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INVISIBILITY AND INVERSE PROBLEMS

ALLAN GREENLEAF, YAROSLAV KURYLEV, MATTI LASSAS,
AND GUNTHER UHLMANN

Abstract. We describe recent theoretical and experimental progress on mak-
ing objects invisible. Ideas for devices that would have once seemed fanciful
may now be at least approximately realized physically, using a new class of
artificially structured materials, metamaterials. The equations that govern a
variety of wave phenomena, including electrostatics, electromagnetism, acous-
tics and quantum mechanics, have transformation laws under changes of vari-
ables which allow one to design material parameters that steer waves around a
hidden region, returning them to their original path on the far side. Not only
are observers unaware of the contents of the hidden region, they are not even

aware that something is being hidden; the object, which casts no shadow, is
said to be cloaked. Proposals for, and even experimental implementations of,
such cloaking devices have received the most attention, but other devices hav-
ing striking effects on wave propagation, unseen in nature, are also possible.
These designs are initially based on the transformation laws of the relevant
PDEs, but due to the singular transformations needed for the desired effects,
care needs to be taken in formulating and analyzing physically meaningful so-
lutions. We recount the recent history of the subject and discuss some of the
mathematical and physical issues involved.

1. Introduction

Invisibility has been a subject of human fascination for millennia, from the Greek
legend of Perseus versus Medusa to the more recent The Invisible Man and Harry
Potter. Over the years, there have been occasional scientific prescriptions for in-
visibility in various settings, e.g., [57, 11]. However, since 2005 there has been a
wave of serious theoretical proposals [4, 84, 80, 74, 94] in the physics literature,
and a widely reported experiment by Schurig et al. [100], for cloaking devices—
structures that would not only make an object invisible but also undetectable to
electromagnetic waves, thus making it cloaked. The particular route to cloaking
that has received the most attention is that of transformation optics [117], the
design of optical devices with customized effects on wave propagation, made possi-
ble by taking advantage of the transformation rules for the material properties of
optics: the index of refraction n(x) for scalar optics, governed by the Helmholtz
equation, and the electrical permittivity ε(x) and magnetic permeability µ(x) for
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vector optics, as described by Maxwell’s equations. It is this approach to cloaking,
and other novel effects on wave propagation, that we will examine here.

As it happens, two papers appeared in the same 2006 issue of Science with
transformation optics-based proposals for cloaking. Leonhardt [74] gave a descrip-
tion, based on conformal mapping, of inhomogeneous indices of refraction n in two
dimensions that would cause light rays to go around a region and emerge on the
other side as if they had passed through empty space (for which n(x) ≡ 1). On the
other hand, Pendry, Schurig and Smith [94] gave a prescription for values of ε and µ
yielding a cloaking device for electromagnetic waves, based on the fact that ε and µ
transform nicely under changes of variables, cf. (25). In fact, this construction used
the same singular transformation (6) as had been used three years earlier [45, 46]
to describe examples of nondetectability in the context of Calderón’s problem for
conductivity, which transforms in the same way as ε and µ.

We briefly outline here the basic ideas of transformation optics, in the context
of electrostatics, leading to a theoretical blueprint of a conductivity that cloaks
an object from observation using electrostatic measurements [45, 46]. Given that
the invariance of the underlying equation is a crucial ingredient of transformation
optics, it is natural to set Calderón’s problem on a compact Riemannian manifold
with boundary, (M, g) with g the Riemannian metric and boundary ∂M where the
observations are made. The Laplace-Beltrami operator associated to g is given in
local coordinates by

(1) ∆gu =
1√
|g|

n∑
i,j=1

∂

∂xi

(√
|g|gij ∂u

∂xj

)
,

where (gij) is the matrix inverse of the metric tensor (gij) and |g| = det g. Let us
consider the Dirichlet problem associated to (1),

(2) ∆gu = 0 on M, u|∂M = f.

We define the Dirichlet-to-Neumann (DN) map in this case by

Λg(f) =
n∑

i,j=1

(
νig

ij
√
|g| ∂u

∂xj

)∣∣∣∣
∂M

,(3)

where ν denotes the unit-outer normal. Calderón’s (inverse) problem, the question
of whether one can recover g from Λg, has been the subject of a tremendous amount
of work over the last quarter century. In Section 2, we briefly summarize the history
and current status of this problem.

Given the invariant formulation of the DN map, it is straightforward to see that

(4) Λψ∗g = Λg

for any C∞ diffeomorphism ψ of M which is the identity on the boundary. As usual,
ψ∗g denotes the pullback of the metric g by the diffeomorphism ψ. For domains
in Euclidean space of dimension n ≥ 3, the metric g corresponds to an anisotropic
conductivity σ, represented by the symmetric matrix-valued function

(5) σij = |g|1/2gij .

The DN map sends the voltage potential at the boundary to the induced current
flux.
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F1

Figure 1. Map F1 : B(0, 2) \ {0} → B(0, 2) \ B(0, 1)

The invariance (4) can be considered as a weak form of invisibility. However,
although the (generally distinct) media represented by g and ψ∗g are indistinguish-
able by boundary observations, nothing has yet been hidden. In cloaking, we are
looking for a way to hide from boundary measurements both an object enclosed in
some domain D and the fact that it is being hidden. Suppose now that an object
we want to cloak is enclosed in the ball of radius one, B(0, 1), and that we measure
the DN map on the boundary of the the ball of radius two, B(0, 2) (see Figure 1).
Motivated by degenerations of singular Riemannian manifolds (see Section 3), con-
sider the following singular transformation stretching (or “blowing up”) the origin
to the ball B(0, 1):

F1 : B(0, 2) \ {0} → B(0, 2) \ B(0, 1),(6)

F1(x) = (
|x|
2

+ 1)
x

|x| , 0 < |x| < 2.

Also note that the metric g̃ = (F1)∗g0, where (F1)∗ = (F−1
1 )∗ and g0 is the

Euclidean metric, is singular on the unit sphere Sn−1, the interface between the
cloaked and uncloaked regions, which we call the cloaking surface. In fact, the
conductivity σ̃ associated to this metric by equation (5) has zero and/or infinite
eigenvalues (depending on the dimension) as r ↘ 1. In R3, σ̃ is given in spherical
coordinates (r, φ, θ) �→ (r sin θ cos φ, r sin θ sin φ, r cos θ) by

(7) σ̃ =

⎛⎝ 2(r − 1)2 sin θ 0 0
0 2 sin θ 0
0 0 2(sin θ)−1

⎞⎠ , 1 < r = |x| ≤ 2.

Note that σ̃ is singular (degenerate) on the sphere of radius 1 in the sense that it
is not bounded from below by any positive multiple of the identity matrix I. (See
[63] for a similar calculation.)

The currents associated to this singular conductivity on B(0, 2) \ B(0, 1) are
shown in Figure 2. No currents originating at ∂B(0, 2) have access to the region
B(0, 1), so that (heuristically) if the conductivity is changed in B(0, 1), the mea-
surements on the boundary ∂B(0, 2) do not change. Any object in B(0, 1) is both
unaffected and undetectable by currents from the outside. Moreover, all voltage-to-
current measurements made on ∂B(0, 2) give the same results as the measurements
on the surface of a ball filled with homogeneous, isotropic material. The object is
said to be cloaked, and the structure on B(0, 2) \ B(0, 1) producing this effect is
said to be a cloaking device.
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Figure 2. Analytic solutions for the currents

However, this intuition needs to be supported by rigorous analysis of the solutions
on the entire region B(0, 2). If we consider a singular metric g̃ defined by (F1)∗(g0)
on B(0, 2)\B(0, 1), an arbitrary positive-definite symmetric metric on B(0, 1), and
H1(B(0, 2)) smooth solutions of the conductivity equation, it was shown in [45, 46]
that, for n ≥ 3, the following theorem holds.

Theorem 1.1. Λg̃ = Λg0 .

In other words the boundary observations for the singular metric g̃ are the same
as the boundary observations for the Euclidean metric; thus, any object in B(0, 1)
is invisible to electrostatic measurements. We remark here that the measurements
of the DN map or “near field” are equivalent to scattering or “far field” information
[12]. Also, see [63] for the planar case, n = 2.

In the proof of Theorem 1.1 one has to pay special attention to what is meant by
a solution of the Laplace-Beltrami equation (2) with singular coefficients. In [45, 46]
we considered functions that are bounded and in the Sobolev space H1(B(0, 2)),
and are solutions in the sense of distributions. Later, we will also consider more
general solutions.

The proof of Theorem 1.1 has two ingredients, which are also the main ideas
behind transformation optics:

• The invariance of the equation under transformations, i.e., identity (4).
• A (quite standard) removable singularities theorem: points are removable

singularities of bounded harmonic functions.
The second point implies that bounded solutions of the Laplace-Beltrami equa-

tion with the singular metric indicated above on the annulus B(0, 2) \ B(0, 1) are
equivalent to bounded harmonic functions on the whole ball B(0, 2). This shows
that any H1 solution u to the equation (1) is constant on the ball of radius 1 with
the constant the value of the corresponding harmonic function v(0) with v = u◦F1.
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The 2003 papers [45, 46] were intended to give counterexamples to uniqueness
in Calderón’s problem when anisotropic conductivity is allowed to be only positive
semi-definite. In the summer of 2006, Bob Kohn called our attention to the paper
[94] where the same transformation F1 was used to propose cloaking for Maxwell’s
equations, justified by the analogue of (4). In fact the electrical permittivity and
magnetic permeability in the blueprint for a cloaking device given in [94] are

(8) (ε̃ij) = (µ̃ij) = (|g̃|1/2g̃ij)

with g̃ = (F1)∗g0. The proposal of [74] (appearing in the same issue of Science!)
uses a different construction in two dimensions with an analysis of the behavior
of the light rays but not the electromagnetic waves. The argument of [94] is only
valid outside the cloaked region; it does not take into account the behavior of
the waves on the entire region, including the cloaked region and its boundary, the
cloaking surface. In fact, the sequel [27], which gave numerical simulations of the
electromagnetic waves in the presence of a cloak, states, “Whether perfect cloaking
is achievable, even in theory, is also an open question.” In [36] we established that
perfect cloaking is indeed mathematically possible at any fixed frequency.

Before we discuss the paper [36] and other developments, we would like to point
out that it is still an open question whether visual cloaking is feasible in practice,
i.e., whether one can realize such theoretical blueprints for cloaking over all, or
some large portion of, the visible spectrum. The main experimental evidence has
been at microwave frequencies [100], with a limited version at a visible frequency
[105]. While significant progress has been made in the design and fabrication of
metamaterials, including recently for visible light [79, 103], metamaterials are nev-
ertheless very dispersive and one expects them to work only for a narrow range of
frequencies. Even theoretically, one can unfortunately not expect to actually cloak
electromagnetically at all frequencies, since the group velocity cannot be faster than
the velocity of light in a vacuum.

In [36], Theorem 1.1 was extended to the Helmholtz equation, which models
scalar optics (and acoustic waves [23, 29] and quantum waves under some con-
ditions [126]), and Maxwell’s equations, corresponding to invisibility for general
electromagnetic waves. The case of acoustic or electromagnetic sources inside and
outside the cloaked region, leading to serious obstacles to cloaking for Maxwell’s
equations, was also treated.

In Section 4.3, we consider acoustic cloaking, i.e., cloaking for the Helmholtz
equation at any nonzero frequency with an acoustic source ρ,

(9) (∆g + k2)u = ρ, in B(0, 2) .

Physically, the anisotropic density is given by |g|1/2gij and the bulk modulus by
|g|1/2.

For acoustic cloaking, even with acoustic sources inside B(0, 1), we consider the
same singular metric considered for electrostatics. However, we need to change the
notion of a solution, since for a generic frequency an H1(B(0, 2))-smooth solution
of the Helmholtz equation cannot simultaneously satisfy a homogeneous Neumann
condition on the surface of the cloaked region [36, Thm. 3.5] and have a Dirichlet
boundary value that is a nonzero constant. We change the notion of solution for the
Helmholtz equation to a finite energy solution (see Section 4.3). The key ingredient
of the rigorous justification of transformation optics is then a removable singularities
theorem for the Laplacian on H1(B(0, 2) \ 0).
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In Section 4.4 we consider the case of Maxwell’s equations. In the absence of
internal currents, the construction of [45, 46], called the single coating in [36], still
works once one makes an appropriate definition of finite energy solutions. However,
cloaking using this construction fails in the presence of sources within the cloaked
region, i.e., for cloaking of active objects, due to the nonexistence of finite energy,
distributional solutions. This problem can be avoided by augmenting the external
metamaterial layer with an appropriately matched internal one in D; this is called
the double coating ; see Section 4.4.

In Section 5 we consider another type of transformation optics-based device, an
electromagnetic wormhole. The idea is to create a secret connection between two
points in space so that only the incoming and the outgoing waves are visible. One
tricks the electromagnetic waves to behave as though they were propagating on a
handlebody, giving the impression that the topology of space has been changed.
Moreover, one can manipulate the rays travelling inside the handle to obtain var-
ious additional optical effects; see Figure 3. Mathematically this is accomplished
by using the single coating construction with special boundary conditions on the
cloaking surface. The main difference is that, instead of a point, we blow up a curve,
which in dimension 3 or higher is also an H1 removable singularity for solutions of
Maxwell’s equations.

Both the anisotropy and singularity of the cloaking devices present serious chal-
lenges in trying to physically realize such theoretical plans using metamaterials. In
Section 7, we give a general method, isotropic transformation optics, for dealing
with both of these problems. We describe it in some detail in the context of cloak-
ing, but it should be applicable to a wider range of transformation optics-based
designs.

A well-known phenomenon in effective medium theory is that homogenization
of isotropic material parameters may lead, in the small-scale limit, to anisotropic
ones [82]. Using ideas from [2, 26] and elsewhere, we showed in [41, 42, 43] how to
exploit this to find cloaking material parameters that are at once both isotropic and

Figure 3. An electromagnetic wormhole is obtained by blowing
up a metric near a curve. This corresponds to ε and µ on the
exterior of a thickened cylinder causing electromagnetic waves to
propagate as if a handle were attached to Euclidean space. Behav-
ior of light rays: Left: Rays travelling outside wormhole; Right:
A ray transiting wormhole.
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nonsingular, at the price of replacing perfect cloaking with approximate cloaking of
arbitrary accuracy. This method, starting with transformation optics-based designs
and constructing approximations to them, first by nonsingular, but still anisotropic,
material parameters, and then by nonsingular isotropic parameters, seems to be
a very flexible tool for creating physically realistic designs, easier to implement
than the ideal ones due to the relatively tame nature of the materials needed, yet
essentially capturing the desired effect on waves for all practical purposes.

In Section 8 we consider some further developments and open problems.

2. Visibility for electrostatics:

Calderón’s problem

Calderón’s inverse conductivity problem, which forms the mathematical foun-
dation of electrical impedance tomography (EIT), is the question of whether an
unknown conductivity distribution inside a domain in Rn, modelling, e.g., the
Earth, a human thorax, or a manufactured part, can be determined from volt-
age and current measurements made on the boundary. A.P. Calderón’s motivation
for proposing this problem was geophysical prospection. In the 1940’s, before his
distinguished career as a mathematician, Calderón was an engineer working for the
Argentinian state oil company. Apparently, Calderón had already at that time for-
mulated the problem that now bears his name, but he did not publicize this work
until thirty years later [19].

One widely studied potential application of EIT is the early diagnosis of breast
cancer [25]. The conductivity of a malignant breast tumor is typically 0.2 mho,
significantly higher than normal tissue, which has been typically measured at 0.03
mho. See the book [50] and the special issue of Physiological Measurement [52] for
applications of EIT to medical imaging and other fields, and [13] for a review.

For isotropic conductivities this problem can be mathematically formulated as
follows. Let Ω be the measurement domain, and denote by σ(x) the coefficient,

Figure 4. Left: An EIT measurement configuration for imag-
ing objects in a tank. The electrodes used for measurements
are at the boundary of the tank, which is filled with a con-
ductive liquid. Right: A reconstruction of the conductiv-
ity inside the tank obtained using boundary measurements.
[Jari Kaipio, Univ. of Kuopio, Finland; by permission.]
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bounded from above and below by positive constants, describing the electrical con-
ductivity in Ω. In Ω the voltage potential u satisfies a divergence form equation,

(10) ∇ · σ∇u = 0.

To uniquely fix the solution u it is enough to give its value, f , on the boundary.
In the idealized case, one measures, for all voltage distributions u|∂Ω = f on the
boundary the corresponding current fluxes, ν·σ∇u, over the entire boundary, where
ν is the exterior unit normal to ∂Ω. Mathematically, this amounts to the knowledge
of the Dirichlet-to-Neumann (DN) map, Λσ, corresponding to σ, i.e., the map
taking the Dirichlet boundary values of the solution to (10) to the corresponding
Neumann boundary values,

(11) Λσ : u|∂Ω �→ ν·σ∇u|∂Ω.

Calderón’s inverse problem is then to reconstruct σ from Λσ.
In the following subsections, we give a brief overview of the positive results known

for Calderón’s problem and related inverse problems.
A basic distinction, important for understanding cloaking, is between isotropic

conductivities, which are scalar-valued, and anisotropic conductivities, which are
symmetric matrix- or tensor-valued, modelling situations where the conductivity
depends on both position and direction. Of course, an isotropic σ(x) can be con-
sidered as anisotropic by identifying it with σ(x)In×n.

Unique determination of an isotropic conductivity from the DN map was shown
in dimension n > 2 for C2 conductivities in [109]. At the writing of the current
paper, this result has been extended to conductivities having 3

2 derivatives in [14]
and [93]. In two dimensions the first unique identifiability result was proven in [86]
for C2 conductivities. This was improved to Lipschitz conductivities in [15] and
to merely L∞ conductivities in [5]. All of these results use complex geometrical
optics (CGO) solutions, the construction of which we review in Section 2.1. We
briefly discuss in Section 2.2 shielding, a less satisfactory variant of cloaking which
is possible using highly singular isotropic materials.

In Section 2.3 we discuss the case of anisotropic conductivities, i.e., conductiv-
ities that may vary not only with location but also on the direction. In this case,
the problem is invariant under changes of variables that are the identity at the
boundary. We review the positive results that are known about the Calderón prob-
lem in this setting. The fact that the anisotropic conductivity equation is invariant
under transformations plays a crucial role on the constructions of electromagnetic
parameters that make objects invisible. But for those one needs to make a final
leap to using singular transformations.

2.1. Complex geometrical optics solutions. In this section, we consider iso-
tropic conductivities. If u is a solution of (10) with boundary data f , the divergence
theorem gives that

(12) Qσ(f) :=
∫

Ω

σ|∇u|2 dx =
∫

∂Ω

Λσ(f)f dS,

where dS denotes surface measure. In other words Qσ(f) is the quadratic form
associated to the linear map Λσ(f), i.e., to know Λσ(f) or Qσ(f) for all f ∈ H

1
2 (∂Ω)

is equivalent. The form Qσ(f) measures the energy needed to maintain the potential
f at the boundary. Calderón’s point of view in order to determine σ in Ω was to
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find enough solutions u ∈ H1(Ω) of the conductivity equation div(σ∇u) = 0 so
that the functions |∇u|2 span a dense set (in an appropriate topology). Notice that
the DN map (or Qσ) depends nonlinearly on σ. Calderón considered the linearized
problem at a constant conductivity. A crucial ingredient in his approach is the use
of the harmonic complex exponential solutions:

(13) u = ex·ρ, where ρ ∈ C
n with ρ · ρ = 0.

Sylvester and Uhlmann [109] constructed in dimension n ≥ 2 complex geomet-
rical optics (CGO) solutions of the conductivity equation for C2 conductivities
similar to Calderón’s. This can be reduced to constructing solutions in the whole
space (by extending σ = 1 outside a large ball containing Ω) for the Schrödinger
equation with potential. We describe this more precisely below.

Let σ ∈ C2(Rn), σ strictly positive in Rn and σ = 1 for |x| ≥ R, for some R > 0.
Let Lσu = ∇ · σ∇u. Then we have

(14) σ− 1
2 Lσ

(
σ− 1

2 v
)

= (∆ − q)v,

where

(15) q =
∆
√

σ√
σ

.

Therefore, to construct solutions of Lσu = 0 in Rn it is enough to construct solutions
of the Schrödinger equation (∆ − q)v = 0 with q of the form (15). The next
result proven in [109] states the existence of complex geometrical optics solutions
for the Schrödinger equation associated to any bounded and compactly supported
potential.

Theorem 2.1. Let q ∈ L∞(Rn), n ≥ 2, with q(x) = 0 for |x| ≥ R > 0. Let
−1 < δ < 0. There exists ε(δ) and such that for every ρ ∈ Cn satisfying

ρ · ρ = 0

and
‖(1 + |x|2)1/2q‖L∞(Rn) + 1

|ρ| ≤ ε,

there exists a unique solution to

(∆ − q)v = 0

of the form

(16) v = ex·ρ(1 + ψq(x, ρ))

with ψq(·, ρ) ∈ L2
δ(R

n). Moreover, ψq(·, ρ) ∈ H2
δ (Rn) and, for 0 ≤ s ≤ 1, there

exists C = C(n, s, δ) > 0 such that

(17) ‖ψq(·, ρ)‖Hs
δ
≤ C

|ρ|1−s
.

Here
L2

δ(R
n) = {f ;

∫
(1 + |x|2)δ|f(x)|2dx < ∞}

with the norm given by ‖f‖2
L2

δ
=

∫
(1 + |x|2)δ|f(x)|2dx and Hm

δ (Rn) denotes the
corresponding Sobolev space. Note that for large |ρ| these solutions behave like
Calderón’s exponential solutions ex·ρ. The equation for ψq is given by

(18) (∆ + 2ρ · ∇)ψq = q(1 + ψq).
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The equation (18) is solved by constructing an inverse for (∆ + 2ρ · ∇) and solving
the integral equation

(19) ψq = (∆ + 2ρ · ∇)−1(q(1 + ψq)).

Lemma 2.2. Let −1 < δ < 0. Let ρ ∈ C
n \ 0, ρ · ρ = 0. Let f ∈ L2

δ+1(R
n). Then

there exists a unique solution uρ ∈ L2
δ(R

n) of the equation

(20) ∆ρuρ := (∆ + 2ρ · ∇)uρ = f.

Moreover, uρ ∈ H2
δ (Rn) and

‖uρ‖Hs
δ (Rn) ≤

Cs,δ‖f‖L2
δ+1

|ρ|1−s

for 0 ≤ s ≤ 2 and for some constant Cs,δ > 0.

The integral equation (19) with Faddeev’s Green kernel [35] can then be solved
in L2

δ(R
n) for large |ρ| since

(I − (∆ + 2ρ · ∇)−1q)ψq = (∆ + 2ρ · ∇)−1q

and ‖(∆ + 2ρ · ∇)−1q‖L2
δ→L2

δ
≤ C

|ρ| for some C > 0, where ‖ · ‖L2
δ→L2

δ
denotes the

operator norm between L2
δ(R

n) and L2
δ(R

n). We will not give details of the proof
of Lemma 2.2 here. We refer to the papers [109, 108] .

If 0 is not a Dirichlet eigenvalue for the Schrödinger equation, we can also define
the DN map

Λq(f) =
∂u

∂ν
|∂Ω,

where u solves
(∆ − q)u = 0; u|∂Ω = f.

Under some regularity assumptions, the DN map associated to the Schrödinger
equation ∆ − q determines in dimension n > 2 uniquely a bounded potential; see
[109] for the smooth case, [88] for L∞, and [20] for potentials in a Fefferman-Phong
class.

The two dimensional results of [86], [15], [5] use similar CGO solutions and the
∂ method in the complex frequency domain, introduced by Beals and Coifman in
[9] and generalized to higher dimensions in several articles ([10], [1], [87]).

More general CGO solutions have been constructed in [53] of the form

(21) u = eτ(φ+iψ)(a + r),

where ∇φ · ∇ψ = 0, |∇φ|2 = |∇ψ|2 and φ is a limiting Carleman weight (LCW).
Moreover, a is smooth and nonvanishing and ‖r‖L2(Ω) = O( 1

τ ), ‖r‖H1(Ω) = O(1).
Examples of an LCW are the linear phase φ(x) = x·ω, ω ∈ Sn−1, used in the results
mentioned above, and the nonlinear phase φ(x) = ln |x−x0|, where x0 ∈ Rn\ch (Ω)
(ch(·) denoting the convex hull), which was used in [53] for the problem where the
DN map is measured in parts of the boundary. For a characterization of all the
LCW in Rn, n > 2, see [32]. In two dimensions any harmonic function is an LCW
[114].

Recently, Bukhgeim [16] used CGO solutions in two dimensions of the form (21)
with φ = z2 or φ = z2 (identifying R

2 ∼ C) to prove that any compactly supported
potential q ∈ Lp, p > 2, is uniquely determined by Cauchy data of the associated
Schrödinger operator.
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Other applications to inverse problems using the CGO solutions described above
with a linear phase are the following.

• Quantum scattering. It is shown in [85] and [89] that in dimension n > 2,
the scattering amplitude at a fixed energy determines uniquely a two-body
compactly supported potential. This result also follows from [109] (see for
instance [112], [113]). Applications of CGO solutions to the three-body
problem were given in [115]. In two dimensions the result of [16] implies
unique determination of the potential from the scattering amplitude at fixed
energy.

• Scalar optics. The DN map associated to the Helmholtz equation
∆ + k2n2(x) with an isotropic index of refraction n determines uniquely a
bounded index of refraction in dimension 3 or larger; see e.g., [85, 109].

• Optical tomography in the diffusion approximation. In this case we
have ∇·a(x)∇u−σa(x)u− iωu = 0 in Ω, where u represents the density of
photons, a(x) the diffusion coefficient, and σa the optical absorption. Using
the result of [109], one can show in dimension 3 or higher that if ω �= 0, one
can recover both a and σa from the corresponding DN map. If ω = 0, then
one can recover one of the two parameters.

• Electromagnetics. The DN map for isotropic Maxwell’s equations deter-
mines uniquely the isotropic electric permittivity, magnetic permeability
and conductivity [92]. This system can in fact be reduced to an 8 × 8
Schrödinger system, ∆ · I8×8 − Q [92].

For further discussion and other applications of CGO with linear phase solutions,
including inverse problems for the magnetic Schrödinger operator, see [112].

2.2. Quantum shielding. In [44], also using CGO solutions, we proved uniqueness
for the Calderón problem for Schrödinger operators having a more singular class of
potentials, namely potentials conormal to submanifolds of Rn, n ≥ 3. These may
be more singular than the potentials in [20] and, for the case of a hypersurface S,
can have any strength less than the delta function δS .

However, for much more singular potentials, there are counterexamples to unique-
ness. We constructed a class of potentials that shield any information about the
values of a potential on a region D contained in a domain Ω from measurements
of solutions at ∂Ω. In other words, the boundary information obtained outside
the shielded region is independent of q|D. On Ω \ D, these potentials behave like
q(x) ∼ −Cd(x, ∂D)−2−ε, where d denotes the distance to ∂D and C is a positive
constant. In D, Schrödinger’s cat could live forever. From the point of view of
quantum mechanics, q represents a potential barrier so steep that no tunneling can
occur. From the point of view of optics and acoustics, no sound waves or electro-
magnetic waves will penetrate, or emanate from, D. However, this construction
should be thought of as shielding, not cloaking, since the potential barrier that
shields q|D from boundary observation is itself detectable.

2.3. Anisotropic conductivities. Anisotropic conductivities depend on direc-
tion. Muscle tissue in the human body is an important example of an anisotropic
conductor. For instance, cardiac muscle has a conductivity of 2.3 mho in the trans-
verse direction and 6.3 in the longitudinal direction. The conductivity in this case
is represented by a positive definite, smooth, symmetric matrix σ = (σij(x)) on Ω.
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Under the assumption of no sources or sinks of current in Ω, the potential u in
Ω, given a voltage potential f on ∂Ω, solves the Dirichlet problem

(22)

⎧⎨⎩ ∇ · σ∇u :=
n∑

i,j=1

∂
∂xi

(
σij ∂u

∂xj

)
= 0 on Ω,

u|∂Ω = f.

The DN map is defined by

(23) Λσ(f) =
n∑

i,j=1

νiσij ∂u

∂xj

∣∣∣
∂Ω

,

where ν = (ν1, . . . , νn) denotes the unit-outer normal to ∂Ω and u is the solution
of (22). The inverse problem is whether one can determine σ by knowing Λσ.
Unfortunately, Λσ does not determine σ uniquely. This observation is due to L.
Tartar (see [65] for an account).

Indeed, let ψ : Ω → Ω be a C∞ diffeomorphism with ψ|∂Ω = Id, the identity
map. We have

(24) Λσ̃ = Λσ

where σ̃ = ψ∗σ is the push-forward of conductivity σ by ψ,

(25) ψ∗σ =
(

(Dψ)T ◦ σ ◦ (Dψ)
|detDψ|

)
◦ ψ−1.

Here Dψ denotes the (matrix) differential of ψ, (Dψ)T its transpose and the
composition in (25) is to be interpreted as multiplication of matrices.

We have then a large number of conductivities with the same DN map: any
change of variables of Ω that leaves the boundary fixed gives rise to a new conduc-
tivity with the same electrostatic boundary measurements.

The question is then whether this is the only obstruction to unique identifiability
of the conductivity. In two dimensions, this was proved for C3 conductivities by
reducing the anisotropic problem to the isotropic one by using isothermal coordi-
nates [107] and using Nachman’s isotropic result [86]. The regularity was improved
in [106] to Lipschitz conductivities using the techniques of [15] and to L∞ conduc-
tivities in [6] using the results of [5].

In the case of dimension n ≥ 3, as was pointed out in [73], this is a problem of
a geometrical nature and makes sense for general compact Riemannian manifolds
with boundary.

Let (M, g) be a compact Riemannian manifold with boundary; the Laplace-
Beltrami operator associated to the metric g is given in local coordinates by (1).
Considering the Dirichlet problem (2) associated to (1), we defined in the introduc-
tion the DN map in this case by

Λg(f) =
n∑

i,j=1

νig
ij ∂u

∂xj

√
|g|

∣∣∣∣
∂Ω

,(26)

where ν is the unit-outer normal.
The inverse problem is to recover g from Λg.
If ψ is a C∞ diffeomorphism of M which is the identity on the boundary, and

ψ∗g denotes the pullback of the metric g by ψ, we then have that (4) holds.
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In the case that M is an open, bounded subset of Rn with smooth boundary, it
is easy to see ([73]) that for n ≥ 3

(27) Λg = Λσ,

where

(28) gij = |σ|−1/(n−2)σij , σij = |g| 12 gij .

In the two-dimensional case there is an additional obstruction since the Laplace-
Beltrami operator is conformally invariant. More precisely, we have

∆αg =
1
α

∆g

for any function α, α > 0. Therefore, we have that (for n = 2 only)

(29) Λα(ψ∗g) = Λg

for any smooth function α > 0 so that α|∂M = 1.
Lassas and Uhlmann [70] proved that (4) is the only obstruction to unique iden-

tifiability of the conductivity for real-analytic manifolds in dimension n ≥ 3. In
the two-dimensional case they showed that (29) is the only obstruction to unique
identifiability for C∞ smooth Riemannian surfaces. Moreover, these results assume
that Λ is measured only on an open subset of the boundary. We state the two basic
results.

Let Γ be an open subset of ∂M . We define for f , supp f ⊆ Γ

Λg,Γ(f) = Λg(f)|Γ.

Theorem 2.3 (n ≥ 3). Let (M, g) be a real-analytic compact, connected Riemann-
ian manifold with boundary. Let Γ ⊆ ∂M be real-analytic and assume that g is
real-analytic up to Γ. Then (Λg,Γ, ∂M) determines uniquely (M, g).

Theorem 2.4 (n = 2). Let (M, g) be a compact Riemannian surface with boundary.
Let Γ ⊆ ∂M be an open subset. Then (Λg,Γ, ∂M) determines uniquely the conformal
class of (M, g).

Notice that these two results do not assume any condition on the topology of the
manifold except for connectedness. An earlier result of [73] assumed that (M, g) was
strongly convex and simply connected and Γ = ∂M . Theorem 2.3 was extended in
[71] to noncompact, connected real-analytic manifolds with boundary. The number
of needed measurements for determination of the conformal class for generic Rie-
mannian surfaces was reduced in [48]. It was recently shown that Einstein manifolds
are uniquely determined up to isometry by the DN map [47].

In two dimensions the invariant form of the conductivity equation is given by

(30) divg(β∇g)u := g−1/2∂i

(
g1/2βgij∂ju

)
= 0,

where β is the conductivity and divg (resp. ∇g) denotes divergence (resp. gradient)
with respect to the Riemannian metric g. This includes the isotropic case consid-
ered by Calderón with g the Euclidian metric, and the anisotropic case by taking
(gij = γij and β = |g|1/2). It was shown in [106] for bounded domains of Euclidian
space that the isometry class of (β, g) is determined uniquely by the corresponding
DN map.

We remark that there is an extensive literature on a related inverse problem, the
so-called Gelfand problem, where one studies the inverse problem of determining a
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Riemannian manifold from the DN map associated to the Laplace-Beltrami operator
for all frequencies; see [55] and the references cited there.

3. Invisibility for electrostatics

The fact that the boundary measurements do not change when a conductivity
is pushed forward by a smooth diffeomorphism leaving the boundary fixed, can
already be considered as a weak form of invisibility. Different media appear to be
the same, and the apparent location of objects can change. However, this does not
yet constitute real invisibility, as nothing has been hidden from view.

In invisibility cloaking the aim is to hide an object inside a domain by sur-
rounding it with (exotic) material so that even the presence of this object can
not be detected by measurements on the domain’s boundary. This means that all
boundary measurements for the domain with this cloaked object included would
be the same as if the domain were filled with a homogeneous, isotropic material.
Theoretical models for this have been found by applying diffeomorphisms having
singularities. These were first introduced in the framework of electrostatics, yield-
ing counterexamples to the anisotropic Calderón problem in the form of singular,
anisotropic conductivities in Rn, n ≥ 3, indistinguishable from a constant isotropic
conductivity in that they have the same DN map [45, 46]. The same construction
was rediscovered for electromagnetism in [94], with the intention of actually build-
ing such a device with appropriately designed metamaterials; a modified version of
this was then experimentally demonstrated in [100]. (See also [74] for a somewhat
different approach to cloaking in the high-frequency limit.)

The first constructions in this direction were based on blowing up the metric
around a point [71]. In this construction, let (M, g) be a compact two-dimensional
manifold with nonempty boundary, let x0 ∈ M and consider the manifold

M̃ = M \ {x0}
with the metric

g̃ij(x) =
1

dM (x, x0)2
gij(x),

where dM (x, x0) is the distance between x and x0 on (M, g). Then (M̃, g̃) is a
complete, noncompact two-dimensional Riemannian manifold with the boundary
∂M̃ = ∂M . Essentially, the point x0 has been “pulled to infinity”. On the manifolds
M and M̃ , we consider the boundary value problems{

∆gu = 0 in M ,
u = f on ∂M , and

⎧⎪⎨⎪⎩
∆g̃ũ = 0 in M̃ ,
ũ = f on ∂M̃ ,
ũ ∈ L∞(M̃).

These boundary value problems are uniquely solvable and define the DN maps

ΛM,gf = ∂νu|∂M , Λ
M̃,g̃

f = ∂ν ũ|
∂M̃

,

where ∂ν denotes the corresponding conormal derivatives. Since, in the two-dimen-
sional case functions which are harmonic with respect to the metric g stay harmonic
with respect to any metric which is conformal to g, one can see that ΛM,g = Λ

M̃,g̃
.

This can be seen using, e.g., Brownian motion or capacity arguments. Thus, the
boundary measurements for (M, g) and (M̃, g̃) coincide. This gives a counterexam-
ple for the inverse electrostatic problem on Riemannian surfaces—even the topology
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Figure 5. Blowing up a metric at a point, after [71]. The elec-
trostatic boundary measurements on the boundary of the surfaces,
one compact and the other noncompact but complete, coincide.

of possibly noncompact Riemannian surfaces cannot be determined using boundary
measurements (see Figure 5).

Figure 5 can be thought as a “hole” in a Riemannian surface that does not
change the boundary measurements. Roughly speaking, mapping the manifold M̃
smoothly to the set M \BM (x0, ρ), where BM (x0, ρ) is a metric ball of M , and by
putting an object in the obtained hole BM (x0, ρ), one could hide it from detection
at the boundary. This observation was used in [45, 46], where undetectability results
were introduced in three dimensions, using degenerations of Riemannian metrics,
whose singular limits can be considered as coming directly from singular changes
of variables. Thus, this construction can be considered as an extreme, or singular,
version of the transformation optics of [117].

The degeneration of the metric (see Figure 6) can be obtained by considering
surfaces (or manifolds in the higher dimensional cases) with a thin “neck” that is
pinched. At the limit the manifold contains a pocket about which the boundary
measurements do not give any information. If the collapsing of the manifold is
done in an appropriate way, we have, in the limit, a singular Riemannian manifold
which is indistinguishable in boundary measurements from a flat surface. Then the
conductivity which corresponds to this metric is also singular at the pinched points,
cf. the first formula in (33). The electrostatic measurements on the boundary for
this singular conductivity will be the same as for the original regular conductivity
corresponding to the metric g.

To give a precise, and concrete, realization of this idea, let B(0, R) ⊂ R
3 denote

the open ball with center 0 and radius R. Hereafter, we use the set N = B(0, 2),
the region at the boundary of which the electrostatic measurements will be made,

Figure 6. A typical member of a family of manifolds developing a
singularity as the width of the neck connecting the two parts goes
to zero.
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decomposed into two parts, N1 = B(0, 2) \ B(0, 1) and N2 = B(0, 1). We call the
interface Σ = ∂N2 between N1 and N2 the cloaking surface.

We also use a “copy” of the ball B(0, 2), with the notation M1 = B(0, 2), another
ball M2 = B(0, 1), and the disjoint union M of M1 and M2. (We will see the reason
for distinguishing between N and M .) Let gjk = δjk be the Euclidian metrics in M1

and M2 and let γ = 1 be the corresponding isotropic homogeneous conductivity.
We define a singular transformation

F1 : M1 \ {0} → N1, F1(x) = (
|x|
2

+ 1)
x

|x| , 0 < |x| ≤ 2,(31)

and a regular transformation (diffeomorphism) F2 : M2 �→ N2, which for simplicity
we take to be the identity map F2 = Id. Considering the maps F1 and F2 together,
F = (F1, F2), we define a map F : M \ {0} = (M1 \ {0}) ∪ M2 → N \ Σ.

The push-forward g̃ = F∗g of the metric g in M by F is the metric in N given
by

(F∗g)jk (y) =
n∑

p,q=1

∂F p

∂xj
(x)

∂F q

∂xk
(x)gpq(x)

∣∣∣∣∣
x=F−1(y)

.(32)

This metric gives rise to a conductivity σ̃ in N which is singular in N1,

σ̃ =
{

|g̃|1/2g̃jk for x ∈ N1,
δjk for x ∈ N2.

(33)

Thus, F forms an invisibility construction that we call the “blowing up a point”.
Denoting by (r, φ, θ) �→ (r sin θ cos φ, r sin θ sin φ, r cos θ) the spherical coordinates,
we have

(34) σ̃ =

⎛⎝ 2(r − 1)2 sin θ 0 0
0 2 sin θ 0
0 0 2(sin θ)−1

⎞⎠ , 1 < r = |x| ≤ 2.

Note that the anisotropic conductivity σ̃ is singular degenerate on Σ in the sense
that it is not bounded from below by any positive multiple of I. (See [63] for a
similar calculation.) The Euclidian conductivity δjk in N2 (33) could be replaced by
any smooth conductivity bounded from below and above by positive constants. This
would correspond to cloaking of a general object with nonhomogeneous, anisotropic
conductivity. Here, we use the Euclidian metric just for simplicity.

Consider now the Cauchy data of all solutions in the Sobolev space H1(N) of
the conductivity equation corresponds to σ̃; that is,

C1(σ̃) = {(u|∂N , ν· σ̃∇u|∂N ) : u ∈ H1(N), ∇· σ̃∇u = 0},
where ν is the Euclidian unit-normal vector of ∂N .

Theorem 3.1 ([46]). The Cauchy data of all H1 solutions for the conductivities σ̃
and γ on N coincide, that is, C1(σ̃) = C1(γ).

This means that all boundary measurements for the homogeneous conductivity
γ = 1 and the degenerated conductivity σ̃ are the same. The result above was
proven in [45, 46] for the case of dimension n ≥ 3. The same basic construction
works in the two-dimensional case [63]. For a further study of the limits of visibility
and invisibility in two dimensions, see [7].

Figure 2 portrays an analytically obtained solution on a disc with conductivity
σ̃. As seen in the figure, no currents appear near the center of the disc, so that
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if the conductivity is changed near the center, the measurements on the boundary
∂N do not change.

The above invisibility result is valid for a more general class of singular cloaking
transformations, e.g., quadratic singular transformations for Maxwell’s equations
which were introduced first in [18]. A general class, sufficing at least for electro-
statics, is given by the following result from [46]:

Theorem 3.2. Let Ω ⊂ R
n, n ≥ 3, and g = (gij) be a smooth metric on Ω bounded

from above and below by positive constants. Let D � Ω be such that there is a C∞

diffeomorphism F : Ω \ {y} → Ω \ D satisfying F |∂Ω = Id and such that

dF (x) ≥ c0I, det(dF (x)) ≥ c1 dist
Rn (x, y)−1,(35)

where dF is the Jacobian matrix in Euclidian coordinates on Rn and c0, c1 > 0. Let
ĝ be a metric in Ω which coincides with g̃ = F∗g in Ω\D and which is an arbitrary
regular positive definite metric in Dint. Finally, let σ and σ̂ be the conductivities
corresponding to g and ĝ, cf. (28). Then,

C1(σ̂) = C1(σ).

The key to the proof of Theorem 3.2 is a removable singularities theorem which
implies that solutions of the conductivity equation in Ω\D pull back by this singular
transformation to solutions of the conductivity equation in the whole Ω.

Returning to the case Ω = N and the conductivity given by (33), similar types of
results are valid also for a more general class of solutions. Consider an unbounded
quadratic form, A in L2(N, |g̃|1/2dx),

Aσ̃[u, v] =
∫

N

σ̃∇u· ∇v dx

defined for u, v ∈ D(Aσ̃) = C∞
0 (N). Let Aσ̃ be the closure of this quadratic form

and say that

∇· σ̃∇u = 0 in N

is satisfied in the finite energy sense if there is u0 ∈ H1(N) supported in N1 such
that u − u0 ∈ D(Aσ̃) and

Aσ̃[u − u0, v] = −
∫

N

σ̃∇u0· ∇v dx, for all v ∈ D(Aσ̃).

Then the Cauchy data set of the finite energy solutions, denoted by

Cf.e.(σ̃) =
{

(u|∂N , ν· σ̃∇u|∂N ) : u is a finite energy solution of ∇· σ̃∇u = 0
}

,

coincides with the Cauchy data Cf.e.(γ) corresponding to the homogeneous con-
ductivity γ = 1; that is,

Cf.e.(σ̃) = Cf.e.(γ).(36)

This and analogous results for the corresponding equation in the nonzero frequency
case,

∇ · σ̃∇u = λu,

were considered in [36]. We will discuss them in more detail in the next section.
We emphasize that the above results were obtained in dimensions n ≥ 3. Kohn,

Shen, Vogelius and Weinstein [63] have shown that the singular conductivity result-
ing from the same transformation also cloaks for electrostatics in two dimensions.
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4. Optical invisibility:

Cloaking at positive frequencies

4.1. Developments in physics. Two transformation optics–based invisibility
cloaking constructions were proposed in 2006 [74, 94]. Both of these were ex-
pressed in the frequency domain, i.e., for monochromatic waves. Even though the
mathematical models can be considered at any frequency, it is important to note
that the custom designed metamaterials manufactured for physical implementation
of these or similar designs are very dispersive; that is, the relevant material param-
eters (index of refraction, etc.) depend on the frequency. Thus, physical cloaking
constructions with current technology are essentially monochromatic, working over
at best a very narrow range of frequencies. The many interesting issues in physics
and engineering that this difficulty raises are beyond the scope of this article; see
[76] for recent work in this area.

Thus, we will also work in the frequency domain and will be interested in ei-
ther scalar waves of the form U(x, t) = u(x)eikt, with u satisfying the Helmholtz
equation,

(37) (∆ + k2n2(x))u(x) = ρ(x),

where ρ(x) represents any internal source present, or in time-harmonic electric
and magnetic fields E(x, t) = E(x)eikt, H(x, t) = H(x)eikt, with E, H satisfying
Maxwell’s equations,

(38) ∇× H = −ikεE + J, ∇× E = ikµH,

where J denotes any external current present.
To review the ideas of [94] for electromagnetic cloaking construction, let us start

with Maxwell’s equations in three dimensions. We consider a ball B(0, 2) with
the homogeneous, isotropic material parameters, the permittivity ε0 ≡ 1 and the
permeability µ0 ≡ 1. Note that, with respect to a smooth coordinate transfor-
mation, the permittivity and the permeability transform in the same way (25) as
conductivity. Thus, pushing ε0 and µ0 forward by the “blowing up a point” map
F1 introduced in (31) yields permittivity ε̃(x) and permeability µ̃(x), which are
inhomogeneous and anisotropic. In spherical coordinates, the representations of
ε̃(x) and µ̃(x) are identical to the conductivity σ̃ given in (34). They are smooth
and nonsingular in the open domain N1 := B(0, 2) \B(0, 1) but, as seen from (34),
degenerate as |x| −→ 1+, i.e. at the cloaking surface Σ = {|x| = 1}. One of
the eigenvalues, namely the one associated with the radial direction, behaves as
2(|x|2 − 1)2 and tends to zero as |x| → 1+. This determines the electromagnetic
parameters in the image of F1, that is, in N1. In N2 we can choose the electromag-
netic parameters ε(x), µ(x) to be any smooth, nonsingular tensors. The material
parameters in N2 correspond to an arbitrary object we want to hide from exterior
measurements.

In the following, we refer to N := N1 ∪ N2 ∪ Σ = B(0, 2) with the described
material parameters as the cloaking device and denote the resulting specification of
the material parameters on N by ε̃, µ̃. As noted, the representations of ε̃ and µ̃ on
N1 coincide with that of σ̃ given by (33) in spherical coordinates. Later, we will
also describe the double coating construction, which corresponds to appropriately
matched layers of metamaterials on both the outside and the inside of Σ.
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The construction above is what we call the single coating [36]. This theoreti-
cal description of an invisibility device can, in principle, be physically realized by
taking an arbitrary object in N2 and surrounding it with special material, located
in N1, which implements the values of ε̃, µ̃. Materials with customized values of ε
and µ (or other material parameters) are referred to as metamaterials, the study of
which has undergone an explosive growth in recent years. There is no universally
accepted definition of metamaterials, which seem to fall into the “know it when
you see it” category. However, the label usually attaches to macroscopic material
structures having a manmade one-, two- or three-dimensional cellular architecture,
and producing combinations of material parameters not available in nature (or even
in conventional composite materials), due to resonances induced by the geometry
of the cells [116, 34]. Using metamaterial cells (or “atoms”, as they are some-
times called) designed to resonate at the desired frequency, it is possible to specify
the permittivity and permeability tensors fairly arbitrarily at a given frequency, so
that they may have very large, very small or even negative eigenvalues. The use
of resonance phenomenon also explains why the material properties of metamate-
rials strongly depend on the frequency, and broadband metamaterials may not be
possible.

4.2. Physical justification of cloaking. To understand the physical arguments
describing the behavior of electromagnetic waves in the cloaking device, consider
Maxwell’s equations exclusively on the open annulus N1 and in the punctured ball
M1 \ {0}. Between these domains, the transformation F1 : M1 \ {0} → N1 is
smooth. Assume that the electric field E and the magnetic field H in M1 \ {0}
solve Maxwell’s equations,

(39) ∇× H = −ikε0E, ∇× E = ikµ0H

with constant, isotropic ε0, µ0. Considering E as a differential 1-form E(x) =
E1(x)dx1 + E2(x)dx2 + E3(x)dx3, we define the push-forward of E by F1, denoted
Ẽ = (F1)∗E, in N1, by

Ẽ(x̃) =
3∑

j=1

Ẽj(x̃)dx̃j =
3∑

j=1

( 3∑
k=1

(DF−1)k
j (x̃) Ek(F−1(x̃))

)
dx̃j , x̃ = F (x).

Similarly, for the magnetic field H, we define H̃ = (F1)∗H in N1. Then Ẽ and H̃
satisfy Maxwell’s equations in N1,

(40) ∇× H̃ = −ikε̃Ẽ, ∇× Ẽ = ikµ̃H̃,

where the material parameters ε̃, µ̃ are defined in N1 by

ε̃ = (F1)∗ε0 = σ̃, µ̃ = (F1)∗µ0 = σ̃.

Here σ̃ is given by (34).
Thus, the solutions (E, H) in the open annulus N1 and solutions (Ẽ, H̃) in the

punctured ball M1 \ {0} are in a one-to-one correspondence. If one compares just
the solutions in these domains, without considering the behavior within the cloaked
region N2 or any boundary condition on the cloaking surface Σ, the observations
of the possible solutions of Maxwell’s equations at ∂N = ∂B(0, 2) are unable to
distinguish between the cloaking device N , with an object hidden from view in N2,
and the empty space M .
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Figure 7. Left: Light rays are shown in the Euclidian space
R3. Right: The same light rays are shown when a cloaking device
(N, g̃) is located in the ball B(0, 2). The metamaterial in which
the light rays travel is not shown; the sphere is the cloaking sur-
face ∂B(0, 1). At left the light rays correspond to geodesics on
(M1 \ {0}, g), and at right the geodesics on (N1, g̃). The map F1

maps the geodesics on M1 (not passing through origin) to those of
N1.

One can also consider the behavior of light rays, corresponding to the high
frequency limits of solutions; see also [74], which proposed cloaking for scalar optics
in R

2. Mathematically speaking, these are the geodesics on the manifolds (M1, g)
and (N1, g̃); see Figure 7. One observes that almost all geodesics µ on N1 do not
hit the cloaking surface Σ but go around the domain (N2, g̃) and have the same
intrinsic lengths (i.e., travel times) as the corresponding geodesics µ̃ = F−1

1 (µ) on
(M1, g). Thus, roughly speaking, almost all light rays sent into N1 from ∂N go
around the “hole” N2, and reach ∂N in the same time as the corresponding rays
on M .

The cloaking effect was justified in [94] on the level of the chain rule for F1,
and in the sequels [95, 27] on the level of rays and numerical simulations, on N1.
We will see below that studying the behavior of the waves on the entire space,
including in the cloaked region N2 and at the cloaking surface Σ, is crucial to fully
understanding cloaking and its limitations.

A particular difficulty is that, due to the degeneracy of ε̃ and µ̃, the weighted
L2 space defined by the energy norm

(41) ‖Ẽ‖2

L2(N,|g̃|
1
2 dx)

+ ‖H̃‖2

L2(N,|g̃|
1
2 dx)

=
∫

N

(ε̃jk Ẽj Ẽk + µ̃jk H̃j H̃k) dx

includes forms, which are not distributions, i.e., not in the dual of the vector fields
having C∞

0 (N) coefficients. Indeed, this class contains the forms with the radial
component behaving like O((r−1)−α) in the domain r > 1, where 1 < α < 3/2. The
meaning of the Helmholtz or Maxwell’s equations for such “waves” is problematic,
and to treat cloaking rigorously, one should consider the boundary measurements
(or scattering data) of finite energy waves which also satisfy Maxwell’s equations in
some reasonable weak sense. Analysis of cloaking from this more rigorous point of
view was carried out in [36], which forms the basis for much of the discussion here.
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4.3. Cloaking for the Helmholtz equation. Let us start with the cases of scalar
optics or acoustics, governed in the case of isotropic media by the Helmholtz equa-
tion (37). In order to work with anisotropic media, we convert this to the Helmholtz
equation with respect to a Riemannian metric g. Working in dimensions n ≥ 3, we
take advantage of the one-to-one correspondence (28) between (positive definite)
conductivities and Riemannian metrics g. Let us consider the Helmholtz equation

(42) (∆g + k2)u = ρ,

where ∆g is the Laplace-Beltrami operator associated with the Euclidian metric
gij = δij . Under a smooth diffeomorphism F , the metric g pushes forward to a
metric g̃ = F∗g, and then, for u = ũ ◦ F , we have

(∆g + k2)u = ρ ⇐⇒ (∆g̃ + k2)ũ = ρ̃,(43)

where ρ = ρ̃ ◦ F .
Next we consider the case when F (x) is not a smooth diffeomorphism, but the

one introduced by (31), if x ∈ M1 \ {0} and identity, if x ∈ M2.
Let f̃ ∈ L2(N, dx) be a function such that supp (f̃) ∩ Σ = ∅. We now give the

precise definition of a finite energy solution for the Helmholtz equation.

Definition 4.1. Let g be the Euclidian metric on M and g̃ = F∗g be the singular
metric on N \ Σ. A measurable function ũ on N is a finite energy solution of the
Dirichlet problem for the Helmholtz equation on N ,

(∆g̃ + k2)ũ = f̃ on N,(44)

ũ|∂N = h̃,

if

ũ ∈ L2(N, |g̃|1/2dx);(45)
ũ|N\Σ ∈ H1

loc(N \ Σ, dx);(46) ∫
N\Σ

|g̃|1/2g̃ij∂iũ∂j ũ dx < ∞,(47)

ũ|∂N = h̃;

and, for all ψ̃ ∈ C∞(N) with ψ̃|∂N = 0,∫
N

[−(Dj
g̃ũ)∂jψ̃ + k2ũψ̃|g̃|1/2]dx =

∫
N

f̃(x)ψ̃(x)|g̃|1/2dx,(48)

where Dj
g̃ũ = |g̃|1/2g̃ij∂iu is defined as a Borel measure defining a distribution on

N .

Note that the inhomogeneity f̃ is allowed to have two components, f̃1 and f̃2,
supported in the interiors of N1, N2, respectively. The latter corresponds to an
active object being rendered undetectable within the cloaked region. On the other
hand, the former corresponds to an active object embedded within the metamaterial
cloak itself whose position apparently shifts in a predictable manner according to
the transformation F1. This phenomenon, which also holds for both spherical and
cylindrical cloaking for Maxwell’s equations, was later described and numerically
modelled in the cylindrical setting, and termed the “mirage effect” [127].

Next we consider the relation between the finite energy solutions on N and the
solutions on M .
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Theorem 4.2 ([36]). Let u = (u1, u2) : (M1 \{0})∪M2 → R and ũ : N \Σ → R be
measurable functions such that u = ũ ◦ F . Let f = (f1, f2) : (M1 \ {0}) ∪ M2 → R

and f̃ : N \ Σ → R be L2 functions, supported away from 0 ∈ M1 and Σ ⊂ N such
that f = f̃ ◦ F . At last, let h̃ : ∂N → R, h : ∂M1 → R be such that h = h̃ ◦ F1.
Then the following are equivalent:

(1) The function ũ, considered as a measurable function on N , is a finite energy
solution to the Helmholtz equation (44) with inhomogeneity f̃ and Dirichlet
data h̃ in the sense of Definition 4.1.

(2) The function u satisfies

(∆g + k2)u1 = f1 on M1, u1|∂M1 = h,(49)

and

(∆g + k2)u2 = f2 on M2, gjkνj∂ku2|∂M2 = b,(50)

with b = 0. Here u1 denotes the continuous extension of u1 from M1 \ {0}
to M1.

Moreover, if u solves (49) and (50) with b �= 0, then the function ũ = u ◦ F−1 :
N\Σ → R, considered as a measurable function on N , is not a finite energy solution
to the Helmholtz equation.

As mentioned in Section 1 and detailed in [40], this result also describes a struc-
ture which cloaks both passive objects and active sources for acoustic waves. Equiv-
alent structures in the spherically symmetric case and with only cloaking of passive
objects verified were considered later in [23, 29].

The idea of the proof of Theorem 4.2 is to consider F1 and F2 as coordinate
transformations. As in formula (43), we see that if u is a finite energy solution of
the Helmholtz equation (44) in N , then u1 = u ◦ F1, defined in M1 \ {0}, satisfies
the Helmholtz equation (49) on the set M1 \ {0}. Moreover, as the energy is
invariant under a change of coordinates, one sees that u|M1\{0} is in the Sobolev
space H1(M1\{0}). Since the point {0} has Hausdorff dimension less than or equal
to the dimension of R3 minus two, the possible singularity of u1 at zero is removable
(see e.g., [61]), that is, u1 has an extension to a function defined on the whole ball
M1 so that the Helmholtz equation (49) is satisfied on the whole ball.

Let us next discuss the appearance of the Neumann boundary condition in (50).
Observe that in Definition 4.1 the Borel measure Dj

g̃v = |g̃|1/2g̃ij∂iv is absolutely
continuous with respect to the Lebesgue measure for all functions v ∈ C∞

0 (N).
We can approximate the finite energy solution ũ of equation (44) with source f̃ ,
supported away from Σ, by such functions. This yields that the measure of the
cloaking surface satisfies Dj

g̃ũ(Σ) = 0. Thus, using integration by parts, we see for

arbitrary ψ̃ ∈ C∞
0 (N) that

0 = lim
ε→0+

∫
B(0,1+ε)\B(0,1−ε)

[(Dj
g̃ũ)∂jψ̃ − k2ũψ̃|g̃|1/2]dx

= lim
ε→0+

(∫
∂B(0,1+ε)

−
∫

∂B(0,1−ε)

)
[νj (|g̃|1/2g̃ij∂iũ] ψ̃ dS(x),(51)

where dS is the Euclidian surface area. Changing coordinates by F−1
1 :∂B(0, 1+ε)

→ ∂B(0, 2ε) in the first integral in (51) and letting ε → 0 in the second integral,
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we see that

0 = lim
ε→0+

∫
∂B(0,2ε)

∂u1

∂ν
ψ dS −

∫
Σ

∂ũ

∂ν

∣∣∣∣
Σ−

ψ̃ dS,(52)

where ψ = (F1)∗ψ̃ is a bounded function on M1 and u1 is the solution of (49) in
M1, hence is smooth near 0. Here ∂u

∂ν

∣∣
Σ− denotes the interior normal derivative.

Thus, the first integral in (52) over the sphere of radius 2ε goes to zero as ε → 0
yielding that the last integral must vanish. As ψ̃ is arbitrary, this implies that u
satisfies the homogeneous boundary condition on the inside of the cloaking surface
Σ. We point out that this Neumann boundary condition is a consequence of the
fact that the coordinate transformation F is singular on the cloaking surface Σ.
See also [62] for the planar case.

4.4. Cloaking for Maxwell’s equations. In what follows, we treat Maxwell’s
equations in nonconducting and lossless media, that is, for which the conductivity
vanishes and the components of ε, µ are real valued. Although somewhat suspect
(presently, metamaterials are quite lossy), these are standard assumptions in the
physical literature. We point out that Ola, Päivärinta and Somersalo [92] have
shown that cloaking is not possible for Maxwell’s equations with nondegenerate
isotropic, sufficiently smooth, electromagnetic parameters.

We will use the invariant formulation of Maxwell’s equations. To this end, con-
sider a smooth compact oriented connected Riemannian 3-manifold M , ∂M �= ∅,
with a metric g, that we call the background metric. Clearly, in physical appli-
cations we take M ⊂ R

3 with g being the Euclidean metric g0. Time-harmonic
Maxwell’s equations on the manifold M are equations of the form

curl E(x) = ikB(x),(53)
curl H(x) = −ikD(x) + J.(54)

Here the electric field E and the magnetic field H are 1-forms and the electric flux D
and the magnetic flux B are 2-forms, and curl is the standard exterior differential d.
The external current J is considered also as a 2-form. The above fields are related
by the constitutive relations,

D(x) = ε(x)E(x), B(x) = µ(x)H(x),(55)

where ε and µ are linear maps from 1-forms to 2-forms. Thus, in local coordinates
on M , we denote

E = Ej(x)dxj , D = D1(x)dx2 ∧ dx3 + D2(x)dx3 ∧ dx1 + D3(x)dx1 ∧ dx2,

H = Hj(x)dxj , B = B1(x)dx2 ∧ dx3 + B2(x)dx3 ∧ dx1 + B3(x)dx1 ∧ dx2.

Using this notation, the constitutive relations take the form Dj = εjkEk and Bj =
µjkHk.

Note that in the case of a homogeneous Euclidian space, where ε0 = 1, µ0 = 1,
the operators ε and µ correspond to the standard Hodge star operator ∗ : Ω1(R3) →
Ω2(R3) corresponding to the Euclidian metric (g0)jk = δjk. On an arbitrary mani-
fold (M, g) it is always possible to define the permittivity ε and permeability µ to be
the Hodge star operator corresponding to the metric g. Then, in local coordinates
on M ,

εjk = µjk = |g|1/2gjk.(56)
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This type of electromagnetic material parameter, which has the same transforma-
tion law under the change of coordinates as the conductivity was studied in [68].

To introduce the material parameters ε̃(x) and µ̃(x) in the ball N = B(0, 2) ⊂ R
3

that make cloaking possible, we start with the singular map F1 given by (31). We
then introduce the Euclidean metric on N2 and the metric g̃ = F∗g in N1. Finally,
we define the singular permittivity and permeability in N using the transformation
rules (56) which lead to the formulae analogous to (33),

ε̃jk = µ̃jk =
{

|g̃|1/2g̃jk for x ∈ N1,
δjk for x ∈ N2.

(57)

Clearly, as in the case of Helmholtz equations, these material parameters are sin-
gular on Σ.

We note that in N2 one could define ε̃ and µ̃ to be arbitrary smooth nondegen-
erate material parameters. For simplicity, we consider here only the homogeneous
material in the cloaked region N2.

4.5. Definition of solutions of Maxwell’s equations. In the rest of this section,
ε = 1 and µ = 1 on the manifold M and ε̃ and µ̃ are singular material parameters
on N defined in (57).

Since the material parameters ε̃ and µ̃ are again singular at the cloaking surface
Σ, we need a careful formulation of the notion of a solution.

Definition 4.3. We say that (Ẽ, H̃) is a finite energy solution to Maxwell’s equa-
tions on N ,

(58) ∇× Ẽ = ikµ̃(x)H̃, ∇× H̃ = −ikε̃(x)Ẽ + J̃ on N,

if Ẽ, H̃ are 1-forms and D̃ := ε̃ Ẽ and B̃ := µ̃ H̃ 2-forms in N with L1(N, dx)-
coefficients satisfying

‖Ẽ‖2
L2(N,|g̃|1/2dV0(x)) =

∫
N

ε̃jk Ẽj Ẽk dV0(x) < ∞,(59)

‖H̃‖2
L2(N,|g̃|1/2dV0(x)) =

∫
N

µ̃jk H̃j H̃k dV0(x) < ∞;(60)

where dV0 is the standard Euclidean volume and∫
N

((∇× h̃) · Ẽ − ikh̃ · µ̃(x)H̃) dV0(x) = 0,(61) ∫
N

((∇× ẽ) · H̃ + ẽ · (ikε̃(x)Ẽ − J̃)) dV0(x) = 0

for all 1-forms ẽ, h̃ on N having in the Euclidian coordinates components in C∞
0 (N).

Above, the inner product “·” denotes the Euclidean inner product. We emphasize
that in Definition 4.3 we assume that the components of the physical fields Ẽ, H̃, B̃,

and D̃ are integrable functions. This in particular implies that the components of
these fields are distributions. Note that the map F∗ does not map distributions on
M isomorphically to distributions on N . This is because F ∗ : φ �→ φ ◦ F does not
map C∞

0 (N) to C∞
0 (M). Hence, on M there are currents (i.e. sources) J , whose

support contains the point zero that does not correspond to distributional sources
J̃ on N for which J̃ = F∗J in N \ Σ. Below we will show that in the case when a
source J is not supported on N2 ∪ Σ, there exist solutions for Maxwell’s equations
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on N with the corresponding source so that J̃ = F∗J in N \Σ. Also, we show that
surprisingly, the finite energy solutions do not exist for generic currents J̃ . Roughly
speaking, the fact that the map F cannot be extended to the whole M so that it
would map the differentiable structure on M to that of N seems to be the reason
for this phenomena.

Below, we denote M \ {0} = (M1 \ {0}) ∪ M2.

Theorem 4.4 ([36]). Let E and H be 1-forms with measurable coefficients on
M \ {0} and Ẽ and H̃ be 1-forms with measurable coefficients on N \ Σ such that
Ẽ = F∗E, H̃ = F∗H. Let J and J̃ be 2-forms with smooth coefficients on M \ {0}
and N \ Σ, that are supported away from {0} and Σ such that J̃ = F∗J .

Then the following are equivalent:
(1) The 1-forms Ẽ and H̃ on N satisfy Maxwell’s equations

∇× Ẽ = ikµ̃(x)H̃, ∇× H̃ = −ikε̃(x)Ẽ + J̃ on N,(62)

ν × Ẽ|∂N = f

in the sense of Definition 4.3.
(2) The forms E and H satisfy Maxwell’s equations on M ,

∇× E = ikµ(x)H, ∇× H = −ikε(x)E + J on M1,(63)
ν × E|∂M1 = f

and

∇× E = ikµ(x)H, ∇× H = −ikε(x)E + J on M2(64)

with Cauchy data

ν × E|∂M2 = be, ν × H|∂M2 = bh(65)

that satisfies be = bh = 0.
Moreover, if E and H solve (63), (64), and (65) with nonzero be or bh, then

the fields Ẽ and H̃ are not solutions of Maxwell’s equations on N in the sense of
Definition 4.3.

Let us briefly discuss the proof of this theorem. In Euclidian space, with ε = 1
and µ = 1, Maxwell’s equations (38) with J = 0 and k �= 0 imply that the divergence
of D and B fields are zero, or equivalently that

∇· (εE) = 0, ∇· (µH) = 0.

Since ε = 1 and µ = 1, using (38) and the basic formulae of calculus we obtain

∆E =
3∑

j=1

∂2

∂x2
j

E = ∇(∇·E) −∇×∇× E = 0 −∇× (ikµH) = −k2E.

This implies the Helmholtz equation (∆ + k2)E = 0. Thus, removable singularity
results similar to those used to prove Theorem 4.2 for the Helmholtz equation
can be applied to Maxwell’s equations to show that equations (62) on N imply
Maxwell’s equations (63) first on M1 \ {0} and then on all of M1. Also, analogous
computations to those presented after Theorem 4.2 for the finite energy solutions
(E, H) of Maxwell’s equations yield that the electric field E has to satisfy the
boundary condition ν × E|Σ− = 0 on the inside of the cloaking surface. As E
and H are in symmetric roles, it follows also that the magnetic field has to satisfy
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ν × H|Σ− = 0. Summarizing, these considerations show that the finite energy
solutions that are also solutions in the sense of distributions, have outside the
cloaking surface a one-to-one correspondence to the solutions of Maxwell’s equations
with the homogeneous, isotropic ε0 and µ0 on M1, but inside the cloaking region
must satisfy hidden boundary conditions at Σ−.

Theorem 4.4 can be interpreted by saying that the cloaking of active objects is
difficult since, with nonzero currents present within the region to be cloaked, the
idealized model leads to nonexistence of finite energy solutions. The theorem says
that a finite energy solution must satisfy the hidden boundary conditions

(66) ν × Ẽ = 0, ν × H̃ = 0 on ∂N2.

Unfortunately, these conditions, which correspond physically to the so-called per-
fect electrical conductor (PEC) and perfect magnetic conductor (PMC) condi-
tions simultaneously constitute an overdetermined set of boundary conditions for
Maxwell’s equations on N2 (or, equivalently, on M2). For cloaking passive objects,
for which J = 0, they can be satisfied by fields which are identically zero in the
cloaked region, but for generic J , including ones arbitrarily close to 0, there is no
solution. The perfect, ideal cloaking devices in practice can only be approximated
with a medium whose material parameters approximate the degenerate parameters
ε̃ and µ̃. For instance, one can consider metamaterials built up using periodic struc-
tures whose effective material parameters approximate ε̃ and µ̃. Thus the question
of when the solutions exist in a reasonable sense is directly related to the question
of which approximate cloaking devices can be built in practice. We note that if E

and H solve (63), (64), and (65) with nonzero be or bh, then the fields Ẽ and H̃
can be considered as solutions to a set of nonhomogeneous Maxwell’s equations on
N in the sense of Definition 4.3.

∇× Ẽ = ikµ̃(x)H̃ + K̃surf, ∇× H̃ = −ikε̃(x)Ẽ + J̃ + J̃surf on N,

where K̃surf and J̃surf are magnetic and electric surface currents supported on Σ.
The appearance of these currents has been discussed in [36, 38, 125]. We note that
there are many possible choices for the currents J̃surf and K̃surf. If we include a
PEC lining on Σ, that in physical terms means that we add a thin surface made of
perfectly conducting material on Σ, the solution for the given boundary value f is
the one for which the magnetic boundary current vanish, K̃surf = 0 and the electric
boundary current J̃surf is possibly nonzero. Introducing this lining on the cloaking
surface Σ turns out to be a remedy for the nonexistence results, and we will see
that the invisibility cloaking then be allowed to function as desired.

To define the boundary value problem corresponding to PEC lining, denote by
C∞

Σ (N) the space of functions f : N → R such that f |N1 and f |N2 are C∞ smooth
up to the boundary.

Definition 4.5. We say that (Ẽ, H̃) is a finite energy solution to Maxwell’s equa-
tions on N \ Σ with perfectly conducting cloaking surface,

∇× Ẽ = ikµ̃(x)H̃, ∇× H̃ = −ikε̃(x)Ẽ + J̃ on N \ Σ,(67)
ν × E|Σ = 0

if Ẽ, H̃ are 1-forms and D̃ := ε̃ Ẽ and B̃ := µ̃ H̃ 2-forms in N with L1(N, dx)-
coefficients satisfying conditions (59)–(60), and equations (61) hold for all 1-forms
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ẽ and h̃ on N having in the Euclidian coordinates components in C∞
Σ (N), vanishing

near ∂N , and satisfing ν × ẽ|Σ = 0 from both sides of Σ.

With such lining of Σ, cloaking is possible with the following result, obtained
similarly to Theorem 5 in [36] (cf. [36, Theorems 2 and 3]).

Theorem 4.6. Let E and H be 1-forms with measurable coefficients on M \ {0}
and Ẽ and H̃ be 1-forms with measurable coefficients on N \Σ such that Ẽ = F∗E,
H̃ = F∗H. Let J and J̃ be 2-forms with smooth coefficients on M \ {0} and N \Σ,
that are supported away from {0} and Σ such that J̃ = F∗J .

Then the following are equivalent:

(1) The 1-forms Ẽ and H̃ on N satisfy Maxwell’s equations (67) in the sense
of Definition 4.5.

(2) The forms E and H satisfy Maxwell’s equations on M ,

∇× E = ikµ(x)H, ∇× H = −ikε(x)E + J on M1,(68)

and

∇× E = ikµ(x)H, ∇× H = −ikε(x)E + J on M2,(69)
ν × E|∂M2 = 0.

The above results show that if we are building an approximate cloaking device
with metamaterials, effective constructions could be done in such a way that the
material approximates a cloaking material with PEC (or PMC lining), which gives
rise to the boundary condition on the inner part of Σ of the form ν × E|∂M2 = 0
(or ν × H|∂M2 = 0). Another physically relevant lining is the so-called SHS (soft-
and-hard surface) [58, 59, 49, 78]. Mathematically, it corresponds to a boundary
condition on the inner part of Σ of the form E(X) = H(X) = 0, where X is a
tangent vector field on Σ. It is particularly useful for the cloaking of a cylinder
{(x1, x2, x3) ∈ R3 : (x1, x2) ∈ D}, D ⊂ R3, when X is the vector ∂

∂θ in cylindrical
coordinates; see [36], [38]. Further examples of mathematically possible boundary
conditions on the inner part of Σ, for a different notion of solution, can be found
in [120].

The importance of the SHS lining in the context of cylindrical cloaking is dis-
cussed in detail in [38]. In that case, adding a special physical surface on Σ improves
significantly the behavior of approximate cloaking devices; without this kind of lin-
ing the fields blow up. Thus we suggest that the engineers building cloaking devices
should consider first what kind of cloak with well-defined solutions they would like
to approximate. Indeed, building up a material where solutions behave nicely is
probably easier than building a material with huge oscillations of the fields.

As an alternative, one can avoid the above difficulties by modifying the basic
construction by using a double coating. Mathematically, this corresponds to using
an F = (F1, F2) with both F1, F2 singular, which gives rise to a singular Riemannian
metric which degenerates in the same way as one approaches Σ from both sides.
Physically, the double coating construction corresponds to surrounding both the
inner and outer surfaces of Σ with appropriately matched metamaterials; see [36]
for details.



82 A. GREENLEAF, Y. KURYLEV, M. LASSAS, AND G. UHLMANN

5. Electromagnetic wormholes

In this section we describe another application of transformation optics which
consists in “blowing” up a curve rather than a point. In [37, 39] a blueprint is given
for a device that would function as an invisible tunnel, allowing electromagnetic
waves to propagate from one region to another, with only the ends of the tunnel
being visible. Such a device, making solutions of Maxwell’s equations behave as if
the topology of R3 has been changed to that R3#(S2 × S1), the connected sum of
the Euclidian space R

3 and the product manifold S
2 × S

1. The connected sum is
somewhat analogous to an Einstein-Rosen wormhole [33] in general relativity, and
so we refer to this construction as an electromagnetic wormhole.

We start by considering (see Figure 8) a three-dimensional wormhole manifold,
M = M1 ∪ M2/ ∼, with components

M1 = R
3 \ (B(O, 1) ∪ B(P, 1)),

M2 = S
2 × [0, 1].

Here ∼ corresponds to be a smooth identification, i.e., gluing, of the boundaries
∂M1 and ∂M2.

An optical device that acts as a wormhole for electromagnetic waves at a given
frequency k can be constructed by starting with a two-dimensional finite cylinder

T = S
1 × [0, L] ⊂ R

3,

taking its neighborhood K = {x ∈ R
3 : dist(x, T ) ≤ ρ}, where ρ > 0 is small

enough and defining N = R3 \ K. Let us put the SHS lining on the surface ∂K,
corresponding to the angular vector field X = ∂θ in the cylindrical coordinates
(r, θ, z) in R3, and cover K with an invisibility cloak of the single coating type.
This material has permittivity ε̃ and permeability µ̃ described below, which are
singular at ∂K. Finally, let

U = {x : dist(x, K) > 1} ⊂ R
3.

The set U can be considered both as a subset of N , U ⊂ N(⊂ R3) and of the
abstract wormhole manifold M , U ⊂ M1 introduced earlier. Let us consider the

Figure 8. A two-dimensional schematic figure of wormhole con-
struction by gluing surfaces. Note that the components of the
artificial wormhole construction are three dimensional.
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Figure 9. Ray-tracing simulations of views through the bores of
two wormholes. The distant ends are above an infinite chess board
under a blue sky. On left, L � 1; on right, L ≈ 1. Note that blue
is used for clarity; the wormhole construction should be considered
essentially monochromatic, for physical rather than mathematical
reasons.

electromagnetic measurements done in U , that is, measuring fields E and H satis-
fying a radiation condition that corresponds to an arbitrary current J that is com-
pactly supported in U . Then, as shown in [39], all electromagnetic measurements
in U ⊂ M and U ⊂ N coincide; that is, waves on the wormhole device (N, ε̃, µ̃) in
R3 behave as if they were propagating on the abstract wormhole manifold M .

In Figures 3 and 9 we give ray-tracing simulations in and near the wormhole.
The obstacle in Figure 3 is K, and the metamaterial corresponding to ε̃ and µ̃,
through which the rays travel, is not shown.

We now give a more precise description of an electromagnetic wormhole. Let us
start by making two holes in R3, say by removing the open unit ball B1 = B(O, 1),
and also the open ball B2 = B(P, 1), where P = (0, 0, L) is a point on the z-axis with
L > 3, so that B1∩B2 = ∅. The region so obtained, M1 = R3 \ (B1∪B2), equipped
with the standard Euclidian metric g0 and a “cut” γ1 = {(0, 0, z) : 1 ≤ z ≤ L− 1},
is the first component M1 of the wormhole manifold.

The second component of the wormhole manifold is a three-dimensional cylinder,
M2 = S2× [0, 1], with boundary ∂M2 = (S2×{0})∪(S2×{1}) := S2

3∪S2
4. We make

a “cut” γ2 = {NP} × [0, 1], where NP denotes an arbitrary point in S
2, say the

North Pole. We initially equip M2 with the product metric, but several variations
on this basic design are possible, having somewhat different possible applications
which will be mentioned below.

Let us glue together the boundaries ∂M1 and ∂M2. The glueing is done so that
we glue the point (0, 0, 1) ∈ ∂B(O , 1) with the point NP × {0} and the point
(0, 0, L − 1) ∈ ∂B(P, 1) with the point NP × {1}. Note that in this construction,
γ1 and γ2 correspond to two nonhomotopic curves connecting (0, 0, 1) ∼ NP ×{0}
to (0, 0, L − 1) ∼ NP × {1}. Moreover, γ = γ1 ∪ γ2 will be a closed curve on M .

Using cylindrical coordinates, (r, θ, z) �→ (r cos θ, r sin θ, z), let N2 = {(r, θ, z) :
|r| < 1, z ∈ [0, L]} ∩ N and N1 = N \ N2; then consider singular transformations
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f1

Q R

P

Figure 10. Above: A schematic figure of f1, representing F1, in
the (z, r) plane. Its image P corresponds to N1 in (z, r) coordi-
nates. Below: The sets Q and R correspond to N2 and N . In the
figure, R = Q ∪ P which corresponds to N = N1 ∪ N2 in R3.

Figure 11. Schematic figure. Left: Some rays enter the worm-
hole and come out from the other end so that they return near
where the ray entered to the wormhole. Right: The correspond-
ing ray in the complement N of the obstacle K shown in the (z, r)
coordinates. Note that there are also closed light rays.

Fj : Mj \ γj −→ R3, j = 1, 2, whose images are N1, N2, resp.; see [39] for details.
For instance, the map F1 can be chosen so that it keeps the θ-coordinate the same
and maps (z, r) coordinates by f1 : (z, r) → (z′, r′). In Figure 10 the map f1 is
visualized.

Together the maps F1 and F2 define a diffeomorphism F : M \γ → N , that blows
up near γ. We define the material parameters ε̃ and µ̃ on N by setting ε̃ = F∗ε and
µ̃ = F∗µ. These material parameters (having freedom in choosing the map F ) give
blueprints for how a wormhole device could be constructed in the physical space
R3.

Possible applications of electromagnetic wormholes (with varying degrees of like-
lihood of realization!), when the metamaterials technology has sufficiently pro-
gressed, include invisible optical cables, 3D video displays, scopes for MRI-assisted
medical procedures, and beam collimation. For the last two, one needs to modify
the design by changing the metric g2 on M2 = S

2 × [0, 1]. By flattening the metric
on S2 so that the antipodal point SP (the south pole) to NP has a neighborhood
on which the metric is Euclidian, the axis of the tunnel N2 will have a tubular
neighborhood on which ε, µ are constant isotropic and hence can be allowed to be
empty space, allowing for passage of instruments. On the other hand, if we use a
warped product metric on M2, corresponding to S2 × {z} having the metric of the
sphere of radius r(z) for an appropriately chosen function r : [0, 1] −→ R+, then
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only rays that travel through N2 almost parallel to the axis can pass all the way
through, with others being returned to the end from which they entered.

Remark 5.1. Along similar lines, we can produce another interesting class of de-
vices, made possible with the use of metamaterials, which behave as if the topology
of R3 is altered. Let M1 = R3 \ B(0, 1) endowed with the Euclidian metric g and
M2 be a copy of M1. Let M be the manifold obtained by gluing the boundaries
∂M1 and ∂M2 together. Then M can be considered as a C∞ smooth manifold with
Lipschitz smooth metric. Let N1 = M2 and F1 : M1 → N1 be the identity map,
N2 = B(0, 1) \B(0, ρ) with ρ ≥ 0, and finally N = R3 \B(0, ρ). Let F2 : M2 → N2

be the map F2(x) = (ρ + (1− ρ)|x|−1)|x|−1x. Together the maps F1 and F2 define
a map that can be extended to a Lipschitz smooth diffeomorphism F : M → N . As
before, we define on N the metric g̃ = F∗g, and the permittivity ε̃ and permeability
µ̃ according to formula (57). As N = R

3#R
3, we can consider the (N, ε̃, µ̃) as a

parallel universe device on which electromagnetic waves on R3#R3 can be simu-
lated. It is particularly interesting to consider the high frequency case when the
ray-tracing leads to physically interesting considerations. Light rays correspond to
the locally shortest curves on N , so all rays emanating from N1 that do not hit
∂N1 tangentially then enter N2. Thus the light rays in N1 that hit ∂N1 nontangen-
tially change the sheet N1 to N2. From the point of view of an observer in N1, the
rays are absorbed by the device. Thus on the level of ray-tracing, the device is a
perfectly black body, or a perfect absorber. Similarly analyzing the quasi-classical
solutions, the energy, corresponding to the nontangential directions is absorbed,
up to the first order of magnitude, by the device. Other, metamaterial-based con-
structions of a perfect absorber have been considered in [69]. We note that in our
considerations the energy is not absorbed in reality as there is no dissipation in the
device, and thus the energy is in fact trapped inside the device, which naturally
causes difficulties in practical implementation. On the level of ray-tracing, similar
considerations using multiple sheets have been considered before in [77].

6. A general framework:

Singular transformation optics

Having seen how cloaking based on blowing up a point or blowing up a line
can be rigorously analyzed, we now want to explore how more general optical de-
vices can be described using the transformation rules satisfied by n, (ρ, λ), ε and
µ. The use of changes of variables to produce novel optical effects on waves or
to facilitate compuations has been considered in the physics literature, e.g., Dolin
[31] or Ward and Pendry [117], and is now generally referred to as transformation
optics. As discussed earlier, under nonsingular changes of variables F , there is
a one-to-one correspondence between solutions ũ of the relevant equations for the
transformed medium and solutions u = ũ◦F of the original medium. However, non-
singular changes of variables do not suffice to produce cloaking and other extreme
effects. Cloaking and the wormhole can be considered as merely starting points for
what might be termed singular transformation optics, which, combined with the
rapidly developing technology of metamaterials, opens up entirely new possibilities
for designing devices having novel effects on acoustic or electromagnetic wave prop-
agation. Other singular transformation designs in 2D that rotate waves within the
cloak [21], concentrate waves [97], or act as beam splitters [98] have been proposed.
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Analogies with phenomena in general relativity have been proposed in [75] as a
source of inspiration for designs.

We formulate a general approach to the precise description of the ideal ma-
terial parameters in a singular transformation optics device, N ⊂ R3, and state
a “metatheorem”, analogous to the results we have seen above, which should, in
considerable generality, give an exact description of the electromagnetic waves prop-
agating through such a device. However, we wish to stress that, as for cloaking [36]
and the wormhole [37, 39], actually proving this “result” in particular cases of inter-
est and determining the hidden boundary conditions may be decidedly nontrivial.

A general framework for considering ideal mathematical descriptions of such
designs is as follows. Define a singular transformation optics (STO) design as a
triplet (M,N ,F), consisting of the following:

(i) An STO manifold, M = (M, g, γ), where M = (M1, . . . , Mk), the disjoint
union of n-dimensional Riemannian manifolds (Mj , gj), with or without
boundary, and (possibly empty) submanifolds γj ⊂ int Mj , with dim γj ≤
n − 2;

(ii) An STO device, N = (N, Σ), where N =
⋃k

j=1 Nj ⊂ Rn and Σ =
⋃k

j=1 Σj ,
with Σj a (possibly empty) hypersurface in Nj ; and

(iii) A singular transformation F = (F1, . . . , Fk), with each Fj : Mj \ γj −→
Nj \ Σj a diffeomorphism.

Note that N is then equipped with a singular Riemannian metric g̃, with g̃|Nj
=

(Fj)∗(gj), in general degenerate on Σj . Reasonable conditions need to be placed
on the Jacobians DFj as one approaches γj so that the g̃j have the appropriate
degeneracy; cf. [46, Theorem 3].

In the context of the conductivity or Helmholtz equations, we can then compare
solutions u on M and ũ on N , while for Maxwell’s equations we can compare fields
(E, H) on M (with ε and µ being the Hodge-star operators corresponding to the
metric g) and (Ẽ, H̃) on N . For simplicity, below we refer to the fields as just u.

Principle of singular transformation optics, or “A metatheorem about
metamaterials”. If (M,N ,F) is an STO triplet, there is a one-to-one correspon-
dence, given by u = ũ ◦ F , i.e., u|Mj

= (ũ|Nj
) ◦ Fj, between finite energy solutions

ũ to the equation(s) on N , with source terms f̃ supported on N \ Σ, and finite
energy solutions u on M, with source terms f = f̃ ◦ F , satisfying certain “hidden”
boundary conditions on ∂M =

⋃k
j=1 ∂Mj .

7. Isotropic transformation optics

The design of transformation optics (TO) devices, based on the transformation
rule (25), invariably leads to anisotropic material parameters. Furthermore, in
singular TO designs, such as cloaks, field rotators [21], wormholes [37, 39], beam-
splitters [98], or any of those arising from the considerations of the previous section,
the material parameters are singular, with one or more eigenvalues going to 0 or ∞
at some points.

While raising interesting mathematical issues, such singular, anisotropic param-
eters are difficult to physically implement. The area of metamaterials is developing
rapidly, but fabrication of highly anisotropic and (nearly) singular materials at
frequencies of interest will clearly remain a challenge for some time. Yet another
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constraint on the realization of theoretically perfect (or ideal in the physics nomen-
clature) TO designs is discretization: the metamaterial cells have positive diameter
and any physical construction can represent at best a discrete sampling of the ideal
parameters.

There is a way around these difficulties. At the price of losing the theoretically
perfect effect on wave propagation that ideal TO designs provide, one can gain the
decided advantages of being able to use discrete arrays of metamaterial cells with
isotropic and nonsingular material parameters. The procedure used in going from
the anisotropic, singular ideal parameters to the isotropic, nonsingular, discretized
parameters involves techniques from the analysis of variational problems, homog-
enization and spectral theory. We refer to the resulting designs as arising from
isotropic transformation optics. How this is carried out is sketched below in the
context of cloaking; more details and applications can be found in [41, 42, 43].

The initial step is to truncate ideal cloaking material parameters, yielding a non-
singular, but still anisotropic, approximate cloak; similar constructions have been
used previously in the analysis of cloaking [99, 38, 63, 24]. This approximate cloak
is then itself approximated by nonsingular, isotropic parameters. The first ap-
proximation is justified using the notions of Γ- and G-convergence from variational
analysis [8, 30], while the second uses more recent ideas from [2, 3, 26].

We start with the ideal spherical cloak for the acoustic wave equation. For
technical reasons, we modify slightly the cloaking conductivity (33) by setting it
equal to 2δjk on B(0, 1), and relabel it as σ for simplicity. Recall that σ corresponds
to a singular Riemannian metric gjk that is related to σij by

σij(x) = |g(x)|1/2gij(x), |g| =
(
det[σij ]

)2
,(70)

where [gjk(x)] is the inverse matrix of [gjk(x)] and |g(x)| = det[gjk(x)]. The result-
ing Helmholtz equation, with a source term p,

3∑
j,k=1

|g(x)|−1/2 ∂

∂xj
(|g(x)|1/2gjk(x)

∂

∂xk
u) + ω2u = p on N,(71)

u|∂N = f,

can then be reinterpreted by thinking of σ as a mass tensor (which indeed has the
same transformation law as conductivity under coordinate diffeomorphisms) and
|g| 12 as a bulk modulus parameter; (71) then becomes an acoustic wave equation at
frequency ω with the new source p|g|1/2,(

∇·σ∇ + ω2|g| 12
)

u = p(x)|g| 12 on N,(72)

u|∂N = f.

This is the form of the acoustic wave equation considered in [23, 29, 40]. (See also
[28] for d = 2, and [90] for cloaking with both mass and bulk modulus anisotropic.)
To consider equation (72) rigorously, we assume that the source p is supported away
from the surface Σ. Then the finite energy solutions u of equation (72) are defined
analogously to Definition 4.1. Note that the function |g|1/2 appearing in (72) is
bounded from above.
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Now truncate this ideal acoustic cloak: for each 1 < R < 2, let ρ = 2(R− 1) and
define FR : R3 \ B(0, ρ) → R3 \ B(0, R) by

x := FR(y) =

{
y for |y| > 2,(

1 + |y|
2

)
y
|y| for ρ < |y| ≤ 2.

We define the corresponding approximate conductivity, σR as

σjk
R (x) =

{
σjk(x) for |x| > R,
2δjk for |x| ≤ R,

(73)

where σjk is the same as in the first formula in (33) or, in spherical coordinates,
(34). Note that then σjk(x) = ((FR)∗ σ0)

jk (x) for |x| > R, where σ0 ≡ 1 is the
homogeneous, isotropic mass density tensor. Observe that, for each R > 1, σR is
nonsingular, i.e., is bounded from above and below, but with the lower bound going
to 0 as R ↘ 1. Now define

gR(x) = det (σR(x))2 =
{

64|x|−4(|x| − 1)4 for R < |x| < 2,
64 for |x| ≤ R,

(74)

cf. (70). Similar to (72), consider the solutions of

(∇·σR∇ + ω2g
1/2
R )uR = g

1/2
R p in N,(75)

uR|∂N = f.

As in Theorem 4.2, by considering FR as a transformations of coordinates, one
sees that

uR(x) =
{

v+
R(F−1

R (x)) for R < |x| < 2,
v−R(x) for |y| ≤ R,

with v±R satisfying

(∆ + ω2)v+
R(y) = p(FR(y)) in ρ < |y| < 2,

v+
R |∂B(0,2) = f,

and

(∇2 + 4ω2)v−R(y) = 4p(y) in |y| < R.(76)

Since σR and gR are nonsingular everywhere, we have the standard transmission
conditions on ΣR := {x : |x| = R},

uR|ΣR+ = uR|ΣR−,(77)
er·σR∇uR|ΣR+ = er·σR∇uR|ΣR−,(78)

where er is the radial unit vector and ± indicates when the trace on ΣR is computed
as the limit r → R±.

The resulting solutions, say for either no source, or for p supported at the origin,
can be analyzed using spherical harmonics, and one can show that the waves v
for the ideal cloak are the limits of the waves for the approximate cloaks, with
the Neumann boundary condition in (50) for the ideal cloak emerging from the
behavior of the waves v±R for the truncated cloaks. This can be seen using spherical
coordinates and observing that the trace of the radial component of conductivity
from outside, σrr

R |ΣR+, goes to zero as R → 1 but the trace σrr
R |ΣR+ from inside

stays bounded from below. Using this, we can see that the transmission condition
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(78) explains the appearance of the Neumann boundary condition on the inside of
the cloaking surface.

To consider general conductivities, we recall that for a conductivity γjk(x) that
is bounded both from above and below, the solution of the boundary value problem
(22) in N is the unique minimizer of the quadratic form

Qγ(v) =
∫

N

γ∇v · ∇v dx(79)

over the functions v ∈ H1(N) satisfying the boundary condition v|∂N = f .
We use the above to consider the truncated conductivities σR. Note that at each

point x ∈ N the nonnegative matrix σR(x) is a decreasing function of R. Thus the
quadratic forms v �→ QσR

(v) are pointwise decreasing. As the minimizer v of the
quadratic form QσR

(v)+ 〈h, v〉L2 with the condition v|∂N = f is the solution of the
equation

∇·σR∇v = h, v|∂N = f,

we can use methods from variational analysis, in particular Γ-convergence (see, e.g.,
[30]) to consider solutions of equation (75). Using that, it is possible to show that
the solutions uR of the approximate equations (75) converge to the solution u of
(72) for the general sources p not supported on Σ in the case when ω2 is not an
eigenvalue of the equation (72).

Next, we approximate the nonsingular but anisotropic conductivity σR with
isotropic tensors. One can show that there exist nonsingular, isotropic conductivi-
ties γn such that the solutions of(

gR(x)−1/2∇· γn(x)∇ + ω2
)

un = p on N,(80)

un|∂N = f,

tend to the solution of (75) as n → ∞. This is obtained by considering isotropic
conductivities γn(x) = hn(|x|) depending only on radial variable r = |x|, where
hn oscillates between large and small values. Physically, this corresponds to lay-
ered spherical shells having high and low conductivities. As the oscillation of hn

increases, these spherical shells approximate an anisotropic medium where the con-
ductivity has much lower value in the radial direction than in the angular variables.
Roughly speaking, currents can easily flow in the angular directions on the highly
conducting spherical shells, but the currents flowing in the radial direction must
cross both the low and high conductivity shells. Rigorous analysis based on homoge-
nization theory [2, 26] is used for ω2 ∈ R−, and one can see that, with appropriately
chosen isotropic conductivities γn, the solutions un converge to the limit uR. These
considerations can be extended to all ω2 ∈ C \ D , where D ⊂ R− is a discrete set,
by spectral-theoretic methods [56]. More details can be found in [41, 43].

Summarizing, considering equations (80) with appropriately chosen smooth
isotropic conductivities γn and bulk moduli gR and letting n → ∞ with R =
R(n) → 1, we obtain Helmholtz equations with isotropic and nonsingular mass and
bulk modulus, whose solutions converge to the solution of the ideal invisibility cloak
(72).

A particularly interesting application of the above construction is to quantum
mechanics. Zhang, et al. [126] described an anisotropic mass tensor m̂ and a
potential V which together act as a cloak for matter waves, i.e., solutions of the
corresponding anisotropic Schrödinger equation. This ideal quantum cloak is the
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result of applying the same singular transform F as used for conductivity, Helmholtz
and Maxwell, and applying it to the Schrödinger equation with mass tensor m̂0 =
δjk, V0 ≡ 0. Due to the anisotropy of m̂ and the singularity of both m̂ and V ,
physical realization would be quite challenging. However, using the approximate
acoustic cloak, one can describe an approximate quantum cloak that should be
much easier to realize physically. An analogue of the reduction (14), (15) of the
isotropic conductivity equation to a Schrödinger equation can be carried out for
the acoustic equation. Letting E = ω2, ψn(x) = γ

1/2
n (x)un(x), and

V E
n (x) : = γ−1/2

n ∇2γ1/2
n (x) − Eγ−1

n g1/2
n + E,(81)

one computes that ψn satisfies the Schrödinger equation

(−∆ + V E
n )ψn = Eψn in N.

Furthermore, the family {V E
n } acts an approximate cloak at energy E:

Theorem 7.1 (Approximate quantum cloaking). Let W be a potential W ∈
L∞(B(0, 1)), and let E ∈ R not be a Dirichlet eigenvalue of −∆ on N = B(0, 2)
nor a Neumann eigenvalue of −∆ + W on B(0, 1). The DN operators at ∂N for
the Schrödinger operators corresponding to the potentials W + V E

n converge to the
DN operator corresponding to free space; that is,

lim
n→∞

ΛW+V E
n

(E)f = Λ0(E)f

in L2(∂N) for any smooth f on ∂N .
The convergence of the DN operators also implies convergence of the scattering

amplitudes [12]: limn→∞ aW+V E
n

(E, θ′, θ) = a0(E, θ′, θ).

(Note that this is not a consequence of standard results from perturbation theory,
since the V E

n do not tend to 0 as n → ∞. Rather, as n → ∞, the V E
n become

highly oscillatory near Σ and supx |V E
n (x)| → ∞ as n → ∞.)

On the other hand, when E is a Neumann eigenvalue of −∆ + W on B(0, 1),
then V E

n supports almost trapped states, which correspond to matter waves (i.e.,
quantum mechanical particles) which reside in B(0, 1) with high probability. See
Figure 12 and [42] for more details and applications.

Figure 12. Left: E not a Neumann eigenvalue; approximate
quantum cloak. Matter wave passes almost unaltered. Right: E
a Neumann eigenvalue; potential supports almost trapped state.
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Remark 7.2. Parameter distributions similar to (73) have been studied in the
physics literature in the context of realistically achievable layouts of metamate-
rials approximating an ideal cloak. Using other, apparently only slightly different
designs, one obtains in the limit other cloaking devices with enforced boundary
conditions on the inside of Σ; see [41] where approximate cloaks are specified which
give rise instead to the Robin boundary condition.

8. Further developments and open problems

The literature on metamaterials, cloaking, and transformation optics is growing
rapidly. Here we briefly describe only a few recent developments and remaining
challenges. See [76] for a variety of perspectives.

(a) Although the first description [45, 46] of the cloaking phenomenon was in the
context of electrostatics, no proposals of electrostatic metamaterials that might be
used to physically implement these examples have been made to date. A proposal
for metamaterials suitable for magnetostatics (cloaking for which is of course math-
ematically identical to electrostatics) and magnetism at very low frequencies is in
[121]. Since [100], there has been a push to obtain cloaking at higher frequencies,
with the visual part of the electromagnetic spectrum an obvious goal. Progress
has been reported in [17, 105, 79, 103]. However, broadband visual cloaking seems
at this point to be far off. It should also be pointed out that serious skepticism
concerning the practical advantages of transformation optics based cloaking over
earlier techniques for reducing scattering has been expressed [60].

(b) Other boundary conditions at the cloaking surface, analyzed in the time
domain, based on von Neumann’s theory of self-adjoint extensions and using a
different notion of solution than that considered here, have been studied in [118,
119, 120]. See also [122].

(c) For simplicity, in cloaking we have mainly considered singular transforma-
tions which are affine linear in r. (See, however, Theorem 3.2.) In situations where
the measurements are made further from the cloaked object, [18] introduced, for
spherical cloaking, transformations nonlinear in the radial variable in order to give
better impedance matching with the surrounding media, and this was further ex-
plored for cylindrical cloaking in [123].

(d) Effective medium theory for metamaterials is in its early development, and
seems to be particularly difficult for materials assembled from periodic or almost-
periodic arrays of small cells whose properties are based on resonance effects. A
physical (although mathematically nonrigorous) analysis of this kind of media is in
[104], which makes implicit assumptions about the smoothness of the fields which
are violated when the fields experience the blow up demonstrated in [99, 38]. Some
recent work on homogenization in this context is in [64]. However, further efforts
in this direction are needed.

(e) Existing theories of cloaking deal predominantly with nonrelativistic media;
see, however, [75]. It seems that developing a theory compatible with the relativistic
framework would be important. Similarly, transformation optics in the context
of nonlinear media seems likely to become significant as metamaterial technology
develops.

(f) For n = 3, the cloaking metric g̃ on N1 has a conical singularity at the cloak-
ing surface Σ in the sense of geometric scattering theory. It would be interesting
to understand the relationship between cloaking and other transformation optics
constructions on the one hand and geometric scattering on the other.
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[53] C.E. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Annals
of Math. 165 (2007), 567–591. MR2299741

[54] A. Jenkins, Metamaterials: Lost in space, Nature Photonics 2, 11–11 (01 Jan 2008).
[55] A. Kachalov, Y. Kurylev and M. Lassas, Inverse boundary spectral problems, Chapman and

Hall/CRC Monogr. and Surv. in Pure and Appl. Math., 123. Chapman and Hall/CRC,
Boca Raton, 2001. xx+290 pp. MR1889089 (2003e:58045)

[56] T. Kato, Perturbation theory for linear operators. Springer-Verlag, Berlin, 1980. xxii+619
pp. MR0407617 (53:11389)

[57] M. Kerker, Invisible bodies, J. Opt. Soc. Am. 65 (1975), 376.
[58] P.-S. Kildal, Definition of artificially soft and hard surfaces for electromagnetic waves, Elec-

tron. Lett. 24 (1988), 168–170.
[59] P.-S. Kildal, Artificially soft and hard surfaces in electromagnetics, IEEE Trans. Ant. and

Prop. 38, no. 10, 1537–1544 (1990).
[60] P.-S. Kildal, A. Kishk, Z. Sipus, RF invisibility using metamaterials: Harry Potter’s cloak

or the Emperor’s new clothes?, IEEE APS Int. Symp., Hawai, June, 2007.
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[93] L. Päivärinta, A. Panchenko and G. Uhlmann, Complex geometrical optics for Lipschitz

conductivities, Rev. Mat. Iberoam. 19 (2003), 57–72. MR1993415 (2004f:35187)
[94] J.B. Pendry, D. Schurig, and D.R. Smith, Controlling electromagnetic fields, Science 312

(2006), 1780–1782. MR2237570
[95] J.B. Pendry, D. Schurig, and D.R. Smith, Calculation of material properties and ray tracing

in transformation media, Opt. Exp. 14 (2006) 9794.
[96] Physorg.com, The Mathematics of Cloaking, http:// www.physorg.com/news86358402.html

(Dec. 26, 2006).
[97] M. Rahm, D. Schurig, D. Roberts, S. Cummer, D. Smith, J. Pendry, Design of electromag-

netic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s
equations,, Photonics and Nanostructures, 6 (2008), 87–95.

http://www.ams.org/mathscinet-getitem?mr=1862026
http://www.ams.org/mathscinet-getitem?mr=1862026
http://www.ams.org/mathscinet-getitem?mr=2014876
http://www.ams.org/mathscinet-getitem?mr=2014876
http://www.ams.org/mathscinet-getitem?mr=1005570
http://www.ams.org/mathscinet-getitem?mr=1029119
http://www.ams.org/mathscinet-getitem?mr=1029119
http://www.ams.org/mathscinet-getitem?mr=2237569
http://www.ams.org/mathscinet-getitem?mr=1929635
http://www.ams.org/mathscinet-getitem?mr=1929635
http://www.ams.org/mathscinet-getitem?mr=2263683
http://www.ams.org/mathscinet-getitem?mr=2263683
http://www.ams.org/mathscinet-getitem?mr=970610
http://www.ams.org/mathscinet-getitem?mr=970610
http://www.ams.org/mathscinet-getitem?mr=1370758
http://www.ams.org/mathscinet-getitem?mr=1370758
http://www.ams.org/mathscinet-getitem?mr=769078
http://www.ams.org/mathscinet-getitem?mr=769078
http://www.ams.org/mathscinet-getitem?mr=933457
http://www.ams.org/mathscinet-getitem?mr=933457
http://www.ams.org/mathscinet-getitem?mr=976992
http://www.ams.org/mathscinet-getitem?mr=976992
http://www.ams.org/mathscinet-getitem?mr=2406797
http://www.ams.org/mathscinet-getitem?mr=1224101
http://www.ams.org/mathscinet-getitem?mr=1224101
http://www.ams.org/mathscinet-getitem?mr=1993415
http://www.ams.org/mathscinet-getitem?mr=1993415
http://www.ams.org/mathscinet-getitem?mr=2237570


96 A. GREENLEAF, Y. KURYLEV, M. LASSAS, AND G. UHLMANN

[98] M. Rahm, S. Cummer, D. Schurig, J. Pendry and D. Smith, Optical design of reflectionless
complex media by finite embedded coordinate transformations, Phys. Rev. Lett. 100 (2008),
063903.

[99] Z. Ruan, M. Yan, C. Neff and M. Qiu, Ideal cylindrical cloak: Perfect but sensitive to tiny
perturbations, Phys. Rev. Lett. 99 (2007), 113903.

[100] D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, Metamaterial
electromagnetic cloak at microwave frequencies, Science 314 (2006), 977–980.

[101] V. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. Sarychev, V. Drachev, and A. Kildishev,
Negative index of refraction in optical metamaterials Opt. Lett. 30 (2005), 3356–3358

[102] D. Schurig, J. Pendry, D. R. Smith, Transformation-designed optical elements Optics Express
15 (2007), 14772–14782.

[103] G. Shvets, Metamaterials add an extra dimension, Nature Materials 7 (2008), 7–8.
[104] D. Smith and J. Pendry, Homogenization of metamaterials by field averaging, Jour. Opt.

Soc. Am. B 23 (2006), 391–403.
[105] I. Smolyaninov, Y. Hung and C. Davis, Electromagnetic cloaking in the visible frequency

range, arXiv:0709.2862v2 (2007).
[106] Z. Sun and G. Uhlmann, Anisotropic inverse problems in two dimensions, Inverse Problems

19 (2003), 1001–1010. MR2024685 (2004k:35415)
[107] J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure Appl. Math. 43

(1990), 201–232. MR1038142 (90m:35202)
[108] J. Sylvester and G. Uhlmann, A uniqueness theorem for an inverse boundary value prob-

lem in electrical prospection, Comm. Pure Appl. Math. 39 (1986), 91–112. MR820341
(87j:35377)

[109] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value
problem, Ann. of Math. 125 (1987), 153–169. MR873380 (88b:35205)

[110] K. Tsakmakidis and O. Hess, Optics: Watch your back, Nature 451, 27 (3 January 2008),
doi:10.1038/451027a.

[111] G. Uhlmann, Scattering by a metric, Chap. 6.1.5, in Encyclopedia on Scattering, R. Pike
and P. Sabatier, eds., Academic Pr. (2002), 1668–1677. MR1878885 (2003f:00011)

[112] G. Uhlmann, Developments in inverse problems since Calderón’s foundational paper, Chap-

ter 19 in Harmonic Analysis and Partial Differential Equations, M. Christ, C. Kenig and C.
Sadosky, eds., University of Chicago Press (1999), 295–345. PIE MR1743870 (2000m:35181)

[113] G. Uhlmann, Inverse boundary value problems and applications, Astérisque 207 (1992),
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