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Abstract. We describe recent theoretical and experimental progress on making objects invisible to
detection by electromagnetic waves. Ideas for devices that would once have seemed fanciful
may now be at least approximately implemented physically using a new class of artificially
structured materials called metamaterials. Maxwell’s equations have transformation laws
that allow for the design of electromagnetic material parameters that steer light around a
hidden region, returning it to its original path on the far side. Not only would observers
be unaware of the contents of the hidden region, they would not even be aware that
something was being hidden. An object contained in the hidden region, which would have
no shadow, is said to be cloaked. Proposals for, and even experimental implementations of,
such cloaking devices have received the most attention, but other designs having striking
effects on wave propagation are possible. All of these designs are initially based on the
transformation laws of the equations that govern wave propagation but, due to the singular
parameters that give rise to the desired effects, care needs to be taken in formulating and
analyzing physically meaningful solutions. We recount the recent history of the subject
and discuss some of the mathematical and physical issues involved.
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1. Introduction. Invisibility has been a subject of human fascination for millen-
nia, from the Greek legend of Perseus versus Medusa to the more recent The Invisible
Man and the Harry Potter series. Over the years, there have been occasional sci-
entific prescriptions for invisibility in various settings, e.g., [46, 6]. However, since
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4 A. GREENLEAF, Y. KURYLEV, M. LASSAS, AND G. UHLMANN

2005 there has been a wave of serious theoretical proposals [1, 72, 69, 65, 80] in the
physics literature, as well as a widely reported experiment by Schurig et al. [88],
for cloaking devices—structures that would render an object not only invisible but
also undetectable to electromagnetic waves. The particular route to cloaking that has
received the most attention is that of transformation optics [102], the designing of
optical devices with customized effects on wave propagation, made possible by taking
advantage of the transformation rules for the material properties of optics: the index
of refraction n(x) for scalar optics, governed by the Helmholtz equation, and the elec-
tric permittivity ε(x) and magnetic permeability µ(x) for vector optics, as described
by Maxwell’s equations. It is this approach to cloaking that we will examine in some
detail.

As it happens, two papers with transformation optics-based proposals for cloaking
appeared in the same issue of Science. Leonhardt [65] gave a description, based on
conformal mapping, of inhomogeneous indices of refraction n in two dimensions that
would cause light rays to go around a region and emerge on the other side as if they
had passed through empty space (for which n ≡ 1). (The region in question is then
said to be cloaked.) On the other hand, Pendry, Schurig, and Smith [80] gave a
prescription for values of ε and µ giving a cloaking device for electromagnetic waves,
based on the fact that ε and µ transform in the same way (2.7) as the conductivity
tensor in electrostatics. In fact, they used exactly the same singular transformation
(2.15), resulting in singular electromagnetic material parameters, as was used three
years earlier to describe examples of nondetectability in the context of the Calderón
problem [38, 39]!

Science magazine stated, in its ranking of cloaking as the No. 5 Breakthrough of
2006 (“The Ultimate Camouflage”),

. . . The real breakthrough may lie in the theoretical tools used to make
the cloak. In such “transformation optics,” researchers imagine—á la
Einstein—warping empty space to bend the path of electromagnetic waves.
A mathematical transformation then tells them how to mimic the bend-
ing by filling unwarped space with a material whose optical properties
vary from point to point. The technique could be used to design antennas,
shields, and myriad other devices. Any way you look at it, the ideas behind
invisibility are likely to cast a long shadow.

The papers [38, 39] considered the case of electrostatics, which can be considered
as optics at frequency zero. In section 2 we describe this case in more detail since it
already contains the basic idea of transformation optics and also shows the importance
of careful formulation and analysis of solutions. These articles gave counterexamples
to uniqueness in Calderón’s problem, which is the inverse problem for electrostatics
that lies at the heart of electrical impedance tomography. This consists in determining
the electrical conductivity of a medium filling a region Ω by making voltage and
current measurements at the boundary ∂Ω. The counterexamples were motivated by
consideration of certain degenerating families of Riemannian metrics, which in the
limit correspond to singular conductivities, i.e., are not bounded below or above, so
that the corresponding PDE is no longer uniformly elliptic. A related example of
a complete but noncompact two-dimensional Riemannian manifold with boundary
having the same Dirichlet–Neumann (DN) map as a compact manifold was given in
[62]. The techniques in [38, 39] are valid in three dimensions and higher, but the
same construction has been shown to work in two dimensions [54]. We point out here
that although we emphasize boundary observations using the DN map or the set of
Cauchy data, this is equivalent to scattering information [7]; see [99].
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CLOAKING 5

In considering wave propagation, one can work either in the frequency domain
or in the time domain. Because the metamaterials that have been proposed for use
in cloaking (and more general transformation optics designs) are inherently prone to
dispersion, i.e., their material parameters n, ε, and µ are frequency-dependent, and
have the desired values only over relatively narrow bandwidths, it is natural to work in
the frequency domain, with time-harmonic waves of frequency k. Further comments
on the time-domain approach are in section 7.

In section 3 we consider cloaking for the Helmholtz equation and Maxwell’s equa-
tions. We place special emphasis on the behavior of the waves near the boundary of
the cloaked region. This is crucial given that the electromagnetic parameters are sin-
gular at this cloaking surface. The analysis of [65, 81] uses ray tracing, which explains
the behavior of the light rays but not the full electromagnetic waves. The article [80]
analyses the behavior of the waves outside the cloaked region, using the transforma-
tion law for solutions to Maxwell’s equations under smooth transformations, which
unfortunately is not valid at the cloaking surface. The article [26], which gives nu-
merical simulations of the electromagnetic waves in the presence of a cloak, states:
“Whether perfect cloaking is achievable, even in theory, is also an open question.” In
[32], perfect cloaking was shown to indeed hold with respect to finite energy distri-
bution solutions of Maxwell’s equations, with passive objects (no internal currents)
being cloaked (see Theorem 3.4 below). The electromagnetic material parameters
used are the push-forward of a homogeneous, isotropic medium by a singular trans-
formation that “blows up” a point to the cloaking surface. This is referred to in [32]
as the single coating construction and is the same “spherical cloak” as described in
[38, 39, 80]. We also analyze the case of cloaking active objects for both Helmholtz’s
equation and Maxwell’s equations. For Helmholtz, such cloaking is always possible,1

but for Maxwell certain overdetermined boundary conditions emerge at the cloak-
ing surface. While satisfied for passive cloaked objects, they cannot be satisfied for
generic internal currents, i.e., for active objects that are themselves radiating within
the cloaked region. However, the situation can be rectified either by installing a lining
at the cloaking surface or by using a double coating, which corresponds to matched
metamaterials on both sides of the cloaking surface, while the construction above is
what we call the single coating [32]. This theoretical description of invisibility can,
in principle, be physically realized by surrounding an arbitrary object by a special
material which implements ε̃, µ̃ (3.12). The materials proposed for cloaking with elec-
tromagnetic waves are artificial materials referred to as metamaterials. The study of
these materials has undergone an explosive growth in recent years. There is no uni-
versally accepted definition of metamaterials, which seem to be in the “know it when
you see it” category. However, the label is usually attached to macroscopic material
structures having a man-made one-, two-, or three-dimensional cellular architecture
and producing combinations of material parameters not available in nature (or even in
conventional composite materials), due to resonances induced by the geometry of the
cells [101, 30]. Using metamaterial cells (or “atoms,” as they are sometimes called),
designed to resonate at the desired frequency, it is possible to specify the permittivity
and permeability tensors fairly arbitrarily at a given frequency, so that they may have
very large, very small, or even negative eigenvalues; cf. section 7. The use of the
resonance phenomenon also explains why the material properties of metamaterials

1Since Helmholtz also governs acoustic waves, this allows the theoretical description of a three-
dimensional acoustic cloak, a spherically symmetric case of which was subsequently obtained in the
physics literature [21, 28]; see [36].
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6 A. GREENLEAF, Y. KURYLEV, M. LASSAS, AND G. UHLMANN

strongly depend on the frequency, and why broadband metamaterials may not be
possible.

In section 4 we consider the case of cloaking an infinite cylinder for Maxwell’s
equations; the experiment [88] was designed to implement a “reduced” set of ma-
terial parameters, easier to construct but replicating a two-dimensional slice of the
ray geometry of the mathematical ideal. To ensure that the solutions of Maxwell’s
equations are well defined in the case of the cylindrical cloaking, we will consider the
single coating construction with a lining to enforce the soft-and-hard surface (SHS)
boundary conditions considered by Kildal [47, 48]; see also [67]. If these conditions
are not satisfied, the fields blow up [87, 34], and this has important implications
for approximate cloaking, the analysis of the behavior of waves in the presence of
less-than-perfect cloaks. We should point out that serious skepticism concerning the
practical advantages of transformation–optics-based cloaking over earlier techniques
for reducing scattering has been expressed in the engineering community [49]. Ex-
actly how effective cloaking and transformation optics devices will be in practice is
very much at the mercy of future improvements in the design, analysis, and fabrication
of metamaterials.

In section 5 we describe the electromagnetic wormholes introduced in [33, 35]
which allow for an invisible tunnel between two points in space. Electromagnetic
waves are tricked by the metamaterial specification into behaving as though they
were propagating on a handlebody, rather than on R3. The prescription of appropriate
metamaterials covering and filling a cylinder and producing this behavior is obtained
using a pair of singular transformations that effectively blow up a curve rather than
a point. For popular accounts of this work see [83, 43, 97].

In section 6 we describe a framework for a less ad hoc approach to transformation
optics when the transformation fails to be smooth and the chain rule no longer fully
applies; we refer to this as singular transformation optics (STO). Ultimately, the
fundamental justification for an STO-based device will be, just as for cloaking and
the wormhole, a removable singularities theorem. Finally, in section 7 we discuss some
of the other recent progress in cloaking and transformation optics.

2. The Case of Electrostatics: Calderón’s Problem. Calderón’s inverse prob-
lem, which forms the mathematical foundation of electrical impedance tomography
(EIT), is the question of whether an unknown conductivity distribution inside a do-
main in Rn, modeling, for example, the Earth, a human thorax, or a manufactured
part, can be determined from voltage and current measurements made on the boun-
dary. Calderón’s motivation to propose this problem [19] was geophysical prospection.
In the 1940s, before his distinguished career as a mathematician, Calderón was an en-
gineer working for the Argentinian state oil company Yacimientos Petroĺiferos Fiscales
(YPF). Apparently, at that time Calderón had already formulated the problem that
now bears his name, but did not publicize his work until thirty years later.

One widely studied potential application of EIT is the early diagnosis of breast
cancer [24]. The conductivity of a malignant breast tumor is typically 0.2 mho,
significantly higher than normal tissue, which has been typically measured at 0.03
mho. See the surveys [24, 98] and the special issue of Physiological Measurement [42]
for applications of EIT to medical imaging and other fields.

For isotropic conductivities this problem can be mathematically formulated as fol-
lows. Let Ω be the measurement domain, and denote by σ(x) the coefficient, bounded
from above and below by positive constants, describing the electrical conductivity in
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CLOAKING 7

Fig. 1 Left: An EIT measurement configuration for imaging objects in a tank. The electrodes
used for measurements are at the boundary of the tank, which is filled with a conductive
liquid. Right: A reconstruction of the conductivity inside the tank obtained using boundary
measurements. (Reprinted by permission of Jari Kaipio, University of Kuopio, Finland.)

Ω. In Ω the voltage potential u satisfies a divergence form equation

∇ · σ∇u = 0.(2.1)

To uniquely fix the solution u it is enough to give its value, f , on the boundary.
In the idealized case, one measures, for all voltage distributions u|∂Ω = f on the
boundary, the corresponding current fluxes, ν·σ∇u, over the entire boundary, where
ν is the exterior unit normal to ∂Ω. Mathematically, this amounts to the knowledge
of the Dirichlet-to-Neumann (DN) map, Λσ, corresponding to σ, i.e., the map taking
the Dirichlet boundary values of the solution to (2.1) to the corresponding Neumann
boundary values,

Λσ : u|∂Ω �→ ν·σ∇u|∂Ω.(2.2)

Calderón’s inverse problem is then to reconstruct σ from Λσ.

2.1. Conductivities That Do Not Cloak. For what conductivities is there no
cloaking? This is the question of uniqueness of determination of the conductivity
from the DN map. We first consider the isotropic case. Kohn and Vogelius showed
that piecewise analytic conductivities are uniquely determined by the DN map [56].
Sylvester and Uhlmann [96] proved that C∞ smooth conductivities can be uniquely
determined by the DN map for dimension n ≥ 3. This was extended to conductivities
having 3/2 derivatives [79, 14], which is the best currently known result for scalar con-
ductivities for n ≥ 3. For conormal conductivities in C1+ε, uniqueness was shown in
[37]. In the challenging two-dimensional case, unique identifiability of the conductiv-
ity from the DN map was shown for C2 conductivities by Nachman [74], for Lipschitz
conductivities by Brown and Uhlmann [15], and for the class of L∞ conductivities, for
which Calderón posed the problem, by Astala and Päivärinta [2]. We summarize only
briefly the known uniqueness results for isotropic conductivities since, as will be seen
below, these are not directly relevant to the subject of cloaking. For issues concerning
stability and analytic and numerical reconstruction in EIT, see the surveys [8, 24, 98].

We now discuss the anisotropic case, that is, when the conductivity depends
on direction. Physically realistic models must incorporate anisotropy. In the human
body, for example, muscle tissue is a highly anisotropic conductor, e.g., cardiac muscle
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8 A. GREENLEAF, Y. KURYLEV, M. LASSAS, AND G. UHLMANN

has a conductivity of 2.3 mho in the direction transversal to the fibers and 6.3 mho
in the longitudinal direction.

An anisotropic conductivity on a domain Ω ⊂ R
n is defined by a symmetric,

positive semidefinite matrix-valued function, σ = [σij(x)]ni,j=1. In the absence of
sources or sinks, an electrical potential u satisfies

(∇·σ∇)u = ∂jσ
jk(x)∂ku = 0 in Ω,(2.3)

u|∂Ω = f,

where f is the prescribed voltage on the boundary. (Above and in what follows, we
use the Einstein summation convention when there is no danger of confusion.) The
resulting DN map (or voltage-to-current map) is then defined by

Λσ(f) = Bu|∂Ω,(2.4)

where

Bu = νjσ
jk∂ku,(2.5)

u being the solution of (2.3) and ν = (ν1, . . . , νn) the unit normal vector of ∂Ω.
Applying the divergence theorem, we have

Qσ(f) =:
∫

Ω
σjk(x)

∂u

∂xj
∂u

∂xk
dx =

∫
∂Ω

Λσ(f)fdS,(2.6)

where u solves (2.3) and dS denotes the surface measure on ∂Ω. Qσ(f) represents the
power needed to maintain the potential f on ∂Ω. By (2.6), knowing Qσ is equivalent
to knowing Λσ. If F : Ω → Ω, F = (F 1, . . . , Fn), is a diffeomorphism with F |∂Ω =
Identity (Id), then by making the change of variables y = F (x) and setting u = v◦F−1

in the first integral in (2.6), we obtain

ΛF∗σ = Λσ,

where

(F∗σ)jk(y) =
1

det [∂F j
∂xk

(x)]

n∑
p,q=1

∂F j

∂xp
(x)

∂F k

∂xq
(x)σpq(x)

∣∣∣∣∣
x=F−1(y)

(2.7)

is the push-forward of the conductivity σ by F . Thus, there is a large (infinite-
dimensional) class of conductivities which give rise to the same electrical measure-
ments at the boundary. This was first observed in [57] following a remark by Luc
Tartar. The version of Calderón’s problem appropriate for anisotropic conductivities
is then the question of whether two conductivities with the same DN map must be
such push-forwards of each other.

It was observed by Lee and Uhlmann [64] that, in dimension n ≥ 3, the anisotropic
problem can be reformulated in geometric terms. Let us assume now that (M, g) is
an n-dimensional Riemannian manifold with smooth boundary ∂M . The metric g is
assumed to be symmetric and positive definite. The invariant object analogous to the
operator in conductivity equation (2.3) is the Laplace–Beltrami operator, given by

∆gu = DivgGradgu = |g|−1/2∂j(|g|1/2gjk∂ku),(2.8)
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CLOAKING 9

where |g| = det (gjk), [gjk] = [gjk]−1. The DN map is defined by solving the Dirichlet
problem

∆gu = 0 in M, u|∂M = f.(2.9)

The operator analogous to Λσ is then

Λg(f) = |g|1/2νjg
jk ∂u

∂xk
|∂M ,(2.10)

with ν = (ν1, . . . , νn) the outward unit normal to ∂M . In three dimensions or higher,
the conductivity matrix and the Riemannian metric are related by

σjk = |g|1/2gjk or gjk = det (σ)2/(n−2)σjk.(2.11)

Moreover,

Λg = Λσ, ΛF∗g = Λg,(2.12)

where F∗g denotes the push-forward of the metric g by a diffeomorphism F of M
fixing ∂M [64]. We recall that in local coordinates

(F∗g)jk(y) =
n∑

p,q=1

∂F p

∂xj
(x)

∂F q

∂xk
(x)gpq(x)

∣∣∣∣∣
x=F−1(y)

.(2.13)

In two dimensions, (2.12) is not valid; in this case, the conductivity equation can
be reformulated as

Divg(βGradgu) = 0 in M,(2.14)
u|∂M = f,

where β is the scalar function β = |det σ|1/2, g = (gjk) is equal to (σjk), and Divg
and Gradg are the divergence and gradient operators with respect to the Riemannian
metric g. Thus we see that, in two dimensions, Laplace–Beltrami operators correspond
only to those conductivity equations for which det (σ) = 1.

For domains in two dimensions, Sylvester [95] showed, using isothermal coor-
dinates, that one can reduce the anisotropic problem to the isotropic one for C3

conductivities. This reduction was extended to Lipschitz conductivities in [94] using
the result of [15] and to bounded conductivities in [3], using the result of [2]. The
result of [3] is as follows.

Theorem 2.1. If σ and σ̃ are two L∞ anisotropic conductivities bounded from
below by a positive constant in a bounded set Ω ⊂ R2 for which Λσ = Λσ̃, then there
is a diffeomorphism F : Ω→ Ω, F |∂Ω = Id such that σ̃ = F∗σ.

In three dimensions and higher, the following uniqueness result is known for real
analytic anisotropic conductivities or metrics (see [61], [62], and [64]).

Theorem 2.2. If n ≥ 3 and (M,∂M) is a Cω manifold with a nonempty,
compact, Cω boundary, and g, g̃ are Cω metrics on M such that Λg = Λg̃, then there
exists a Cω diffeomorphism F :M →M such that F |∂D = Id and g̃ = F∗g.

We also mention that the invariance of the DN map under changes of variables was
used in [58] to find the unique isotropic conductivity that is closest to an anisotropic
one.

A problem related to Calderón’s problem is the Gel’fand problem, which uses
boundary measurements at all frequencies, rather than at a fixed one. For this prob-
lem, uniqueness results are available; see, e.g., [5, 44], with a detailed exposition in [45].

D
ow

nl
oa

de
d 

08
/0

1/
18

 to
 1

28
.9

5.
10

4.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

10 A. GREENLEAF, Y. KURYLEV, M. LASSAS, AND G. UHLMANN

Fig. 2 A typical member of a family of manifolds developing a singularity as the width of the neck
connecting the two parts goes to zero.

2.2. Transformation Optics for Electrostatics. The fact that smooth diffeo-
morphisms that leave the boundary fixed give the same boundary information (2.12)
can already be considered as a weak form of invisibility, with distinct conductivities
being indistinguishable to external observations; however, nothing has been hidden
yet.

Using the invariance (2.12), examples of singular anisotropic conductivities in
R
n, n ≥ 3, that are indistinguishable from a constant isotropic conductivity, in that

they have the same DN map, are given in [38, 39]. This construction is based on de-
generations of Riemannian metrics, whose singular limits can be considered as coming
from singular changes of variables.

If one considers Figure 2, where the “neck” of the surface (or a manifold in the
higher-dimensional cases) is pinched, the manifold contains in the limit a pocket about
which the boundary measurements do not give any information. If the collapsing of
the manifold is done in an appropriate way, in the limit we have a (singular) Rieman-
nian manifold which is indistinguishable from a flat surface. This can be considered
as a conductivity, singular at the pinched points, that appears to all boundary mea-
surements the same as a constant conductivity.

To give a precise realization of this idea, let B(0, R) ⊂ R3 be an open ball with
center 0 and radius R. We use in what follows the set N = B(0, 2), decomposed into
two parts, N1 = B(0, 2) \B(0, 1) and N2 = B(0, 1). Let Σ = ∂N2 be the interface (or
“cloaking surface”) between N1 and N2.

We use also a “copy” of the ball B(0, 2), with the notation M1 = B(0, 2). Let
gjk = δjk be the Euclidean metric in M1 and let γ = 1 be the corresponding homoge-
neous conductivity. Define a singular transformation

F1 :M1 \ {0} → N1, F1(x) =
(
|x|
2

+ 1
)

x

|x| , 0 < |x| ≤ 2.(2.15)

The push-forward g̃ = (F1)∗g of the metric g by F1 is the metric in N1 given by

((F1)∗g)jk (y) =
n∑

p,q=1

∂F p
1

∂xj
(x)

∂F q
1

∂xk
(x)gpq(x)

∣∣∣∣∣
x=F−1

1 (y)

.(2.16)

We use it to define a singular conductivity

(σ̃)jk =
{
|g̃|1/2g̃jk for x ∈ N1,
δjk for x ∈ N2,

(2.17)
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CLOAKING 11

in N . (The way to think of σ̃ on N2 is that it is the push-forward of δjk under the
identity map F2 : M2

def= B(0, 1) −→ N2, which could in fact be replaced by any
diffeomorphism “filling in the hole” left by F1.)

To consider the maps F1 and F2 together, let M be the disjoint union of a ball
M1 = B(0, 2) and a ball M2 = B(0, 1). These will correspond to sets N,N1, N2
after an appropriate change of coordinates. We thus consider a map F : M \ {0} =
(M1 \ {0}) ∪M2 → N \ Σ, where F maps M1 \ {0} to N1 as the map F1 defined
by (2.15) and F maps from M2 to N2 as the identity map F2 = Id. The combined
map, F = (F1, F2), “blows up a point.” Using spherical coordinates, (r, φ, θ) �→
(r sin θ cosφ, r sin θ sinφ, r cos θ), we have

σ̃ =


 2(r − 1)2 sin θ 0 0

0 2 sin θ 0
0 0 2(sin θ)−1


 , 1 < |x| ≤ 2.(2.18)

This means that in Cartesian coordinates the conductivity σ̃ is given by

σ̃(x) = 2(I − P (x)) + 2|x|−2(|x| − 1)2P (x), 1 < |x| < 2,

where I is the identity matrix and P (x) = |x|−2xxt is the projection to the radial
direction. We note that the anisotropic conductivity σ̃ is singular on Σ in the sense
that it is not bounded from below by any positive multiple of I. (See [54] for a similar
calculation.)

Consider now the Cauchy data of all solutions in the Sobolev space H1(N) of the
conductivity equation corresponding to σ̃; that is,

C1(σ̃) = {(u|∂N , ν· σ̃∇u|∂N ) : u ∈ H1(N), ∇· σ̃∇u = 0},

where ν is the Euclidean unit normal vector of ∂N .
Theorem 2.3 (see [39]). The Cauchy data of all H1-solutions for the conductiv-

ities σ̃ and γ on N coincide; that is, C1(σ̃) = C1(γ).
This means that all boundary measurements for the homogeneous conductivity

γ = 1 and the degenerated conductivity σ̃ are the same. The result above was proven
in [37, 38] for the case of dimension n ≥ 3. The same basic construction works in the
two-dimensional case [54]. For a further study of the limits of visibility and invisibility
in two dimensions, see [4].

Figure 3 portrays an analytically obtained solution on a disc with conductivity
σ̃. As seen in the figure, no currents appear near the center of the disc, so that if the
conductivity is changed near the center, the measurements on the boundary ∂N do
not change.

Remark 2.4. We now make a simple but crucial observation: In order for the
one-to-one correspondence between solutions of the conductivity equation for γ and
those for σ̃ to hold, it is necessary to impose some regularity assumption on the
electrical potentials ũ for σ̃. If, for example, we start with the Newtonian potential
K(x) = − 1

4π|x| , then this pushes forward to a (non-H1) potential for σ̃ whose Cauchy
data do not equal the Cauchy data of any potential u for γ. Thus, it does not suffice
to simply appeal to the transformation law (2.7) in the exterior of the cloaked region.
This comment is equally valid when one considers cloaking for the Helmholtz and
Maxwell equations.

The invisibility result is valid for a more general class of singular cloaking transfor-
mations. Quadratic singular transformations for Maxwell’s equations were introduced
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12 A. GREENLEAF, Y. KURYLEV, M. LASSAS, AND G. UHLMANN

Fig. 3 Analytic solutions for the currents.

first in [18]. A general class sufficing, at least, for electrostatics is given by the fol-
lowing result from [38].

Theorem 2.5. Let Ω ⊂ Rn, n ≥ 3, be a bounded domain with a smooth boundary,
y ∈ Ω, and let g = (gij) be a metric on Ω. Let D ⊂ Ω be such that there is a C∞

diffeomorphism F : Ω \ {y} → Ω \D satisfying F |∂Ω = Id and such that

dF (x) ≥ c0I, det (dF (x)) ≥ c1 dist
Rn

(x, y)−1,(2.19)

where dF is the Jacobian matrix in Euclidean coordinates of Rn and c0, c1 > 0. Let
g̃ = F∗g and ĝ be an extension of g̃ into D such that it is positive definite in Dint.
Finally, let γ and σ̂ be the conductivities corresponding to g and ĝ. Then,

C1(σ̂) = C1(γ).

The key to the proof of Theorem 2.5 is the following removable singularities
theorem that implies that solutions of the conductivity equation in the annulus pull
back by a singular transformation to solutions of the conductivity equation in the
whole ball.

Proposition 2.6. Let Ω ⊂ R
n, n ≥ 3, be a bounded domain with a smooth

boundary, y ∈ Ω, and let g = gij be a metric on Ω. Let u satisfy

∆gu(x) = 0 in Ω,
u|∂Ω = f0 ∈ C∞(∂Ω).

Let D ⊂ Ω be such that there is a diffeomorphism F : Ω \ {y} → Ω \ D satisfying
F |∂Ω = Id. Let g̃ = F∗g and v be a function satisfying

∆g̃v(x) = 0 in Ω \D,
v|∂Ω = f0,

v ∈ L∞(Ω \D).

Then u and F ∗v coincide and have the same Cauchy data on ∂Ω,

∂νu|∂M = ∂ν̃F
∗v|∂M ,(2.20)
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CLOAKING 13

where ν is the unit normal vector in metric g and ν̃ is the unit normal vector in
metric g̃.

Quadratic singular transformations, such as

F (x) = (1 + |x|2) x|x| ,

were used in [18] to reduce exterior reflections. We note that a similar type of theorem
is also valid for a more general class of solutions. Consider an unbounded quadratic
form Aσ̃ in L2(N),

Aσ̃[u, v] =
∫
N

σ̃∇u· ∇v dx,

defined for u, v ∈ D(Aσ̃) = C∞0 (N). Let Aσ̃ be the closure of this quadratic form and
say that

∇· σ̃∇u = 0 in N,

u|∂N = f0,

is satisfied in the finite energy sense if there is u0 ∈ H1(N) supported in N1 such that
u0|∂N = f0, u− u0 ∈ D(Aσ̃) and

Aσ̃[u− u0, v] = −
∫
N

σ̃∇u0· ∇v dx for all v ∈ D(Aσ̃).

Then the Cauchy data set of the finite energy solutions, denoted

Cf.e.(σ̃) =
{
(u|∂N , ν· σ̃∇u|∂N ) : u is a finite energy solution of ∇· σ̃∇u = 0

}
,

coincides with Cf.e.(γ). Using the more general class of solutions above, one can
consider the nonzero frequency case,

∇ · σ̃∇u = λu,

and show that the Cauchy data set of the finite energy solutions to the above equation
coincides with the corresponding Cauchy data set for γ; cf. [32].

All of the above were obtained in dimensions n ≥ 3. Kohn et al. [54] showed
that the singular conductivity resulting from the same transformation also cloaks for
electrostatics in two dimensions. Using estimates for the effect of small inclusions
on the DN map they gave precise estimates for how close one is to invisibility if the
singular transformation is approximated by appropriate nonsingular transformations.

2.3. QuantumandOptical Shielding. The uniqueness result of [96] applies more
generally to the Schrödinger equation −∆+ q(x) when the potential q(x) is assumed
to be in L∞. In this case the DN map is defined by

Λq(f) =
∂u

∂ν
,(2.21)

where u solves the equation

(−∆+ q)u = 0 in Ω, u|∂Ω = f.(2.22)
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14 A. GREENLEAF, Y. KURYLEV, M. LASSAS, AND G. UHLMANN

We remark that the DN map is well defined only if 0 is not a Dirichlet eigenvalue
of the Schrödinger equation. In the more general case we can define the set of Cauchy
data

Cq =
{(

u|∂Ω,
∂u

∂ν

)
; u ∈ H1(Ω) solves (−∆+ q)u = 0 in Ω

}
.(2.23)

The result of [96] states that q is determined uniquely from Λq, or more generally
Cq, in three dimensions or higher. This was extended to Ln/2 potentials in [63] and
for conormal potentials having any singularity weaker than the delta function of a
surface (see the precise result in [37]). One particular case of this is the Helmholtz
operator ∆ + k2n(x)2 with an isotropic index of refraction n.

In [37] we constructed a class of potentials or indices of refraction that shield
any information contained in the region D; in other words, the boundary information
obtained outside the shielded region is the same as that in the case of the potential 0.
These potentials behave like q(x) = −Cd(x, ∂D)−2−ε, where d denotes the distance
to ∂D and C is a positive constant. As pointed out in [37], inside the region D
Schrödinger’s cat could live forever. From the point of view of quantum mechanics, q
represents a potential barrier so steep that no tunneling can occur. From the point of
view of optics and acoustics, no sound waves or electromagnetic waves will penetrate,
or emanate from, D. However, this construction should be thought of as shielding,
not cloaking, since the potential barrier that shields that part of the potential within
D from boundary observation is itself detectable.

3. Cloaking Circa 2006.

3.1. Developments in Physics. This brings us to the transformation-optics–
based proposals of [65, 80] for cloaking from observation by electromagnetic waves
at positive frequency. One is interested either in scalar waves of the form U(x, t) =
u(x)eikt, with u satisfying the Helmholtz equation

(∆ + k2n2(x))u(x) = ρ(x),(3.1)

where ρ(x) represents sources that might be present, or in time-harmonic electric
and magnetic fields E(x, t) = E(x)eikt, H(x, t) = H(x)eikt, with E,H satisfying
Maxwell’s equations,

∇×H = −ikεE + J, ∇× E = ikµH,(3.2)

where J denotes any internal current present.
In three dimensions, if we start with the homogeneous, isotropic ε0, µ0 on B(0; 2)

and push them forward by the “blowing up a point” map F1 from (2.15), then they
become inhomogeneous and anisotropic, identical to the conductivity tensor (2.18).
Thus, they are nonsingular at each point of N1 := B(0; 2)\B(0; 1), but as r = |x| −→
1+, two of the eigenvalues, associated with the angular directions, remain ∼ 1, while
the third, associated with the radial direction, is ∼ (r − 1)2. Since the image of F1
is just N1, we choose the medium in the region to be cloaked, N2 := B(0; 1), by
allowing ε, µ to be any smooth, nonsingular tensor there. This gives rise to what we
call the single coating cloaking construction, to be physically implemented by layers
of metamaterials on the exterior of the cloaking surface, Σ = ∂N2 = S

2. We refer
to N := N1 ∪N2 ∪ Σ = B(0, 2) as the cloaking device and the resulting specification
of the material parameters on N we denote by ε̃, µ̃. In spherical coordinates, the
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CLOAKING 15

representation of ε̃ and µ̃ coincides with that of σ̃ given in (2.18). Later, we will also
describe the double coating construction, which corresponds to appropriately matched
layers of metamaterials on both the outside and the inside of Σ.

Now, if one works exclusively on the open annulus N1, the transformation F1 is
smooth and the chain rule, combined with (2.7), yields a one-to-one correspondence
between solutions (E,H) of Maxwell’s equations (3.2) on M1 \ {0} = B(0; 2) \ 0 and
solutions (Ẽ, H̃) of Maxwell’s equations on N1, with internal current J̃ arising from
J |M1 by an analogous transformation law. Thus, the boundary observations at ∂N
(or the scattering observations at infinity) seem to be unable to distinguish between
the cloaking device N , with an object hidden from view in N2, and the empty space
of M . This is the level of justification that is presented in [80] and its sequels [81, 26],
where ray-tracing and numerical simulations on N1 are given.

3.2. Full-Wave Analysis. Unfortunately, there is a serious problem with the ar-
gument above: it is insufficient to merely consider the waves outside of the cloaked
region, i.e., on N1; rather, one needs to study the waves on all of N . Furthermore, a
careful analysis should not ignore the fact that, since ε̃ and µ̃ are degenerate at the
cloaking surface Σ, without further conditions being imposed, the “waves” include
some that are physically meaningless, even though of locally finite energy. (It is this
degeneracy which causes the associated rays to go around the cloaked region, but its
effect at the level of waves is what is crucial.) In fact, due to the degeneracy of ε̃ and
µ̃, the weighted L2 space defined by the energy norm

‖Ẽ‖2
L2(N,|g̃|

1
2 dx)

+ ‖H̃‖2
L2(N,|g̃|

1
2 dx)

=
∫
N

(ε̃jk Ẽj Ẽk + µ̃jk H̃j H̃k) dx(3.3)

includes functions, which are not distributions, and for these the meaning of Maxwell’s
equations is problematic. Similar difficulties arise for the Helmholtz equation. To treat
cloaking rigorously, one should consider the boundary measurements (or scattering
data) of finite energy waves which also satisfy Maxwell’s equations in some reasonable
weak sense, such as the sense of distributions. This represents a strengthened version
at positive frequency of Remark 2.4.

Analysis of cloaking from this more rigorous point of view was carried out in
[32], which forms the basis for much of the discussion here. As it turns out, the in-
sights gained from a careful analysis of the mathematically ideal cloaking construction
arising from the singular transformation F1, where these issues arise, leads to consid-
erations that in fact improve the effectiveness of cloaking in more physically realistic
approximations to the ideal [34].

3.3. Physics on a Riemannian Manifold. Let us start with the cases of scalar
optics or acoustics, governed in the case of isotropic media by the Helmholtz equation
(3.1). In order to work with anisotropic media, we convert this to the Helmholtz
equation with respect to a Riemannian metric g. Working in dimensions n ≥ 3, we
take advantage of the one-to-one correspondence (2.11) between (positive definite)
contravariant 2-tensors of weight 1 and Riemannian metrics g. Let us consider the
Helmholtz equation

(∆g + k2)u = ρ,(3.4)

where ∆g is the Laplace–Beltrami operator associated with the Euclidean metric
gij = δij . Under a smooth diffeomorphism F , the metric g pushes forward to a metric
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16 A. GREENLEAF, Y. KURYLEV, M. LASSAS, AND G. UHLMANN

g̃ = F∗g, and then, for u = ũ ◦ F , we have

(∆g + k2)u = ρ ⇐⇒ (∆g̃ + k2)ũ = ρ̃,

where ρ = ρ̃ ◦ F .
Next we consider the case when F is not a smooth diffeomorphism, but F =

(F1, F2), as in section 2.2.
Let ρ̃ ∈ L2(N, dx) be a function such that supp (ρ̃) ∩ Σ = ∅. We now give the

precise definition of a finite energy solution for the Helmholtz equation. This definition
applies for both the single and double coating constructions.

Definition 3.1. A measurable function ũ on N is a finite energy solution of the
Dirichlet problem for the Helmholtz equation on N ,

(∆g̃ + k2)ũ = ρ̃ on N,(3.5)

ũ|∂N = h̃,

if

ũ ∈ L2(N, |g̃|1/2dx),(3.6)
ũ|N\Σ ∈ H1

loc(N \ Σ, dx),(3.7) ∫
N\Σ
|g̃|1/2g̃ij∂iũ∂j ũ dx <∞,(3.8)

ũ|∂N = h̃,

and, for all ψ̃ ∈ C∞(N) with ψ̃|∂N = 0,∫
N

[−(Dj
g̃ũ)∂jψ̃ + k2ũψ̃|g̃|1/2]dx =

∫
N

ρ̃(x)ψ̃(x)|g̃|1/2dx,(3.9)

where Dj
g̃ũ = |g̃|1/2g̃ij∂iu is defined as a Borel measure defining a distribution on N .

Note that the inhomogeneity ρ̃ is allowed to have two components, ρ̃1 and ρ̃2,
supported in the interiors of N1, N2, respectively. The latter corresponds to an active
object being rendered undetectable within the cloaked region. On the other hand,
the former corresponds to an active object embedded within the metamaterial cloak
itself, whose position apparently shifts in a predictable manner according to the trans-
formation F1; this phenomenon, which also holds for both spherical and cylindrical
cloaking for Maxwell’s equations, was later described and numerically modeled in the
cylindrical setting and termed the “mirage effect” [111].

Next we consider the relation between Maxwell’s equations on M and N . Recall
that F1 :M1 \ {0} → N1 is singular and that F2 :M2 → N2 is the identity map, and
denote Γ = ∂((M1 \ {0}) ∪ ∂M2.

Theorem 3.2 (see [32]). Let u = (u1, u2) : (M1 \{0})∪M2 → R and ũ : N \Σ→
R be measurable functions such that u = ũ◦F . Let ρ = (ρ1, ρ2) : (M1 \{0})∪M2 → R

and ρ̃ : N \Σ→ R be L2 functions, supported away from Γ and Σ, such that ρ = ρ̃◦F ,
and h̃ : ∂N → R, h : ∂M1 → R be such that h = h̃ ◦ F1.

Then the following are equivalent:
1. The function ũ, considered as a measurable function on N , is a finite energy

solution to the Helmholtz equation (3.5) with inhomogeneity ρ̃ and Dirichlet
data h̃ in the sense of Definition 3.1.
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CLOAKING 17

2. The function u satisfies

(∆g + k2)u1 = ρ1 on M1, u1|∂M1 = h,(3.10)

and

(∆g + k2)u2 = ρ2 on M2, gjkνj∂ku2|∂M2 = b,(3.11)

with b = 0. Here u1 denotes the continuous extension of u1 from M1 \ {0} to
M1.

Moreover, if u solves (3.10) and (3.11) with b �= 0, then the function ũ = u◦F−1 :
N \Σ→ R, considered as a measurable function on N , is not a finite energy solution
to the Helmholtz equation.

As mentioned in section 1 and detailed in [36], this result also describes a struc-
ture cloaking both passive objects and active sources for acoustic waves. Equivalent
structures in the spherically symmetric case, with only cloaking of passive objects
verified, was considered later in [21, 28].

We point out that the Neumann boundary condition that appeared in (3.11) is
a consequence of the fact that the coordinate transformation F is singular on the
cloaking surface Σ.

3.4. Maxwell’s Equations. In what follows, we treat Maxwell’s equations in non-
conducting and lossless media, that is, for which σ = 0 and the components of ε, µ are
real valued. Although somewhat suspect (presently, metamaterials are quite lossy),
these are standard assumptions in the physical literature. We point out that Ola,
Päivärinta, and Somersalo [78] have shown that cloaking is not possible for Maxwell’s
equations with nondegenerate isotropic electromagnetic parameters.

We consider the electric and magnetic fields, E and H, as differential 1-forms,
given in some local coordinates by

E = Ej(x)dxj , H = Hj(x)dxj .

For a smooth diffeomorphism F and for a 1-form E(x) = E1(x)dx1 + E2(x)dx2 +
E3(x)dx3 we define the push-forward of E in F , denoted Ẽ = F∗E, by

Ẽ(x̃) = Ẽ1(x̃)dx̃1 + Ẽ2(x̃)dx̃2 + Ẽ3(x̃)dx̃3

=
3∑

j=1

( 3∑
k=1

(DF−1)kj (x̃)Ek(F−1(x̃))
)
dx̃j , x̃ = F (x).

A similar kind of transformation law is valid for 2-forms. We interpret the curl
operator for 1-forms in R3 as being the exterior derivative, d. Maxwell’s equations
then have the form

curlH = −ikD + J, curlE = ikB,

where we consider the D and B fields and the external current J (if present) as
2-forms. The constitutive relations are

D = εE, B = µH,

where the material parameters ε and µ are linear maps mapping 1-forms to 2-forms,
i.e., are (1,2) tensor fields.
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18 A. GREENLEAF, Y. KURYLEV, M. LASSAS, AND G. UHLMANN

Let g be a Riemannian metric in Ω ⊂ R3. Using the metric g, we define a specific
permittivity and permeability by setting

εjk = µjk = |g|1/2gjk.

These types of electromagnetic parameters were considered in [60] and have the same
transformation laws as the case of the Helmholtz equation or the conductivity equa-
tion.

To introduce the material parameters ε̃(x) and µ̃(x) that make cloaking possible,
we consider the singular map F1 given by (2.15), the Euclidean metric on N2, and
g̃ = F∗g in N1. As before, defining the singular permittivity and permeability by the
formula analogous to (2.17),

ε̃jk = µ̃jk =
{
|g̃|1/2g̃jk for x ∈ N1,
δjk for x ∈ N2.

(3.12)

We note that in N2 one could define ε̃ and µ̃ to be arbitrary smooth nondegenerate
material parameters. For simplicity, we consider here only homogeneous material
in the cloaked region N2. As in the case of the Helmholtz equation these material
parameters are singular on Σ, requiring that what it means for fields (Ẽ, H̃) to form
a solution to Maxwell’s equations must be defined carefully.

3.5. Definition of Solutions of Maxwell’s Equations. Since the material param-
eters ε̃ and µ̃ are again singular at the cloaking surface Σ, keeping Remark 2.4 in
mind, we need a careful formulation of the notion of a solution.

Definition 3.3. We say that (Ẽ, H̃) is a finite energy solution to Maxwell’s
equations on N ,

∇× Ẽ = ikµ̃(x)H̃, ∇× H̃ = −ikε̃(x)Ẽ + J̃ on N,(3.13)

if Ẽ, H̃ are 1-forms and D̃ := ε̃ Ẽ and B̃ := µ̃ H̃ 2-forms in N with L1(N, dx)-
coefficients satisfying

‖Ẽ‖2L2(N,|g̃|1/2dV0(x)) =
∫
N

ε̃jk Ẽj Ẽk dV0(x) <∞,(3.14)

‖H̃‖2L2(N,|g̃|1/2dV0(x)) =
∫
N

µ̃jk H̃j H̃k dV0(x) <∞,(3.15)

where dV0 is the standard Euclidean volume, (Ẽ, H̃) is a classical solution of Maxwell’s
equations on a neighborhood U ⊂ N of ∂N ,

∇× Ẽ = ikµ̃(x)H̃, ∇× H̃ = −ikε̃(x)Ẽ + J̃ in U,

and, finally, ∫
N

((∇× h̃) · Ẽ − ikh̃ · µ̃(x)H̃) dV0(x) = 0,∫
N

((∇× ẽ) · H̃ + ẽ · (ikε̃(x)Ẽ − J̃)) dV0(x) = 0

for all 1-forms ẽ, h̃ on N having Euclidean coordinate components in C∞0 (N).
Surprisingly, the finite energy solutions do not exist for generic currents. Below,

we denote M \ {0} = (M1 \ {0}) ∪M2.
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CLOAKING 19

Theorem 3.4 (see [32]). Let E and H be 1-forms with measurable coefficients
on M \ {0} and Ẽ and H̃ 1-forms with measurable coefficients on N \ Σ such that
Ẽ = F∗E, H̃ = F∗H. Let J and J̃ be 2-forms, with smooth coefficients on M \ {0}
and N \ Σ, that are supported away from {0} and Σ such that J̃ = F∗J .

Then the following are equivalent:
1. The 1-forms Ẽ and H̃ on N satisfy Maxwell’s equations

∇× Ẽ = ikµ̃(x)H̃, ∇× H̃ = −ikε̃(x)Ẽ + J̃ on N,(3.16)

ν × Ẽ|∂N = f,

in the sense of Definition 3.3.
2. The forms E and H satisfy Maxwell’s equations on M ,

∇× E = ikµ(x)H, ∇×H = −ikε(x)E + J on M1,(3.17)
ν × E|∂M1 = f,

and

∇× E = ikµ(x)H, ∇×H = −ikε(x)E + J on M2,(3.18)

with Cauchy data

ν × E|∂M2 = be, ν ×H|∂M2 = bh(3.19)

that satisfies be = bh = 0.
Moreover, if E and H solve (3.17), (3.18), and (3.19) with nonzero be or bh, then

the fields Ẽ and H̃ are not solutions of Maxwell’s equations on N in the sense of
Definition 3.3.

This can be interpreted as saying that the cloaking of active objects is difficult
since, with nonzero currents present within the region to be cloaked, the idealized
model leads to nonexistence of finite energy solutions. The theorem says that a finite
energy solution must satisfy the hidden boundary conditions

ν × Ẽ = 0, ν × H̃ = 0 on ∂N2.(3.20)

Unfortunately, these conditions, which correspond physically to the so-called perfect
electrical conductor (PEC) and perfect magnetic conductor (PMC) conditions, con-
stitute an overdetermined set of boundary conditions for Maxwell’s equations on N2
(or, equivalently, on M2). For cloaking passive objects, for which J = 0, they can be
satisfied by fields which are identically zero in the cloaked region, but for generic J ,
including ones arbitrarily close to 0, there is no solution.

The perfect, ideal cloaking devices in practice can only be approximated by a
medium whose material parameters approximate the degenerate parameters ε̃ and
µ̃. For instance, one can consider metamaterials built up using periodic structures
whose effective material parameters approximate ε̃ and µ̃. Thus the question of when
the solutions exist in a reasonable sense is directly related to the question of which
approximate cloaking devices can be built in practice. We note that if E and H
solve (3.17), (3.18), and (3.19) with nonzero be or bh, then the fields Ẽ and H̃ can be
considered as solutions of the nonhomogeneous Maxwell equations on N in the sense
of Definition 3.3:

∇× Ẽ = ikµ̃(x)H̃ + K̃surf , ∇× H̃ = −ikε̃(x)Ẽ + J̃ + J̃surf on N,
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20 A. GREENLEAF, Y. KURYLEV, M. LASSAS, AND G. UHLMANN

where K̃surf and J̃surf are magnetic and surface currents supported on Σ. If we include
a PEC lining on the inner side of Σ, the solution for the given boundary value f is the
one where K̃surf = 0 and J̃surf is possibly nonzero, and in the case of a PMC lining,
the solution is the one with J̃surf = 0. If we are building an approximate cloaking
device with metamaterials, effective constructions could be done in such a way that
the material approximates a cloaking material with a PEC or PMC lining. We will
discuss this question in detail in the next section in the context of cylindrical cloaking.
In that case, adding a special physical surface on Σ improves significantly the behavior
of approximate cloaking devices; without this kind of lining the fields blow up. This
suggests that experimentalists building cloaking devices should first consider the kind
of cloak with well-defined solutions they would like to approximate. Indeed, building
a device where solutions behave nicely is probably easier than building one which
produces huge oscillations of the fields.

As an alternative, one can modify the basic construction by using a double coating.
Mathematically, this corresponds to using an F = (F1, F2) with both F1, F2 singular,
which gives rise to a singular Riemannian metric which degenerates in the same way
as one approaches Σ from both sides. Physically, the double coating construction
corresponds to surrounding both the inner and outer surfaces of Σ with appropriately
matched metamaterials. See [32].

4. Cylindrical Cloaking, Approximate Cloaking, and the SHS Lining. In the
following we change the geometrical situation considered and redefine some notation.

We consider next an infinite cylindrical domain. In what follows, B2(0, r) ⊂
R

2 is a Euclidean disc with center 0 and radius r. The cloaking device N in the
cylindrical case is the infinite cylinder N = B2(0, 2) × R that contains the subsets
N1 = (B2(0, 2)\B2(0, 1))×R and N2 = B2(0, 1)×R. We will consider observations on
the surface ∂N . Moreover, letM be the disjoint union ofM1 = B2(0, 2)×R andM2 =
B2(0, 1)×R. Finally, in this section the cloaking surface is Σ = ∂B2(0, 1)×R, and we
denote L = {(0, 0)} ×R ⊂M1. Next, we consider cylindrical coordinates, (r, θ, z) �→
(r cos θ, r sin θ, z). The singular coordinate transformation in these coordinates is the
map F :M \ L→ N \ Σ given by

F (r, θ, z) =
(
1 +

r

2
, θ, z

)
on M1 \ L,

F (r, θ, z) = (r, θ, z) on M2.

Again, let g be the Euclidean metric on M , that is, on both components M1 and M2,
and let ε = 1 and µ = 1 be homogeneous material parameters in M . Using the map
F we define g̃ = F∗g in N \ Σ and define the corresponding material parameters ε̃
and µ̃ as in (3.12). By locally finite energy solutions of Maxwell’s equations on N we
mean locally integrable 1-forms Ẽ and H̃ satisfying in all bounded open sets N ′ ⊂ N
the conditions analogous to Definition 3.3. We recall that the fact that Ẽ, H̃ are finite
energy solutions in a bounded domain N ′ means, in particular, that these are 1-forms
and D̃ = ε̃Ẽ, B̃ = µ̃H̃ are 2-forms with L1(N ′, dx) coefficients. We note that in the
cylindrical cloaking ε̃ and µ̃ are no longer bounded, and in N1 they have in cylindrical
coordinates the representation

ε̃ = µ̃ =


 (r − 1) 0 0

0 (r − 1)−1 0
0 0 4(r − 1)


 , 1 < r < 2.
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CLOAKING 21

Let us denote by ζ = ∂z the vertical vector field in R3.
We will consider 1-forms E and H onM and Ẽ and H̃ on N that satisfy Ẽ = F∗E

and H̃ = F∗H on N \ Σ. For simplicity, we will consider the case when

Ẽ = 0 and H̃ = 0 in N2 or, equivalently,(4.1)
E = 0 and H = 0 in M2.

This corresponds to the case when the cloaked regionN2 is dark. In this case, Theorem
7.1 in [32] yields the following result.

Theorem 4.1. Let E and H be 1-forms on M and Ẽ and let H̃ be 1-forms on
N such that Ẽ = F∗E and H̃ = F∗H on N \Σ. Assume that (4.1) is valid and that Ẽ
and H̃ are locally finite energy solutions of Maxwell’s equations on N . Then the forms
E and H are classical solutions to Maxwell’s equations on M and the restrictions on
the line L ⊂M1,

be1 = ζ·E|L, bh1 = ζ·H|L,(4.2)

must satisfy be1 = 0 and bh1 = 0.
This result implies that if we impose some boundary condition on the exterior

boundary of N1, e.g., the electric boundary condition ν × Ẽ|∂B2(0,2)×R = f , then the
locally finite energy solutions on N exists only if Maxwell’s equations

∇× E = ikµ(x)H, ∇×H = −ikε(x)E on M1,

ν × E|∂M1 = f,

have a solution for which restrictions (4.2) on the line L vanish. So, for generic electric
boundary value f a locally finite energy solution does not exist.

Again, there is a remedy for this obstruction to cloaking. Using transformation
rule (2.7) one can observe for the locally finite energy solutions that in Euclidean
coordinates on N1 ⊂ R3 the θ-components of the fields H̃ and Ẽ vanish on Σ. Moti-
vated by this we impose the soft-and-hard surface (SHS) boundary condition on the
cloaking surface. This can be considered by attaching an SHS on the inside of the
cloaking material. In classical terms, an SHS condition on a surface Σ [40, 47] is

η ·E|Σ = 0 and η ·H|Σ = 0,

where η = η(x) is some nonzero tangential field on Σ, that is, η · ν = 0. In other
words, the part of the tangential component of the electric field E that is parallel
to η vanishes, and the same is true for the magnetic field H. This was originally
introduced in antenna design and can be physically realized by having a surface with
thin parallel gratings filled with dielectric material [47, 48, 67, 40]. Here, we consider
this boundary condition when η is the vector field η = ∂θ, that is, the angular vector
field that is tangential to Σ.

For simplicity, let us consider a case where the cloaked region N2 is replaced by
an obstacle and on the boundary of the obstacle we have the SHS boundary condition.
Thus the field is defined only in the domain N1.

Definition 4.2. We say that the 1-forms Ẽ and H̃ are locally finite energy
solutions of Maxwell’s equations on N1 with SHS boundary conditions on Σ,

∇× Ẽ = ikµ̃(x)H̃, ∇× H̃ = −ikε̃(x)Ẽ + J̃ on N1,(4.3)

η · Ẽ|Σ = 0, η · H̃|Σ = 0,(4.4)
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22 A. GREENLEAF, Y. KURYLEV, M. LASSAS, AND G. UHLMANN

if Ẽ and H̃ are 1-forms and ε̃Ẽ and µ̃H̃ are 2-forms on N1 with coefficients in
L1
loc(N1, dx) satisfying ‖Ẽ‖2

L2(S,|g̃|1/2dV0) < ∞, ‖H̃‖2
L2(S,|g̃|1/2dV0) < ∞ for all open

and bounded subsets S ⊂ N1, and∫
N1

((∇× h̃) · Ẽ − ikh̃ · µ̃(x)H̃) dV0(x) = 0,∫
N1

((∇× ẽ) · H̃ + ẽ · (ikε̃(x)Ẽ − J̃)) dV0(x) = 0

for all ẽ, h̃ that are 1-forms having coefficients in C∞(N1), supported in a bounded
set, vanishing near ∂N , and satisfying

η · ẽ|Σ = 0, η · h̃|Σ = 0.(4.5)

The following invisibility result holds.
Theorem 4.3 (see [32]). Let E and H be 1-forms with measurable coefficients

on M1 and Ẽ and let H̃ be 1-forms with measurable coefficients on N1 such that
E = F ∗Ẽ, H = F ∗H̃. Let J and J̃ be 2-forms, with smooth coefficients on M1 and
N1, that are supported away from L and Σ such that J = F ∗J̃ in N1. Then the
following are equivalent:

1. On N1, the 1-forms Ẽ and H̃ satisfy Maxwell’s equations with SHS boundary
conditions in the sense of Definition 4.2.

2. On M1, the forms E and H are classical solutions of Maxwell’s equations,

∇× E = ikµ(x)H in M1,(4.6)
∇×H = −ikε(x)E + J in M1.

This result implies that when the surface Σ is lined with a material implementing
the SHS boundary condition, the locally finite energy solutions exist for all incoming
waves.

How then can the nonexistence result be interpreted? Let us consider the situation
when a metamaterial coating only approximates the ideal invisibility coating. More
precisely, for 1 < R < 2, consider an infinite cylinder in R3 given, in cylindrical
coordinates, by NR

2 = {r < R}. On NR
2 we choose the metric to be Euclidean, so

that the corresponding permittivity and permeability, ε0 and µ0, are homogeneous and
isotropic. In NR

1 = N \NR
2 , we take the Riemannian metric g̃ and the corresponding

permittivity and permeability ε̃ and µ̃ defined in (3.12) above. This yields that the
approximate coating has the finite anisotropy ratio,

LR := max
1≤j,k≤3

sup
x∈N

λj(x)
λk(x)

,

where λj(x), j = 1, 2, 3, are the eigenvalues of ε̃(x) or µ̃(x). Thus Maxwell’s equations
are defined for approximate coating in the classical way. We call the domain N with
the approximate ε̃ and µ̃ the approximate cloaking device.

Using the approximate coating we considered the scattering problem where a
plane wave hits an approximate cloaking device when the cloaked region NR

2 is filled
with a homogeneous isotropic material, ε = µ = δjk, and Σ contains no lining. Then
the total fields ẼR and H̃R and the total fluxes D̃R and B̃R converge when R → 1,
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CLOAKING 23

in the sense of distributions,

lim
R→1+

ẼR = Ẽlim, lim
R→1+

H̃R = H̃lim,

lim
R→1+

D̃R = ε̃Ẽlim −
1
ik
J̃surf ,

lim
R→1+

B̃R = µ̃H̃lim +
1
ik
K̃surf ,

where Ẽlim and H̃lim are measurable functions and J̃surf and K̃surf are delta distri-
butions supported on Σ multiplied with smooth 2-forms corresponding to tangential
currents on Σ. Thus, when the approximated coating approaches the ideal, that is,
R→ 1+, we obtain on the limit the equations

∇× Ẽlim = iωB̃lim + K̃surf , ∇× H̃lim = −iωD̃lim + J̃surf ,(4.7)

D̃lim = ε̃Ẽlim, B̃lim = µ̃H̃lim.

The equations (4.7) were introduced in [32]. In numerical simulations in [33] we
considered the scattering of a TE-polarized plane wave from a cylindrical cloaking
device with approximate coating in two cases: when the cloaked region is filled with
a homogeneous isotropic material, and when inside the coating there is an SHS. See
Figure 4.
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Fig. 4 The real part of the y-component of the total B-field on the line {(x, 0, 0) : x ∈ [0, 3]} when
a TE-plane wave scatters from an approximate cloaking device. The solid curve is the field
with no physical lining at {r = R}. The dashed curve is the field with SHS lining on {r = R}.
In the left figure, R = 1.05 and the maximal anisotropy ratio is LR = 1600. In the right
figure, R = 1.01 and the maximal anisotropy ratio is LR = 40,000.

In Figure 4, the development of the delta distribution on the cloaking surface, i.e.,
the blow up of the fields as the approximate cloak improves, can be clearly observed.
Very similar behavior in the absence of a lining was obtained by Ruan et al. [87] by
scattering methods. They showed that, in the case of cylindrical cloaking with no
internal currents and no lining, the fields for the truncated cloak converge at best
logarithmically to the fields for the ideal cloak. Similar results for Helmholtz in two
dimensions have now also been reported by Kohn et al. [53].

Since the metamaterials used to implement cloaking are based on effective medium
theory, the resulting large variation in D and B poses a challenge to the suitability of
field-averaged characterizations of ε and µ [92]. (We note in passing that there still
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24 A. GREENLEAF, Y. KURYLEV, M. LASSAS, AND G. UHLMANN

are many open questions in the mathematically rigorous effective medium theory for
materials that might implement such parameters. For recent results directly applica-
ble to metamaterials used for cloaking, see, e.g., [55]; closely related issues concerning
negative index materials can be found in [9, 10, 11, 12, 13].)

The approximate cloaking is also significantly improved by the SHS lining in the
sense that both the far field of the scattered wave is significantly reduced and the
blow up of D and B is prevented. For instance, in the simulation presented in Figure
4 with R = 1.01, the L2 norm of the far field pattern with the SHS lining was only
2% of the far field without the SHS lining; see [33].

5. Electromagnetic Wormholes. We describe in this section another applica-
tion of transformation optics which consists of blowing up a line rather than a point.
In [33, 35] a blueprint is given for a device that would function as an invisible tunnel,
allowing electromagnetic waves to propagate from one region to another, with only
the ends of the tunnel being visible. Such a device, making solutions of Maxwell’s
equations behave as if the topology of R3 had been modified by the attachment of
a handle, is analogous to an Einstein–Rosen wormhole [29], and so we refer to this
construction as an electromagnetic wormhole.

We first give a general description of the electromagnetic wormhole. Consider first
as in Figure 5 a three-dimensional wormhole manifold (or handlebody)M =M1#M2,
where the components

M1 = R3 \ (B(O, 1) ∪B(P, 1)),
M2 = S2 × [0, 1]

are glued together smoothly.
An optical device that acts as a wormhole for electromagnetic waves at a given

frequency k can be constructed by starting with a two-dimensional finite cylinder

T = S1 × [0, L] ⊂ R3

and taking its neighborhood K = {x ∈ R3 : dist(x, T ) ≤ ρ}, where ρ > 0 is small
enough and N = R3 \K. Let us put on ∂K the SHS boundary condition and cover K

Fig. 5 A two-dimensional schematic figure of wormhole construction by gluing surfaces. Note that
the components of the artificial wormhole construction are three-dimensional.
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CLOAKING 25

with “invisibility cloaking material” that in the boundary normal coordinates around
K has the same representation as ε̃ and µ̃ when cloaking an infinite cylinder. Finally,
let

U = {x ∈ R3 : dist(x,K) > 1}

and note that ε̃, µ̃ are equal to δjk in U . The set U can be considered both a subset
of N ⊂ R3 and a part of the abstract wormhole manifold M , U ⊂ M1. Then, for
currents supported in U , all measurements of the electromagnetic fields in U ⊂ M
and U ⊂ N coincide; that is, waves on the wormhole device (N, ε̃, µ̃) in R3 behave as if
they were propagating on the abstract handlebody space M . This of course produces
global effects on the waves passing through the device, contrary to the claim in [84,
sect. 2].

(a) (b)

Fig. 6 (a) Rays traveling outside the wormhole device. (b) A ray traveling inside.

Figures 6(a) and 6(b) depict ray-tracing simulations in and near the wormhole.
The obstacle in the figures is K, and the metamaterial corresponding to ε̃ and µ̃,
through which the rays travel, is not shown.

We now give a more precise description of an electromagnetic wormhole. Let us
start by making two holes in R3, say, by removing the open unit ball B1 = B(O, 1)
and also the open ball B2 = B(P, 1), where P = (0, 0, L) is a point on the z-axis with
L > 3, so that B1 ∩B2 = ∅. The region so obtained, M1 = R3 \ (B1 ∪B2), equipped
with the standard Euclidean metric g0 and with γ1 = {(0, 0, z) : 1 ≤ z ≤ L−1}, is the
first component M1 of the wormhole manifold. Note that M1 is a three-dimensional
manifold with boundary ∂M1 = ∂B1 ∪ ∂B2, i.e., ∂M1 can be considered as S2

1 ∪ S2
2,

where we will use S2
∗ to denote various copies of the two-dimensional unit sphere.

The second component of the wormhole manifold is a three-dimensional cylinder,
M2 = S2 × [0, 1], with boundary ∂M2 = (S2 × {0}) ∪ (S2 × {1}) := S2

3 ∪ S2
4. We take

γ2 = {NP} × [0, 1], where NP denotes an arbitrary point in S2, say, the north pole.
We initially equip M2 with the product metric, but several variations on this basic
design are possible, each having somewhat different possible applications, which will
be mentioned below.

One can form a handlebody by gluing together the component S2
1 of the boundary

∂M1 with the lower end boundary component S2
3 of M2 and the component S2

2 of the
boundary ∂M1 with the upper end S2

4. In doing so we glue the point (0, 0, 1) ∈
∂B(O , 1) to the point NP × {0}, and the point (0, 0, L− 1) ∈ ∂B(P, 1) to the point
NP ×{1}. Note that in this construction, γ1 and γ2 correspond to two nonhomotopic
paths connecting (0, 0, 1) ∼ NP × {0} to (0, 0, L− 1) ∼ NP × {1}.
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Fig. 7 Ray-tracing simulations of views through the bores of two wormholes. The distant ends are
above an infinite chess board under a blue sky. On the left, L << 1; on the right, L ≈ 1.
Note that blue is used for clarity; the wormhole construction should be considered essentially
monochromatic, for physical rather than mathematical reasons.

f1

Q R

P

Fig. 8 Above: A schematic figure of f1, representing F1, in the (r, z) plane. Its image P corresponds
to N1 in (r, z) coordinates. Below: The sets Q and R correspond to N2 and N . In the figure,
R = Q ∪ P , which corresponds to N = N1 ∪N2 in R3.

Figure 7 shows the distortion that rays passing through the tunnel part of the
wormhole are subjected to.

Let us denote in cylindrical coordinates N2 = {(r, θ, z) : |r| < 1, z ∈ [0, L]} ∩N
and N1 = N \N2 and consider singular transformations Fj :Mj \γj −→ R

3, j = 1, 2,
whose images are N1, N2, correspondingly; see [35] for details. For instance, the
map F1 can be chosen so that it keeps the θ-coordinate the same and maps (r, z)-
coordinates by f1 : (r, z)→ (r′, z′). In Figure 8 the map f1 is visualized.

Possible applications of electromagnetic wormholes (with varying degrees of like-
lihood of realization!), when the metamaterials technology has sufficiently progressed,
include invisible optical cables, three-dimensional video displays, scopes for MRI-
assisted medical procedures, and beam collimation. For the last two, one needs to
modify the design by changing the metric g2 on M2 = S

2 × [0, 1]. By flattening the
metric on S2 so that the antipodal point SP (the south pole) to NP has a neighbor-
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hood on which the metric is Euclidean, the axis of the tunnel N2 will have a tubular
neighborhood on which ε, µ are constant isotropic and hence can be allowed to be
empty space, allowing for the passage of instruments. On the other hand, if we use
a warped product metric on M2, corresponding to S2 × {z} having the metric of the
sphere of radius r(z) for an appropriately chosen function r : [0, 1] −→ R+, only rays
that travel through N2 almost parallel to the axis can pass all the way through, with
others being returned to the end from which they entered.

6. A General Framework: Singular Transformation Optics. Having seen how
cloaking based on blowing up a point or blowing up a line can be rigorously analyzed,
we now want to explore how more general optical devices can be described using
the transformation rules satisfied by n, (ρ, λ), ε, and µ. This point of view has been
advocated by J. Pendry and his collaborators and given the name transformation
optics [102]. As discussed earlier, under a nonsingular changes of variables F , there
is a one-to-one correspondence between solutions ũ of the relevant equations for the
transformed medium and solutions u = ũ ◦F of the original medium. However, when
F is singular at some points, as is the case for cloaking and the wormhole, we have
shown how greater care needs to be taken, not just for the sake of mathematical rigor,
but to improve the cloaking effect for more physically realistic approximations to the
ideal material parameters. Cloaking and wormholes can be considered as merely start-
ing points for what might be termed singular transformation optics (STO), which,
combined with the rapidly developing technology of metamaterials, opens up entirely
new possibilities for designing devices having novel effects on acoustic or electromag-
netic wave propagation. Other singular transformation designs in two dimensions that
rotate waves within the cloak [20], concentrate waves [85], or act as beam splitters
[84] have been proposed. Analogies with phenomena in general relativity have been
proposed in [66] as a source of inspiration for designs.

We formulate a general approach to the precise description of the ideal material
parameters in an STO device, N ⊂ R

3, and state a “metatheorem,” analogous to
the results we have seen above, which should, in considerable generality, give an exact
description of the electromagnetic waves propagating through such a device. However,
we wish to stress that, as for cloaking [32] and the wormhole [33, 35], actually proving
this “result” in particular cases of interest and determining the hidden boundary
conditions may be decidedly nontrivial.

A general framework for considering ideal mathematical descriptions of such de-
signs is as follows: Define an STO design as a triplet (M,N ,F) consisting of:

(i) An STO manifold, M = (M, g, γ), where M = (M1, . . . ,Mk), the disjoint
union of n-dimensional Riemannian manifolds (Mj , gj), with or without boun-
dary, and (possibly empty) submanifolds γj ⊂ int Mj , with dim γj = 0
or 1;

(ii) An STO device, N = (N,Σ), where N =
⋃k
j=1 Nj ⊂ Rn and Σ =

⋃k
j=1 Σj ,

with Σj a (possibly empty) hypersurface in Nj ;
(iii) A singular transformation F = (F1, . . . , Fk), with each Fj :Mj\γj −→ Nj\Σj

a diffeomorphism.
Note that N is then equipped with a singular Riemannian metric g̃, with g̃|Nj =

(Fj)∗(gj), in general degenerate on Σj . Reasonable conditions need to be placed on the
Jacobians DFj as one approaches γj so that the g̃j have the appropriate degeneracy;
cf. [39, Thm. 3].

In the context of the conductivity or the Helmholtz equation, we can then compare
solutions u onM and ũ on N , while for Maxwell’s equations we can compare fields
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(E,H) on M (with ε and µ corresponding to g by a formula of form (3.12)) and
(Ẽ, H̃) on N . For notational convenience, we refer below to the fields as just u.

Metatheorem (a metatheorem about metamaterials). If (M,N ,F) is an STO
design, there is a one-to-one correspondence, given by u = ũ◦F , i.e., u|Mj = (ũ|Nj )◦
Fj, between finite energy solutions ũ to the equation(s) on N , with source terms f̃

supported on N \Σ, and finite energy solutions u onM, with source terms f = f̃ ◦F ,
satisfying certain “hidden” boundary conditions on ∂M = ∪kj=1 ∂Mj.

7. FurtherDevelopments. The literature on metamaterials, cloaking, and trans-
formation optics has grown enormously in the last few years. We briefly describe only
some of the highlights.

(a) Although the first descriptions of the cloaking phenomenon were in the con-
text of electrostatics, no proposals for electrostatic metamaterials that might
physically implement the examples of [38, 39] have been made to date. [106]
does contain a proposal for metamaterials suitable for magnetostatics (cloak-
ing for which is, of course, mathematically identical to electrostatics) and
magnetism at very low nonzero frequencies.

(b) There have been a number of papers in the physics literature theoretically
analyzing spherical and cylindrical cloaking. As noted above, [87], which
preceded [34], also considered approximate cylindrical cloaking, using it to
verify the ideal cloak for a passive object but also exhibiting the instability
when no boundary condition is imposed. A scattering theory derivation of
the surface currents that arise in cylindrical cloaking was given in [109]. On
the other hand, [108] described the scattering characteristics of the simplified
“reduced cylindrical parameters,” which the experiment [88] was designed
to implement, and showed that in fact cloaking with the reduced parameters
(which do not arise from transformation optics, but were proposed to replicate
the ray behavior of the ideal cloak while using material parameters easier
to physically realize) fails even for passive objects. Spherical cloaking of a
passive object was analyzed in terms of Mie scattering in [23], and cloaking
of a specific active object (an electric dipole) was analyzed in [110], which
rederived (3.20). A somewhat different treatment of some of these same
issues is found in [107].

(c) Due to the nonexistence of finite energy distributional solutions for generic
internal currents J̃ , analyzing approximate cloaking in the three-dimensional
spherical geometry would be important, in order to see whether any of the
fields E,H,D, or B blow up in the limit, as happens in the cylindrical case; see
Figure 4. The blowup would indicate that linings, e.g., adding very conductive
materials at the cloaking surface Σ, would be needed to regulate the behavior
of the fields to help a physical device function more effectively, possibly also
improving the function by reducing the far field of the scattered waves, as
happens in the cylindrical case.

(d) Other boundary conditions at the cloaking surface, analyzed in the time do-
main, based on von Neumann’s theory of self-adjoint extensions and using a
different notion of solution than that considered here, have been studied in
[103, 104, 105]. See also [107].

(e) We have considered singular transformations with range N1, where the boun-
dary measurements are made at the outer boundary ofN1. In situations where
the measurements are made further from the cloaked object, [18] introduced,
for spherical cloaking, transformations nonlinear in the radial variable in or-

D
ow

nl
oa

de
d 

08
/0

1/
18

 to
 1

28
.9

5.
10

4.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CLOAKING 29

der to give better impedance matching with the surrounding media, and this
was further explored for cylindrical cloaking in [108].

(f) Two of the most important practical limitations on cloaking are the nar-
row bandwidth and lossy nature of currently available metamaterials. Some
theoretical analysis of the former issue is in [22].

(g) There has been a drive to design and fabricate metamaterials which function
at higher frequencies, with the visible optical range a goal for obvious rea-
sons. Metamaterials with suitable permeability µ are a particular challenge
[90]. [17] gives a proposal for a nonmagnetic cloak at optical frequencies; an
experiment [93] based on a variant of this design has been reported. More
progress on metamaterials in the optical or near-optical range has been re-
ported in [41] and [68, 91].

(h) Cloaking using media with negative index of refraction has been proposed in
[77]. Metamaterials and cloaking constructions have also been proposed for
other wave phenomena, such as acoustics. See [71, 27, 70], as well as footnote
(1) in section 1.

(i) Negative index of refraction material (NIM) has also received a great deal
of publicity due to its role in the perfect lens, an idea introduced by Pendry
[82], building on the earlier work of Veselago [100] where NIMs were first
discussed. The perfect lens is a proposal for beating the diffraction resolution
limit of one-half the wavelength, using a lens consisting of a flat slab of NIM.
That such superresolution might be possible had been suggested earlier [16,
75, 76, 73], but the NIM proposal has been the focus of much theoretical
and experimental activity; see also [50, 86]. Although not without continuing
controversy [25], it is now generally accepted to be both theoretically valid
and experimentally verified, even for visible light [31].

(j) Effective medium theory for metamaterials is in its early development, and
seems to be particularly difficult for materials assembled from periodic or
almost-periodic arrays of small cells whose properties are based on resonance
effects. A physical (although mathematically nonrigorous) analysis of this
kind of media is found in [92], which makes implicit assumptions about the
smoothness of the fields which are violated when the fields experience the
blow up demonstrated in [87, 34]. Some recent work on homogenization in
this context is found in [55].

(k) A number of papers have emphasized the use of STO-style designs beyond
cloaking. Besides [66], see [85, 84, 51] for designs in two dimensions. Gener-
ally, the issue of the precise meaning of solutions, and any hidden boundary
conditions that may arise, has not been explored.

(l) In section 6 we considered transformation optics when the material param-
eters are blown up on submanifolds. Naturally, rigorous versions of the
metatheorem, with the correct hidden boundary conditions determined, can
only be obtained once the details of the designs have been specified. New STO
devices, with effects on wave propagation previously unknown, lie waiting to
be invented!
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