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FUNCTIONAL DATA: USUAL SETTING

• In statistics, we are often interested in a random variable X observed
for n individuals (e.g. salary, blood pressure, age).

• Here X is a random function:

for each of n individuals, we observe an entire curve X(t), t ∈ I ,
where I is a compact interval.

• We observe n i.i.d. functions X1, . . . , Xn ∼ X .
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EXAMPLE: GROWTH CURVES

Growth curves of 39 boys and 54 girls between age 1 and 18.

Xi(t) : height of ith child at age t ∈ I = [1, 18]
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EXAMPLE: RAINFALL CURVES

Rainfall curves from 43 northern and 147 southern Australian weather stations.

Xi(t) : rainfall at ith station at time t ∈ I = [1, 365]

0 100 200 300

0
50

10
0

15
0

t

X
(t

)

0 100 200 300
0

50
10

0
15

0
t

X
(t

)

4



MEAN AND COVARIANCE

• The mean µ of X is a function defined on the interval I by

µ(t) = E[X(t)], for each t ∈ I .

• The covariance function of X is a function K(s, t) of s and t in I , defined by

K(s, t) = cov{X(s), X(t)} = E
(

[

X(s)− E{X(s)}
][

X(t)− E{X(t)}
]

)

.

It describes the variability of the population.
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EIGENFUNCTIONS

• Let φ1, φ2, . . . be orthogonal eigen fct. with resp eigen val. θ1 ≥ θ2 ≥ . . . ≥ 0
of the operator

ψ ∈ L2(I) −→

∫

I

K(s, t)ψ(t) dt .

• That is:
∫

I

K(s, t)φj(s) ds = θjφj(t) .

• Under mild assumptions (Mercer’s theorem), can decompose K into

K(s, t) =
∞
∑

j=1

θj φj(s)φj(t) ,

where converence is uniform over s and t ∈ I .
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IN PRACTICE

• In practice, using the observed X1, . . . , Xn, we estimate µ(t) and K(s, t) by

µ̂(t) = X̄(t) =
1

n

n
∑

i=1

Xi(t)

K̂(s, t) =
1

n

n
∑

i=1

{Xi(s)− X̄(s)}{Xi(t)− X̄(t)} .

• φj’s and θj’s can be estimated empirically from the data (requires discretis-
ing integrals).
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EXAMPLE: RAINFALL CURVES

Rainfall curves from 43 northern and 147 southern Australian weather stations.

Xi(t) : rainfall at time t ∈ I = [1, 365]

0 100 200 300

0
50

10
0

15
0

t

X
(t

)

0 100 200 300
0

50
10

0
15

0
t

X
(t

)

8



The first four eigenfunctions for the Australian rainfall data explain 70.4%,
24.8%, 3% and 1% of the variability of X :
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DIMENSION REDUCTION

• The functions Xi can be written as

Xi(t) = µ(t) +
∞
∑

j=1

αij φj(t).

• The φj’s are such that the first few are the most important:

Xi(t) ≈ µ(t) +

p
∑

j=1

αij φj(t).
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EXAMPLE: RAINFALL DATA APPROXIMATED BY THE FIRST p TERMS
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FUNCTIONAL DATA OBSERVED IN THE FORM OF FRAGMENTS

• We are interested in curves X1, . . . , Xn defined on a compact interval I =
[a, b].

• But: Xj observed only on a compact set Ij = [Aj, Bj] ⊆ I0.

• Thus observe one or several fragments of curves.
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FRAGMENTS – EXAMPLE: GROWTH DATA
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partially observed growth curves of 43 females.
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PROBLEM

• Goal: estimate covariance function K(s, t) for all s, t ∈ I .

• Can compute the empirical covariance estimator only for |s− t| small:

K̂(s, t) =
1

n

n
∑

i=1

{Xi(s)− X̄(s)}{Xi(t)− X̄(t)} .

• K̂(s, t) requires to observe Xi(s) and Xi(t) and we only have that for |s− t|
small.
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A COVARIANCE FUNCTION
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WHERE WE OBSERVE DATA
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SPARSE VERSUS FRAGMENTS

• Methods exist for “sparse functional data”; see Yao, Müller and Wang (2005).

• They assume ith curve is observed at a small number of points Tij, where
j = 1, . . . , Nj.

• They assume the Tij’s are i.i.d.

• Not designed for data in the form of fragments.
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SPARSE VERSUS FRAGMENTS
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ILLUSTRATION OF WHY SUCH METHODS FAIL FOR FRAGMENTS
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ILLUSTRATION OF WHY SUCH METHODS FAIL FOR FRAGMENTS
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Scatterplot of points (s, t) at which at least one of n = 100 partial curve was
observed.
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METHOD DESIGNED FOR FRAGMENTS

• Data are poor: cannot use sophisticated or consistent nonparam methods.

• In Delaigle and Hall (2013) we suggested a first very simple method.

• Very basic: based on copying and pasting vertically shifted fragments to
each fragment.

• Then essentially use the extended fragments for inference.

21



EXAMPLE OF RECONSTRUCTION
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GROWTH DATA EXAMPLE
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Yao et al.’s (2005) method with error term (top left), James and Hastie’s (2001)
method (bottom left), our old method (bottom right).
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METHOD DESIGNED FOR FRAGMENTS (PART 2)

• In Delaigle and Hall (2016) model data by Markov chains.

• Discretise the process in time: t1, . . . , tm1
and space: y1, . . . , ym2

.

• Reduce data Xi(t), t ∈ Ii, to set of point pairs (tj, Zi(tj)).

• Assume P{Z(tk+1) = yℓ |Z(tk), . . . , Z(t1)} = P{Z(tk+1) = yℓ |Z(tk)}.

• For all k, j and ℓ, estimate P{Z(tk+1) = yℓ |Z(tk) = yj}.
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IMPUTING MISSING PARTS OF CURVES

Z observed on [A,B] ⊂ [a, b]. Markov assumption implies

E
{

Z(t)
∣

∣Z(s) , s ∈ [A,B]
}

=











Z(t) if t ∈ [A,B]

E{Z(t) |Z(A)} if a ≤ t < A

E{Z(t) |Z(B)} if B < t ≤ b .

• We have

E
{

Z(tj+r)
∣

∣ Z(tj) = yj1
}

=

m1
∑

ℓ=1

{

∑

paths from yj1 to yjr=yℓ

r
∏

k=1

P
{

Z(tj+k) = yjk+1
|Z(tj+k−1) = yjk

}

}

yℓ

• Estimate using estimated transition probabilities.

• Use matrix formulation.
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GROWTH DATA EXAMPLE
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Yao et al.’s (2005) method with error term (top left), James and Hastie’s (2001)
method (bottom left), our new method (bottom right).
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COVARIANCE ESTIMATION

• For covariance, use same ideas to estimate

E
{

Z(t)Z(u)
∣

∣

∣
Z(s) , s ∈ [A,B]

}

=











Z(t)Z(u) if t, u ∈ [A,B]

Z(t)E{Z(u) |Z(s), s ∈ [A,B]} if t ∈ [A,B] but u /∈ [A,B]

etc

• If enough data to fit, can use higher order Markov assumption:

P{Z(tk+r) = yℓ |Z(tk+r−1), . . . , Z(t1)} = P{Z(tk+r) = yℓ |Z(tk+r−1), . . . , Z(tk)}.
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OUR MORE RECENT IDEA

• Estimating K on I ×I from fragments is only possible if we can identify K
on I × I by knowing K on the diagonal band where we observe data.
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METHOD

• In that case, we express K in an orthogonal series expansion:

K(s, t) =
∞
∑

j1=1

∞
∑

j2=1

aj1j2 ψj1(s)ψj2(t) . (1)

• Then estimate the coefficients using only the diagonal band by minimising

the distance between K and K̂ computed on the diagonal band.

• Minimise under the constraint that K is symmetric and semipositive defi-
nite on I × I .

• Then use the resulting coefficients on the whole I × I .
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THEORY

• We have theoretical results giving conditions under which K is identifiable
on I × I knowing only K on the diagonal band.

• One example is when the Xi’s are real analytic, see Descary and Panaretos
(2017) for similar results using another method.

• We have more general results based on fast enough decay of eigenvalues.
The larger the observed band, the better.

• We can also show that even if we do not have identifiability, we can have
relatively small error of approximation.
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Figure 1: n = 50, mean fragment length: 0.5. True (left)
and estimated (right).
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Figure 2: n = 50 (top) or 500 (bottom), mean fragment
length: 0.2. True (left) and estimated (right).
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