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FUNCTIONAL DATA: USUAL SETTING

e In statistics, we are often interested in a random variable X observed
for n individuals (e.g. salary, blood pressure, age).

e Here X is a random function:

for each of n individuals, we observe an entire curve X (¢), t € Z,
where 7 is a compact interval.

e We observe n i.i.d. functions X, ..., X, ~ X.



EXAMPLE: GROWTH CURVES

Growth curves of 39 boys and 54 girls between age 1 and 18.
X;(t) - height of ith child atage t € 7 = [1, 1§]
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EXAMPLE: RAINFALL CURVES

Rainfall curves from 43 northern and 147 southern Australian weather stations.
X,(t) : rainfall at ith station at time ¢t € Z = |1, 365]
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MEAN AND COVARIANCE

e The mean p of X is a function defined on the interval 7 by

u(t) = E|X(t)], foreacht e L.

e The covariance function of X is a function K (s, t) of s and ¢t in Z, defined by

K(s,1) = cov{ X (s), X (1)} = B([X(s) - E{X(s)}] [X(t) - B{X(®)}]).

It describes the variability of the population.



EIGENFUNCTIONS

o Let ¢, 99, ... be orthogonal eigen fct. with resp eigenval. 6, > 0, > ... >0
of the operator

v € LT) —s / K (s, typ(t) dt

e That is:
AK(S, t)¢j(8) ds = 9j¢j(t) .

e Under mild assumptions (Mercer’s theorem), can decompose K into

where converence is uniform over sand t € 7.



IN PRACTICE

e In practice, using the observed X, ..., X, we estimate x(¢) and K(s,t) by

at) = X(t) = - Z X;(1)
K(s,t) = = S () - X(&HXi(0) - X(0)

e ¢;'s and 0;’s can be estimated empirically from the data (requires discretis-
ing integrals).



EXAMPLE: RAINFALL CURVES

Rainfall curves from 43 northern and 147 southern Australian weather stations.
X;(t) : rainfall at time t € Z = [1, 365

150
I
150
I

100
I
100
I

X(t)
X(t)

50




The first four eigenfunctions for the Australian rainfall data explain 70.4%,
24.8%, 3% and 1% of the variability of X:
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DIMENSION REDUCTION

e The functions X; can be written as

Xi(t) = ult) + > iy 65

e The ¢;’s are such that the first few are the most important:

Xi(t) = p(t) + Z aj ¢;(t).
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EXAMPLE: RAINFALL DATA APPROXIMATED BY THE FIRST p TERMS
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FUNCTIONAL DATA OBSERVED IN THE FORM OF FRAGMENTS

e We are interested in curves Xj, ..., X, defined on a compact interval 7 =
a, bl.

e But: X, observed only on a compact set Z; = |4, B;| C I,.

e Thus observe one or several fragments of curves.
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FRAGMENTS — EXAMPLE: GROWTH DATA

X(t)
12 14

1.0

0.8

0.6
I

t (Age)

partially observed growth curves of 43 females.
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PROBLEM

e Goal: estimate covariance function K (s,t) forall s,t € Z.

e Can compute the empirical covariance estimator only for |s — ¢| small:
Z{X (s)H{Xi(t) — X(8)} -

e K (s,t) requires to observe X;(s) and X;(t) and we only have that for |s — |
small.
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A COVARIANCE FUNCTION
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Covariance function Cov(X(s), X(¢)) to estimate.
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WHERE WE OBSERVE DATA
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Scatterplot of points (s, ) at which at least one of n = 100 such partial curves
was observed.
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SPARSE VERSUS FRAGMENTS

e Methods exist for “sparse functional data”; see Yao, Miiller and Wang (2005).

e They assume ¢th curve is observed at a small number of points 7;;, where
j=1,...,N,

e They assume the 7;;’s are i.i.d.

e Not designed for data in the form of fragments.
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ILLUSTRATION OF WHY SUCH METHODS FAIL FOR FRAGMENTS
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Covariance function Cov(X (s), X (t)) to estimate.
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ILLUSTRATION OF WHY SUCH METHODS FAIL FOR FRAGMENTS
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Scatterplot of points (s, ¢) at which at least one of n = 100 partial curve was



METHOD DESIGNED FOR FRAGMENTS

e Data are poor: cannot use sophisticated or consistent nonparam methods.
e In Delaigle and Hall (2013) we suggested a first very simple method.

e Very basic: based on copying and pasting vertically shifted fragments to
each fragment.

e Then essentially use the extended fragments for inference.
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Example of extension of a fragment
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GROWTH DATA EXAMPLE
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Yao et al.’s (2005) method with error term (top left), James and Hastie’s (2001)
method (bottom left), our old method (bottom right).
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METHOD DESIGNED FOR FRAGMENTS (PART 2)

e In Delaigle and Hall (2016) model data by Markov chains.

e Discretise the process in time: t;, .. ., t,,, and space: yi, . .., Ym,.
e Reduce data X;(¢), t € Z;, to set of point pairs (¢;, Z;(t;)).
o Assume P{Z(ti+1) =ye | Z(ty), ..., Z(t1)} = P{Z(tps1) = ye | Z(tx)}-

e For all k, j and ¢, estimate P{Z(t;+1) = y¢ | Z(tr) = y; }-
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IMPUTING MISSING PARTS OF CURVES

Z observed on A, B] C [a, b|. Markov assumption implies

Z(t) ift € (A, B
E{Z({)|Z(s), s€[A,B]} =< BE{Z(t)| Z(4)} ifa<t< A
E{Z(t)| Z(B)} ifB<t<b.

i

e We have
E{Z(tjsr) | Z(t;) =y }

f

=D > 11 P{Z(tjh) = y5,1|1 2 (tjsa1) = yjk}} Yo
/=1

\ paths from Yjp 80 Y5 =Yy k=1

e Estimate using estimated transition probabilities.

e Use matrix formulation.
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GROWTH DATA EXAMPLE
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Yao et al.’s (2005) method with error term (top left), James and Hastie’s (2001)
method (bottom left), our new method (bottom right).
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COVARIANCE ESTIMATION

e For covariance, use same ideas to estimate

E{Z(t) Z(u)|Z(s) s eA, B]}

(

Z(t) Z(u) if t,u € [A, B]
—{ Z(t) E{Z(v)| Z(s),s € [A,B]} ifte[A Blbutu¢ [A,B]
_etc

e If enough data to fit, can use higher order Markov assumption:

P{Z(tkr) = ye| Z(@kr—1), - - -, Z(81)} = P{Z(k4r) = Y| Z(@hir—1), - - -, Z(th) -
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OUR MORE RECENT IDEA

e Estimating K onZ x 7 from fragments is only possible if we can identify K
onZ x Z by knowing K on the diagonal band where we observe data.
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METHOD

e In that case, we express K in an orthogonal series expansion:

K(s,8) = > > 15 (8) dj(t). (1)

J1=1 j2=l1
e Then estimate the coefficients using only the diagonal band by minimising

the distance between K and K computed on the diagonal band.

e Minimise under the constraint that /i is symmetric and semipositive defi-
niteonZ x 7.

e Then use the resulting coefficients on the whole Z x Z.
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THEORY

e We have theoretical results giving conditions under which K is identifiable
onZ x Z knowing only K on the diagonal band.

e One example is when the X;’s are real analytic, see Descary and Panaretos
(2017) for similar results using another method.

e We have more general results based on fast enough decay of eigenvalues.
The larger the observed band, the better.

e We can also show that even if we do not have identifiability, we can have
relatively small error of approximation.
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rigue 1: 12 = D0, mean fragment length: 0.5. True (left
and estimated (right).
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rigwe 22 . = 00 (top) or 500 (bottom), mean fragment
length: 0.2. True (left) and estimated (right).

7

T

) Lo

'Q‘\“\“\\‘ St

NN

sl
A“‘{\,\ \

i
A0

ST
AN
o




REFERENCES

e Bachrach, L. K., Hastie, T. J., Wang, M. C., Narasimhan, B. and Marcus, R. (1999). Bone
mineral acquisition in healthy Asian, Hispanic, Black and Caucasian youth; a longitudinal
study. J. Clinical Endocrinology & Metabolism, 84, 4702-4712.

e Descary, M-H. and Panaretos, V. (2017). Recovering Covariance from Functional Frag-
ments. Manuscript.

e Delaigle, A. and Hall, P. (2013). Classification using censored functional data. ]. Amer.
Statist. Assoc., 108, 1269-1283.

e Delaigle, A. and Hall, P. (2016). Approximating fragmented functional data by segments
of Markov chains. Biometrika, 103, 779-799.

e James, G. and Hastie, T. (2001). Functional linear discriminant analysis for irregularly
sampled curves. . Roy. Statist. Soc., Ser. B, 63, 533-550.

¢ Yao, F, Miiller, H. G. and Wang, J. L. (2005). Functional data analysis for sparse longitudi-
nal data. J. Amer. Statist. Assoc., 100, 577-590

31





