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Shrinkage Estimate

 Ever since Stein’s groundbreaking work, shrinkage 

estimation not only revolutionized statistics, but also has 

wide-ranging applications in science and engineering.

 James-Stein estimator

 Hierarchical model: a natural way to arrive at it

Shrinkage est. Emp. Bayes est. 



The picture

Efron and Morris (1977)



Heteroscedastic Hierarchical Model

 Distinct variances (e.g., different accuracy, sample sizes)

 Shrinkage estimate

 How to obtain    ?

Could use

empirical Bayes MLE

empirical Bayes MM

Generalized James-Stein … … 

 Optimal One??



SURE estimate

 With sum of squared error loss

for shrinkage estimator ,

an unbiased estimate of its risk 

is

 URE estimate:



Risk properties of SURE estimate

 SURE(λ) is uniformly close to : 

 In fact, can strengthen to the loss function:

L2

L2



Risk properties of SURE estimate (cont.)

 Optimality

For any and the corresponding

we always have

and



Regularity conditions



The oracle property

 Oracle parameter: parameter that minimizes the loss

depends on each realization.

gives the theoretical limit for any shrinkage estimator

 This theoretical limit is achieved by the SURE estimate:



General shrinkage estimate

 So far, shrink toward origin as we put

 Can shrink toward the grand mean 

 In general, starting from

Bayes estimate

 Determine λ and μ from the data?



SURE estimate

 An unbiased estimate of the risk is

 SURE estimate:

where



Risk properties

 SUREM(λ, μ) is uniformly close to : 

 Can be strengthened to loss function:



Risk properties (cont.)

 Optimality

For any and corresponding

we always have

and



The oracle property

 Oracle parameters:

depends on each realization.

gives the theoretical limit for any shrinkage estimator

 This theoretical limit is achieved by the SURE estimate:

)θ̂,θ(minarg)~,
~

( ,

,

OLOL 


 lλ 



 The properties of the SURE shrinkage estimate does not 

involve the prior distribution

 However, the general form of

motivated from normal prior

 Question: can one do better?

 Yes, if we move on to a larger class:

 Semi-parametric

Semi-parametric SURE estimate



Semi-parametric SURE estimate

 An unbiased estimate of the risk is

 Semi-parametric SURE estimate

where



Risk properties

 SUREM(b, μ) is uniformly close to : 

 Optimality

For any shrinkage estimator 

with                   and MON, we always have

and

L1



Beyond Gaussian: Distributions with 

quadratic variance function (QVF)

 Distributions with QVF:        Yi satisfies 

τi :  within-group sample size

 Include: (exponential families) normal, Poisson, 

binomial, neg-binomial, gamma distributions

(location-scale families) t, logistic, uniform, Laplace, 

Pareto, extreme value distributions

 Want simultaneous inference of  θi, i = 1, 2,…, p

 Semi-parametric shrinkage estimator



Semi-parametric URE estimate

 An unbiased estimate of the risk is

 Semi-parametric URE estimator

where



Optimality



Parametric URE estimate

 For exponential family with conjugate priors

(e.g., binomial-beta, Poisson-gamma, neg.binom-beta, 

gamma-inv.gamma, normal-normal)

parametric empirical Bayes shrinkage estimators

 Can also construct the URE estimator

 The resulting parametric URE estimator is 

asymptotically risk optimal among the parametric 

estimators



 In many statistical applications, in addition to the 

heteroscedastic response variable, often has predictors            

extension to linear models


p independent statistical units

 Two formulations:

 Hierarchical linear model: 

 Bayesian linear regression model: 

Linear models



 Under Model I (hierarchical linear model) 

 Under Model II (Bayesian linear regression)

Linear models



 Under Model I (hierarchical linear model) 

 Semi-parametric estimators

 Model I: 

Linear models



 Under Model II (Bayesian linear regression)

 Semi-parametric estimators

 Model II: Let 

Then

 Suggest

Linear models



Semi-parametric URE estimate

 Under Model I, an unbiased estimate of the risk is

 Semi-parametric URE estimator



Semi-parametric URE estimate

 Under Model II, an unbiased estimate of the risk is

 Semi-parametric URE estimator



Optimality (Model I)



Optimality (Model II)



Real data: Baseball

 Brown (2008) collects statistics of 567 MLB players of 
the 2005 season

 Task: Given first half season performance, 

predict the second half season batting average

 Bionomial

 After arcsin transformation approximately normal 



Real data: Baseball
Pitchers Non-Pitchers



Real data: Baseball
Pitchers Non-Pitchers



Real data: Baseball
Pitchers Non-Pitchers



Conclusion

 We consider shrinkage estimate for heteroscedastic 
hierarchical Models (beyond Gaussian, linear models)

 Propose URE estimate: Par. and semi-par.

 Good theoretical properties of URE estimate
 Oracle property

 Asymptotically optimal

 Competitive numerical performance
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