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Identifying differentially expressed genes

Consider the problem of identifying differentially expressed genes
over two or more conditions (e.g. healthy vs. diseased). For this
purpose, a hypothesis test is carried out for each gene. Under the
null hypothesis, corresponding to a lack of difference in gene
expression level, the test statistic follows a specified distribution F
(e.g. normal, t). However under the alternative, corresponding to
the presence of difference in gene expression level, the distribution
G of the test statistic is unknown.

Treating each test statistic value as a response from the
corresponding gene, the thousands of responses of all genes come
from a mixture the known F and the unknown G , with some
unknown mixing proportion λ.
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Once λ and G have been estimated, by Bayes’ rule one can
estimate the probability that a gene is differentially expressed, i.e.
belongs to G . Thus, using a classification criterion we can classify
each gene as either differentially expressed or not with estimated
misclassification probability.

Based on all the identified marker genes together, one could build a
classification rule to classify each subject as, say, healthy or
diseased.
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More generally, F might be also unknown in practice but a training
sample from F is immediately available. This means that, in the
gene example, particular genes have been confidently identified by
pathologists or experts as not related to patients’ health condition.
This more general setup incorporates the cases when F for small
sample size is not exactly the same as the postulated one by
asymptotics (large sample size).

The stochastic dominance of F over G arise naturally when one
believes that the test statistic values for, say, marker genes tend to
be larger or smaller than those for non-marker genes. For example,
the most often used Student’s t (strictly |t|) and ANOVA F
statistic satisfy the stochastic ordering F ≥ G .
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Malaria example

Clinical malaria can be diagnosed by the presence of parasites and
fever. However in endemic areas children can tolerate malaria
parasite without the development of any sign of disease, and they
may have fever due to some other reason. We can consider a
mixture model where the mixture consists of parasite densities in
children with fever due to malaria or due to other causes. Parasite
levels in children from a community (without malaria) could be
available, i.e. a sample that comes from the component of the
mixture corresponding to children without clinical malaria but have
parasites in their body and hence fever. Here the mixing proportion
is the proportion of children whose fever is attributable to malaria.
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Two-component mixture model with stochastic dominance

Suppose we have two independent samples

X1, . . . ,Xm
i.i.d.∼ f (x),

Y1, . . . ,Yn
i.i.d.∼ h(x) = (1− λ)f (x) + λg(x), x ∈ R,

(1.1)

where the unknown mixing proportion λ ∈ (0, 1), and f and g are
two unknown p.d.f.s with stochastic dominance F ≥ G .

Let Z1, . . . ,Zn
i.i.d.∼ Bernoulli(λ) with Zi = 1 if Yi comes from G

and Zi = 0 if Yi comes from F . By Bayes’ rule, given an
observation Y = y the probability of it being from G is

p(y) := P(Z = 1|Y = y) =
λg(y)

(1− λ)f (y) + λg(y)
. (1.2)
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In the marker gene example, λ and p(y) correspond to the
proportion of marker genes and the chance of being a marker gene
given a test statistic value y respectively.

In biomedical assay case, they correspond to the proportion of
patients with particular disease and the chance of having this
disease given an assay index value y .
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Literature review

To our best knowledge, there is not even a single work on model
(1.1) in the literature. The closest work that has been done related
to this model is given in Smith and Vounatsou (1997). However
their model did not take the stochastic dominance constraint but
instead assumed that the probability function in (1.2) is
monotonically increasing.

The monotone assumption on p in these works is stronger than the
stochastic dominance. To see this, note that function p being
monotonic increasing generally implies that F ≥ G . But the
implication of the other direction is not true. A counter-example is
f (x) = 0.5I[0,2](x) and g(x) = (1− 0.25x)I[1,3](x). Therefore, our
model (1.1) is more general.
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Model identifiability

Let Df and Dg denote the lower limit of the support of function f
and g respectively. Note that Df and Dg could possibly be −∞.
Since F ≥ G , we have Df ≤ Dg and thus g(x)/f (x) is well defined
and g(x)/f (x) ≤ 1 as x → D+

f .

Theorem 2.1. Assume that p(x)→ 0 or equivalently
g(x)/f (x)→ 0 as x → D+

f and m is sufficiently large. Then
the mixture model (1.1) is identifiable.

Remark: The sufficient condition in Theorem 2.1 is quite weak and
also easy to check. If Df 6= Dg , then the condition holds.
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A nonparametric estimation based on c.d.f.s

Note that for any α ∈ (0, 1),

1− H(F−1(α))/α = λ

[
1− G (F−1(α))

α

]
.

Since F ≥ G , we have G(F−1(α))
α ≤ 1 and then

1− H(F−1(α))/α ≤ λ.

Thus a lower bound estimate of λ is given by

λ̂α = 1− Hn(F−1
m (α))

α
,

where Fm and Hn are some appropriate nonparametric estimators of
F and H respectively based on the samples Xi ’s and Yi ’s.
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If the discrepancy between F and G is large enough, then G(F−1(α))
α

may be near zero at some α value and as a result 1−H(F−1(α))/α
will be close to λ. Especially when the sufficient condition for
identifiability in Theorem 2.1, i.e. limx→D+

f
g(x)/f (x) = 0, holds,

G(F−1(α))
α will be very close to zero for small α values. Thus,

intuitively, we propose an estimator of λ given by

λ̂ = sup
α∈(0,1)

λ̂α = 1− inf
α∈(0,1)

Hn(F−1
m (α))

α
. (2.1)

The function p(y) in (1.2) now can be estimated by

p̂(y) = 1− (1− λ̂)
fm(y)

hn(y)
, (2.2)

where fm and hn are the corresponding p.d.f.s of Fm and Hn.
Jingjing Wu - University of Calgary Mixture model with stochastic dominance 12/ 70



Model Introduction
Nonparametric Estimation I: C.D.F.s

Nonparametric Estimation II: Multinomial Approx.
Semiparametric Estimation I: MLE

Semiparametric Estimation II: MHDE
Test of Semiparametric Model

Real Data Analysis

Model identifiability
Estimation construction
Asymptotic properties
Simulation study

In this work, we use kernel density estimators

fm(x) =
1

mbm

m∑
i=1

K0

(
x − Xi

bm

)
, (2.3)

hn(x) =
1
nbn

n∑
j=1

K1

(
x − Yj

bn

)
, (2.4)

where K0 and K1 are kernel p.d.f.s and bandwidths bn and bm are
positive sequences such that bm → 0 as m→∞ and bn → 0 as
n→∞.
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Asymptotic bias

Theorem 2.2. Suppose that both f and g are uniformly
continuous and the bandwidths bm and bn make∑∞

m=1 exp(−rmb2
m) and

∑∞
n=1 exp(−rnb2

n) converge for every
r > 0. Then as m, n→∞,

λ̂α
a.e.−→ λ− λG (F−1(α))

α
(2.5)

for any α ∈ (0, 1), and as a result

λ̂
a.e.−→ λ− λ inf

α∈(0,1)

G (F−1(α))

α
. (2.6)
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Consistency

Corollary 2.1. Suppose the conditions in Theorem 2.2 are
satisfied and in addition g(y)/f (y)→ 0 as y → D+

f . Then
λ̂

a.e.−→ λ as m, n→∞.

Remark: By Theorem 2.2, the estimator λ̂ defined in (2.1) is
generally biased. However when the sufficient condition for
identifiability given in Theorem 2.1 is satisfied, then model (1.1) is
identifiable and at the same time the estimator λ̂ is consistent by
Corollary 2.1.
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Simulation study

We consider five mixture models that all satisfy the stochastic
dominance condition. Even though our focus is on continuous
mixture models, we also want to check the performance of the
proposed methods for discrete cases such as M3 and M4.

Table 1: Mixture models considered in simulation study.

M1 (1− λ)N(0, 1) + λN(1, 1) mixture of normals that are close
M2 (1− λ)N(0, 1) + λN(5, 1) mixture of normals that are apart
M3 (1− λ)Po(2) + λPo(4) mixture of Poissons that are close
M4 (1− λ)Po(2) + λPo(6) mixture of Poissons that are apart
M5 (1− λ)U(0, 4) + λU(2, 6) mixture of uniforms
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We consider varying λ = 0.05, 0.20, 0.50, 0.80, 0.95. We use two
different sets of sample sizes (m, n) = (30, 30) and (100, 100), and
replication number N = 1000. In the kernel density estimators fm
and hn, we use Gaussian function for both kernels K0 and K1, and
the same bandwidths as in Silverman’s (1986)

bm = 0.9m−1/5 min
[
SDX ,

IQRX
1.34

]
,

bn = 0.9n−1/5 min
[
SDY ,

IQRY
1.34

]
.

(2.7)

We estimate the bias and MSE by

Bias(λ̂) =
1
N

N∑
i=1

(
λ̂i − λ

)
, (2.8)

MSE (λ̂) =
1
N

N∑
i=1

(
λ̂i − λ

)2
. (2.9)
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To examine the performance of p̂(y), we check the classification
results of a simple classification rule based on p̂. Here the hard
threshhold of 0.5 is used as the classification rule, i.e. an individual
with observation y is classified as from G if p̂(y) > 0.5 and F if
otherwise. Then we use the misclassification rate (MR) as a
measure of the performance of p̂.

However, we can expect that the MR will be high for some models,
such as M1, when the two components are close. Thus we use the
optimal misclassification rate (OMR) as the baseline to compare
with. The OMR is the MR calculated when p is assumed completely
specified (the best scenario for this classification rule), i.e.

OMR = (1−λ)

∫
{y :λg(y)>(1−λ)f (y)}

f (y)dy+λ

∫
{y :λg(y)<(1−λ)f (y)}

g(y)dy .

(2.10)
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Table 2: Bias and MSE of λ̂ and MR (%) of a classification rule based on p̂.

m = n = 30 m = n = 100
Model λ Bias(λ̂)(MSE (λ̂)) MR Bias(λ̂)(MSE (λ̂)) MR OMR

0.05 0.052 (0.031) 8.03 0.049 (0.019) 7.37 4.99
0.20 0.093 (0.074) 26.30 0.085 (0.052) 26.09 18.61

M1 0.50 0.067 (0.078) 36.63 0.067 (0.052) 37.05 30.85
0.80 -0.009 (0.047) 22.83 0.008 (0.026) 21.29 18.61
0.95 -0.052 (0.029) 9.07 -0.027 (0.012) 6.80 4.99
0.05 0.053 (0.022) 2.20 0.048 (0.015) 2.28 0.24
0.20 0.095 (0.032) 3.97 0.065 (0.018) 3.02 0.48

M2 0.50 0.082 (0.015) 2.73 0.049 (0.005) 2.12 0.62
0.80 0.061 (0.014) 6.93 0.057 (0.009) 6.21 0.48
0.95 0.034 (0.002) 7.40 0.036 (0.002) 4.16 0.24
0.05 0.203 (0.089) 28.40 0.035 (0.005) 5.04 4.76
0.20 0.133 (0.064) 32.27 0.034 (0.013) 16.69 13.90

M3 0.50 0.019 (0.039) 34.13 -0.015 (0.001) 15.54 19.05
0.80 -0.096 (0.034) 24.17 -0.084 (0.190) 25.20 13.35
0.95 -0.152 (0.042) 14.40 -0.119 (0.023) 14.24 6.06
0.05 0.211 (0.092) 26.30 0.044 (0.006) 3.03 3.14
0.20 0.178 (0.071) 25.27 0.071 (0.012) 9.61 7.03

M4 0.50 0.117 (0.034) 21.60 0.048 (0.009) 15.54 10.19
0.80 0.019 (0.010) 13.77 0.009 (0.006) 13.34 7.82
0.95 -0.026 (0.004) 5.73 -0.006 (0.002) 5.81 3.21
0.05 0.249 (0.136) 30.83 0.018 (0.002) 3.09 2.50
0.20 0.151 (0.078) 29.90 0.017 (0.005) 10.99 10.00

M5 0.50 0.067 (0.048) 30.43 0.016 (0.008) 24.24 25.00
0.80 0.031 (0.022) 16.20 0.012 (0.006) 12.76 10.00
0.95 0.009 (0.006) 4.33 0.012 (0.002) 3.87 2.50
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I When sample sizes increase, the performance of both λ̂ in
terms of bias and MSE and p̂ in terms of MR improves.

I For m = n = 100, we are able to classify individuals
equivalently well when p̂ is used as when p is used.

I The performance under models M1 and M2 is about the same
for m = n = 30 and m = n = 100.

I The relatively worse performance for models M3-M5 when
m = n = 30 could be possibly explained by the fact that these
models don’t satisfy the conditions listed in Corollary 2.1 for λ̂
being consistent. Nevertheless, when sample sizes become
large, the proposed estimators work well for models M3-M5.
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MLE of multinomial approximation

Partition the support of h into L regions R1, . . . ,RL. Define

p1l =
∫
Rl
f (x)dx ,

p2l =
∫
Rl
g(x)dx ,

p3l =
∫
Rl
h(x)dx = (1− λ)p1l + λp2l .

(3.1)

Let ml and nl denote the number of observations out of m and n
respectively that fall into region Rl . Then when L is large, model
(1.1) could be approximated closely by the multinomial populations
given in (3.1), based on which the likelihood is given by

L∏
l=1

(p1l)
ml [(1− λ)p1l + λp2l ]

nl . (3.2)
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Let θ̂ = (λ̂L, p̂11, . . . , p̂1L, p̂21, . . . , p̂2L)> denote the MLE. Then

p̂1l =
ml

m
, l = 1, . . . , L, (3.3)

p̂2l =
1
λ
· nl
n
− 1− λ

λ
· ml

m
, l = 1, . . . , L, (3.4)

while the MLE of λ generally does not exist. However, we have
from (3.4) that λ ≥ 1− nl

n ·
m
ml

for each l such that ml 6= 0. Then
the MLE of the lower bound of λ is given by

λ̂L = 1− min
l=1,...,L

ml 6=0

{
nl/n

ml/m

}
. (3.5)

The MLE of p(y) is given by

p̂L(y) =
λ̂Lp̂2i

(1− λ̂L)p̂1i + λ̂Lp̂2i
, if y ∈ Ri .
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Consistency

Theorem 3.1. λ̂L
P−→ λ− λ min

l=1,...,L
p1l 6=0

{
p2l

p1l

}
as m, n→∞.

Corollary 3.1. If p2l = 0 for some l such that p1l 6= 0, then
λ̂L

P−→ λ as m, n→∞.

Corollary 3.2. Let the maximum length of the intervals
R1, . . . ,RL go to zero when L→∞. If g(x)/f (x)→ 0 as
x → D+

f , then λ̂L
P→ λ as m, n, L→∞.
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Simulation study

I We consider the same mixture models listed in Table 2.1. We
chose L = 3 for m = n = 30 and L = 10 for m = n = 100.

I We examine the MLE of λ under the stochastic dominance
k∑

i=1
p1i ≥

k∑
i=1

p2i , k = 1, . . . , L. Even though the MLE of λ

without this constraint does not exist theoretically, our
simulation results below show that the MLE with this
constraint does exist.

I For simplicity, we use λ+ in Smith and Vounatsou (1997) as
the initial estimate of λ, and ml/m as the initial of p1l . To
give an initial of p2l , we use the relationship
g(x) = h(x)

λ −
1−λ
λ f (x) with λ replaced with its initial and f

and h replaced with ml/m and nl/n.
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Table 3: Bias and MSE of λ̂L and MR (%) of a classification rule based on p̂L.

m = n = 30 m = n = 100
Model λ Bias(λ̂L)(MSE (λ̂L)) MR Bias(λ̂L)(MSE (λ̂L)) MR OMR

0.05 0.020 (0.031) 5.60 0.022 (0.009) 5.00 4.99
0.20 0.032 (0.068) 22.13 0.011 (0.016) 20.16 18.61

M1 0.50 -0.039 (0.078) 46.77 -0.048 (0.026) 44.37 30.85
0.80 -0.144 (0.089) 41.57 -0.121 (0.033) 27.39 18.61
0.95 -0.181 (0.090) 25.17 -0.149 (0.035) 11.73 4.99
0.05 0.022 (0.031) 4.97 0.026 (0.009) 5.00 0.24
0.20 0.055 (0.071) 20.57 0.033 (0.016) 19.90 0.48

M2 0.50 0.029 (0.066) 39.13 0.017 (0.019) 25.61 0.62
0.80 -0.009 (0.036) 19.97 0.000 (0.010) 4.56 0.48
0.95 -0.011 (0.009) 4.53 -0.002 (0.003) 2.21 0.24
0.05 0.002 (0.015) 5.40 -0.000 (0.004) 5.01 4.76
0.20 -0.017 (0.046) 22.03 -0.022 (0.013) 20.09 13.90

M3 0.50 -0.076 (0.010) 43.67 -0.073 (0.029) 44.03 19.05
0.80 -0.128 (0.101) 35.53 -0.121 (0.038) 29.74 13.35
0.95 -0.163 (0.102) 22.57 -0.143 (0.034) 14.27 6.06
0.05 0.003 (0.016) 5.43 0.000 (0.004) 5.01 3.14
0.20 -0.007 (0.047) 21.60 -0.000 (0.012) 20.08 7.03

M4 0.50 -0.028 (0.084) 37.97 -0.009 (0.021) 35.49 10.19
0.80 -0.033 (0.059) 24.20 -0.018 (0.013) 14.68 7.82
0.95 -0.048 (0.037) 10.03 -0.023 (0.005) 5.41 3.21
0.05 0.026 (0.032) 22.07 0.033 (0.009) 5.01 2.50
0.20 0.049 (0.069) 20.80 0.035 (0.014) 20.13 10.00

M5 0.50 0.025 (0.065) 45.10 0.011 (0.019) 37.34 25.00
0.80 -0.001 (0.029) 23.07 -0.001 (0.008) 13.38 10.00
0.95 -0.012 (0.010) 5.70 -0.005 (0.002) 3.62 2.50
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I λ̂L performs very well in terms of bias and MSE in most cases.
I The estimation accuracy is higher when the two components

are well separated (M2 & M4) than when they are not (M1 &
M3).

I Even though we group the data and thus lose some
information, we can still estimate λ quite well.

I However, the MRs are much higher than the OMRs in most
cases. This is expected since with use of discretization, all the
observations falling into the same interval will be classified as
from the same component. When the interval is relatively
wide, for example L = 3 or even L = 10, the discretization will
generate a higher misclassification rate.
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I When λ̂L is compared with λ̂, we observe that both perform
competitively in terms of bias and MSE while λ̂ has better
performance in terms of MR than λ̂L.

I Therefore, if our interest is in λ only, then either method
should work well. But if we are interested in classification,
then the p̂ based on λ̂ works much better.
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Introduction of a semiparametric mixture model
Let Z denote a binary response variable and Y the associated covariate. Then
the logistic regression model is given by

P(Z = 1|Y = y) =
exp[α∗ + β>r(y)]

1+ exp[α∗ + β>r(y)]
, (4.1)

where r(y) = (r1(y), . . . , rp(y))
> is a given vector of functions.

Let π = P(Z = 1). Let f (y) and g(y) denote the conditional p.d.f.s of Y given
Z = 0 and Z = 1 respectively, then (4.1) gives

g(y) = exp[α+ β>r(y)]f (y), (4.2)

where α = α∗ + log[(1− π)/π]. Now model (1.1) is reduced to

X1, . . . ,Xm
i.i.d.∼ f (x),

Y1, . . . ,Yn
i.i.d.∼ hθ(x) =

{
(1− λ) + λ exp

[
α+ β>r(x)

]}
f (x).

(4.3)
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I The relationship (4.2) was first proposed by Anderson (1972). It
essentially assumes that the log-likelihood ratio of the two p.d.f.s is linear
in the observations.

I With r(x) = x or (x , x2)>, it has wide applications in logistic
discriminant analysis (Anderson, 1972&1979) and case-control studies
(Prentice and Pyke, 1979; Breslow and Day, 1980).

I For r(x) = x , it encompasses many common distributions, including two
exponentials with different means and two normals with common variance
but different means.

I With r(x) = (x , x2)>, it coincides with the exponential family of densities
considered in Efron and Tibshirani (1996).

I Moreover, (4.2) can be viewed as a biased sampling model with the ‘tilt’
weight function exp[α+ β>r(x)].

I The test of equality of f and g can be regarded as a special case of (4.3)
with β = 0.
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Theorem 4.1. Model (4.3) with r(y) = y is identifiable. If
further β > 0 and m is sufficiently large, then F ≥ G .

Even though this theorem tells us that the condition (4.2) is
stronger than the original stochastic dominance constraint, the thus
resulted semiparametric mixture model (4.3) is identifiable and has
better interpretation than the nonparametric mixture model (1.1).
In addition, the estimation of (4.3) may possess better asymptotic
properties, such as normality, than those of (1.1). So from now on,
we will focus on model (4.3) with r(y) = y and β > 0.
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Empirical MLE

Let (T1, ...,Tm+n) = (X1, ...,Xm,Y1, ...,Yn) be the pooled data
and pi = dF (Ti ). Then the empirical likelihood function is

L(λ, α, β) =
m∏
i=1

dF (Xi )
n∏

j=1

dH(Yj) =
m+n∏
i=1

pi

n∏
j=1

[
(1− λ) + λeα+βYj

]
,

subject to β ≥ 0, 0 ≤ λ ≤ 1, pi ≥ 0,
m+n∑
i=1

pi = 1,
m+n∑
i=1

pie
α+βTi = 1.

With N = m + n and ρN = n/(m + n), we have

pi =
1

N [1 + ρNλ (eα+βTi − 1)]
.
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Thus the log-likelihood function is

l(λ, α, β) ∝
n∑

j=1

log[(1−λ)+λeα+βYj ]−
m+n∑
i=1

log[1+ρNλ(eα+βTi−1)].

(4.4)

Let θ̂MLE = (λ̂MLE , α̂MLE , β̂MLE )> and p̂MLE (y) denote the MLE
of θ and p(y) respectively.
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Asymptotic normaility

Define

S =

∫ (
∂w1(y)

∂θ

)(
∂w1(y)

∂θ

)> f

w1w2
(y)dy , (4.5)

V = S −
∫
∂w1(y)

∂θ

f

w2
(y)dy

∫ (
∂w1(y)

∂θ

)> f

w2
(y)dy ,

(4.6)
where

w1(y) = 1− λ+ λeα+βy , (4.7)

w2(y) = 1− ρλ+ ρλeα+βy . (4.8)
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Theorem 4.2. Assume ρN → ρ as N →∞. Then under some
regularity conditions (for MLE in general),

√
N

λ̂MLE − λ
α̂MLE − α
β̂MLE − β

 L−→ N (0,Σ) ,

where Σ = 1
ρ(1−ρ)S

−1VS−1 with S and V defined in (4.5) and
(4.6) respectively.
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Simulation study

We consider the same five mixture models and for each the true
values of α and β are derived under (4.2). As expected, β > 0.
Note that model M5 does not satisfy (4.2).

Table 4: Mixture models considered in simulation study.

Model Form α β

M1 (1− λ)N(0, 1) + λN(1, 1) −0.5 1
M2 (1− λ)N(0, 1) + λN(5, 1) −12.5 5
M3 (1− λ)Po(2) + λPo(4) −2 0.693
M4 (1− λ)Po(2) + λPo(6) −4 1.099
M5 (1− λ)U(0, 4) + λU(2, 6) NA NA
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I We use λ+ as the initial of λ. Initial values of α and β are
calculated by exploiting the relationship (4.3). Specifically,
(4.3) indicates

log
h(x)/f (x)− (1− λ)

λ
= α + βx .

Thus for each Ti in the pooled sample, we generate (Ti ,Ri ),
where Ri = log hn(Ti )/fm(Ti )−(1−λ+)

λ+
. Finally we use (Ti ,Ri ),

i = 1, . . . ,N, to fit a least-squares regression line.
I In addition to the bias, MSE and MR, we also calculate the

coverage probability (CP) of 95% confidence interval
constructed using λ̂MLE and the asymptotic variance given in
Theorem 4.2.
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Table 5: Bias and MSE of θ̂MLE , CP (%) of λ̂MLE and MR (%) of a classification rule based on p̂MLE .

m = n = 30 m = n = 100
Model λ Bias(λ̂MLE ) Bias(α̂MLE ) Bias(β̂MLE ) CP MR Bias(λ̂MLE ) Bias(α̂MLE ) Bias(β̂MLE ) CP MR OMR

(MSE(λ̂MLE )) (MSE(α̂MLE )) (MSE(β̂MLE )) (MSE(λ̂MLE )) (MSE(α̂MLE )) (MSE(β̂MLE ))
0.05 0.139 (0.091) -0.204 (0.198) 0.006 (0.436) 100.0 18.53 0.066 (0.036) -0.133 (0.184) 0.025 (0.427) 96.2 11.04 4.99

M1 0.20 0.093 (0.106) -0.156 (0.183) 0.174 (0.469) 87.4 31.20 0.053 (0.059) -0.072 (0.159) 0.174 (0.407) 88.9 27.04 18.61
α = −0.5 0.50 0.035 (0.102) -0.118 (0.154) 0.225 (0.376) 100.0 38.04 0.051 (0.062) -0.079 (0.123) 0.094 (0.198) 88.1 37.29 30.85
β = 1 0.80 -0.024 (0.056) -0.125 (0.116) 0.200 (0.245) 96.1 24.50 -0.006 (0.029) -0.086 (0.079) 0.095 (0.113) 97.8 22.23 18.61

0.95 -0.062 (0.032) -0.147 (0.096) 0.219 (0.205) 94.3 10.53 -0.041 (0.014) -0.098 (0.054) 0.116 (0.082) 98.3 8.14 4.99
0.05 0.029 (0.005) 0.123 (0.943) 0.255 (1.125) 90.3 1.13 0.008 (0.001) 0.053 (0.865) 0.594 (0.654) 92.2 0.69 0.24

M2 0.20 0.019 (0.007) -0.073 (0.908) 0.581 (0.648) 95.3 1.24 -0.003 (0.004) -0.330 (0.873) 0.564 (0.560) 93.7 0.90 0.48
α = −12.5 0.50 0.004 (0.014) -0.197 (0.889) 0.564 (0.594) 95.9 1.27 0.001 (0.005) -0.409 (0.889) 0.411 (0.441) 94.8 0.91 0.62
β = 5 0.80 -0.008 (0.014) -0.352 (0.900) 0.500 (0.532) 95.7 0.53 0.002 (0.002) -0.383 (0.899) 0.316 (0.386) 90.6 0.61 0.48

0.95 0.002 (0.002) -0.558 (0.901) 0.428 (0.471) 95.3 0.37 0.001 (0.001) -0.366 (0.908) 0.255 (0.331) 94.8 0.29 0.24
0.05 0.058 (0.055) 0.544 (1.104) 0.063 (0.641) 89.6 13.63 0.019 (0.019) 0.564 (1.082) 0.078 (0.536) 97.9 7.61 4.76

M3 0.20 -0.019 (0.089) 0.089 (1.296) 0.427 (0.734) 89.9 25.47 -0.026 (0.045) 0.084 (1.292) 0.399 (0.529) 93.6 21.75 13.90
α = −2 0.50 -0.091 (0.148) -0.392 (1.698) 0.504 (0.599) 80.4 36.13 -0.022 (0.078) -0.319 (1.29) 0.246 (0.296) 92.5 34.89 19.05
β = 0.693 0.80 -0.109 (0.119) -0.682 (1.686) 0.335 (0.331) 90.2 26.97 -0.023 (0.036) -0.353 (0.851) 0.119 (0.091) 98.4 22.87 13.35

0.95 -0.139 (0.093) -0.774 (1.529) 0.301 (0.241) 95.3 15.73 -0.057 (0.018) -0.392 (0.622) 0.130 (0.055) 100.0 9.55 6.06
0.05 -0.003 (0.012) 0.651 (0.889) 0.029 (0.705) 84.5 6.70 -0.024 (0.004) 0.648 (0.765) 0.201 (0.565) 81.9 4.41 3.14

M4 0.20 -0.084 (0.037) 0.255 (0.844) 0.512 (0.492) 88.0 15.53 -0.080 (0.025) 0.189 (0.789) 0.450 (0.389) 94.2 11.14 7.03
α = −4 0.50 -0.092 (0.087) -0.179 (0.849) 0.337 (0.271) 82.9 19.00 -0.018 (0.025) -0.148 (0.743) 0.115 (0.097) 96.2 16.49 10.19
β = 1.099 0.80 -0.027 (0.051) -0.263 (0.791) 0.144 (0.109) 98.4 14.23 0.004 (0.007) -0.163 (0.618) 0.053 (0.039) 94.0 13.00 7.82

0.95 -0.027 (0.021) -0.375 (0.673) 0.131 (0.075) 99.4 6.07 -0.007 (0.002) -0.223 (0.468) 0.066 (0.033) 96.1 5.18 3.21
0.05 0.166 (0.177) NA NA 81.3 25.97 0.082 (0.099) NA NA 86.2 15.31 2.5
0.20 -0.002 (0.114) NA NA 88.0 23.04 -0.093 (0.040) NA NA 94.9 16.59 10

M5 0.50 -0.121 (0.135) NA NA 84.4 29.83 -0.132 (0.057) NA NA 84.6 26.38 25
0.80 -0.055 (0.076) NA NA 94.4 22.47 -0.048 (0.032) NA NA 93.0 20.16 10
0.95 -0.022 (0.018) NA NA 99.7 8.23 -0.006 (0.005) NA NA 95.2 5.92 2.5
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I The λ̂MLE always gives small bias and MSE.
I The α̂MLE and β̂MLE generally give relatively large bias and

MSE even for larger sample sizes. Nevertheless, the MR is still
reasonably close to OMR.

I Even for M5 where the assumption (4.2) doesn’t hold, the
MLE of λ based on (4.2) performs surprisingly well and the MR
doesn’t deviate from OMR too much for large sample sizes.

I The CP of the confidence intervals based on λ̂MLE are close to
the nominal level of 95% for most of the cases.

I When λ̂MLE is compared with λ̂ and λ̂L, we observe that the
three perform quite competitively while λ̂MLE and λ̂ have
better MR than λ̂L.
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I For a fully parametric model {hθ : θ ∈ Θ}, the MHDE of θ is
defined as

θ̂ = argmin
t∈Θ

∥∥∥h1/2
t − ĥ1/2

∥∥∥ , (5.1)

where ĥ is an appropriate nonparametric estimator of hθ.
I To give the MHDE for model (4.3), define

ĥt(x) = (1− t1 + t1e
t2+t3x)fm(x). (5.2)

We can use the kernel density estimator hn for ĥ.
I Then the MHDE of θ = (λ, α, β)> is defined as

θ̂MHDE = T (fm, hn) = argmin
t∈Θ

∥∥∥ĥ1/2
t − h

1/2
n

∥∥∥ . (5.3)

We use p̂MHDE (y) to denote the plug-in MHDE of p(y).
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Consistency

Theorem 5.1. Under certain conditions (compact supported
kernel, smooth f , etc), θ̂MHDE

P→ θ as N →∞.

Define

∆(θ) =

∫
∂w1

∂θ
(x)

[
∂w1

∂θ
(x)

]> f

w1
(x)dx . (5.4)

∆̄(θ) =

∫
∂w1

∂θ
(x)

[
∂w1

∂θ
(x)

]>
f (x)dx , (5.5)

AN(θ) =

∫
∂w1

∂θ
(x)

[
f

1/2
m h

1/2
n

w
1/2
1

(x)− fm(x)

]
dx . (5.6)
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Theorem 5.2. Under certain conditions (compact supported
kernel, smooth f , etc),

θ̂MHDE − θ = 2
[
∆−1(θ) + RN

]
AN(θ), (5.7)

where RN is a 3× 3 matrix with elements tending to zero in
probability as N →∞. Furthermore, the asymptotic
distribution of

√
N(θ̂MHDE − θ) is N(0,Σ) with Σ defined as

Σ = ∆−1(θ)

[
1

1− ρ
∆̄(θ) +

1
ρ

∆(θ)

]
∆−1(θ)

=
1

ρ(1− ρ)
∆−1(θ)

[
∆(θ)− ρ

(
∆(θ)− ∆̄(θ)

)]
∆−1(θ).
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Simulation study - efficiency
We use the truncated standard normal for the kernels and the same initials as those for θ̂MLE . The CP is for the 95% confidence
interval constructed using λ̂MHDE and the asymptotic variance derived in Theorem 5.2.

Table 6: Bias and MSE of θ̂MHDE , CP (%) for λ̂MHDE and MR (%) of a classification rule based on p̂MHDE .

m = n = 30 m = n = 100
Model λ Bias(λ̂) Bias(α̂) Bias(β̂) CP MR Bias(λ̂) Bias(α̂) Bias(β̂) CP MR OMR

(MSE(λ̂)) (MSE(α̂)) (MSE(β̂)) (MSE(λ̂)) (MSE(α̂)) (MSE(β̂))
0.05 0.126 (0.066) -0.287 (0.197) -0.117 (0.359) 82.4 14.90 0.059 (0.026) -0.249 (0.184) -0.127 (0.349) 84.3 8.81 4.99

M1 0.20 0.069 (0.041) -0.239 (0.183) 0.023 (0.387) 82.4 28.13 0.039 (0.044) -0.120 (0.149) 0.034 (0.342) 100.0 24.97 18.61
α = −0.5 0.5 -0.052 (0.087) -0.165 (0.151) 0.110 (0.328) 100.0 37.93 0.039 (0.057) -0.065 (0.119) -0.007 (0.193) 85.5 37.98 30.85
β = 1 0.80 -0.059 (0.059) -0.132 (0.120) 0.062 (0.223) 100.0 24.03 -0.018 (0.031) -0.064 (0.085) -0.011 (0.121) 100.0 23.04 18.61

0.95 -0.099 (0.040) -0.130 (0.102) 0.059 (0.119) 100.0 12.40 -0.058 (0.019) -0.069 (0.062) -0.002 (0.092) 100.0 9.04 4.99
0.05 0.054 (0.007) 0.302 (1.072) -1.504 (5.266) 100.0 2.37 0.013 (0.001) 0.079 (0.717) -0.789 (3.278) 100.0 1.67 0.24

M2 0.20 0.047 (0.017) 0.221 (1.240) 0.456 (1.009) 100.0 1.70 0.001 (0.006) -0.219 (0.477) 0.534 (0.598) 100.0 0.97 0.48
α = −12.5 0.50 0.055 (0.017) 0.213 (1.158) 0.632 (0.641) 100.0 1.33 0.029 (0.004) -0.242 (0.397) 0.535 (0.519) 100.0 0.89 0.62
β = 5 0.80 0.009 (0.009) -0.062 (0.697) 0.552 (0.592) 99.7 1.03 0.005 (0.002) -0.381 (0.277) 0.463 (0.434) 100.0 0.61 0.48

0.95 0.004 (0.001) -0.238 (0.458) 0.468 (0.599) 100.0 0.63 0.004 (0.001) -0.438 (0.254) 0.423 (0.385) 98.8 0.29 0.24
0.05 0.142 (0.054) -0.188 (0.767) -0.299 (0.265) 85.8 12.27 0.062 (0.018) -0.131 (0.808) -0.229 (0.219) 98.2 6.89 4.76

M3 0.20 0.091 (0.060) -0.349 (1.195) -0.094 (0.168) 100.0 25.00 0.049 (0.029) -0.215 (1.182) -0.025 (0.104) 98.6 20.73 13.90
α = −2 0.50 0.026 (0.062) -0.429 (1.319) 0.044 (0.097) 99.0 34.50 0.029 (0.039) -0.199 (0.954) 0.016 (0.068) 98.0 34.06 19.05
β = 0.693 0.80 -0.059 (0.043) -0.433 (1.076) 0.072 (0.077) 100.0 25.00 -0.043 (0.028) -0.237 (0.705) 0.035 (0.052) 100.0 23.68 13.35

0.95 -0.116 (0.039) -0.455 (0.937) 0.085 (0.068) 89.8 14.73 -0.088 (0.024) -0.241 (0.557) 0.034 (0.043) 100.0 11.27 6.06
0.05 0.067 (0.016) -0.140 (0.544) -0.242 (0.610) 100.0 6.30 0.003 (0.004) -0.542 (0.915) -0.155 (0.579) 95.8 4.51 3.14

M4 0.20 0.027 (0.024) -0.346 (0.809) 0.059 (0.292) 95.2 12.30 -0.005 (0.012) -0.284 (0.901) 0.093 (0.187) 95.2 10.87 7.03
α = −4 0.50 0.016 (0.021) -0.471 (0.922) 0.098 (0.085) 100.0 16.97 0.002 (0.011) -0.248 (0.813) 0.042 (0.066) 97.6 15.85 10.19
β = 1.099 0.80 -0.032 (0.014) -0.472 (0.878) 0.090 (0.073) 100.0 13.17 -0.028 (0.006) -0.281 (0.750) 0.039 (0.049) 100.0 12.94 7.82

0.95 -0.054 (0.009) -0.471 (0.835) 0.089 (0.070) 98.4 7.03 -0.037 (0.004) -0.241 (0.651) 0.033 (0.048) 99.6 5.96 3.21
0.05 0.237 (0.190) NA NA 99.3 25.53 0.186 (0.170) NA NA 97.7 22.18 2.5
0.20 0.178 (0.127) NA NA 99.8 30.87 0.093 (0.056) NA NA 100.0 21.61 10

M5 0.50 0.076 (0.063) NA NA 100.0 31.90 0.037 (0.028) NA NA 100.0 28.77 25
0.80 0.046 (0.029) NA NA 100.0 18.70 0.063 (0.012) NA NA 100.0 15.77 10
0.95 0.014 (0.005) NA NA 100.0 5.13 0.033 (0.002) NA NA 100.0 4.84 2.5
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I The λ̂MHDE always gives small bias and MSE.
I The α̂MHDE and β̂MHDE generally give relatively large bias and

MSE even for larger sample sizes. Nevertheless, the MR is still
reasonably close to OMR.

I Even for M5 where the assumption (4.2) doesn’t hold, the
MHDE of λ based on (4.2) performs surprisingly well and the
MR doesn’t deviate from OMR too much for large sample
sizes.

I The CP of the 95% confidence interval based on λ̂MHDE is
higher than the nominal level 95% for most of the cases.

I When λ̂MHDE is compared with λ̂ and λ̂L, we observe that the
three perform quite competitively while λ̂MHDE and λ̂ have
better MR than λ̂L.
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Simulation study - robustness

I We examine the behaviour of all the proposed estimators when
data are contaminated by a single outlying observation.
Presence of several outliers will be similar and thus omitted.

I Here we only consider the case when the outlier comes from h.
We look at the change in estimate before and after data
contamination.

I For this purpose, we use an adaptive version of α-IF as in Lu
et al. (2003) which uses the change in estimate, divided by
contamination rate (proportion of outlying observations).

I After drawing two independent samples from f and h, we
replace the last observation generated from h with a single
outlier, an integer with range [−30, 20].
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Figure 1: The α-IFs of λ̂ (dotted), λ̂L (dot-dashed), λ̂MLE (dashed) and λ̂MHDE (solid) for mixture
model M1 (1− λ)N(0, 1) + λN(1, 1): (a) λ = 0.15 and m = n = 30; (b) λ = 0.15 and m = n = 100; (c)
λ = 0.55 and m = n = 30; (d) λ = 0.55 and m = n = 100.
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Figure 2: The α-IFs of λ̂ (dotted), λ̂L (dot-dashed), λ̂MLE (dashed) and λ̂MHDE (solid) for mixture
model M2 (1− λ)N(0, 1) + λN(5, 1): (a) λ = 0.25 and m = n = 30; (b) λ = 0.25 and m = n = 100; (c)
λ = 0.75 and m = n = 30; (d) λ = 0.75 and m = n = 100.
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Figure 3: The α-IFs of λ̂ (dotted), λ̂L (dot-dashed), λ̂MLE (dashed) and λ̂MHDE (solid) for mixture
model M3 (1− λ)Po(2) + λPo(4): (a) λ = 0.25 and m = n = 30; (b) λ = 0.25 and m = n = 100; (c)
λ = 0.75 and m = n = 30; (d) λ = 0.75 and m = n = 100.
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I λ̂MLE always performs the worst, λ̂MHDE performs the best and the
behavior of λ̂, λ̂L and λ̂MHDE are quite similar.

I The α-IF of λ̂MLE is generally unbounded while that of λ̂, λ̂L and λ̂MHDE

seems bounded when the outlying observation increases in both directions
for mixture of normals and in the right direction for mixture of Poissons.

I The bad performance of λ̂MLE is mostly for when the outlying observation
is bigger than 10. When the outlying observation is less than 10, the
performance of λ̂MLE is generally ok and is similar to that of other three
estimators.

I When λ̂, λ̂L and λ̂MHDE are compared, λ̂L behaves the worst in terms of
having largest α-IF for mixture of normals and λ̂ behaves the worst for
mixture of Poissons.

I In summary, λ̂MHDE has the best robustness, followed by λ̂ and then λ̂L,
and λ̂MLE doesn’t have robustness against outliers.
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K-S tests

To test the validity of model (4.3) with r(x) = x , we propose to
use the test statistic

KS = N1/2 sup
t

∣∣∣F̂ (t)− F̃ (t)
∣∣∣ , (6.1)

where F̂ is the empirical distribution and F̃ is either the MLE or an
estimator of F based on MHDE of θ = (λ, α, β)> under model
assumption (4.3).

Recall that, with pi = dF (Ti ) and ρ = n/N, the MLE of pi is

p̂i =
1

N
[
1 + ρλ̂(eα̂+β̂Ti − 1)

] , i =, 1, . . . ,N. (6.2)
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Now an estimator F̃ of F under model (4.3) is given by

F̃ (t) =
N∑
i=1

p̂i I (Ti ≤ t) =
1
N

N∑
i=1

I (Ti ≤ t)

1− ρλ̂+ ρλ̂e(α̂ + β̂Ti )
. (6.3)

If the θ̂ in (6.2) and (6.3) is the MLE θ̂MLE , then the resulting
F̃MLE is the actual MLE of F under (4.3) and we denote the
corresponding test statistic in (6.1) as KSMLE .

Intuitively, we can also use θ̂MHDE for θ̂, then we denote the
resulting F̃ in (6.3) and KS in (6.1) as F̃MHDE and KSMHDE

respectively.
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We use bootstrap procedure to find the approximated distributions
and critical values for hypothesis testing.

To generate bootstrapping data, we randomly select independent
samples X ∗i ’s from dF̃ (x) and Y ∗i ’s from (1− λ̂+ λ̂eα̂+β̂x)dF̃ (x),
where θ̂ and F̃ are either the MLEs θ̂MLE and F̃MLE or the MHDEs
θ̂MHDE and F̃MHDE respectively.

We generate 1000 bootstrapping samples.
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I We consider model (4.3) with r(x) = (x , x2)> as the
collection of all possible models under consideration. Then we
test whether the reduced model (4.3) with r(x) = x is the
actual true model or not.

I For demonstration purpose, we only consider mixture of
normals H(x) = (1− λ)F (x) + λG (x) with F ∼ N(0, 1) and
G ∼ N(µ, σ2). Then f (x) and h(x) are related by

hθ(x) =: h(x) =
(
1− λ+ λeα+βx+γx2

)
f (x), (6.4)

where

α = −1
2

(
log σ2 +

µ2

σ2

)
, β =

µ

σ2 , γ =
1
2

(
1− 1

σ2

)
.

(6.5)
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Simulation study

I Note that (6.4) is a special case of (4.3) with r(x) = (x , x2)>.
I If σ = 1, then γ = 0 and thus model (4.3) holds with

r(x) = x . So testing the validity of model (4.3) with r(x) = x
is equivalent to testing the null hypothesis H0 : γ = 0 under
model (6.4).

I In our simulation study, we consider γ = 0, −0.9 and −1.5,
λ = 0.35 and 0.65, and sample sizes m = n = 30 and
m = n = 100.

I For simplicity, we just fix µ = 1 and as a result σ = 1, 0.6 and
0.5 for γ = 0, −0.9 and −1.5 respectively.
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I We use 500 total number of replications. Within each
replication, we use totally 1000 bootstrapping samples to
estimate the distribution and critical value of the test statistics
KSMLE and KSMHDE .

I Note that γ = 0 means model (4.3) with r(x) = x is correct
and thus the correspondingly calculated values in the following
table are the estimated significance levels. When γ 6= 0, model
(4.3) with r(x) = x is not correct and thus the correspondingly
calculated values are the estimated powers at that value of γ.
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Table 7: Estimated significance level and power of KSMLE and KSMHDE .

m = n = 30 m = n = 100
λ γ Significance level KSMLE KSMHDE KSMLE KSMHDE

0.35

0.10 0.040 0.104 0.156 0.186
0 0.05 0.030 0.014 0.122 0.084

0.01 0.002 0.000 0.002 0.002
0.10 0.950 0.860 0.956 0.870

−0.9 0.05 0.904 0.802 0.910 0.710
0.01 0.734 0.410 0.578 0.184
0.10 0.948 0.966 0.958 0.998

−1.5 0.05 0.898 0.912 0.910 0.984
0.01 0.716 0.580 0.536 0.846

0.65

0.10 0.036 0.388 0.096 0.136
0 0.05 0.030 0.170 0.122 0.056

0.01 0.008 0.010 0.002 0.006
0.10 0.970 0.910 0.894 0.928

−0.9 0.05 0.888 0.818 0.708 0.758
0.01 0.464 0.282 0.158 0.120
0.10 0.956 0.876 0.990 0.990

−1.5 0.05 0.858 0.762 0.908 0.944
0.01 0.424 0.302 0.174 0.396
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I The two test statistics KSMLE and KSMHDE are quite competitive in terms
of achieved significance level and power.

I The achieved levels of significance are quite close to the true levels for
most of the cases except for the case of KSMHDE with λ = 0.65 and
m = n = 30.

I The powers of KSMHDE become larger when γ is away from 0 except for
the case with λ = 0.65 and m = n = 30.

I Surprisingly, the powers of KSMLE become smaller when γ is away from 0
except for the case with λ = 0.65 and m = n = 100.

I As expected, when the significance level a decrease, both the observed
significance level and power decrease.

I For both KSMLE and KSMHDE , the powers are generally high for
significance levels a = 0.10 and 0.05.
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Example 1: Grain data

Smith and Vounatsou (1997) analyzed a data where an
autoradiography assay was used to determine the intracellular
transfer of small molecules in mouse cells in culture. The assay was
used to determine the proportion of cells in the test population
which were exposed to radio active materials. The cells in control
group were not exposed to radioactivity, but otherwise were similar
in nature. Autoradiograph of the cells can determine the amount of
radio active material in the cell by counting the number of grains,
X . Now grains can appear in autoradiograph due to the presence of
radioactive material or due to background fogging. Hence the
proportion of cells with radio active material can only be revealed
by comparing the distribution of grain counts in test sample and
that in control sample.
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Table 8: Frequency distribution for the test group and control group in the grain data.

Number of grains Frequency in recipients Frequency in controls
(X) (test sample from mixture h) (control sample from f )
0 2 3
1 2 6
2 2 12
3 3 16
4 4 8
5 3 11
6 1 9
7 2 5
8 4 9
9 2 5
10 4 5
11 3 1
12 4 3
14 3 0
15 1 0
16 2 0
17 1 1
18 2 0
>19 49 0
Total 94 94
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Table 9: Point and interval estimation of the proportion for the grain data.

Method Estimate 95% confidence interval
Poisson mixture (Smith, Smith and Hooper, 1986) 0.77 0.00− 0.91
Two-by-two table (Smith and Vounatsou, 1997) 0.20 0.00− 1.00
Logistic power (Smith and Vounatsou, 1997) 0.61 0.58− 0.64

Monotone logistic (Smith and Vounatsou, 1997) 0.74 0.61− 1.00
Latent class (Smith and Vounatsou, 1997) 0.73 0.63− 0.83

λ̂ based on c.d.f.s 0.78 0.68− 0.87
λ̂L based on multinomial approximation 0.79 0.58− 0.88
λ̂MLE based on semiparametric MLE 0.75 0.61− 0.88 (0.60− 0.89)

λ̂MHDE based on semiparametric MHDE 0.76 0.64− 0.92 (0.65− 0.88)

We use bootstrap method with 1000 bootstrapping samples to calculate 95% confidence intervals.

λ: the proportion of cells in the test population which were exposed to radio active materials.
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I Our proposed methods give very similar point estimate of λ in
comparison with current available methods in literature.

I Our proposed four estimators give reasonable confidence
intervals strictly within the range [0, 1] and with relatively
smaller widths.

I The confidence interval in the parentheses for λ̂MLE and
λ̂MHDE are calculated using the derived asymptotic covariance
matrices. From the results we see that bootstrap
approximation is quite accurate.
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Example 2: Malaria data

The parasite densities in children with fever is formulated using a
two-component mixture model, where one component represents
the parasite densities in children without clinical malaria (f ) and
the other with clinical malaria (g). Parasite levels in children from
the community are available and are used as a training sample, i.e.
a sample that comes from the component of the mixture
corresponding to children without clinical malaria (f ) but who may
have parasites. The mixing proportion λ represents the proportion
of children whose fever is attributable to malaria.
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This data were first described in Kitua et al. (1996). The data
arose from repeated cross-sectional surveys of parasitaemia and
fever among 426 children up to one year old resided in a village in
Kilombero district in Tanzania. A subset of this data was analyzed
by Vounatsou, Smith and Smith (1998) where they considered
children aged between 6 and 9 months and two seasons: the wet
season (January-June) during which the mosquito population, and
hence exposure to malaria infection, is high, and the dry season
(July-December) during which the mosquito population is lower.
The original data were grouped into 10 categories and the parasite
level refers to the midpoint of each category.
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Table 10: Frequency distribution of parasite density for children aged between
6 and 9 months in the malaria data.

Category Wet Season Frequency Dry Season Frequency
Parasite level f h Parasite level f h

1 0 43 60 0 43 42
2 3251 40 58 11370 68 116
3 9673 3 14 34029 8 30
4 16095 3 13 56689 2 16
5 22518 2 10 79348 0 7
6 28940 1 8 102008 0 7
7 35362 0 7 124668 0 6
8 41785 1 6 147327 0 2
9 48207 1 6 169987 0 3
10 225685 0 69 290634 0 16

Total 94 251 122 245
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I We apply λ̂L and λ̂MLE to this data and compare them with
the Bayesian approach proposed by Vounatsou, Smith and
Smith (1998).

I Note that this is a discretized data, so kernel smoothing is not
appropriate and thus λ̂ and λ̂MHDE are not applied.

I The numbers in parentheses are the estimated standard errors
based on 500 bootstrapping samples.

I From the results we can see that both λ̂L and λ̂MLE give
consistent estimates with that of the Bayesian approach.
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