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-
Key Concepts and Terms

Topological Data Analysis (TDA):
@ Adapts concepts from algebraic topology to point clouds to rigorously
quantify the “shape” and “size" of data

Functional Data Analysis (FDA):

@ Analyzes data that provides information about curves and surfaces, or
more generally, variables over a given continuum
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-
Topology & Data

Data: Often very high dimensional, may come with a notion of distance,
proximity or similarity

@ Coordinate systems may not be practical

@ Metric may not be well-defined

@ Require qualitative information = Summaries are more valuable

Topology: Provides qualitative analysis and geometric pattern recognition
e Coordinate-free
@ Insensitive to metric
@ Studies connectivity information

= Study point cloud data (i.e. finite set of points with a distance
measure) using geometric and topological methods as a means to reduce
dimension and summarize pertinent information
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Persistent Homology

Homology groups were developed in classical topology to “measure” the
shape of spaces by abstractly counting the occurrences of patterns
(connected components, loops, voids, etc.)
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Persistent homology keeps tracks of the evolution of homology groups
with respect to a filtration

@ It is useful in data analysis because it adapts homology to finite
metric spaces = point clouds

@ |t measures the “shape” and “size” of data

Persistent homology is encoded in a barcode or persistence diagram
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Example: Persistence in 2 Dimensions
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Example: Persistence in 3 Dimensions
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Barcodes & Persistence Diagrams
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Persistent Homology vs. Clustering
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Computing Homology & Persistent Homology

e To study complex objects (e.g. shapes, surfaces, spaces), it is often
convenient to discretize

@ Represent the object as a union of simple “building blocks” cleanly
glued together; e.g. a simplicial complex is a collection of simplices
(satisfying certain properties)

@ There are efficient algorithms to compute homology when the object
is a simplicial complex

@ The Nerve Theorem guarantees that the homologies of the original
object and its discretized form will be the same
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The Space of Barcodes & Persistence Diagrams

Important Properties:

@ Metric space
For regularity considerations, add the diagonal
A= {(x,y) €R?:x = y}, where each point on the diagonal has
infinite multiplicity
o Wasserstein p-distance, p > 1:

d (D1, Dy) = (lnf Z ||x—

x€Dy

v
T

o Bottleneck distance

d%(Dy, Dz) = inf sup||x = 1(x)]|

o Completeness, Separability
@ Existence of compact subspaces
o Alexandrov space with curvature bounded from below
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Variation in Shapes and Surfaces in Biology

Phylogeny of Darwin's Finch Beaks (Gould, 1977)

Fossil Classification (Boyer et al., 2011)
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Representing Shapes

Improved imaging technologies represent 3D shapes to be represented as
meshes — collections of vertices, faces, and edges

Ventricles

Tumor /

These make methods from TDA directly applicable (Turner et al., 2014)!
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Motivation

@ Methods for geometric morphometrics are known to suffer from
structural errors when comparing shapes that are highly dissimilar

@ Comparing shapes requires a metric, which is not always
straightforward to specify

@ Turner et al. (2014) developed a statistical summary for shapes
known as the persistent homology transform (PHT):
— The PHT summarizes the shape information robustly for highly
dissimilar and non-isomorphic shapes

But more is needed to fully integrate TDA measures into FDA methods...
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-
Main Shape Statistic Objectives

@ Represent shapes or images quantitatively to use in a wide range of
FDA methods (e.g. generalized functional linear models, GFLMs)
@ Desired Properties:
o Injective mapping = Summary statistics
e Distances are computable
o Ability to define probabilistic models in the transformed space
@ Topological Summaries:

o Persistent Homology Transform (PHT)
o Smooth Euler Characteristic Transform (SECT)
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Persistent Homology Transform

o Let M be a shape in R? that can be written as a finite simplicial
complex K

o Let v € S9! be any unit vector over the unit sphere

e Define a filtration K(v) of K parameterized by a height function r:

Klv)r={xeK:x-v<r}

o The k* dimensional persistence diagram X, (K, v) tracks how the
topology of the filtration K(v) changes over the height parameter r
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Persistent Homology Transform

For direction vy:

A/ T

Height Function: rq
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Persistent Homology Transform

For direction v5:

Anthea Monod (Columbia)

IMS-NUS

Height Function: rq

14 February 2018

17 / 39



Persistent Homology Transform

Definition (Turner et al., 2014)
The persistent homology transform (PHT) of K C RY is

PHT(K): §9 ! — D9
V= (Xo(K, I/),Xl(K, V), . ,del(K, V))

@ The PHT measures the change in homology by height filtration over
all directions on the unit sphere

@ It allows for comparisons and similarity studies between shapes

@ The PHT preserves information:
A notion of statistical sufficiency was suggested for the PHT

Anthea Monod (Columbia) IMS-NUS 14 February 2018 18 / 39



-
Shortcomings of the PHT

@ Most widely used functional regression models use covariates that
have an inner product structure defined in Hilbert space

@ The geometry of the space of PDs is computationally prohibitive

@ The PHT does not admit a simple inner product structure (it is a
collection of PDs)

@ Therefore, it is challenging to use in standard functional data analytic
methods
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The Euler Characteristic Curve

Euler Characteristic (EC) : x(K3) = #(Vertices) — # (Edges) + #(Faces)
EC Curve, x(Kx) : Calculate EC with sublevel set filtration

Xl’,( ‘lav,by] = Z CR
x = x(KY)
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The Smooth Euler Characteristic Curve

The smooth Euler Characteristic (SEC) curve is computed by
1. Taking the mean value /X of the EC curve over [a,, b,]
2. Subtracting it from the value of the EC curve xX(x) at every

x € [ay, by] ,
3. Cumulate: / (xK(x) = ¥ dx
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Functional Data Analysis

o SECT summaries are a collection of curves
= Infinite-dimensional topological summary statistic

@ By construction, the SECT is a continuous, linear function that is an
element of Hilbert space L? with an inner product structure

@ This means that their structure allows for quantitative comparisons
using the full scope of functional and nonparametric regression
methodology

@ This is the basis of functional data analysis (FDA)
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Glioblastoma Multiforme (GBM)

Arising from a class of tumors that affect the central nervous system:
@ Most common and most aggressive in humans

~15'000 cases in the US in 2016

Post-diagnosis survival of 12-15 months

Probability of 5-year survival is < 10%

Treatment: Stupp Protocol (2005)
Surgery + Radiotherapy + Chemotherapy = 26.5% 2-year survival

@ No effective treatment for recurrent tumors
Available Data:

@ Molecular: e.g. mutation status, DNA methylation, gene expression
— Obtained by surgery

@ Imaging: e.g. MRl images = Obtained from radiology
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Imaging Data & Radiogenomics

Imaging Data:
@ Obtained via radiology

o Relatively accessible, cf. molecular assays
Radiogenomics aims to understand the relationship between clinical
imaging data and functional genomic variation:

Images + Molecular Data = Prognosis, Clinical Decisions, etc.

Computational radiogenomics requires the quantification of images

Existing Measures:
o Geometry, e.g. Volume, longest diameter
@ Morphometry, e.g. Shape, texture

@ Spatial features, e.g. Location of recurrent lesions
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MRIs of GBM

&
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Topological Features in Radiogenomics

Topological Characteristics of GBM:
@ Multifocality, i.e. existence of multiple lesions = Hy

@ Necrosis, i.e. existence of necrotic regions within a tumor = Hy

= Integrate topological features into radiogenomic analysis

@ MRIs of primary GBM tumors were collected from ~ 40 patients in
The Cancer Imaging Archive (TCIA)

@ These patients also had matched genomic and clinical data in The
Cancer Genome Atlas (TCGA)

Goal: Use the SECT to predict clinical outcomes:
@ Overall Survival (0OS)
@ Disease Free Survival (DFS)
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Prediction of Clinical OQutcomes

@ Overall Survival (OS): Treatment — Death
o Disease Free Survival (DFS): Successful Treatment — Relapse

&
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Description of Data & Linear Models

Trait or Phenotype: y is n x 1, with each y; € R (e.g. survival time, crop

yield, height, etc.): y = (y1, ..

S Yn)T

Genotype: X is n x p with each x;; € R (e.g. gene expression):

X =

Trait
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Nonlinear Functional Models for Phenotypic Prediction

Conventional Wisdom in Genetics: Nonlinear functions perform better
in genomic selection (i.e. phenotypic prediction)

Conventional Wisdom in Statistics: In high-dimensional regression,
smooth nonlinear functions are more predictive than linear functions

Yi = f(X,‘)—|—€,', E[&,’] :0, feH

State-of-the-art nonlinear and functional regression frameworks (e.g. kernel
models or Gaussian processes) make use of the reproducing kernel Hilbert
space (RKHS) structure, H
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Reproducing Kernel Hilbert Spaces

Given a kernel (i.e. similarity measure) k: X x X — R,
Nvj(u) = /Xk(u7 v)yi(v)dv,

where {(/\,-,wj)}j are eigenvalues and eigenfunctions with

k(“? V) = Z)‘k<wj(u)7 1/JJ‘(V)>,

J=1

a reproducing kernel Hilbert space is defined as

e8] e8] C-2
H= f:f(x):ch@ZJj(x)VxeXand 112, = )\—12<oo
j=1 j=1"J
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The Representer Theorem & “Kernel Trick”

Key Idea: Use a penalized loss function in
I >
min {n ,z_; L(f,data) + )\HfHH}

Theorem (Kimeldorf & Wahba (1971); Schélkopf, Herbrich & Smola
(2001))

The solution to the above optimization problem is

;‘\(x) = Z aik(x, x;)

An infinite-dimensional optimization problem becomes an n-dimensional
optimization problem:

y=XB+e=y=Ka+e¢
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A Generalized Functional Kernel Regression Model

Assume the target function f € H, and using the Representer Theorem
and “kernel trick,” the estimator function is then

Za, (1), Fi(t))

We can posit a generalized functional kernel regression model
n ~ N(0,0%°K) <= a ~ N(0,0°K™!)

where K is a symmetric and positive-definite covariance (kernel) matrix
with elements Kj; = k(F, i(t), F,.j(t))
We can take:

e k(u,v)=u'v/p+h

o k(u,v) = exp{—hllu — v|?}

o k(u,v) = log(||lu—v||"+1)
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Predicting Clinical Outcomes in Radiogenomics

Compare the SECT with 3 key types of GBM tumor characteristics:
@ mRNA Gene Expression Measurements
@ Tumor Morphometry

@ Tumor Volume and Geometrics

We attempt to predict two clinical outcomes:
@ Overall Survival (0OS)
e Disease Free Survival (DFS)

Perform 75-25 (in/out of sample) splits, 250 times, in the Bayesian setting

Performance Measure: Root Mean Squared Error of Prediction
(RMSEP)
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Prediction Results

Gaussian Kernel: k(u,v) =uTv/p+h

Disease Free Survival

Data Type RMSEP Pr(Optimal)
Gene Expression | 0.944 (0.035) 0.20
Morphometrics | 0.942 (0.035) 0.07
Volumetrics 0.939 (0.035) 0.06
SECT 0.803 (0.035) 0.69

Overall Survival

Data Type RMSEP Pr(Optimal)
Gene Expression | 0.981 (0.030) 0.27
Morphometrics | 0.965 (0.029) 0.15
Volumetrics 0.964 (0.029) 0.16
SECT 0.958 (0.028) 0.42

Anthea Monod (Columbia)

IMS-NUS

14 February 2018

34 /39



-
Future Directions and Ongoing Work

From Radiogenomics to Histogenomics:
Joint work with U. Bauer, C. Chen
@ Currently, quantitative histopathological analysis for GBM is
extremely limited
@ Existing methodologies are difficult to apply due to genetic
heterogeneity, rapid evolution, and spatial diffusivity
@ Histology images of cellular nuclei show a clear spatial architecture

Use TDA to summarize and quantify histology images

v
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From Summary Statistics to Sufficient Statistics

Idea: Sufficient statistics allow for a lower dimensional or less complex
representation of data without the loss of information

e Sufficiency for a family/class of distributions via a statistic
e.g. Exponential family, distributions on spaces, order statistics

o Sufficiency for a parameter that defines a distribution
e.g. X for uin N(u,0?)

M., Kalidnik Veroviek, Patifio-Galindo, Crawford: Sufficient statistics for
persistent homology based on tropical geometry

= Allows for parametric modeling of intra- & inter-subtype reassortment
in RNA viruses (HIV, avian influenza)
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Publicly Available Source Code & Data Availability

@ The Smooth Euler Characteristic Transform (SECT):
https://github.com/RabadanlLab/SECT

@ Bayesian Approximate Kernel Regression (BAKR):
https://github.com/lorinanthony/BAKR

@ The Cancer Imaging Archive (TCIA)
@ The Cancer Genome Atlas (TCGA)
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