## Inferring Gene-Gene Interactions and Functional Modules Beyond Standard Models

Haiyan Huang Department of Statistics, UC Berkeley

Feb 7, 2018

#### Background

#### Gene regulatory networks

- Directed, genes as nodes, a directed edge from gene A to gene B if A encodes a transcription factor that regulates the expression of B.
- Need time-course data at small time intervals.
- Study undirected networks as a simplification (when inferring gene networks using expression data).
- Task of our interest: To identify gene functional groups, many of which encode biological pathways, using gene expression data.
  - A network of relations needs to be learned using gene expression levels as covariates with functionally related genes having denser connections (stage 1).
  - Detect tightly knit sub-structures (stage 2).



# Background



- **High dimensionality** (p >> n) often results in a high rate of false positives, severely limiting a genomic scale network exploration.
- Measures based on **pairwise marginal relationships** are often inappropriate for detecting higher level interactions.
  - A gene may interact with a group of genes despite having weak marginal correlations with the individual genes.
- **Partial correlation** takes the influence of other genes into account, e.g., Gaussian Graphical Models (GGM).
  - Inclusion of non-pathway genes in the conditional set can lead to spurious dependencies.
  - "Seed genes" (Kim et. al. (2012)), i.e. known pathway genes are useful to define an appropriate conditional set, but they are not always available.
  - Under GGM, the elements in the precision matrix are proportional to partial correlations, i.e., correlation between two genes conditioned on the rest genes.

#### **Problem Formulation**

# Our formulation was motivated by considering GGM in a linear regression setting:

The partial correlation between gene *i* and gene *j* conditioned on a set of genes *Z* is simply the correlation cor( $\varepsilon 1, \varepsilon 2$ ) of the residuals  $\varepsilon 1$  and  $\varepsilon 2$  resulting from linearly regressing gene *i* and gene *j* against the genes in *Z*, respectively.

For instance, assume that genes A, B and C are interacting as a group, and that  $G_A = \beta_A G_C + \varepsilon 1$  and  $G_B = \beta_B G_C + \varepsilon 2$ , where  $G_{A_c} G_{B_c} G_C$  denote the expression profile for genes A, B and C, respectively.

If cor( $\varepsilon 1, \varepsilon 2$ )  $\approx 1$ , then  $G_A + \Gamma_B G_B + \Gamma_C G_C + \Gamma \approx 0$ 

#### **Problem Formulation**

# Our formulation was motivated by considering GGM in a linear regression setting:

The partial correlation between gene *i* and gene *j* conditioned on a set of genes *Z* is simply the correlation cor( $\varepsilon 1, \varepsilon 2$ ) of the residuals  $\varepsilon 1$  and  $\varepsilon 2$  resulting from linearly regressing gene *i* and gene *j* against the genes in *Z*, respectively.

Therefore, under a GGM, it is reasonable to assume that functionally related genes form strong linear relationships, with one linear equation for one gene module (a set of functionally related genes), suggesting a new formulation for finding gene modules:

Finding strong linear models that involve a very small set of genes among the thousands of candidate genes.

#### An attempted solution

 To find strong linear models that involve a very small set of genes among the thousands of candidate genes, we introduce a procedure based on a novel application of sparse canonical correlation analysis (SCCA) to the gene expression data matrix.

#### Sparse Canonical Correlation Analysis (SCCA)

SCCA finds vectors a and b that solve

 $\max_{\mathbf{a},\mathbf{b}} \mathbf{a}^{\mathsf{T}} \mathbf{Y}^{\mathsf{T}} \mathbf{X} \mathbf{b} \quad \text{subject to } \mathbf{a}^{\mathsf{T}} \mathbf{a} \leq 1, \mathbf{b}^{\mathsf{T}} \mathbf{b} \leq 1, p_1(\mathbf{a}) \leq c_1, p_2(\mathbf{b}) \leq c_2,$ 

where  $X \in \mathbb{R}^{n \times p}$ ,  $Y \in \mathbb{R}^{n \times q}$  have centered and scaled columns,  $p_1$  and  $p_2$  are convex functions. (Witten et al. (2009))

- For high-dimensional biological data, sparsity is necessary and we impose this using L₁ penalty, p₁(·) = p₂(·) = || · ||₁.
- Modified NIPALS algorithm (Li et al. (2011)) with tuning parameters λ = (λ<sub>1</sub>, λ<sub>2</sub>).

## SCCA with random partition and subsampling

- Average a, b over a large number of subsampling and random partitions.
  - Subsample a fixed fraction of the genes
  - Random split the matrix (by genes) into x and y and run SCCA

#### Proposition

Assuming only one pathway K and only genes in K are correlated. For every partition t, let  $\mathbf{c}_t$  be the list of the absolute values  $|\mathbf{a}_t|$  and  $|\mathbf{b}_t|$  ordered according to the gene list. Let  $\mathbf{\bar{c}} = \sum_{t=1}^{N} \mathbf{c}_t / N$ , where N is the number of partitions, then  $\exists B > 0$ 

$$\lim_{N\to\infty}\lim_{n\to\infty}(\min_{i\in K}\bar{c}_i-\max_{j\notin K}\bar{c}_j)=B.$$

| a   | b                                                               | С                                       |
|-----|-----------------------------------------------------------------|-----------------------------------------|
| 0.4 | /                                                               | 0.4                                     |
| /   | 0                                                               | 0                                       |
| /   | 0                                                               | 0                                       |
| 0   | /                                                               | 0                                       |
| /   | 1.3                                                             | 1.3                                     |
| 0   | /                                                               | 0                                       |
| 0   | /                                                               | 0                                       |
| /   | 1.1                                                             | 1.1                                     |
| /   | 0                                                               | 0                                       |
| 1.2 | /                                                               | 1.2                                     |
| /   | 0.5                                                             | 0.5                                     |
| 0.6 | /                                                               | 0.6                                     |
|     | a <br>0.4<br>/<br>0<br>/<br>0<br>/<br>0<br>/<br>1.2<br>/<br>0.6 | a  b 0.4//0/0/0/1.30//1.1/01.2//0.50.6/ |



#### **Summary of Procedure**



- 1. SCCA implemented by a modified NIPALS algorithm involving iterative penalized regression with L1 penalty.
- If some genes are known to operate in the same pathway, the penalty parameter corresponding to those genes could be lowered.

# Subsampling helps the identification of weaker functional group



Figure 2: Asymptotic values of  $\overline{A}$  with (a) no subsampling and (b) 50% subsampling.

- We simulated the expressions of 20 genes.
- 6 of them form two disjoint functional gene groups.
- One group has 3 genes that are perfectly linearly related (see (a)).
- The other group has 3 genes that have relatively weaker linear relationships (see (b).
- The left 14 genes are independent from each other.

# Subsampling helps the identification of overlapping functional groups



We simulated the expressions of 150 genes.

There are two overlapping functional gene groups, with each functional group having 15 genes and 5 genes in

common.

Figure 1: Heatmap of  $\overline{A}$  with 50% subsampling.

#### Choose the amount of regularization







- p = 150, n = 30
- functional group: 1-15
- subsample 70%,  $\lambda_a = 3, \lambda_b = 3$

- p = 150, n = 30
- functional group: 1-15
- subsample 70%,  $\lambda_a = 9, \lambda_b = 9$

- p = 150, n = 30
- functional group: 1-15
- subsample 70%,  $\lambda_a = 18, \lambda_b = 18$

The entropy of an edge weight matrix  $\overline{A}$  is defined as

$$H(A) = -\sum_{i < j, A_{ij} > 0} (A_{ij}/S_A) \log(A_{ij}/S_A),$$

where  $S_A = \sum_{i < j} A_{ij}$ . ( $\lambda_1, \lambda_2$ ) leading to small entropy values are desirable.



## Identify community structures in Ā

- Gene functional groups as communities in a network.
- Community detection methods (many are available; we implemented the below two)
  - Greedy algorithms hierarchical clustering (HC)
  - Probabilistic models stochastic block models (SBM) fitted using the pseudo-likelihood algorithm Chen et al. (2012)



#### Performance comparison for simulated data

- Classification rates: **precision** =  $\frac{TP}{TP+FP}$ , **recall** =  $\frac{TP}{TP+FN}$ .
- Cross-mix the following to allow comparisons
  - Stage 1: building edge weight matrices  $\bar{A}$ 
    - scca
    - pearson
    - module: Transformed Pearson's correlation matrix used in Langfelder et al. (2007).
  - Stage 2: detecting block structures from  $\bar{A}$ 
    - sbm
    - hc: Cutting the dendrogram when clusters of size less than 25 start to appear.
    - dynamic, hybrid: HC with dendrogram cutting methods in dynamicTreeCut (Langfelder et al. (2008)).
- Six methods for comparison: *scca.hc*, *pearson.hc*, *scca.sbm*, *pearson.sbm*, *module.dynamic*,*module.hybrid*.

Table: Classification performance of different methods using datasets with *p* = 500, two functional groups, subsampling level 70%, and various levels (0%, 33% and 67%) of experiment dependency.

|                | Pathway 1 |        |           |        |           |        |
|----------------|-----------|--------|-----------|--------|-----------|--------|
|                | 0%        |        | 33%       |        | 67%       |        |
|                | Precision | Recall | Precision | Recall | Precision | Recall |
| scca.hc        | 0.861     | 0.533  | 0.831     | 0.441  | 0.811     | 0.433  |
| module.dynamic | 0.718     | 0.3    | 0.742     | 0.333  | 0.764     | 0.38   |
| module.hybrid  | 0.439     | 0.407  | 0.544     | 0.447  | 0.453     | 0.385  |
| pearson.hc     | 0.238     | 0.233  | 0.497     | 0.427  | 0.471     | 0.393  |
|                | Pathway 2 |        |           |        |           |        |
|                | 0%        |        | 33%       | 6      | 67%       | 0<br>0 |
|                | Precision | Recall | Precision | Recall | Precision | Recall |
| scca.hc        | 0.808     | 0.487  | 0.890     | 0.489  | 0.833     | 0.420  |
| module.dynamic | 0.758     | 0.4    | 0.808     | 0.347  | 0.8       | 0.4    |
| module.hybrid  | 0.565     | 0.473  | 0.529     | 0.387  | 0.455     | 0.46   |
| pearson.hc     | 0.438     | 0.387  | 0.323     | 0.307  | 0.460     | 0.273  |

#### Arabidopsis data

- Shoot tissue dataset from *A.thaliana* subject to oxidation stress, composed of 22810 genes, 13 experiments and two replicates for each experiment.
- Select genes that have
  - a reasonable large variance across the experiment. Also remove genes with a suspiciously high experiment variance.
  - small replicate discrepancy
  - reasonably large expression levels

 $\Rightarrow p = 2718.$ 

• scca.hc vs. pearson.hc, module.dynamic, module.hybrid

#### Of the 13 groups found,

#### GO enrichment of groups

| Group<br>ID | Enriched GO term                       | Number of genes with<br>enriched terms | P-values               |
|-------------|----------------------------------------|----------------------------------------|------------------------|
| 1           | Chloroplast organellar gene            | 10 out of 15                           | $1.10 	imes 10^{-4}$   |
| 2           | Phenylpropanoid-flavonoid biosynthesis | 3 out of 4                             | $6.65 	imes 10^{-7}$   |
| 3           | Glucosinolate biosynthesis             | 7 out of 7                             | $1.95 \times 10^{-14}$ |
| 4           | Chloroplast organellar gene            | 3 out of 3                             | $7.83 \times 10^{-3}$  |
| 5           | Ribosome                               | 10 out of 15                           | $7.20 \times 10^{-13}$ |
| 8           | Ribosome                               | 5 out of 6                             | $8.31 \times 10^{-8}$  |
| 10          | Photosystem I or II                    | 8 out of 10                            | $2.87 \times 10^{-14}$ |
| 12          | Endomembrane system                    | 3 out of 4                             | $2.35 \times 10^{-3}$  |

The Arabidopsis Information Resource (http://www.arabidopsis.org/tools/bulk/index.jsp)

#### Results using module.dynamic and module.hybrid

| GO enrichment of groups — first cut |                                        |                      |                       |
|-------------------------------------|----------------------------------------|----------------------|-----------------------|
| Group                               | Enriched CO torm                       | Number of genes with | D volues              |
| ID                                  | Enriched GO term                       | enriched terms       | r-values              |
| 9                                   | Cell wall                              | 16 out of 81         | $4.46 \times 10^{-6}$ |
| 10                                  | Defense response                       | 29 out of 78         | $1.58 	imes 10^{-2}$  |
| 11                                  | Phenylpropanoid-flavonoid biosynthesis | 11 out of 76         | $5.42\times10^{-12}$  |

13 groups in total with sizes from 60 to 293

| GO enficiment of groups — second cut |                                 |                      |  |
|--------------------------------------|---------------------------------|----------------------|--|
| Group                                | Enriched CO term                | Number of genes with |  |
| ID                                   | Enficied GO term                | enriched terms       |  |
| 62                                   | NA                              | 0 out of 6           |  |
| 63                                   | Chloroplast                     | 4  out of  6         |  |
| 64                                   | Located in plasma membrane      | 2  out of  5         |  |
| 65                                   | Located in plasma membrane      | 3  out of  5         |  |
| 66                                   | Pyridoxine biosynthetic process | 2  out of  5         |  |

GO enrichment of groups — second cut

66 groups in total with sizes from 5 to 81

#### Conclusion on the SCCA method

- High precision
- More conceptually appealing.
  - Under a regression setting, it captures group interactions by providing an aggregated measure of gene partial correlations when the correct conditional set is unknown
- Flexible enough to incorporate prior knowledge when available

# *Gene-Fishing:* A semi-supervised, non-parametric clustering procedure with bagging

## Background

#### **Biomedical questions of interest**

- 1. Identifying novel cholesterol-metabolism regulators that may contribute (or be related) to cardiovascular disease risk.
- 2. Characterizing the diversity of cholesterol metabolism across different tissues.
- 3. Understanding mechanisms underlying adverse effects of statin treatment.

#### **Datasets**:

- 1. CAP LCLs Dataset (n=426): RNA-seq and expression array of subject-derived lymphoblastoid cell lines (LCLs) were established from CAP subjects; demographic information and plasma LDLC are also available.
- 2. GEUVADIS Dataset (n=465; publicly available): the transcriptome of 465 LCL samples (from the 1000 Genome Project) were deeply sequenced on Illumina HiSeq2000.
- 3. GTex Dataset (publicly available): 7051 samples for 43 different tissues were collected for RNA-Seq analysis.

## Our Initial Analysis:





Spectral analysis of all 14028 genes (Cap LCL expression dataset)

-0.04

eigen-1

-0.02

0.00

0.02

0.10

0.05

0.00

-0.05

-0.10-

-0.08

-0.06

eigen-2

Spectral analysis of 80 (GO-annotated) cholesterol metabolism associated genes

Visualization of genegene correlation matrix

#### Interesting patterns become hidden as noise increases





# Comparison of Reproducibility between the CAP LCL dataset and the GEUVADIS dataset



#### Application to GTex dataset





#### Application to GTex dataset



#### Acknowledgements

SCCA project

Wang YXR, Jiang K, Feldman LJ, Bickel PJ, Huang H. Inferring gene-gene interactions and functional modules using sparse canonical correlation analysis.

Annals of Applied Statistics. 2015. 9(1): 300-323.

- Gene-Fishing project
  - UC Berkeley: Dr. Ke Liu (Postdoc); Yun Zhou (Student in Biostatistics); Tal Ashuach (Student in Computational Biology); Peter Bickel (Professor, Statistics)
  - Children's Hospital at Oakland Research Institute: Dr. Elizabeth Theusch (Postdoc) Dr. Marisa Wong Medina (Scientist)