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Motivation slide 2

Fukushima, March 2011
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(Not so) Rare events

� Fukushima tsunami just one of many ‘rare events’, e.g.,

– heavy rain, drought, heatwaves, hurricanes, . . .—likely to have greater impact in future years
under climate change

– stock market ‘corrections’—our pensions, mortgages, savings at risk

� To manage the risk, need estimates of probabilities for events of probability 10−4 or 10−7

annually, with uncertainties

– usually based on 25–150 years of data (at very most)

� Basic task is extrapolation (well) outside the range of any observations

http://stat.epfl.ch IMS, Singapore – slide 4
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EXAR project
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EXAR project

� Aim to estimate flood risk on Aare river basin up to 2050, taking into account climate change

� Probabilities needed for events on river network with annual probabilities 10−4 (Swiss nuclear
power plants are on riverbanks)

� Must assess combined flooding risk, based on time series of length at most 80 years

� Several university institutes involved (hydrology, hydraulics, geography, climate science, . . . )
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Muhleberg
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Air temperature maxima and minima
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Guide to extrapolation

� Advice to students:

Don’t Do It
� Advice to experts:

Don’t Do It (Yet)
� If X1, . . . ,Xn

iid∼ F , then Mn = max(X1 . . . ,Xn) has distribution Fn, but

– empirical estimate of extreme probability will be 0

– Fn highly variable if F has to be estimated (always the case)

– estimation dominated by central observations (relevant to extremes?)

� Hence base extrapolation on limiting distributions for (Mn − bn)/an, for suitable renormalising
sequences an > 0 and bn, as n → ∞

� What limits can arise?

http://stat.epfl.ch IMS, Singapore – slide 10

Extreme-Value Models slide 11

Founders of extreme-value theory

Maurice René Fréchet (1878–1973)
Ronald Alymer Fisher (1890–1962)
Leonard Henry Caleb Tippett (1902–1985)

http://stat.epfl.ch IMS, Singapore – slide 12
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Modelling maxima

� A distribution G for maxima must satisfy the max-stability relation

Gn(bn + any) = G(y), m = 1, 2, . . . , {an} > 0, {bn} ⊂ R.

� Only non-trivial solution is the generalized extreme-value (GEV) distribution,

G(y) = exp

{

−
[

1 + ξ

(

y − µ

τ

)]−1/ξ

+

}

,

where u+ = max(u, 0), and µ and τ are location and scale parameters.

� ξ is a shape parameter determining the rate of tail decay, with

– ξ > 0 giving the heavy-tailed (Fréchet) case,

– ξ = 0 giving the light-tailed (Gumbel) case—corresponds to Gaussian data,

– ξ < 0 giving the short-tailed (reverse Weibull) case.

� ξ is hard to estimate, but crucial because it controls probabilities of large events.

http://stat.epfl.ch IMS, Singapore – slide 13

GEV and shape parameter ξ
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� PDFs of the Gumbel (ξ = 0), the Fréchet (ξ = 0) and the (reverse) Weibull (ξ < 0).

� The Fréchet is bounded below, and the reverse Weibull is bounded above.

� The standard Weibull is a distribution for minima.
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Poisson process

� In terms of the binomial process Nn(·) =
∑

j I(bn + anXj ∈ ·),

(Mn − bn)/an ≤ y ⇔ Nn(y,∞) = 0,

and if a limit exists as n → ∞, then

P

(

Mn − bn
an

≤ y

)

=

[

1− n{1− F (bn + any)}
n

]n

→ exp {−Λ(y)} ,

where Λ(y) = − logG(y) = {1 + ξ(y − µ)/τ}−1/ξ
+ is the mean measure of a Poisson process N(·)

on R.

� Often in practice we assume that the Poisson process applies to observations that exceed some
threshold u, and estimate the parameters µ, τ , η, or equivalently fit the generalised Pareto
distribution (GPD).

� A parametric model—an ‘easy’ problem, even if n or u must be chosen and uncertainties are
usually much too large for comfort.

http://stat.epfl.ch IMS, Singapore – slide 15

General remarks

� Extreme value theory is based on limiting models for tails of distributions:

– Generalised extreme-value distribution (GEV) applies for maxima of an infinite sample,

– Poisson process model applies for peaks over an ‘infinite’ threshold,

both satisfying notions of stability from mathematical considerations.

� Could fit other models, but with weaker mathematical justification.

� In practice models fitted to finite samples, so the models are approximate and extrapolation may
be worrisome.

� Relevant data often limited, so helpful if possible to include information from elsewhere.

� Overwhelming question: Do we trust extrapolations from mathematical models for real
phenomena?

� Now generalize extreme-value paradigm to complex settings . . .

http://stat.epfl.ch IMS, Singapore – slide 16
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Max-stable Processes slide 17

Max-stable processes

� Without loss of generality, we first transform the process so that its marginal distributions are
standard Fréchet, GEV(1,1,1), distributions, e−1/z , for z > 0.

� The GEV distribution is max-stable: maxima of independent GEV variables are also GEV—in
fact, this is the defining property of the GEV distribution, and allows extrapolation to rare events.

� For the standard Fréchet, GEV(1,1,1), distribution, this means that if

Z,Z1, . . . , Zn
iid∼ exp(−1/z), then for any n,

max{Z1, . . . , Zn} D
= nZ.

� For space/space-time problems we need a process analogue of the GEV, i.e., we seek a process

Z(x) such that if Z1(x), . . . , Zn(x)
iid∼ Z(x), then

max{Z1(x), . . . , Zn(x)} D
= nZ(x), x ∈ X ,

where X represents a space/space-time domain of interest (e.g., a watershed, returns for a stock
market over the next 5 years).

http://stat.epfl.ch IMS, Singapore – slide 18

Construction of a max-stable process

� Let W (x) be a non-negative random process with E{W (x)} = 1 (x ∈ X ), and let (de Haan,
1984)

Z(x) = sup
j

RjWj(x), x ∈ X , (1)

with {Rj} a Poisson process on R+ of rate dr/r2 and {Wj} replicates of W .

� Then Qj(x) = RjWj(x) is a Poisson process on R+ × R
X
+ , and

P {Z(x) ≤ z(x), x ∈ X} = exp

(

−E

[

sup
x∈X

{

W (x)

z(x)

}])

= exp [−V {z(x)}] ,

say, where V {z(x)} is a void probability for the Qj, and this gives

– a max-stable process {Z(x) : x ∈ X}, i.e., there exist functions {bn(x)} and {an(x)} > 0
such that

Z(x)
D
=

n
max
j=1

{

Zj(x)− bn(x)

an(x)

}

, x ∈ X .

– Z(x) ∼ unit Fréchet at each x ∈ X .

� Any max-stable process can be expressed using the (non-unique) spectral representation (1).

http://stat.epfl.ch IMS, Singapore – slide 19
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Making a Smith (1990) process
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Comments

� Numerous max-stable models now exist, some more ‘realistic’ than others

� Particularly flexible example is the Brown–Resnick process (), which takes

W (x) = exp {ε(x)− γ(x)} ,

where ε(x) is a stationary or intrinsically stationary Gaussian process with semi-variance or
semivariogram γ(x)—can use panoply of functions γ from spatial statistics, or can invent your
own.
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Realisations from spatial models
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Top: results from the latent variable, Student t copula, Hüsler–Reiss copula and extremal-t copula
models. Bottom: results from the Smith, Schlather, geometric Gaussian and Brown–Resnick models.
The histograms are of 1000 realisations of a summary of rainfall centred on Zürich, and the vertical
lines correspond to the realizations shown.

http://stat.epfl.ch IMS, Singapore – slide 22

Extremal coefficient

� For any set D ⊂ X , homogeneity of V means that a max-stable model satisfies

P {Z(x) ≤ z, x ∈ D} = exp {−VD(z)} = exp {−VD(1)/z} =
(

e−1/z
)VD(1)

, z > 0,

and the extremal coefficient
θD = VD(1)

summarises the degree of dependence of the extremes in D.

� In particular, the pairwise version,

θ(x, x′) = E
[

max
{

W (x),W (x′)
}]

, x, x′ ∈ X ,

can be regarded as an analogue of the correlation coefficient, with

(total dependence) 1 ≤ θ(x, x′) ≤ 2 (independence),

and the interpretation

P
{

Z(x′) > z | Z(x) > z
}

∼ 2− θ(x, x′), z → ∞.

� θ can be estimated nonparametrically, either as a basis for model checking, or for subsequent
semiparametric estimation of V .

http://stat.epfl.ch IMS, Singapore – slide 23
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Likelihood inference

� Suppose we have independent (annual) maxima observed at D = {x1, . . . , xD} ⊂ X for n years,
so the data for each year have joint distribution

P{Z(x1) ≤ z1, . . . , Z(xD) ≤ zD} = exp {−V (z1, . . . , zD)} , z1, . . . , zD > 0.

� The formulation of the model using its CDF means that to compute the likelihood function we
must differentiate e−V with respect to z1, . . . , zD, leading to combinatorial explosion:

−V1e
−V , (V1V2 − V12)e

−V , (−V1V2V3 + V12V3[3]− V123)e
−V , . . . ,

with about 105 terms for D = 10. Clearly this is infeasible for realistic applications, so we need to
avoid this, by

– using a composite (usually a pairwise) likelihood; or

– using the timing of events to chose the term of the partition in the likelihood;

– using threshold exceedances.

� In any case we must compute (many) derivatives of V , and sometimes integrate them . . . can be
painful.

http://stat.epfl.ch IMS, Singapore – slide 24

Extremal dependence on river network

� Sources of dependence between data at locations x1 and x2 on the network X :

– flow-dependence; x2 is downstream of x1, or vice versa

– ‘geo’-dependence: the same events may impact nearby watersheds

� Overall semi-variogram

γ(x1, x2) = λRIV {1− CRIV(x1, x2)}+ λGEO γGEO(x1, x2), x1, x2 ∈ X ,

where λRIV, λEUC > 0.

� Flow-dependence in terms of shortest river distance d(·, ·):

CRIV(s, u) = C1{d(s, u)} ×
√
0.6,

CRIV(s, t) = C1{d(s, t)} ×
√
0.4 × 0.3,

CRIV(u, t) = 0,

C1(h) = exp (−h/θ) , θ > 0.

http://stat.epfl.ch IMS, Singapore – slide 25
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Upper Danube Basin !!!!!!!!!! !! !!!!! !!!!! ! ! ! ! ! !!! !
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Extremal dependence on river network

� Introduce hydrological location of each station, as h(x) ∈ R
2 as centroid of its sub-catchment,

and define dependence measure

γEUC(x1, x2) = ‖h(x1)− h(x2)‖α, α ∈ (0, 2].!!# #
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Extremal coefficients
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Threshold exceedances slide 29
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Exceedances and risk functions

� Modelling threshold exceedances is widely used in (scalar) practice:

– more flexible than using maxima

– statistically more efficient, makes better use of data

� For scalar data, choosing rare events is easy: either they’re big or they’re small.

� For multivariate data, we need to say what ‘direction’ is extreme

� Do this via a scalar risk function f applied to the individual events Qj(x) = RjWj(x) of the
max-stable process

– Choose those events Qj for which f(Qj) exceeds a threshold u

– Red: extremes on [0, 2], selected using risk function

f(Q) =

∫ 2

0
Q(x) dx

– Blue: most intense events, selected using risk function

f(Q) = maxQ(x)

http://stat.epfl.ch IMS, Singapore – slide 31
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Extremes in [0, 2]
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Highest peaks anywhere
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Inference

� Fitting for the ‘exceedances’ Qj is (in principle) much easier than for the max-stable process Z(x):

– likelihoods can be constructed, at least for Gaussian-based Q(x) but

– they entail lots of burdensome integrals to compute norming constants.

� Fixes

– estimate the integrals using quasi-Monte Carlo or other methods,

– avoid likelihood inference, using the gradient score to dodge computing the norming constants.

� Big problems (D ≈ 1000s) feasible with the gradient score, smaller ones (D ≈ 100s) with
quasi-Monte Carlo approximation.

http://stat.epfl.ch IMS, Singapore – slide 35

Extreme rainfall over Florida

� 15-minute radar rainfall measurements over Florida from 1994–2010

� We focus on a 120 km× 120 km square south-west of Orlando and on the wet season, i.e., June
to September.

27.2

27.6

28.0

28.4

-82.5 -82.0 -81.5

lon

la
t

http://stat.epfl.ch IMS, Singapore – slide 36

16



Florida rainfall
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http://stat.epfl.ch IMS, Singapore – slide 37

Risk functionals

� We define two risk functionals

fmax(X
∗) =

[

ℓ
∑

i=1

{X∗(si)}20
]1/20

, fsum(X
∗) =

[

ℓ
∑

i=1

{X∗(si)}ξ0
]1/ξ0

,

where ℓ = 3600 is the number of grid cells.

� Here

– fmax is a continuous and differentiable approximation of maxi=1,...,ℓX
∗(si) which satisfies the

requirements for the gradient score,

– fsum selects events with large spatial cover. The power ξ0 approximately transforms the data
X∗ back to a scale where summing observations has a physical meaning.

http://stat.epfl.ch IMS, Singapore – slide 38
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Spatial model and parameter estimates

� Non-separable semi-variogram model

γ(xi, xj) =
∥

∥

∥

Ω(xi−xj)
τ

∥

∥

∥

κ
, xi, xj ∈ [0, 120]2 , i, j ∈ {1, . . . 3600},

with 0 < κ 6 2, τ > 0 and anisotropy matrix

Ω =

[

cos η − sin η
a sin η a cos η

]

, η ∈
(

−π
2 ;

π
2

]

, a > 1.

� Fitted parameters obtained for both risk functionals with exceedances of fmax(X
∗) and fsum(X

∗)
over the 99 quantile:

κ τ η a

fmax 1.1920.02 9.060.19 0.080.61 1.0080.005
fsum 0.3260.007 46.670.018 −0.300.10 1.0640.017

– fmax estimates are quite smooth with a small scale, they capture high quantiles and induce a
model similar to that in earlier work.

– For fsum, the semi-variogram is rougher but with a much larger scale, which is consistent with
large-scale events.

– Anisotropy does not seem significant.

http://stat.epfl.ch IMS, Singapore – slide 39

Simulated extreme rainfall
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15-minute cumulated rainfall (inches): observed (first row) and simulated (second and third rows) for
the risk functionals fsum (left) and fmax (right) with intensity equivalent to the 0.99 quantile.
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Closing slide 41

Closing

� Basic ideas on maxima and point processes extend to spatial and space-time settings.

� Max-stable processes give asymptotic dependence models—asymptotic independence can be
bothersome in practice, but can account for it (up to a point).

� Can fit such models using

– pairwise likelihood (can be inefficient),

– full likelihood (needs additional information, difficult with large D),

– Bayesian methods, or

– gradient score methods.

� Model-checking possible, using simulation from fitted models and other techniques—but difficult
to validate far into tails, because of lack of data.

� Currently much research in area (e.g., threshold models, non-stationarity, gridded data,
non-Euclidean spaces, . . . ).

http://stat.epfl.ch IMS, Singapore – slide 42

Some reading

� Coles (2001), Introduction to the Statistical Modeling of Extreme Values, Springer

� de Haan and Ferreira (2006) Extreme Value Theory: An Introduction, Springer

� Davison and Huser (2015) Annual Review of Statistics and its Applications

� Davison, Huser and Thibaud (2018+) Chapter in Handbook of Environmental and Ecological

Statistics, CRC Press

� de Haan (1984) Annals of Probability

� Smith (1990) unpublished

� Davison, Padoan and Ribatet (2012) Statistical Science

� Wadsworth and Tawn (2012) Biometrika

� Wadsworth and Tawn (2015) Biometrika

� Thibaud and Opitz (2015) Biometrika

� Asadi, Davison and Engelke (2015) Annals of Applied Statistics

� de Fondeville and Davison (2018) arXiv
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