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Shrinkage Estimate

 Ever since Stein’s groundbreaking work, shrinkage 

estimation not only revolutionized statistics, but also has 

wide-ranging applications in science and engineering.

 James-Stein estimator

 Hierarchical model: a natural way to arrive at it

Shrinkage est. Emp. Bayes est. 



The picture

Efron and Morris (1977)



Heteroscedastic Hierarchical Model

 Distinct variances (e.g., different accuracy, sample sizes)

 Shrinkage estimate

 How to obtain    ?

Could use

empirical Bayes MLE

empirical Bayes MM

Generalized James-Stein … … 

 Optimal One??



SURE estimate

 With sum of squared error loss

for shrinkage estimator ,

an unbiased estimate of its risk 

is

 URE estimate:



Risk properties of SURE estimate

 SURE(λ) is uniformly close to : 

 In fact, can strengthen to the loss function:

L2

L2



Risk properties of SURE estimate (cont.)

 Optimality

For any and the corresponding

we always have

and



Regularity conditions



The oracle property

 Oracle parameter: parameter that minimizes the loss

depends on each realization.

gives the theoretical limit for any shrinkage estimator

 This theoretical limit is achieved by the SURE estimate:



General shrinkage estimate

 So far, shrink toward origin as we put

 Can shrink toward the grand mean 

 In general, starting from

Bayes estimate

 Determine λ and μ from the data?



SURE estimate

 An unbiased estimate of the risk is

 SURE estimate:

where



Risk properties

 SUREM(λ, μ) is uniformly close to : 

 Can be strengthened to loss function:



Risk properties (cont.)

 Optimality

For any and corresponding

we always have

and



The oracle property

 Oracle parameters:

depends on each realization.

gives the theoretical limit for any shrinkage estimator

 This theoretical limit is achieved by the SURE estimate:
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 The properties of the SURE shrinkage estimate does not 

involve the prior distribution

 However, the general form of

motivated from normal prior

 Question: can one do better?

 Yes, if we move on to a larger class:

 Semi-parametric

Semi-parametric SURE estimate



Semi-parametric SURE estimate

 An unbiased estimate of the risk is

 Semi-parametric SURE estimate

where



Risk properties

 SUREM(b, μ) is uniformly close to : 

 Optimality

For any shrinkage estimator 

with                   and MON, we always have

and

L1



Beyond Gaussian: Distributions with 

quadratic variance function (QVF)

 Distributions with QVF:        Yi satisfies 

τi :  within-group sample size

 Include: (exponential families) normal, Poisson, 

binomial, neg-binomial, gamma distributions

(location-scale families) t, logistic, uniform, Laplace, 

Pareto, extreme value distributions

 Want simultaneous inference of  θi, i = 1, 2,…, p

 Semi-parametric shrinkage estimator



Semi-parametric URE estimate

 An unbiased estimate of the risk is

 Semi-parametric URE estimator

where



Optimality



Parametric URE estimate

 For exponential family with conjugate priors

(e.g., binomial-beta, Poisson-gamma, neg.binom-beta, 

gamma-inv.gamma, normal-normal)

parametric empirical Bayes shrinkage estimators

 Can also construct the URE estimator

 The resulting parametric URE estimator is 

asymptotically risk optimal among the parametric 

estimators



 In many statistical applications, in addition to the 

heteroscedastic response variable, often has predictors            

extension to linear models


p independent statistical units

 Two formulations:

 Hierarchical linear model: 

 Bayesian linear regression model: 

Linear models



 Under Model I (hierarchical linear model) 

 Under Model II (Bayesian linear regression)

Linear models



 Under Model I (hierarchical linear model) 

 Semi-parametric estimators

 Model I: 

Linear models



 Under Model II (Bayesian linear regression)

 Semi-parametric estimators

 Model II: Let 

Then

 Suggest

Linear models



Semi-parametric URE estimate

 Under Model I, an unbiased estimate of the risk is

 Semi-parametric URE estimator



Semi-parametric URE estimate

 Under Model II, an unbiased estimate of the risk is

 Semi-parametric URE estimator



Optimality (Model I)



Optimality (Model II)



Real data: Baseball

 Brown (2008) collects statistics of 567 MLB players of 
the 2005 season

 Task: Given first half season performance, 

predict the second half season batting average

 Bionomial

 After arcsin transformation approximately normal 



Real data: Baseball
Pitchers Non-Pitchers



Real data: Baseball
Pitchers Non-Pitchers



Real data: Baseball
Pitchers Non-Pitchers



Conclusion

 We consider shrinkage estimate for heteroscedastic 
hierarchical Models (beyond Gaussian, linear models)

 Propose URE estimate: Par. and semi-par.

 Good theoretical properties of URE estimate
 Oracle property

 Asymptotically optimal

 Competitive numerical performance
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