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Odd hyperelliptic curve

Theorem (M. Bhargava and B. Gross (2012))

When all hyperelliptic curves of fixed genus n ≥ 1 over Q having a
rational Weierstrass point are ordered by height, the average size
of the 2−Selmer groups of their Jacobians is 3.

Corollary

The average rank of of the Mordell-Weil groups of the Jacobians of
such curves is at most 3/2.



Main results Proof of the main theorem Summary

Odd hyperelliptic curve

Theorem (M. Bhargava and B. Gross (2012))

When all hyperelliptic curves of fixed genus n ≥ 1 over Q having a
rational Weierstrass point are ordered by height, the average size
of the 2−Selmer groups of their Jacobians is 3.

Corollary

The average rank of of the Mordell-Weil groups of the Jacobians of
such curves is at most 3/2.



Main results Proof of the main theorem Summary

Even hyperelliptic curve

Theorem (A. Shankar and X. Wang (2014))

When all hyperelliptic curves of fixed genus n ≥ 2 over Q having a
marked rational non-Weierstrass point are ordered by height, the
average size of the 2−Selmer groups of their Jacobians is 6.

Corollary

The average rank of the Mordell-Weil groups of the Jacobians of
the above curves is at most 5/2.

Theorem (A. Shankar and X. Wang (2014))

The proportion of monic even degree hyperelliptic curves having
genus n ≥ 4 that have exactly two rational points is at least
1− (48n + 120)2−n.
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Notation

• k = Fq with (char(k), 2n + 2) = 1

• C is a smooth, complete, geometrically connected curve over
k

• K = k(C ) the function field of C
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Even hyperelliptic curve

An even hyperelliptic curve of genus n is the smooth projective
model of the affine curve defined by

H : y2 = x2n+2 + c2x
2n + · · ·+ c2n+2,

where ci ∈ K , and the tuple (ci )2≤i≤2n+2 is unique up to the
following identification

(c2, c3, . . . , c2n+2) ≡ (λ2.c2, λ
3c3, . . . , λ

2n+2.c2n+2) λ ∈ K×.
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Minimal integral model

Fix the data (c2, c3, . . . , c2n+2), we define the minimal integral
model of H as follows: for each point v ∈ |C |, we can choose an
integer nv which is the smallest integer satisfying that: the tuple

($2nv
v c2, $

3nv
v c3, · · · , $(2n+2)nv

v c2n+2)

has coordinates in OKv . Given (nv )v∈|C |, we define the invertible
sheaf LH ⊂ K whose sections over a Zariski open U ⊂ C are given
by

LH(U) = K ∩
( ∏
v∈U

$−nvv OKv

)
.

Then ci ∈ H0(C ,L⊗iH ) for all 2 ≤ i ≤ 2n + 2. Furthermore, the
stratum (LH , c) is minimal in the sense that there is no proper
subsheaf M of LH such that ci ∈ H0(C ,M⊗i ) for all i .
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Height of hyperelliptic curves

Definition
The height of the hyperelliptic curve H is defined to be the degree
of the associated line bundle LH .

We are going to consider the following family of hyperelliptic
curves:

Definition
An even hyperelliptic curve H with an associated minimal data
(LH , c) is called to be transversal if the discriminant

∆(c) ∈ H0(C ,L⊗(2n+1)(2n+2)
H ) is square-free.
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Main theorem

Denote Atrans
≤d to be the set of all transversal even hyperelliptic

curves of height less than or equal to d .

Theorem
When all transversal even hyperelliptic curves of genus n ≥ 2 over
K are ordered by height, the average size of the 2−Selmer group
of their Jacobians is 6. Equivalently,

lim
d→∞

∑
H∈Atrans

≤d

|Sel2(H)|
|Aut(H,∞)|∑

H∈Atrans
≤d

1
|Aut(H,∞)|

= 6.
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Notation

• H: the minimal integral model of H

• JH and JH are Jacobian group schemes associated to H and
H respectively.

• Observe that JH is the generic fiber of JH.
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Restatement of the main theorem

Lemma
If H is transversal, then JH is the Néron model of JH .
Furthermore,

|Sel2(JH)| = |H1(C ,JH[2])|.

The main theorem is equivalent to:

lim
d→∞

∑
H∈Atrans

≤d

|H1(C ,JH[2])|
|Aut(H,∞)|∑

H∈Atrans
≤d

1
|Aut(H,∞)|

= 6.
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Let (U,Q) be the split quadratic space over k of dimension 2n + 2
and discriminant 1. Then for any linear operator T : U → U, we
defined its adjoint T ∗ by the following equation:

〈Tv ,w〉Q = 〈v ,T ∗w〉Q , ∀v ,w ∈ U.

where 〈v ,w〉Q = Q(v + w)− Q(v)− Q(w) denotes the bilinear
form associated to Q. The Vinberg’s representation we are going
to study is the conjugate action of

G := PSO(U) = {g ∈ GL(U)|gg∗ = I , det(g) = 1}/µ2

on

V = {T : U → U|T = T ∗, trace(T ) = 0} ∼= Sym2
0(U).
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GIT quotient

For each T ∈ V , denote fT (x) be the characteristic polynomial of
T :

fT (x) = x2n+2 + c2(T )x2n + · · ·+ c2n+1(T )x + c2n+2(T ).

Then
V //G ∼= Spec(k[c2, c3, . . . , c2n+2]) = S .

We denote the projection map by π : V → S .
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Regular locus

Set
V reg (k) = {T ∈ V (k) | |StabG(k)(T )| is finite}

= {T ∈ V (k) | fT (x) is its minimal polynomial}

=⇒ for any field extension k ⊂ F and T ∈ V reg (F ),

StabG (T ) ∼= (ResL/Fµ2)N=1/µ2,

where L = F [x ]/(fT (x)).
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Stabilizer group scheme over S

Theorem
There exists a unique group scheme IS over S equipped with an
isomorphism π∗IS → StabG over V reg. This isomorphism is
G−equivariant, thus, as a corollary, there is a Gm−equivariant
isomorphism of stacks [BIS ] ∼= [V reg/G ], where BIS is the relative
classifying stack of IS over S .
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The generalized Jacobian group scheme

For each c = (c2, c3, . . . , c2n+2) ∈ S , the associated polynomial

fc(x) = x2n+2 + c2x
2n + · · ·+ c2n+1x + c2n+2

defines an even hyperelliptic curve y2 = fc(x) (we allow singular
hyperelliptic curves)

=⇒ a group scheme JS which represents the
(generalized) Jacobian functor.
Set

JV reg := JS ×S V reg
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Stabilizer group scheme and Jacobian

Theorem
There exists a canonical G−equivariant isomorphism over V reg

between the stabilizer scheme StabG and JV reg [2].

Corollary

The above isomorphism induces an isomorphism over S from IS to
JS [2].

=⇒ an isomorphism between stacks

BJS [2] ∼= [V reg/G ]
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An interpretation of H1(C ,JH[2])

• Hyperelliptic curve H ↔ (LH , c), c ∈ S(K )

↔ αH : C → [S/Gm]

Set A = Hom(C , [S/Gm])

• Set M = Hom(C , [BJS [2]/Gm])

=⇒ a base map b :M→A

=⇒ H1(C ,JH[2]) = b−1(αH)
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Counting points on stacks

We also have a commutative diagram:

M b //

πM

&&

A
πA

xx

Hom(C ,BGm)

=⇒ for any line bundle F over C ,

|MF (k)| =
∑

H∈AF (k)

|H1(C ,JH[2])|.
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Now it is enough to prove that

lim
deg(F)→∞

|Mtrans
F (k)|

|Atrans
F (k)|

= 6,

where Mtrans
F = b−1(Atrans

F ).
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Another interpretation of MF(k)

From the isomorphism:

[BJS [2]/Gm] ∼= [V reg/(G ×Gm)]

=⇒M∼= Hom(C , [V reg/(G ×Gm)]).

=⇒ a k−point of MF is a pair (E , s), where E is a principal
G−bundle, and s is a section of

V reg (E ,F) = (V reg ×G E)⊗F



Main results Proof of the main theorem Summary

Another interpretation of MF(k)

From the isomorphism:

[BJS [2]/Gm] ∼= [V reg/(G ×Gm)]

=⇒M∼= Hom(C , [V reg/(G ×Gm)]).

=⇒ a k−point of MF is a pair (E , s), where E is a principal
G−bundle, and s is a section of

V reg (E ,F) = (V reg ×G E)⊗F



Main results Proof of the main theorem Summary

Outline

Main results
The problem over Q
The problem over Fq(C )

Proof of the main theorem
Vinberg’s representation of type A2n+1

Connection to hyperelliptic curves
Canonical reduction theory of G-bundles
Some computations



Main results Proof of the main theorem Summary

As algebraic groups over k :

G = PSO(U) ∼= GSO(U)/Gm,

where Gm denotes the center of GSO(U).
=⇒ G−bundles ↔ GSO(U)/Gm−bundles.
Moreover, any GSO(U)/Gm−bundle can be lifted to a
GSO(U)−bundle uniquely up to tensor twist by a line bundle.
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Canonical reduction of GSO(2n + 2)−bundles

Let E be a GSO(2n + 2)−bundle. Then there exists uniquely a
parabolic subgroup P ⊂ GSO(U) with Levi quotient L and the
associated P−bundle EP such that

1. We have an isomorphism E ∼= EP(GSO(U)), where
EP(GSO(U)) is the quotient (EP × GSO(U))/P with the
following action of P on EP × GSO(U) : for any
h ∈ P, e ∈ EP , and g ∈ GSO(U) then h.(e, g) = (h.e, h−1g).

2. The Levi bundle EL associated, by extension of structure
group, to EP for the projection P → L is semi-stable.

3. For every non-trivial character χ of P which is a non-negative
linear combination of simple roots with respect to some Borel
subgroup contained in P, the line bundle χ∗EP on C has
positive degree.
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Assume that the Levi subgroup

L = GLn1 × GLn2 × · · · × GLnt × GSO(2h).

=⇒ a flag of isotropic subspaces

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vt ⊂ V ∗t ⊂ · · · ⊂ V ∗1 ⊂ U,

where dim(Vi/Vi−1) = ni for 1 ≤ i ≤ t, and dim(V ∗t /Vt) = 2h.
=⇒ a filtration of the vector bundle E ×GSO(U) U:

0 ⊂ EP ×P V1 ⊂ · · · ⊂ EP ×P Vt ⊂ EP ×P V ∗t ⊂ · · · ⊂ EP ×P V ∗1

satisfying that the quotient bundles

Xi = EP ×P Vi/(EP ×P Vi−1), 1 ≤ i ≤ t

and
Xt+1 = (EP ×P V ∗t )/(EP ×P Vt)

are semistable.



Main results Proof of the main theorem Summary

Moreover,

(EP ×P V ∗i−1)/(EP ×P V ∗i ) ∼= X∨i ⊗ L

and
Xt+1

∼= X∨t+1 ⊗ L.

Denote the slope of Xi by µi , then the ”canonical conditions”
imply that:

µ1 > µ2 > · · · > µt > µt+1 = d/2 if h > 0,

µ1 > µ2 > · · · > µt and µt−1 + µt > d if h = 0.
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Semistable filtration of (E ×GSO(U) V )

we obtain the following ”matrix filtration” of Sym2
0(E)⊗ L∨:

Sym2(X1)⊗L∨ X1⊗X2⊗L∨ ··· X1⊗Xt⊗L∨ X1⊗X∨
t+1 X1⊗X∨

t ··· X1⊗X∨
1

X2⊗X1⊗L∨ Sym2(X2)⊗L∨ ··· X2⊗Xt⊗L∨ X2⊗X∨
t+1 X2⊗X∨

t ··· X2⊗X∨
1

...
... ···

...
...

... ···
...

Xt⊗X1⊗L∨ Xt⊗X2⊗L∨ ··· Sym2(Xt)⊗L∨ Xt⊗X∨
t+1 Xt⊗X∨

t ··· Xt⊗X∨
1

X∨
t+1⊗X1 X∨

t+1⊗X2 ··· X∨
t+1⊗Xt Sym2

0(Xt+1)⊗L∨ Xt+1⊗X∨
t ··· Xt+1⊗X∨

1

X∨
t ⊗X1 X∨

t ⊗X2 ··· X∨
t ⊗Xt X∨

t ⊗Xt+1 Sym2(X∨
t )⊗L ··· X∨

t ⊗X
∨
1 ⊗L

...
... ···

...
...

... ···
...

X∨
2 ⊗X1 X∨

2 ⊗X2 ··· X∨
2 ⊗Xt X∨

2 ⊗Xt+1 X∨
2 ⊗X

∨
t ⊗L ··· X∨

2 ⊗X
∨
1 ⊗L

X∨
1 ⊗X1 X∨

1 ⊗X2 ··· X∨
1 ⊗Xt X∨

1 ⊗Xt+1 X∨
1 ⊗X

∨
t ⊗L ··· Sym2(X∨

1 )⊗L
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The case P=B the Borel subgroup

The main contributors to the average

lim
deg(F)→∞

|Mtrans
F ,B (k)|
|Atrans
F |

are

E = X1 ⊕ · · · ⊕ Xn+1 ⊕ (X∨n+1 ⊗ L)⊕ · · · ⊕ (X∨1 ⊗ L)

satisfying that
µi = µi+1 + f ∀ 1 ≤ i ≤ n,

where f = deg(F), µi = deg(Xi ).
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Case 1: 2µn+1 − d = f

For any (E , s) ∈Mtrans
F , where s is a section of

(V ×GSO(U) E)⊗F = Sym2
0(E)⊗ L∨ ⊗F ,

then s is of the following form:

∗ ∗ · · · ∗ ∗ ∗
x1 ∗ · · · ∗ ∗ ∗
0 x2 · · · ∗ ∗ ∗
...

...
. . .

...
...

...
0 0 · · · x2 ∗ ∗
0 0 · · · 0 x1 ∗


where xi ∈ k∗.
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g .s.g∗
−−−−→



0 0 · · · 0 ∗ ∗
1 0 · · · ∗ ∗ ∗
0 1 · · · ∗ ∗ 0
...

...
. . .

...
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0


, for some g ∈ GSO(U)(K )

The Kostant section κ1

=⇒ This case contributes 1 to the average.
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Case 2: −2µn+1 + d = f

Any section s is of the form:

∗ · · · ∗ ∗ ∗ · · · ∗ ∗
x1 · · · ∗ ∗ ∗ · · · ∗ ∗
...

. . .
...

...
... · · ·

...
...

0 · · · xn ∗ xn+1 · · · ∗ ∗
0 · · · 0 ∗ ∗ · · · ∗ ∗
0 · · · 0 0 xn · · · ∗ ∗
...

...
...

...
...

. . .
...

...
0 · · · 0 0 0 · · · x1 ∗


where xi ∈ k×.
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g .s.g∗
−−−−→



0 a b

1 a

d c
1 0 1 d

e 0

1
. . .

. . .
. . .

. . .
. . .

1 0



The Kostant section κ2

=⇒ This case contributes 1 to the average.
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g .s.g∗
−−−−→



0 a b

1 a

d c
1 0 1 d

e 0

1
. . .

. . .
. . .

. . .
. . .

1 0


The Kostant section κ2

=⇒ This case contributes 1 to the average.
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g .s.g∗
−−−−→



0 a b

1 a

d c
1 0 1 d

e 0

1
. . .

. . .
. . .

. . .
. . .

1 0


The Kostant section κ2

=⇒ This case contributes 1 to the average.
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The case P=B the Borel subgroup



0 a b

1 a

d c
1 0 e d

1 0

1
. . .

. . .
. . .

. . .
. . .

1 0



The Kostant section κ1



0 a b

1 a

d c
1 0 1 d

e 0

1
. . .

. . .
. . .

. . .
. . .

1 0



The Kostant section κ2
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The whole picture

B

B P1
. . . Pt

G

Vol(red) = 2

Vol(green) = 4 = τ(G )
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Summary

• 6 = the number of Kostant sections + τ(G ).

• By a similar method, we also can give an upperbound for the
average in general case (remove the transversal condition) if
we assume char(k) is big enough.

• The method that was used here, is partially similar to the
method in the paper ”Average size of 2-Selmer groups of
elliptic curves over function fields” of Q.P. Ho, V.B. Le Hung,
and B.C. Ngo.
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average in general case (remove the transversal condition) if
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Thank you!
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