈ N, there is a constant
CN such that (B.7) holds.

(b) Assume that the Fourier transform f̂(ξ) of a function f(x) extends to a
holomorphic function on Cn and that, for each N ∈ N, there is a constant
CN such that (B.7) holds. Let η ∈ Rn. Prove that

f(x) = e−η·x
∫
eiξ·xf̂(ξ + iη) dnξ

(2π)n

(c) Prove that, under the hypotheses of part (b), f(x) is supported in B̄R.
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B.3. Tempered Distributions

The theory of tempered distributions allows us to give a rigorous meaning
to the Dirac delta function. It is “defined”, on a handwaving level, by the
properties that

(1) δ(x) = 0 except when x = 0

(2) δ(0) is “so infinite” that

(3) the area under its graph is one.

Still on a handwaving level, if f is any continuous function, then the func-
tions f(x)δ(x) and f(0)δ(x) are the same since they are both zero for every
x 6= 0. Consequently

(B.8)

∫ ∞

−∞
f(x)δ(x) dx =

∫ ∞

−∞
f(0)δ(x) dx = f(0)

∫ ∞

−∞
δ(x) dx = f(0)

That
∫∞
−∞ f(x)δ(x) dx = f(0) is by far the most important property of the

Dirac delta function. But there is no Riemann integrable function δ(x) that
satisfies (B.8).

Exercise B.14. Prove that there is no Riemann integrable function δ(x)
that satisfies (B.8).

The basic idea which allows us to make make rigorous sense of (B.8)
is to generalize the meaning of “a function on R”. We shall call the gen-
eralization a “tempered distribution on R”. Of course a function on R, in
the conventional sense, is a rule which assigns a number to each x ∈ R.
A tempered distribution will be a rule which assigns a number to each nice
function on R. We will associate to the conventional function f : R → C

the tempered distribution which assigns to the nice function ϕ(x) the num-
ber

∫∞
−∞ f(x)ϕ(x) dx. The tempered distribution which corresponds to the

Dirac delta function will assign to ϕ(x) the number ϕ(0). The space of “nice
functions” used by tempered distributions is the Schwartz space of Definition
B.1.

Definition B.15 (Tempered Distributions). The space of all tempered dis-
tributions on Rn, denoted S ′(Rn), is the dual space of S(Rn). That is, it is
the set of all functions

f : S(Rn) → C

that are linear and continuous. One usually denotes by 〈f, ϕ〉 the value in
C that the distribution f ∈ S ′(R) assigns to ϕ ∈ S(Rn). In this notation,

◦ that f is linear means that 〈f, aϕ+ bψ〉 = a 〈f, ϕ〉+ b 〈f, ψ〉 for all ϕ,ψ ∈
S(Rn) and all a, b ∈ C.
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◦ that f is continuous means that if ϕ = lim
n→∞

ϕn in S(Rn), then 〈f, ϕ〉 =

lim
n→∞

〈f, ϕn〉.

Example B.16. (a) Here is the motivating example for the whole subject.
Let f : Rn → C be any function that is polynomially bounded (that is, there
is a polynomial P (x) such that |f(x)| ≤ P (x) for all x ∈ Rn) and that is
Riemann integrable on [−M,M ]n for each M > 0. Then

f : ϕ ∈ S(Rn) 7→ 〈f, ϕ〉 =
∫

Rn

f(x)ϕ(x) dnx

is a tempered distribution. The integral converges because every ϕ ∈ S(Rn)
decays faster at infinity than one over any polynomial. See Problem B.17,
below. The linearity in ϕ of 〈f, ϕ〉 is obvious. The continuity in ϕ of 〈f, ϕ〉
follows easily from Problem B.17 (generalized to Rn) and Theorem B.18,
below.

(b) The Dirac delta function, on R, and more generally the Dirac delta
function translated to b ∈ R, are defined as tempered distributions by

〈δ, ϕ〉 = ϕ(0) 〈δb, ϕ〉 = ϕ(b)

Once again, the linearity in ϕ is obvious and the continuity in ϕ is easily
verified if one applies Theorem B.18.

(c) The derivative of the Dirac delta function δb is defined by
〈
δ′b, ϕ

〉
= −ϕ′(b)

The reason for the name “derivative of the Dirac delta function” will be
given in the section on differentiation, later. See Definition B.21.

(d) The principal value of 1
x , with x running over R, is defined by

〈
P 1
x , ϕ

〉
= lim

ε→0+

∫

|x|>ε

ϕ(x)
x dx

The first thing that we have to do is verify that the limit above actually

exists. This is not a trivial statement, because not only is ϕ(x)
x not integrable

on [−1, 1] if ϕ(0) 6= 0 (because, for x near zero, ϕ(x)
x ≈ ϕ(0)

x ), but
∫ 1
0

1
xdx

and
∫ 0
−1

1
x dx do not even exist as improper integrals:

∫ 1

0

1
x dx = lim

ε→0+

∫ 1

ε

1
x dx = lim

ε→0+
ln 1

ε = ∞
∫ 0

−1

1
x dx = lim

ε→0+

∫ −ε

−1

1
x dx= lim

ε→0+
ln ε = −∞
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Here is the verification that the limit defining
〈
P 1
x , ϕ

〉
exists

lim
ε→0+

∫

|x|>ε

ϕ(x)
x dx = lim

ε→0+
M,M′→∞

{∫ M

ε

ϕ(x)
x dx+

∫ −ε

−M ′

ϕ(x)
x dx

}

= lim
ε→0+

M,M′→∞

{∫ 1

ε

ϕ(x)
x dx+

∫ M

1

ϕ(x)
x dx+

∫ −1

−M ′

ϕ(x)
x dx+

∫ −ε

−1

ϕ(x)
x dx

}

= lim
ε→0+

M,M′→∞

{∫ 1

ε

ϕ(x)−ϕ(−x)
x dx+

∫ M

1

ϕ(x)
x dx+

∫ −1

−M ′

ϕ(x)
x dx

}

The first integral converges because, by the mean value theorem, we have,
for some c between x and −x,

∣∣∣ϕ(x)−ϕ(−x)x

∣∣∣ =
∣∣∣ϕ

′(c) 2x
x

∣∣∣ ≤ 2‖ϕ‖0,1

The second and third integrals converge because, for |x| ≥ 1
∣∣∣ϕ(x)x

∣∣∣ ≤ 1
x2
|xϕ(x)| ≤ 1

x2
‖ϕ‖1,0

These bounds give both that
〈
P 1
x , ϕ

〉
is well–defined and

∣∣ 〈P 1
x , ϕ

〉 ∣∣ ≤ 2‖ϕ‖0,1
∫ 1

0
dx+ ‖ϕ‖1,0

∫ ∞

1

1
x2
dx+ ‖ϕ‖1,0

∫ −1

−∞
1
x2
dx

= 2‖ϕ‖0,1 + 2‖ϕ‖1,0

Linearity is again obvious. Continuity again follows by Theorem B.18, be-
low.

Exercise B.17. Let f : R → C be Riemann integrable on [−M,M ] for all
M > 0 and obey the bound |f(x)| ≤ P (x) for all x ∈ R, where P (x) is the

polynomial P (x) =
∑N+

m=N−
amx

m and N± are nonnegative integers.

(a) Prove that there is a constant C > 0 such that

|f(x)|(1 + x2) ≤ C
(
|x|N− + |x|N++2

)

for all x ∈ R.

(b) Prove that

∫ ∞

−∞
|f(x)ϕ(x)| dx ≤ πC

(
‖ϕ‖N−,0 + ‖ϕ‖N++2,0

)

for all ϕ ∈ S(R).
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Theorem B.18 (Continuity Test). A linear map

f : ϕ ∈ S(Rn) 7→ 〈f, ϕ〉 ∈ C

is continuous if and only if there are constants C > 0 and N ∈ N such that
∣∣ 〈f, ϕ〉

∣∣ ≤ C
∑

α,β∈Nn
0

|α|,|β|≤N

‖ϕ‖α,β

Proof. ⇐ : Assume that
∣∣ 〈f, ϕ〉

∣∣ ≤ C
∑

α,β∈Nn0
|α|,|β|≤N

‖ϕ‖α,β and that the sequence

{
ϕk
}
k∈N converges to ϕ in S(Rn). Then
∣∣ 〈f, ϕ〉 − 〈f, ϕk〉

∣∣ =
∣∣ 〈f, ϕ− ϕk〉

∣∣ ≤ C
∑

α,β∈Nn0
|α|,|β|≤N

‖ϕ− ϕk‖α,β

converges to zero as k → ∞. So f is continuous.

⇒ : Assume that f ∈ S ′(Rn). In particular f is continuous at ϕ = 0. Then
there is a δ > 0 such that

d(ψ, 0) < δ =⇒
∣∣ 〈f, ψ〉

∣∣ < 1

Choose N so that
∑

α,β∈Nn0
|α| or |β|>N

2−|α|−|β| < δ
2 and consider any ψ ∈ S(Rn) that

obeys ∑

α,β∈Nn0
|α|,|β|≤N

‖ψ‖α,β ≤ δ
2

For any such ψ we have

d(ψ, 0) =
∑

α,β∈Nn
0

2−|α|−|β| ‖ψ‖α,β

1+‖ψ‖α,β
≤

∑

α,β∈Nn
0

|α|,|β|≤N

‖ψ‖α,β +
∑

α,β∈Nn
0

|α| or |β|>N

2−|α|−|β|

=⇒ d(ψ, 0) < δ

=⇒
∣∣ 〈f, ψ〉

∣∣ < 1

Consequently, for any 0 6= ϕ ∈ S(Rn), setting

ψ = δ
2

[ ∑

α′,β′∈Nn
0

|α′|,|β′|≤N

‖ϕ‖α′,β′

]−1

ϕ

we have

∑

α,β∈Nn0
|α|,|β|≤N

‖ψ‖α,β =
∑

α,β∈Nn0
|α|,|β|≤N

δ
2

[ ∑

α′,β′∈Nn
0

|α′|,|β′|≤N

‖ϕ‖α′,β′

]−1

‖ϕ‖α,β = δ
2
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and hence

∣∣ 〈f, ϕ〉
∣∣ = 2

δ

[ ∑

α′,β′∈Nn
0

|α′|,|β′|≤N

‖ϕ‖α′,β′

] ∣∣ 〈f, ψ〉
∣∣ < 2

δ

∑

α,β∈Nn
0

|α|,|β|≤N

‖ϕ‖α,β

as desired. �

B.4. Operations on Tempered Distributions

We now define a number of operations like, for example, addition and dif-
ferentiation, on tempered distributions. The motivation for all of these def-
initions comes from Example B.16.a with f ∈ S(Rn). Then we can view
f both as a conventional function and as a tempered distribution. We will
define each operation in such a way that when it is applied to f ∈ S(Rn),
viewed as a distribution, it yields the same answer as when the operation is
applied to f viewed as an ordinary function, with the result viewed as a dis-
tribution. As a trivial example, suppose that we wish to define multiplication
by 7. If f ∈ S(Rn) is viewed as an ordinary function, applying the operation
of multiplication by 7 to it gives the ordinary function 7f . But 7f can again
be viewed as the distribution 〈7f, ϕ〉 =

∫
7f(x)ϕ(x) dnx = 7 〈f, ϕ〉. So we

would define the operation of multiplication by 7 applied to any distribution
f as the distribution 7f defined by 〈7f, ϕ〉 = 7 〈f, ϕ〉.

Addition and Scalar Multiplication.

Motivation. If f, g ∈ S(Rn) and a, b ∈ C, then

∫

Rn

[
af(x) + bg(x)

]
ϕ(x) dnx = a

∫

Rn

f(x)ϕ(x) dnx+ b

∫

Rn

g(x)ϕ(x) dnx

= a 〈f, ϕ〉+ b 〈g, ϕ〉

Definition B.19. If f, g ∈ S ′(Rn) and a, b ∈ C, then define af+bg ∈ S ′(Rn)
by

〈af + bg, ϕ〉 = a 〈f, ϕ〉+ b 〈g, ϕ〉

Theorem B.20. If f, g ∈ S ′(Rn) and a, b ∈ C, then af + bg, defined above,
is a well–defined element of S ′(Rn). The operations of addition and scalar
multiplication so defined obey the usual vector space axioms of Definition
A.1.

Proof. Trivial. �
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Differentiation.

Motivation. If f ∈ S(R), then, by integration by parts,
∫ ∞

−∞
f ′(x)ϕ(x) dx = −

∫ ∞

−∞
f(x)ϕ′(x) dx (the boundary terms vanish)

More generally, if f ∈ S(Rn), and γ ∈ Nn0 ,∫

Rn

(∂γf)(x)ϕ(x) dnx = (−1)|γ|
∫

Rn

f(x) (∂γϕ)(x) dnx

Definition B.21. If γ ∈ Nn0 , we define the γth derivative of f ∈ S ′(Rn) by
〈
∂γf, ϕ

〉
= (−1)|γ|

〈
f, ∂γϕ

〉

Since ‖∂γϕ‖α,β = ‖ϕ‖α,β+γ the right hand side gives a well–defined element
of S ′(Rn).

Remark B.22. Note that every derivative of every distribution always ex-
ists.

Example B.23. The Heavyside unit function

H(x) =

{
1 if x ≥ 0

0 if x < 0

(on R) may also be viewed as the tempered distribution

〈H,ϕ〉 =
∫ ∞

0
ϕ(x) dx

(in S ′(R)) via Example B.16.a. The derivative of this distribution is

〈
H ′, ϕ

〉
= −

〈
H,ϕ′〉 = −

∫ ∞

0
ϕ′(x) dx = −

[
ϕ(x)

]∞
0

= ϕ(0) = 〈δ, ϕ〉

Thus H ′ is the Dirac delta function.

Fourier Transform.

Motivation. If f and ϕ are both in S(Rn), then, writing ϕ(ξ) = ψ(ξ)

〈
f̂ , ϕ

〉
=

∫

Rn

f̂(ξ)ϕ(ξ) dnξ =

∫

Rn

f̂(ξ)ψ(ξ) dnξ

= (2π)n
∫

Rn

f(x)ψ̌(x) dnx (by Theorem B.6.f and Theorem B.9)

=

∫

Rn

f(x)ϕ̂(x) dnx

since

ψ̌(x) =

∫

Rn

eiξ·xψ(ξ) dnξ
(2π)n =

∫

Rn

e−iξ·xψ(ξ) dnξ
(2π)n =

∫

Rn

e−iξ·xϕ(ξ) dnξ
(2π)n

= 1
(2π)n ϕ̂(x)
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Definition B.24. The Fourier transform of f ∈ S ′(Rn) is the tempered
distribution defined by 〈

f̂ , ϕ
〉
=
〈
f, ϕ̂

〉

It is well–defined by Theorem B.9.

Example B.25. The Fourier transform of the Dirac delta function is given
by

〈
δ̂, ϕ
〉
= 〈δ, ϕ̂〉 = ϕ̂(0) =

∫ ∞

−∞
ϕ(x) dx = 〈1, ϕ〉

That is, δ̂ is the constant function 1.

Example B.26. The Fourier transform of the constant function 1, viewed
as a tempered distribution, is

〈
1̂, ϕ

〉
= 〈1, ϕ̂〉 =

∫ ∞

−∞
ϕ̂(ξ) dξ = 2πϕ(0)

by (B.5). That is, the Fourier transform of the constant function 1 is 2πδ(ξ).
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