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\ Introduction

= To find unknown scatterers (permittivities, sizes,
locations) inside the wall from scattering data
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\ Introduction

Quantitative imaging:
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Introduction: Forward Scattering (2D) |

= |Inhomogeneous background with &,(r) £,
= Distribution of permittivities s(r)=¢.(r)- ¢, (r)
= Governing equation:
V4l (0) |[EF() =0, |V +K(r)|EX(r)=0, reD

= | V2 +k; (1) | EX* (r) ={k* (1) - k; (0] EL (r) = —J (r) [defined]

where
k, = 0\ &, 14,

EX =E* +E™
= Scattered field
EX(r) = [, ek r) (r)ar,
J() =18 (1) =k} O)| EX + [ gh,sr, ) (1)’ |

= ke (1), (0 1] B + [ gk, x,0) (1)
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Introduction: Forward Scattering

= |ntroduce notation

g.(k;r,r') for r €S (atreceiver)

g(k,;r,r") is denoted as{

g,k ;r,r") forr e D (inside domain)
= Scattering equations:

EX(r)= ID g.(k,;r,x)J(r')dr’, r eS

J(r) =‘(kb2 (r)e,(r) —1]-[EZinC +J-D g5 (kb;r,r’)J(r')dr’], reD

S
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\Introduction: Forward Problem

= Data equation

= State equation

where y is the diagonal matrix consisting of ki (s, — 1),
referred to as the contrast (with the background).

= Method of solving forward problem: Eliminate J and
obtain the Incidence-to-Scattering mapping

—scat —inc

E =P-F
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Introduction: Inverse Problem

Forward problem
Hi{x} =y
an image x € X, a vector of measurements y € Y
operator H: X - VY

Inverse problem
recover the original image, x, from the measurements, y

RY - X

Objective function approach
Rovi{y} = argn;(in f(H{x},y)+g(x)
X e

f:YX Y - R" is an appropriate measure of error

2: X - R" is a regularization functional
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Introduction: Inverse Problem

Learning approach

Given a training set of ground-truth images and their
corresponding measurements { (x,., v,)} 5=

N
Riearn = argmin ) f(xn, Ro{va}) + 2(6)

RG,QE@ = 1

O is the set of all possible parameters
f: XXX - R"is a measure of error

2:0 — R™ is a regularizer
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An example of a fully connected neural network with two hidden layers

Input Image Hidden Layer 1 Hidden Layer 2 Output Image

The activation of the jth output neuron in layer / is defined as

zj = (>, wijzi"" +bj), where f(-) is the chosen activation function.

All weights w and biases b are learned during the training phase.

Universal approximation theorem . . .
RN US Lucas et.al. IEEE Signal Processing Magazine, 2018
W National University ISP Workshop : Singapore, Sept. 2018 9
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Computational Cost: Objective function approach

= Computational complexity of inverse scattering problem (if
a traditional objective function is used):

O(N,, - Ny, - N

for 1nc

- M log M)

opt - INumber of iterations for optmization

N

for

: Number of iterations for forward problem

N, . : Number of incidences (Degree of Freedom)

1mn

M : Number of pixels (also number of unknowns)
= Bottleneck: Nonlinearity of the objective function

= Need a large N, to reach a global minimum;
= Often pre-converge to a local minimum

= Main objective is to reduce the N, by rewriting the

objective function in a way such that it depends in a much
e less nonlinear way on unknowns.
NUS ISP Workshop : Singapore, Sept. 2018
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Computational Cost: Objective function approach

= The traditional inversion algorithm: The objective
function involves an inversion of a matrix that contains
the unknowns (permittivity or contrast)

= |nversion methods that rewriting the objective function

= Dependence: Unknowns’ 4t order polynomial
» Contrast Source Inversion (CSl)

» Contrast Source Extended Born (CSEB)

» Subspace-based Optimization Method (SOM)

= Compression by alternative bases:

» Fourier

» Wavelet
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Inverse problem: Learning approach

Deep learning approach has not had the profound impact on
inverse problems that they have had for object classification

Three categories:

Direct learning: (x, y)

Comment: Black-box: no insight
Hybrid approach: still use the objective function approach but
learn some operators in each iteration of optimization. [such as:
gradient, in Adler, Inverse Problems, 2017]

Comment: Overall difficulty may not be reduced
New-representation: (£, )

Comment: needs mathematical and physical insights;

most promising

ISP: non-pixel representation:
Bermani, TGRS, 2003; Rekanos, TM, 2002; Caorsi, TGRS, 1999
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Skip Connection

128 64 64 Nout Nout

Nin 64 64 64 *
Number of Channels
SD: MxM SD: MxM

256 128 128
*64 128 128 f —» 3x3Conv + BN + RelLU

SD: 0.5M x0.5
SD: 0.5M x0.5M + 2x 2 Max Pooling
A 3x 3 Up-conv 2 + BN
+ RelLu
—p  Skip connection and

+ 128 concatenation
—»  1x1 Conv.

SD: Spatial dimension

SD: 0.25M x0.25M )
Nin: Number of input channels

Nout: Number of output channels
|

Ave: Taking average

The U-net architecture for the proposed three CNN schemes: DIS, BPS, and DCS

N US ISP Workshop : Singapore, Sept. 2018
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Three CNN schemes
1. Direct Inversion Scheme (DIS)

Inputs: y Scattered field; Output: the contrasts y

2. Back-Propagation Scheme (BPS)
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3. Dominant Current Scheme (DCS)
= Recall the two equations

—scat — —
=Gs-J
7:Z[EW+GU7)

= Important: both the Esand a) operators are
iIndependent of unknown scatterers

» Motivate us to analyze the property of these two
operators before reconstructing the contrast y

» The computational overhead of such analysis should
not be large
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Dominant Current Scheme (DCS)

= Singular Value Decomposition (SVD)

Deterministic
part Ambiguous

20 40 60
Singular value humber, j part

First L leading Other smaller
singular values singular values
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Dominant Current Scheme (DCS)

= Obtain the deterministic part using the linear
relation

—+
]det — VS . dd

= Dominant part current is defined as:
[d = jdet 4 j

Jt= F-a Low-frequency Fourier components

Jon) - [E ()"
o —t.d

£, (n)]]?

p: index of incidence

Wei, TGRS, Accepted, 2018

DCS: Inputs: the dominant contrasts )?g; Output: the contrasts y
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‘Computational cost

= Assume M pixels in the domain of interest & N,
receivers: M >> N,

= Computational cost of SVD

Gs: O(M>N))

= Only a thin SVD of 55 Is needed (first L singular vectors)
= Computational cost of thin SVD:

Gs - O(LMN?) oc O(M)

« F-a@ canbe directly calculated by fast Fourier transform

ISP Workshop : Singapore, Sept. 2018 18



Numerical results

Ground truth
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NUS Example One: relative permittivity is between 1 and 1.5
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“Austria” tests: (a) Ground

truth profile of Austria. Reconstructed
relative permittivity profiles for (b)
BPS, (c) DCS, and (d) iterative method
(SOM) with 5% (left) and 20% (right)
Gaussian noise presented.
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Ground truth

Test #1
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Example Two: relative permittivity is between 1.5 and 2
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Example Three: Tests with MNIST database, the relative permittivity is between 2 and 2.5
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Ground truth
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Use the network trained with circular-cylinders in Example 1 to test the MNIST database in
Example 3
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'Take-home message

= No matter using objective function approach or
learning approach, the key is to construct
corresponding target function in a way such that it
depends in @ much less nonlinear way on unknowns.

= Avoid directly dealing with measurement data, where
CNN has to spend unnecessary cost to train and
learn underlying wave physics. Extract out as much
as possible what people can do and leave the
remaining to machine.

The above two need a fairly good understanding of
the forward problem (physical and mathematical
insights )
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Thank you!
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