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Background

e Gene regulatory networks

e Directed, genes as nodes, a directed edge from gene A to gene B if A
encodes a transcription factor that regulates the expression of B.

e Need time-course data at small time intervals.

e Study undirected networks as a simplification (when inferring gene
networks using expression data).

e Task of our interest: To identify gene functional groups, many of
which encode biological pathways, using gene expression data.

e A network of relations needs to be learned using gene expression
levels as covariates with functionally related genes having denser
connections (stage 1).

e Detect tightly knit sub-structures (stage 2).
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Stage 1

Construct edge/similarity g Comm i{"it?
weight matrix for genes detection

e High dimensionality (p >> n) often results in a high rate of false positives,
severely limiting a genomic scale network exploration.

 Measures based on pairwise marginal relationships are often inappropriate for
detecting higher level interactions.

e A gene may interact with a group of genes despite having weak marginal correlations with
the individual genes.

e Partial correlation takes the influence of other genes into account, e.g.,
Gaussian Graphical Models (GGM).
* Inclusion of non-pathway genes in the conditional set can lead to spurious dependencies.

e “Seed genes” (Kim et. al. (2012)), i.e. known pathway genes are useful to define an
appropriate conditional set, but they are not always available.

 Under GGM, the elements in the precision matrix are proportional to partial correlations,
i.e., correlation between two genes conditioned on the rest genes.



Problem Formulation

Our formulation was motivated by considering GGM in a linear
regression setting:

The partial correlation between gene i and gene j conditioned on a set of genes Z
is simply the correlation cor(e1,e2) of the residuals €1 and €2 resulting from
linearly regressing gene i and gene j against the genes in Z, respectively.

For instance, assume that genes A, B and C are interacting as a group,
and that G, = B, G.+¢eland Gg= By G. + €2, where G, G, G.denote
the expression profile for genes A, B and C, respectively.

If cor(el,e2)=1,thenG,+I; G+ I G+ = 0



Problem Formulation

Our formulation was motivated by considering GGM in a linear
regression setting:

The partial correlation between gene i and gene j conditioned on a set of genes Z
is simply the correlation cor(e1,e2) of the residuals €1 and €2 resulting from
linearly regressing gene i and gene j against the genes in Z, respectively.

Therefore, under a GGM,, it is reasonable to assume that functionally
related genes form strong linear relationships, with one linear
equation for one gene module (a set of functionally related genes),
suggesting a new formulation for finding gene modules:

Finding strong linear models that involve a very small set of genes among the
thousands of candidate genes.



An attempted solution

* To find strong linear models that involve a very small
set of genes among the thousands of candidate genes,
we introduce a procedure based on a novel application
of sparse canonical correlation analysis (SCCA) to the
gene expression data matrix.



Sparse Canonical Correlation Analysis (SCCA)

e SCCA finds vectors a and b that solve

mabxaTYTXb subject toa’a < 1,b’b < 1,p;(a) < c1, pa(b) < o,
a,

where X € R"*P, Y € R"*9 have centered and scaled columns, p;
and p, are convex functions. (Witten et al. (2009))

e For high-dimensional biological data, sparsity is necessary and we
impose this using L; penalty, pi(-) = p2(-) = || - ||1-

e Modified NIPALS algorithm (Li et al. (2011)) with tuning
parameters A = (A1, A2).



SCCA with random partition and subsampling

e Average a,b over a large
number of subsampling
and random partitions.

e Subsample a fixed
fraction of the genes

e Random split the
matrix (by genes) into
x and y and run SCCA

Proposition

Assuming only one pathway K
and only genes in K are

correlated. For every partition t, let c; be the list of the absolute values
a¢| and |b:| ordered according to the gene list. Let € =S "1, c:/N,
where N is the number of partitions, then 3 B > 0

lim lim (minc — max¢;) = B.
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expression matrix
Z with genes in
columns and
experiments in rows

Summary of Procedure
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SCCA implemented by a
modified NIPALS
algorithm involving
iterative penalized
regression with L1
penalty.

If some genes are known
to operate in the same
pathway, the penalty
parameter
corresponding to those
genes could be lowered.



Subsampling helps the identification
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Subsampling helps the identification of
overlappmg functional groups
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Figure 1: Heatmap of A with 50% subsampling.
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The entropy of an edge weight matrix A is defined as

H(A)=— > (Aj/Sa)log(A;/Sa),

i<j,Aij>0

where 54 = ) ;. ; Ajj.
(A1, A2) leading to small entropy values are desirable.
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ldentify community structures in A

e Gene functional groups as communities in a network.

e Community detection methods (many are available; we implemented
the below two)

e Greedy algorithms — hierarchical clustering (HC)
e Probabilistic models — stochastic block models (SBM) fitted using
the pseudo-likelihood algorithm Chen et al. (2012)

binary adjacency SBM____| community
matrix structure
X
_ . , discretize
A=Y, A/B
X community
dist=1-4 HC structure




Performance comparison for simulated data

e . s TP _ TP
o Classification rates: precision = =575, recall = w7y

e Cross-mix the following to allow comparisons
e Stage 1: building edge weight matrices A

® Scca

® pearson
e module: Transformed Pearson’s correlation matrix used in Langfelder

et al. (2007).
e Stage 2: detecting block structures from A

® sbm
e hc: Cutting the dendrogram when clusters of size less than 25 start

to appear.
® dynamic, hybrid: HC with dendrogram cutting methods in

dynamicTreeCut (Langfelder et al. (2008)).

e Six methods for comparison: scca.hc, pearson.hc, scca.sbm,
pearson.sbm, module.dynamic,module.hybrid.



Table: Classification performance of different methods using datasets with p
= 500, two functional groups, subsampling level 70%, and various levels (0%,
33% and 67%) of experiment dependency.

Pathway 1
0% 33% 67%
Precision Recall Precision Recall Precision Recall
scca.hc 0.861 0.533 0.831 0.441 0.811 0.433
module.dynamic 0.718 0.3 0.742 0.333 0.764 0.38
module.hybrid 0.439 0.407 0.544 0.447 0.453 0.385
pearson.hc 0.238 0.233 0.497 0.427 0.471 0.393
Pathway 2
0% 33% 67%
Precision Recall Precision Recall Precision Recall
scca.hc 0.808 0.487 0.890 0.489 0.833 0.420
module.dynamic 0.758 0.4 0.808 0.347 0.8 0.4
module.hybrid 0.565 0.473 0.529 0.387 0.455 0.46
pearson.hc 0.438 0.387 0.323 0.307 0.460 0.273




Arabidopsis data

e Shoot tissue dataset from A.thaliana subject to oxidation stress,
composed of 22810 genes, 13 experiments and two replicates for

each experiment.

e Select genes that have

e a reasonable large variance across the experiment. Also remove
genes with a suspiciously high experiment variance.

e small replicate discrepancy
e reasonably large expression levels

= p = 2718.

e scca.hc vs. pearson.hc, module.dynamic, module.hybrid



Of the 13 groups found,
GO enrichment of groups

Group Number of genes with

D Enriched GO term enriched terms P-values

1 Chloroplast organellar gene 10 out of 15 1.10 x 10~*
2 Phenylpropanoid-flavonoid biosynthesis 3 out of 4 6.65 x 10~
3 Glucosinolate biosynthsis 7out of 7 1.95x10~
4 Chloroplast organellar gene 3 out of 3 7.83 x 1077
5 Ribosome 10 out of 15 7.20x107 1
8 Ribosome 5 out of 6 8.31 x 107°
10 Photosystem [ or I 8 out of 10 2.87x10~
12 Endomembrane system 3 out of 4 2.35 x 102

The Arabidopsis Information Resource
(http://www.arabidopsis.org/tools/bulk /index.jsp)



Results using moaule.dynamicand moaule.hybrid

GO enrichment of groups — first cut

Group Enriched GO term Nul}lber of genes with P-values

D enriched terms

0 Cell wall 16 out of 81 446 x 107°

10 Defense response 29 out of 78 1.58 x 102

11 Phenylpropanoid-flavonoid biosynthesis 11 out of 76 5.42 x 10~ 12

13 groups in total with sizes from 60 to 293

GO enrichment of groups — second cut
Grou . Number of genes with
P Enriched GO term >

1D enriched terms
62 NA 0 out of 6
63 Chloroplast 4 out of 6
64 Located in plasma membrane 2 out of 5
65 Located in plasma membrane 3 out of 5
66 Pyridoxine biosynthetic process 2 out of 5

66 groups in total with sizes from 5 to 81



Conclusion on the SCCA method

e High precision

 More conceptually appealing.

 Under a regression setting, it captures group interactions by
providing an aggregated measure of gene partial correlations
when the correct conditional set is unknown

* Flexible enough to incorporate prior knowledge when
available



Gene-Fishing:
A semi-supervised, non-parametric
clustering procedure with bagging



Background

Biomedical questions of interest

1. Identifying novel cholesterol-metabolism regulators that may contribute (or be
related) to cardiovascular disease risk.

2. Characterizing the diversity of cholesterol metabolism across different tissues.

3. Understanding mechanisms underlying adverse effects of statin treatment.

Datasets:

1. CAP LCLs Dataset (n=426): RNA-seq and expression array of subject-derived
lymphoblastoid cell lines (LCLs) were established from CAP subjects; demographic
Information and plasma LDLC are also available.

2. GEUVADIS Dataset (n=465; publicly available): the transcriptome of 465 LCL
samples (from the 1000 Genome Project) were deeply sequenced on lllumina
HiSeq2000.

3. GTex Dataset (publicly available): 7051 samples for 43 different tissues were

collected for RNA-Seq analysis.



Our Initial Analysis:
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Interesting patterns become hidden as noise increases
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Workflow of gene fishing
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Comparison of Reproducibility between the CAP LCL
dataset and the GEUVADIS dataset
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Application to GTex dataset
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