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Key Concepts and Terms

Topological Data Analysis (TDA):

Adapts concepts from algebraic topology to point clouds to rigorously
quantify the “shape” and “size” of data

Functional Data Analysis (FDA):

Analyzes data that provides information about curves and surfaces, or
more generally, variables over a given continuum
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Topology & Data

Data: Often very high dimensional, may come with a notion of distance,
proximity or similarity

Coordinate systems may not be practical

Metric may not be well-defined

Require qualitative information =⇒ Summaries are more valuable

Topology: Provides qualitative analysis and geometric pattern recognition

Coordinate-free

Insensitive to metric

Studies connectivity information

=⇒ Study point cloud data (i.e. finite set of points with a distance
measure) using geometric and topological methods as a means to reduce
dimension and summarize pertinent information
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Persistent Homology

Homology groups were developed in classical topology to “measure” the
shape of spaces by abstractly counting the occurrences of patterns
(connected components, loops, voids, etc.)

Persistent homology keeps tracks of the evolution of homology groups
with respect to a filtration

It is useful in data analysis because it adapts homology to finite
metric spaces = point clouds

It measures the “shape” and “size” of data

Persistent homology is encoded in a barcode or persistence diagram
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Example: Persistence in 2 Dimensions
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Example: Persistence in 3 Dimensions
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Barcodes & Persistence Diagrams
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Persistent Homology vs. Clustering

H0 Persistence↔ Single-Linkage Clustering

Filtration Parameter↔ Distance Threshold

Barcode↔ Dendrogram

# of Clusters↔ # of H0 Bars
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Computing Homology & Persistent Homology

To study complex objects (e.g. shapes, surfaces, spaces), it is often
convenient to discretize

Represent the object as a union of simple “building blocks” cleanly
glued together; e.g. a simplicial complex is a collection of simplices
(satisfying certain properties)

There are efficient algorithms to compute homology when the object
is a simplicial complex

The Nerve Theorem guarantees that the homologies of the original
object and its discretized form will be the same
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The Space of Barcodes & Persistence Diagrams

Important Properties:

Metric space
For regularity considerations, add the diagonal
∆ =

{
(x , y) ∈ R2 : x = y

}
, where each point on the diagonal has

infinite multiplicity
Wasserstein p-distance, p ≥ 1:

dWp (D1,D2) =

(
inf
γ

∑
x∈D1

∥∥x − γ(x)
∥∥p
∞

) 1
p

Bottleneck distance

dB(D1,D2) = inf
γ

sup
x

∥∥x − γ(x)
∥∥
∞

Completeness, Separability

Existence of compact subspaces

Alexandrov space with curvature bounded from below
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Variation in Shapes and Surfaces in Biology

Phylogeny of Darwin’s Finch Beaks (Gould, 1977)

Fossil Classification (Boyer et al., 2011)
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Representing Shapes

Improved imaging technologies represent 3D shapes to be represented as
meshes — collections of vertices, faces, and edges

These make methods from TDA directly applicable (Turner et al., 2014)!
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Motivation

Methods for geometric morphometrics are known to suffer from
structural errors when comparing shapes that are highly dissimilar

Comparing shapes requires a metric, which is not always
straightforward to specify

Turner et al. (2014) developed a statistical summary for shapes
known as the persistent homology transform (PHT):
=⇒ The PHT summarizes the shape information robustly for highly
dissimilar and non-isomorphic shapes

But more is needed to fully integrate TDA measures into FDA methods...
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Main Shape Statistic Objectives

Represent shapes or images quantitatively to use in a wide range of
FDA methods (e.g. generalized functional linear models, GFLMs)

Desired Properties:

Injective mapping = Summary statistics
Distances are computable
Ability to define probabilistic models in the transformed space

Topological Summaries:

Persistent Homology Transform (PHT)
Smooth Euler Characteristic Transform (SECT)
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Persistent Homology Transform

Let M be a shape in Rd that can be written as a finite simplicial
complex K

Let ν ∈ Sd−1 be any unit vector over the unit sphere

Define a filtration K (ν) of K parameterized by a height function r :

K (ν)r = {x ∈ K : x · ν ≤ r}

The kth dimensional persistence diagram Xk(K , ν) tracks how the
topology of the filtration K (ν) changes over the height parameter r
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Persistent Homology Transform

For direction ν1:
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Persistent Homology Transform

For direction ν2:
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Persistent Homology Transform

Definition (Turner et al., 2014)

The persistent homology transform (PHT) of K ⊂ Rd is

PHT(K ) : Sd−1 → Dd

ν 7→
(
X0(K , ν),X1(K , ν), . . . ,Xd−1(K , ν)

)
The PHT measures the change in homology by height filtration over
all directions on the unit sphere

It allows for comparisons and similarity studies between shapes

The PHT preserves information:
A notion of statistical sufficiency was suggested for the PHT
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Shortcomings of the PHT

Most widely used functional regression models use covariates that
have an inner product structure defined in Hilbert space

The geometry of the space of PDs is computationally prohibitive

The PHT does not admit a simple inner product structure (it is a
collection of PDs)

Therefore, it is challenging to use in standard functional data analytic
methods
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The Euler Characteristic Curve

Euler Characteristic (EC) : χ(K 3) = #(Vertices)−#(Edges) + #(Faces)
EC Curve, χ(Kx) : Calculate EC with sublevel set filtration

χK
ν : [aν , bν ]→ Z ⊂ R

x 7→ χ(K x
ν )
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The Smooth Euler Characteristic Curve

The smooth Euler Characteristic (SEC) curve is computed by

1. Taking the mean value χ̄K
ν of the EC curve over [aν , bν ]

2. Subtracting it from the value of the EC curve χK
ν (x) at every

x ∈ [aν , bν ]

3. Cumulate:

∫ y

−∞

(
χK
ν (x)− χ̄K

ν

)
dx
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Functional Data Analysis

SECT summaries are a collection of curves
=⇒ Infinite-dimensional topological summary statistic

By construction, the SECT is a continuous, linear function that is an
element of Hilbert space L2 with an inner product structure

This means that their structure allows for quantitative comparisons
using the full scope of functional and nonparametric regression
methodology

This is the basis of functional data analysis (FDA)
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Glioblastoma Multiforme (GBM)

Arising from a class of tumors that affect the central nervous system:

Most common and most aggressive in humans

∼15’000 cases in the US in 2016

Post-diagnosis survival of 12-15 months

Probability of 5-year survival is < 10%

Treatment: Stupp Protocol (2005)
Surgery + Radiotherapy + Chemotherapy =⇒ 26.5% 2-year survival

No effective treatment for recurrent tumors

Available Data:

Molecular: e.g. mutation status, DNA methylation, gene expression
=⇒ Obtained by surgery

Imaging: e.g. MRI images =⇒ Obtained from radiology
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Imaging Data & Radiogenomics

Imaging Data:

Obtained via radiology

Relatively accessible, cf. molecular assays

Radiogenomics aims to understand the relationship between clinical
imaging data and functional genomic variation:

Images + Molecular Data =⇒ Prognosis, Clinical Decisions, etc.

Computational radiogenomics requires the quantification of images

Existing Measures:

Geometry, e.g. Volume, longest diameter

Morphometry, e.g. Shape, texture

Spatial features, e.g. Location of recurrent lesions
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MRIs of GBM
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Topological Features in Radiogenomics

Topological Characteristics of GBM:

Multifocality, i.e. existence of multiple lesions =⇒ H0

Necrosis, i.e. existence of necrotic regions within a tumor =⇒ H2

=⇒ Integrate topological features into radiogenomic analysis

MRIs of primary GBM tumors were collected from ∼ 40 patients in
The Cancer Imaging Archive (TCIA)

These patients also had matched genomic and clinical data in The
Cancer Genome Atlas (TCGA)

Goal: Use the SECT to predict clinical outcomes:

Overall Survival (OS)

Disease Free Survival (DFS)
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Prediction of Clinical Outcomes

Overall Survival (OS): Treatment → Death
Disease Free Survival (DFS): Successful Treatment → Relapse

Normal Diagnosis Relapse Metastasis

oncogenesis
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Description of Data & Linear Models

Trait or Phenotype: y is n× 1, with each yi ∈ R (e.g. survival time, crop
yield, height, etc.): y = (y1, . . . , yn)ᵀ

Genotype: X is n × p with each xij ∈ R (e.g. gene expression):

X =


x11 x12 · · · x1p

x21 x22 · · · x2p
...

...
. . .

...
xn1 xn2 · · · xnp


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Nonlinear Functional Models for Phenotypic Prediction

Conventional Wisdom in Genetics: Nonlinear functions perform better
in genomic selection (i.e. phenotypic prediction)

Conventional Wisdom in Statistics: In high-dimensional regression,
smooth nonlinear functions are more predictive than linear functions

yi = f (xi ) + εi , E[εi ] = 0, f ∈ H

State-of-the-art nonlinear and functional regression frameworks (e.g. kernel
models or Gaussian processes) make use of the reproducing kernel Hilbert
space (RKHS) structure, H
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Reproducing Kernel Hilbert Spaces

Given a kernel (i.e. similarity measure) k : X × X → R,

λjψj(u) =

∫
X
k(u, v)ψj(v)dv ,

where
{

(λi , ψj)
}
j

are eigenvalues and eigenfunctions with

k(u, v) =
∞∑
j=1

λk
〈
ψj(u), ψj(v)

〉
,

a reproducing kernel Hilbert space is defined as

H =

f : f (x) =
∞∑
j=1

cjψj(x) ∀ x ∈ X and ‖f ‖2
H =

∞∑
j=1

c2
j

λ2
j

<∞


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The Representer Theorem & “Kernel Trick”

Key Idea: Use a penalized loss function in

min
f ∈H

{
1

n

n∑
i=1

L(f , data) + λ‖f ‖2
H

}

Theorem (Kimeldorf & Wahba (1971); Schölkopf, Herbrich & Smola
(2001))

The solution to the above optimization problem is

f̂ (x) =
n∑

i=1

αik(x , xi )

An infinite-dimensional optimization problem becomes an n-dimensional
optimization problem:

y = Xβ + ε =⇒ y = Kα+ ε
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A Generalized Functional Kernel Regression Model

Assume the target function f ∈ H, and using the Representer Theorem
and “kernel trick,” the estimator function is then

f̂
(
Fν(t)

)
=

n∑
i=1

αi k
(
Fν(t),Fν,i (t)

)
We can posit a generalized functional kernel regression model

η ∼ N (0, σ2K)⇐⇒ α ∼ N (0, σ2K−1)

where K is a symmetric and positive-definite covariance (kernel) matrix
with elements Kij = k

(
Fν,i (t),Fν,j(t)

)
We can take:

k(u, v) = uᵀv/p + h

k(u, v) = exp{−h‖u − v‖2}
k(u, v) = log(‖u − v‖h + 1)

Anthea Monod (Columbia) IMS–NUS 14 February 2018 32 / 39



Predicting Clinical Outcomes in Radiogenomics

Compare the SECT with 3 key types of GBM tumor characteristics:

mRNA Gene Expression Measurements

Tumor Morphometry

Tumor Volume and Geometrics

We attempt to predict two clinical outcomes:

Overall Survival (OS)

Disease Free Survival (DFS)

Perform 75-25 (in/out of sample) splits, 250 times, in the Bayesian setting

Performance Measure: Root Mean Squared Error of Prediction
(RMSEP)

Anthea Monod (Columbia) IMS–NUS 14 February 2018 33 / 39



Prediction Results

Gaussian Kernel: k(u, v) = uᵀv/p + h

Disease Free Survival

Data Type RMSEP Pr(Optimal)

Gene Expression 0.944 (0.035) 0.20
Morphometrics 0.942 (0.035) 0.07

Volumetrics 0.939 (0.035) 0.06
SECT 0.803 (0.035) 0.69

Overall Survival

Data Type RMSEP Pr(Optimal)

Gene Expression 0.981 (0.030) 0.27
Morphometrics 0.965 (0.029) 0.15

Volumetrics 0.964 (0.029) 0.16
SECT 0.958 (0.028) 0.42
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Future Directions and Ongoing Work

From Radiogenomics to Histogenomics:
Joint work with U. Bauer, C. Chen

Currently, quantitative histopathological analysis for GBM is
extremely limited

Existing methodologies are difficult to apply due to genetic
heterogeneity, rapid evolution, and spatial diffusivity

Histology images of cellular nuclei show a clear spatial architecture

Use TDA to summarize and quantify histology images
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From Summary Statistics to Sufficient Statistics

Idea: Sufficient statistics allow for a lower dimensional or less complex
representation of data without the loss of information

Sufficiency for a family/class of distributions via a statistic
e.g. Exponential family, distributions on spaces, order statistics

Sufficiency for a parameter that defines a distribution
e.g. x̄ for µ in N (µ, σ2)

M., Kalǐsnik Verovšek, Patiño-Galindo, Crawford: Sufficient statistics for
persistent homology based on tropical geometry

=⇒ Allows for parametric modeling of intra- & inter-subtype reassortment
in RNA viruses (HIV, avian influenza)
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Publicly Available Source Code & Data Availability

The Smooth Euler Characteristic Transform (SECT):
https://github.com/RabadanLab/SECT

Bayesian Approximate Kernel Regression (BAKR):
https://github.com/lorinanthony/BAKR

The Cancer Imaging Archive (TCIA)

The Cancer Genome Atlas (TCGA)
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