Optimal Shrinkage Estimation in Heteroscedastic Hierarchical Models: Beyond Gaussian

Samuel Kou Joint with L. Brown, X. Xie & J. Yang

IMS Workshop: Meeting the Statistical Challenges in High Dimensional Data and Complex Networks

Shrinkage Estimate

- Ever since Stein's groundbreaking work, shrinkage estimation not only revolutionized statistics, but also has wide-ranging applications in science and engineering.
- James-Stein estimator

Hierarchical model: a natural way to arrive at it

$$\begin{array}{cccc} X_i | \theta_i & \stackrel{\mathrm{ind.}}{\sim} & N(\theta_i, A) \\ \theta_i & \stackrel{\mathrm{ind.}}{\sim} & N(0, \lambda) \end{array} \xrightarrow{\qquad \theta_i | X_i } & \sim & N\left(\frac{\lambda}{\lambda + A} X_i, \frac{\lambda A}{\lambda + A}\right) \\ X_i & \sim & N(0, \lambda + A), \end{array}$$

Efron and Morris (1977)

Heteroscedastic Hierarchical Model

- Distinct variances (e.g., different accuracy, sample sizes)
- $X_i | \theta_i \stackrel{\text{ind.}}{\sim} N(\theta_i, A_i)$ $\theta_i \stackrel{\text{ind.}}{\sim} N(0,\lambda)$ Shrinkage estimate $\theta_i | X_i \sim N\left(\frac{\lambda}{\lambda + A_i}X_i, \frac{\lambda A_i}{\lambda + A_i}\right)$ $\hat{\theta}_i^{\lambda} = \frac{\lambda}{\lambda + A_i}X_i$ **How to obtain** $\hat{\lambda}$? Could use $X_i \sim N(0, \lambda + A_i)$ empirical Bayes MLE $\hat{\lambda}_{ML}$ empirical Bayes MM λ_{MM} Generalized James-Stein **Optimal One??** 0.2 0.3 0.5 0.4 0.6

SURE estimate

With sum of squared error loss $l(\theta, \hat{\theta}) = \frac{1}{p} \sum_{i} (\hat{\theta}_{i} - \theta_{i})^{2}$ for shrinkage estimator $\hat{\theta}_{i}^{\lambda} = \frac{\lambda}{\lambda + A_{i}} X_{i}$,

an unbiased estimate of its risk $R(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^{\lambda}) = E[l(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^{\lambda})]$

is
$$SURE(\lambda) = \frac{1}{p} \sum_{i} \left[\left(\frac{A_i}{A_i + \lambda} \right)^2 X_i^2 + \frac{A_i(\lambda - A_i)}{A_i + \lambda} \right]$$

URE estimate:

$$\begin{split} \hat{\lambda}_{\text{SURE}} &= \arg\min_{\lambda \geq \mathbf{0}} \text{SURE}(\lambda) \\ \hat{\theta}_{i}^{\text{SURE}} &:= \hat{\theta}_{i}^{\hat{\lambda}_{\text{SURE}}} = \frac{\hat{\lambda}_{\text{SURE}}}{\hat{\lambda}_{\text{SURE}} + A_{i}} X_{i} \end{split}$$

Risk properties of SURE estimate

SURE(λ) is uniformly close to $R(\theta, \hat{\theta}^{\lambda})$:

$$\sup_{\mathbf{0} \le \lambda < \infty} \left| \text{SURE}(\lambda) - R(\boldsymbol{\theta}, \boldsymbol{\hat{\theta}}^{\lambda}) \right| \stackrel{L^2}{\to} 0 \quad as \ p \to \infty$$

In fact, can strengthen to the loss function:

$$\sup_{\mathbf{0} \leq \lambda < \infty} \left| \mathrm{SURE}(\lambda) - l(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^{\lambda}) \right| \to 0 \ in \ L^2$$

Risk properties of SURE estimate (cont.)

Optimality

For any $\hat{\lambda}_p$ and the corresponding $\hat{\theta}^{\lambda_p} = \frac{\hat{\lambda}_p}{\hat{\lambda}_p + \mathbf{A}} \mathbf{X}_p$ we **always** have

$$\lim_{p \to \infty} P\left(l(\boldsymbol{\theta}, \boldsymbol{\hat{\theta}}^{\mathrm{SURE}}) \geq l(\boldsymbol{\theta}, \boldsymbol{\hat{\theta}}^{\hat{\lambda}_p}) + \varepsilon \right) = 0 \quad for \ any \ \varepsilon > 0$$

and

$$\limsup_{p \to \infty} \left[R(\boldsymbol{\theta}, \boldsymbol{\hat{\theta}}^{\text{SURE}}) - R(\boldsymbol{\theta}, \boldsymbol{\hat{\theta}}^{\hat{\lambda}_p}) \right] \leq 0.$$

Regularity conditions

$$(A): \limsup_{p \to \infty} \frac{1}{p} \sum_{i=1}^{p} A_i^2 < \infty,$$

$$(B): \limsup_{p \to \infty} \frac{1}{p} \sum_{i=1}^{p} A_i \theta_i^2 < \infty,$$

$$(C): \limsup_{p \to \infty} \frac{1}{p} \sum_{i=1}^{p} \theta_i^2 < \infty$$

The oracle property

Oracle parameter: parameter that minimizes the loss

$$\tilde{\lambda}^{OL} = \tilde{\lambda}^{OL}(\boldsymbol{\theta}; X_1, \dots, X_p) = \arg\min_{\lambda \ge 0} l_p(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^{\lambda})$$
$$\tilde{\boldsymbol{\theta}}^{OL} = \frac{\tilde{\lambda}^{OL}}{\tilde{\lambda}^{OL} + \boldsymbol{A}} \boldsymbol{X}$$

depends on each realization.

gives the theoretical limit for any shrinkage estimator

This theoretical limit is achieved by the SURE estimate: Assume conditions (A) and (B). Then

$$\lim_{p \to \infty} P\left(l_p(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^{\mathrm{SURE}}) \ge l_p(\boldsymbol{\theta}, \tilde{\boldsymbol{\theta}}^{OL}) + \varepsilon\right) = 0 \quad \text{for any } \varepsilon > 0.$$
$$\lim_{p \to \infty} \left[R_p(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^{\mathrm{SURE}}) - E\left(l_p(\boldsymbol{\theta}, \tilde{\boldsymbol{\theta}}^{OL})\right) \right] = 0.$$

General shrinkage estimate

- So far, shrink toward origin as we put $\theta_i \stackrel{\text{ind.}}{\sim} N(0, \lambda)$
- Can shrink toward the grand mean \bar{X}
- In general, starting from $\theta_i \stackrel{\text{ind.}}{\sim} N(\mu, \lambda)$ Bayes estimate

$$\hat{\theta}_i^{\lambda,\mu} = \frac{\lambda}{A_i + \lambda} X_i + \frac{A_i}{A_i + \lambda} \mu$$

• Determine λ and μ from the data?

SURE estimate

• An unbiased estimate of the risk $R(\theta, \hat{\theta}^{\lambda, \mu})$ is

$$\text{SURE}^{M}(\mu,\lambda) = \frac{1}{p} \sum_{i} \frac{A_{i}}{(A_{i}+\lambda)^{2}} \left(A_{i}(X_{i}-\mu)^{2}+\lambda^{2}-A_{i}^{2}\right)$$

SURE estimate:

$$\hat{\theta}_i^M = \frac{\hat{\lambda}_M}{A_i + \hat{\lambda}_M} X_i + \frac{A_i}{A_i + \hat{\lambda}_M} \hat{\mu}_M$$

where

$$(\hat{\lambda}_M, \hat{\mu}_M) = \arg\min_{\lambda, \ \mu} \text{SURE}^M(\lambda, \mu)$$

Risk properties

SURE^M(λ, μ) is uniformly close to $R(\theta, \hat{\theta}^{\lambda, \mu})$:

$$\sup_{0 \le \lambda \le \infty, \ |\mu| \le \max_i |X_i|} \left| \operatorname{SURE}^M(\lambda, \mu) - R(\boldsymbol{\theta}, \boldsymbol{\hat{\theta}}^{\lambda, \mu}) \right| \to 0 \text{ in } L^1$$

Can be strengthened to loss function:

 $\sup_{0 \le \lambda \le \infty, \ |\mu| \le \max_i |X_i|} \left| \text{SURE}^M(\lambda, \mu) - l_p(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^{\lambda, \mu}) \right| \to 0 \text{ in } L^1$

Risk properties (cont.)

Optimality

For any $(\hat{\lambda}_p, \hat{\mu}_p)$ and corresponding $\hat{\theta}^{\hat{\lambda}_p, \hat{\mu}_p} = \frac{\hat{\lambda}_p}{\hat{\lambda}_p + \mathbf{A}} \mathbf{X} + \frac{\mathbf{A}}{\hat{\lambda}_p + \mathbf{A}} \hat{\mu}_p$ we **always** have

$$\lim_{p\to\infty} P\left(l(\boldsymbol{\theta},\boldsymbol{\hat{\theta}}^M) \geq l(\boldsymbol{\theta},\boldsymbol{\hat{\theta}}^{\hat{\lambda}_p,\hat{\mu}_p}) + \varepsilon\right) = 0 \quad \textit{for any } \varepsilon > 0$$

and

$$\limsup_{p \to \infty} \left[R(\boldsymbol{\theta}, \boldsymbol{\hat{\theta}}^{M}) - R(\boldsymbol{\theta}, \boldsymbol{\hat{\theta}}^{\hat{\lambda}_{p}, \hat{\mu}_{p}}) \right] \leq 0$$

The oracle property

Oracle parameters:

$$(\tilde{\lambda}^{OL}, \tilde{\mu}^{OL}) = \arg \min_{\lambda, \mu} l(\theta, \hat{\theta}^{\lambda, \mu})$$
$$\tilde{\theta}^{MOL} = \frac{\tilde{\lambda}^{MOL}}{\tilde{\lambda}^{MOL} + A} X + \frac{A}{\tilde{\lambda}^{MOL} + A} \tilde{\mu}^{MOL}$$

depends on each realization.

gives the theoretical limit for any shrinkage estimator

This theoretical limit is achieved by the SURE estimate:

Assume conditions (A)-(C). Then

$$\lim_{p \to \infty} P\left(l_p(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^M) \ge l_p(\boldsymbol{\theta}, \tilde{\boldsymbol{\theta}}^{MOL}) + \varepsilon\right) = 0 \quad \text{for any } \varepsilon > 0 \ .$$
$$\lim_{p \to \infty} \left[R(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^M) - E\left(l_p(\boldsymbol{\theta}, \tilde{\boldsymbol{\theta}}^{MOL})\right) \right] = 0.$$

Semi-parametric SURE estimate

- The properties of the SURE shrinkage estimate does not involve the prior distribution
- However, the general form of $\hat{\theta}_i = \frac{\lambda}{A_i + \lambda} X_i + \frac{A_i}{A_i + \lambda} \mu$ motivated from normal prior
- Question: can one do better?
- Yes, if we move on to a larger class:

$$\hat{\theta}_i^{b_i,\mu} = (1 - b_i) \cdot X_i + b_i \cdot \mu$$

Requirement (MON) : $b_i \leq b_j$ for any *i* and *j* such that $A_i \leq A_j$

Semi-parametric

Semi-parametric SURE estimate

An unbiased estimate of the risk is

SURE^M(**b**,
$$\mu$$
) = $\frac{1}{p} \sum_{i=1}^{p} \left[b_i^2 (X_i - \mu)^2 + (1 - 2b_i) A_i \right]$

Semi-parametric SURE estimate

$$\hat{\theta}_i^{SM} = (1-\hat{b}_i^{SM})\cdot X_i + \hat{b}_i^{SM}\cdot \hat{\mu}^{SM},$$
 where

 $(\hat{\mathbf{b}}^{SM}, \hat{\mu}^{SM}) = \text{minimizer of SURE}^{M}(\mathbf{b}, \mu)$ subject to $b_i \in [0, 1]$ and Requirement (MON)

Risk properties

• SURE^{*M*}(**b**, μ) is uniformly close to $l_p(\theta, \hat{\theta}^{\boldsymbol{b}, \mu})$: $\sup \left| \text{SURE}^M(\boldsymbol{b}, \mu) - l_p(\theta, \hat{\theta}^{\boldsymbol{b}, \mu}) \right| \to 0 \text{ in } L^1$

Optimality

For any shrinkage estimator $\hat{\theta}^{\hat{\mathbf{b}}_p,\hat{\mu}_p} = (1 - \hat{\mathbf{b}}_p) \cdot \mathbf{X} + \hat{\mathbf{b}}_p \cdot \hat{\mu}_p$ with $\hat{\mathbf{b}}_p \in [0, 1]$ and MON, we **always** have

$$\lim_{p\to\infty} P\left(l_p(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^{SM}) \geq l_p(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^{\hat{\mathbf{b}}_p, \hat{\mu}_p}) + \varepsilon\right) = 0 \quad \text{for any } \varepsilon > 0$$
 and

$$\limsup_{p \to \infty} \left[R(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^{SM}) - R(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^{\hat{\mathbf{b}}_p, \hat{\mu}_p}) \right] \le 0$$

Beyond Gaussian: Distributions with quadratic variance function (QVF)

- Distributions with QVF: Y_i satisfies $E(Y_i) = \theta_i$ $Var(Y_i) = V(\theta_i)/\tau_i$ $V(\theta_i) = v_0 + v_1\theta_i + v_2\theta_i^2$
 - τ_i : within-group sample size
- Include: (exponential families) normal, Poisson, binomial, neg-binomial, gamma distributions
 (location-scale families) *t*, logistic, uniform, Laplace, Pareto, extreme value distributions
- Want simultaneous inference of θ_i , i = 1, 2, ..., p
- Semi-parametric shrinkage estimator

$$\hat{\theta}_i^{\mathbf{b},\mu} = (1-b_i) \cdot Y_i + b_i \cdot \mu$$

with $b_i \in [0, 1]$ satisfying

Requirement (MON): $b_i \leq b_j$ for any *i* and *j* such that $\tau_i \geq \tau_j$

Semi-parametric URE estimate

An unbiased estimate of the risk is

URE(**b**,
$$\mu$$
) = $\frac{1}{p} \sum_{i=1}^{p} \left[b_i^2 \cdot (Y_i - \mu)^2 + (1 - 2b_i) \cdot \frac{V(Y_i)}{\tau_i + \nu_2} \right]$

Semi-parametric URE estimator

$$\hat{\theta}_i^{\mathrm{SM}} = (1 - \hat{b}_i) \cdot Y_i + \hat{b}_i \cdot \hat{\mu}^{\mathrm{SM}}$$

where

 $(\hat{\mathbf{b}}^{SM}, \hat{\mu}^{SM}) = \text{minimizer of URE}(\mathbf{b}, \mu)$ subject to $b_i \in [0, 1]$ and Requirement (MON)

Optimality

THEOREM Assume regularity conditions (A)–(E). Then for any shrinkage estimator $\hat{\theta}^{\hat{\mathbf{b}},\hat{\mu}} = (1 - \hat{\mathbf{b}}) \cdot \mathbf{Y} + \hat{\mathbf{b}} \cdot \hat{\mu}$, where $\hat{\mathbf{b}} \in [0, 1]$ satisfies Requirement (MON), and $|\hat{\mu}| \leq \max_i |Y_i|$, we always have

$$\lim_{p \to \infty} P(l_p(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^{\mathrm{SM}}) \ge l_p(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^{\hat{\mathbf{b}}, \hat{\mu}}) + \varepsilon) = 0 \qquad \text{for any } \varepsilon > 0$$

and

$$\limsup_{p \to \infty} \left[R(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^{\text{SM}}) - R(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^{\hat{\mathbf{b}}, \hat{\mu}}) \right] \leq 0.$$

Parametric URE estimate

 For exponential family with conjugate priors (e.g., binomial-beta, Poisson-gamma, neg.binom-beta, gamma-inv.gamma, normal-normal)

parametric empirical Bayes shrinkage estimators

- Can also construct the URE estimator
- The resulting parametric URE estimator is asymptotically risk optimal among the parametric estimators

- In many statistical applications, in addition to the heteroscedastic response variable, often has predictors extension to linear models
- $Y_i | \boldsymbol{\theta} \stackrel{\text{indep.}}{\sim} \mathcal{N} (\boldsymbol{\theta}_i, A_i), \quad i = 1, ..., p$ p independent statistical units $\{Y_i, X_i\}_{i=1}^p$

 $\boldsymbol{X} = [\boldsymbol{X}_1 | \cdots | \boldsymbol{X}_p], \quad \boldsymbol{X}_1, ..., \boldsymbol{X}_p \in \mathbb{R}^k$

- Two formulations:
 - \Box Hierarchical linear model: $\theta_i \overset{\text{indep.}}{\sim} \mathcal{N}(\mathbf{X}_i^T \boldsymbol{\beta}, \lambda)$

□ Bayesian linear regression model: $\boldsymbol{\theta} = \boldsymbol{X}^T \boldsymbol{\beta}$ $\boldsymbol{\beta} \sim \mathcal{N}_k(\boldsymbol{\beta}_0, \lambda \boldsymbol{W})$

- Under Model I (hierarchical linear model) $\theta_i \overset{\text{indep.}}{\sim} \mathcal{N}(\mathbf{X}_i^T \boldsymbol{\beta}, \lambda)$

$$\hat{\theta}^{\lambda,\boldsymbol{\mu}} = \frac{\lambda}{\lambda + A_i} Y_i + \frac{A_i}{\lambda + A_i} \mu_i, \quad \text{with } \boldsymbol{\mu} \in \mathscr{L}_{\text{row}}(\boldsymbol{X})$$

• Under Model II (Bayesian linear regression) $\boldsymbol{\theta} = \boldsymbol{X}^T \boldsymbol{\beta} \quad \boldsymbol{\beta} \sim \mathcal{N}_k(\boldsymbol{\beta}_0, \lambda \boldsymbol{W})$ $\hat{\boldsymbol{\theta}}^{\lambda, \boldsymbol{\beta}_0} = \boldsymbol{X}^T \hat{\boldsymbol{\beta}}^{\lambda, \boldsymbol{\beta}_0}, \text{ with } \hat{\boldsymbol{\beta}}^{\lambda, \boldsymbol{\beta}_0} = \lambda \boldsymbol{W} (\lambda \boldsymbol{W} + \boldsymbol{V})^{-1} \hat{\boldsymbol{\beta}}^{\text{WLS}} + \boldsymbol{V} (\lambda \boldsymbol{W} + \boldsymbol{V})^{-1} \boldsymbol{\beta}_0$ where $\hat{\boldsymbol{\beta}}^{\text{WLS}} = (\boldsymbol{X} \boldsymbol{A}^{-1} \boldsymbol{X}^T)^{-1} \boldsymbol{X} \boldsymbol{A}^{-1} \boldsymbol{Y}$ is the weighted least square $\boldsymbol{V} = (\boldsymbol{X} \boldsymbol{A}^{-1} \boldsymbol{X}^T)^{-1}$

Under Model I (hierarchical linear model) $\theta_i \overset{\text{indep.}}{\sim} \mathcal{N}(\mathbf{X}_i^T \boldsymbol{\beta}, \lambda)$

$$\hat{\theta}^{\lambda,\mu} = \frac{\lambda}{\lambda + A_i} Y_i + \frac{A_i}{\lambda + A_i} \mu_i, \text{ with } \mu \in \mathscr{L}_{row}(\boldsymbol{X})$$

Semi-parametric estimators
 Model I:

$$\hat{\theta}_{i}^{\boldsymbol{b},\boldsymbol{\mu}} = (1-b_{i})Y_{i} + b_{i}\mu_{i}, \text{ with } \boldsymbol{\mu} \in \mathscr{L}_{\text{row}}(\boldsymbol{X}),$$

where \boldsymbol{b} satisfies the monotonic constraint

 $MON(\mathbf{A}): b_i \in [0,1], b_i \leq b_j$ whenever $A_i \leq A_j$.

Under Model II (Bayesian linear regression) $\boldsymbol{\theta} = \boldsymbol{X}^T \boldsymbol{\beta} \quad \boldsymbol{\beta} \sim \mathcal{N}_k(\boldsymbol{\beta}_0, \boldsymbol{\lambda} \boldsymbol{W})$

$$\hat{\boldsymbol{\theta}}^{\lambda,\boldsymbol{\beta}_{0}} = \boldsymbol{X}^{T} \hat{\boldsymbol{\beta}}^{\lambda,\boldsymbol{\beta}_{0}}, \text{ with } \hat{\boldsymbol{\beta}}^{\lambda,\boldsymbol{\beta}_{0}} = \lambda \boldsymbol{W} (\lambda \boldsymbol{W} + \boldsymbol{V})^{-1} \hat{\boldsymbol{\beta}}^{\text{WLS}} + \boldsymbol{V} (\lambda \boldsymbol{W} + \boldsymbol{V})^{-1} \boldsymbol{\beta}_{0}$$
where $\hat{\boldsymbol{\beta}}^{\text{WLS}} = (\boldsymbol{X}\boldsymbol{A}^{-1}\boldsymbol{X}^{T})^{-1} \boldsymbol{X}\boldsymbol{A}^{-1}\boldsymbol{Y}$ is the weighted least square
$$\boldsymbol{V} = (\boldsymbol{X}\boldsymbol{A}^{-1}\boldsymbol{X}^{T})^{-1}$$

- Semi-parametric estimators
 - $\square \text{ Model II: Let } \boldsymbol{W}^{-1/2} \boldsymbol{V} \boldsymbol{W}^{-1/2} = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^T \qquad \boldsymbol{Z} = \boldsymbol{U}^T \boldsymbol{W}^{1/2} \boldsymbol{X}$

Then

$$\hat{\boldsymbol{\theta}}^{\lambda,\boldsymbol{\beta}_{0}} = \boldsymbol{Z}^{T} \left(\lambda \left(\lambda \boldsymbol{I}_{k} + \boldsymbol{\Lambda} \right)^{-1} \boldsymbol{U}^{T} \boldsymbol{W}^{-1/2} \hat{\boldsymbol{\beta}}^{\text{WLS}} + \boldsymbol{\Lambda} \left(\lambda \boldsymbol{I}_{k} + \boldsymbol{\Lambda} \right)^{-1} \boldsymbol{U}^{T} \boldsymbol{W}^{-1/2} \boldsymbol{\beta}_{0} \right)$$

Suggest

$$\hat{\boldsymbol{\theta}}^{\boldsymbol{b},\boldsymbol{\beta}_{0}} = \boldsymbol{Z}^{T} \left(\left(\boldsymbol{I}_{k} - \operatorname{diag}\left(\boldsymbol{b} \right) \right) \boldsymbol{U}^{T} \boldsymbol{W}^{-1/2} \hat{\boldsymbol{\beta}}^{\mathrm{WLS}} + \operatorname{diag}\left(\boldsymbol{b} \right) \boldsymbol{U}^{T} \boldsymbol{W}^{-1/2} \boldsymbol{\beta}_{0} \right)$$

where \boldsymbol{b} satisfies the following monotonic constraint

$$\operatorname{MON}(\boldsymbol{D}): b_i \in [0,1], \ b_i \leq b_j \text{ whenever } d_i \leq d_j.$$

Semi-parametric URE estimate

Under Model I, an unbiased estimate of the risk is

URE^{SP}
$$(\boldsymbol{b}, \boldsymbol{\mu}) = \frac{1}{p} \|\text{diag}(\boldsymbol{b})(\boldsymbol{Y} - \boldsymbol{\mu})\|^2 + \frac{1}{p} \text{tr}(\boldsymbol{A} - 2\text{diag}(\boldsymbol{b})\boldsymbol{A})$$

Semi-parametric URE estimator

$$\hat{\boldsymbol{\theta}}_{SP}^{\text{URE}} = (\boldsymbol{I}_{p} - \text{diag}(\hat{\boldsymbol{b}}_{SP}^{\text{URE}}))\boldsymbol{Y} + \text{diag}(\hat{\boldsymbol{b}}_{SP}^{\text{URE}})\hat{\boldsymbol{\mu}}_{SP}^{\text{URE}},$$

where

$$\left(\hat{\boldsymbol{b}}_{SP}^{\text{URE}}, \hat{\boldsymbol{\mu}}_{SP}^{\text{URE}}\right) = \operatorname*{argmin}_{\boldsymbol{b}\in \text{MON}(\boldsymbol{A}), \ \boldsymbol{\mu}\in\mathscr{L}_{\text{row}}(\boldsymbol{X})} \text{URE}^{SP}(\boldsymbol{b}, \boldsymbol{\mu})$$

Semi-parametric URE estimate

- Under Model II, an unbiased estimate of the risk is $URE^{SP}(\boldsymbol{b},\boldsymbol{\beta}_{0}) = \frac{1}{p} \left\| \boldsymbol{Z}^{T}(\boldsymbol{I}_{k} - \operatorname{diag}(\boldsymbol{b}))\boldsymbol{\Lambda}\boldsymbol{Z}\boldsymbol{A}^{-1}\boldsymbol{Y} + \boldsymbol{Z}^{T}\operatorname{diag}(\boldsymbol{b})\boldsymbol{U}^{T}\boldsymbol{W}^{-1/2}\boldsymbol{\beta}_{0} - \boldsymbol{Y} \right\|^{2}$ $+ \frac{1}{p}\operatorname{tr}\left(2\boldsymbol{Z}^{T}(\boldsymbol{I}_{k} - \operatorname{diag}(\boldsymbol{b}))\boldsymbol{\Lambda}\boldsymbol{Z} - \boldsymbol{A}\right),$
- Semi-parametric URE estimator

$$\hat{\boldsymbol{\theta}}^{\boldsymbol{b},\boldsymbol{\beta}_{0}} = \boldsymbol{Z}^{T} \left(\left(\boldsymbol{I}_{k} - \operatorname{diag}\left(\boldsymbol{b} \right) \right) \boldsymbol{U}^{T} \boldsymbol{W}^{-1/2} \hat{\boldsymbol{\beta}}^{\mathrm{WLS}} + \operatorname{diag}\left(\boldsymbol{b} \right) \boldsymbol{U}^{T} \boldsymbol{W}^{-1/2} \boldsymbol{\beta}_{0} \right)$$
$$\left(\hat{\boldsymbol{b}}_{SP}^{\mathrm{URE}}, \left(\hat{\boldsymbol{\beta}}_{0} \right)_{SP}^{\mathrm{URE}} \right) = \operatorname*{argmin}_{\boldsymbol{b} \in \mathrm{MON}(\boldsymbol{D}), \ \boldsymbol{\beta}_{0} \in \mathbb{R}^{k}} \mathrm{URE}^{SP} \left(\boldsymbol{b}, \boldsymbol{\beta}_{0} \right)$$

Optimality (Model I)

Theorem 4. Assume conditions (A)-(E). Then under Model I we have

$$\sup_{\boldsymbol{b}\in\mathrm{MON}(\boldsymbol{A}),\,\boldsymbol{\mu}\in\mathscr{L}}\left|\mathrm{URE}^{SP}\left(\boldsymbol{b},\boldsymbol{\mu}\right)-l_{p}\left(\boldsymbol{\theta},\hat{\boldsymbol{\theta}}^{\boldsymbol{b},\boldsymbol{\mu}}\right)\right|\to0\text{ in }L^{1}\text{ as }p\to\infty.$$

As a corollary, for any estimator $\hat{\boldsymbol{\theta}}^{\hat{\boldsymbol{b}}_p,\hat{\boldsymbol{\mu}}_p} = (\boldsymbol{I}_p - \operatorname{diag}(\hat{\boldsymbol{b}}_p))\boldsymbol{Y} + \operatorname{diag}(\hat{\boldsymbol{b}}_p)\hat{\boldsymbol{\mu}}_p$ with $\hat{\boldsymbol{b}}_p \in MON(\boldsymbol{A})$ and $\hat{\boldsymbol{\mu}}_p \in \mathcal{L}$, we always have

$$\begin{split} \lim_{p \to \infty} \mathbb{P}\left(l_p\left(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}_{SP}^{\text{URE}}\right) \geq l_p\left(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^{\hat{\boldsymbol{b}}_p, \hat{\boldsymbol{\mu}}_p}\right) + \boldsymbol{\varepsilon} \right) &= 0 \quad \forall \boldsymbol{\varepsilon} > 0, \\ \lim_{p \to \infty} \sup\left(R_p\left(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}_{SP}^{\text{URE}}\right) - R_p\left(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^{\hat{\boldsymbol{b}}_p, \hat{\boldsymbol{\mu}}_p}\right) \right) \leq 0. \end{split}$$

Optimality (Model II)

Theorem 5. Assume conditions (A), (D)-(G). Then under Model II we have

$$\sup_{\boldsymbol{b}\in\mathrm{MON}(\boldsymbol{D}),\,\boldsymbol{X}^{T}\boldsymbol{\beta}_{0}\in\mathscr{L}}\left|\mathrm{URE}^{SP}\left(\boldsymbol{b},\boldsymbol{\beta}_{0}\right)-l_{p}\left(\boldsymbol{\theta},\,\hat{\boldsymbol{\theta}}^{\,\boldsymbol{b},\boldsymbol{\beta}_{0}}\right)\right|\to0\ in\ L^{1}\ as\ p\to\infty.$$

As a corollary, for any estimator $\hat{\boldsymbol{\theta}}^{\hat{\boldsymbol{b}}_p,\hat{\boldsymbol{\beta}}_{0,p}}$ obtained from (16) with $\hat{\boldsymbol{b}}_p \in \text{MON}(\boldsymbol{D})$ and $\boldsymbol{X}^T \hat{\boldsymbol{\beta}}_0 \in \mathcal{L}$, we always have

$$\begin{split} \lim_{p \to \infty} \mathbb{P}\left(l_p\left(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}_{SP}^{\text{URE}}\right) \geq l_p\left(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}_{p, \hat{\boldsymbol{\theta}}_{0, p}}^{\hat{\boldsymbol{b}}_p, \hat{\boldsymbol{\beta}}_{0, p}}\right) + \boldsymbol{\varepsilon} \right) &= 0 \quad \forall \boldsymbol{\varepsilon} > 0, \\ \lim_{p \to \infty} \sup\left(R_p\left(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}_{SP}^{\text{URE}}\right) - R_p\left(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}_{p, \hat{\boldsymbol{\beta}}_{0, p}}^{\hat{\boldsymbol{b}}_p, \hat{\boldsymbol{\beta}}_{0, p}}\right) \right) \leq 0. \end{split}$$

- Brown (2008) collects statistics of 567 MLB players of the 2005 season
- Task: Given first half season performance, predict the second half season batting average
- Bionomial $H_{ij} \sim Binomial(N_{ij}, p_j)$
- After arcsin transformation approximately normal

$$Y_{ij} = \arcsin\sqrt{\frac{H_{ij} + 1/4}{N_{ij} + 1/2}}$$
$$Y_{ij} \sim N(\theta_j, (4N_{ij})^{-1}), \ \theta_j = \arcsin\sqrt{p_j}$$

	All		Pitchers		Non-Pitchers	
<i>p</i> for estimation	567		81		486	
<i>p</i> for validation	499		64		435	
Covariates?	No	Yes	No	Yes	No	Yes
Naive	1	NA	1	NA	1	NA
Ordinary least squares (OLS)	0.852	0.242	0.127	0.115	0.378	0.333
Weighted least squares (WLS)	1.074	0.219	0.127	0.087	0.468	0.290
Parametric EBMOM	0.593	0.194	0.129	0.117	0.387	0.256
Parametric EBMLE	0.902	0.207	0.117	0.096	0.398	0.277
James-Stein	0.525	0.184	0.164	0.142	0.359	0.262
Parametric URE toward OLS	0.505	0.203	0.123	0.124	0.278	0.300
Parametric URE toward WLS	0.629	0.188	0.127	0.112	0.385	0.268
Parametric URE	0.422	0.215	0.123	0.130	0.282	0.310
Semiparametric URE toward OLS	0.409	0.197	0.081	0.097	0.261	0.299
Semiparametric URE toward WLS	0.499	0.184	0.098	0.083	0.336	0.256
Semiparametric URE	0.419	0.201	0.077	0.126	0.278	0.314

	All		Pitchers		Non-Pitchers	
<i>p</i> for estimation	567		81		486	
<i>p</i> for validation	499		64		435	
Covariates?	No	Yes	No	Yes	No	Yes
Naive	1	NA	1	NA	1	NA
∫ Ordinary least squares (OLS)	0.852	0.242	0.127	0.115	0.378	0.333
Weighted least squares (WLS)	1.074	0.219	0.127	0.087	0.468	0.290
Parametric EBMOM	0.593	0.194	0.129	0.117	0.387	0.256
Parametric EBMLE	0.902	0.207	0.117	0.096	0.398	0.277
James-Stein	0.525	0.184	0.164	0.142	0.359	0.262
Parametric URE toward OLS	0.505	0.203	0.123	0.124	0.278	0.300
Parametric URE toward WLS	0.629	0.188	0.127	0.112	0.385	0.268
Parametric URE	0.422	0.215	0.123	0.130	0.282	0.310
Semiparametric URE toward OLS	0.409	0.197	0.081	0.097	0.261	0.299
Semiparametric URE toward WLS	0.499	0.184	0.098	0.083	0.336	0.256
Semiparametric URE	0.419	0.201	0.077	0.126	0.278	0.314

	All		Pitchers		Non-Pitchers	
<i>p</i> for estimation	567		81		486	
<i>p</i> for validation	499		64		435	
Covariates?	No	Yes	No	Yes	No	Yes
Naive	1	NA	1	NA	1	NA
∫ Ordinary least squares (OLS)	0.852	0.242	0.127	0.115	0.378	0.333
Weighted least squares (WLS)	1.074	0.219	0.127	0.087	0.468	0.290
∫ Parametric EBMOM	0.593	0.194	0.129	0.117	0.387	0.256
Parametric EBMLE	0.902	0.207	0.117	0.096	0.398	0.277
James-Stein	0.525	0.184	0.164	0.142	0.359	0.262
Parametric URE toward OLS	0.505	0.203	0.123	0.124	0.278	0.300
Parametric URE toward WLS	0.629	0.188	0.127	0.112	0.385	0.268
Parametric URE	0.422	0.215	0.123	0.130	0.282	0.310
Semiparametric URE toward OLS	0.409	0.197	0.081	0.097	0.261	0.299
Semiparametric URE toward WLS	0.499	0.184	0.098	0.083	0.336	0.256
Semiparametric URE	0.419	0.201	0.077	0.126	0.278	0.314

Conclusion

- We consider shrinkage estimate for heteroscedastic hierarchical Models (beyond Gaussian, linear models)
- Propose URE estimate: Par. and semi-par.
- Good theoretical properties of URE estimate
 - Oracle property
 - Asymptotically optimal
- Competitive numerical performance

Acknowledgement

Larry Brown

NSF, NIH

Xianchao Xie, Justin Yang

Thank you!

References

- X. Xie, S. C. Kou and L. D. Brown (2012). SURE estimates for a heteroscedastic hierarchical model. *J. Amer. Statist. Assoc.*, 107, 1465-1479.
- X. Xie, S. C. Kou and L. D. Brown (2016). Optimal shrinkage estimation of mean parameters in family of distributions with quadratic variance. *Ann. Statist.*, 44, 564-597.
- S. C. Kou and J. J. Yang (2017). Optimal shrinkage estimation in heteroscedastic hierarchical linear models. In *Big and Complex Data Analysis: Methodologies and Applications*, (edited by S. Ejaz Ahmed), 249-284. Springer, New York.