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From LMS to AdaBoost and gradient boosting

From LMS to batch gradient learning algorithms

Widrow and Hoff (1960) introduced the LMS (least mean squares)
algorithm for fast on-line updating of the minimum-variance filter,
which is basically a gradient descent method. For the stochastic
regression model yt = θTxt + εt (with Ft−1-measurable xt and i.i.d.
errors εt), the least squares estimate θ̂t can be expressed via the
Kalman recursions

θt = θt−1 + (yt − θ>t−1xt)Γtxt ,Γt = Γt−1 −
Γt−1xtx>t Γt−1

1 + x>t Γt−1xt
.

The LMS recursions are θ̂t = θ̂t−1 + (yt − θ̂
>
t−1xt)γtxt , using a scalar

(rather than matrix) gain sequence γt .

Choice of gradient descent rate:

γt = c or γ−1
t =

∑t
i=1 ‖xi‖2(Γ−1

t =
∑t

i=1 xix
>
i ).

Batch learning for faster and more stable descent: Updates occur only
after batches of (xi , yi ), tj ≤ i < tj+1, are collected. This is
particularly relevant for high-dimensional θ.



From LMS to AdaBoost and gradient boosting

Boosting (1997 to 2002): AdaBoost and Gradient Boosting

Freund and Schapire (1997) introduced the AdaBoost algorithm,
which suitably combines “weak” learners from training data into
much better performing predictors or classifiers. This inspired

I Hastie and Tibshirani (2000): additive logistic regression approach

Friedman (2001) proposed gradient boosting approach to function
estimation, which is motivated by applications to trees and other
additive models in regression and classification.



From LMS to AdaBoost and gradient boosting

High-dimensional nonlinear regression for big data

Consider a regression function f that has an additive expansion:

f (x) = α +

p∑
k=1

βkφk(x; bk), (1)

where φk is a basis function that involves a nonlinear parameter vector
bk ∈ Γ and is linearly associated with a regression coefficient βk .

The observed data are {xt , yt}nt=1 and a loss function L(yt , f (xt)) is
used to fit the model; high-dimensional if p > n. Choice of L:

I squared error loss: L(y , f ) = (y − f )2/2
I the absolute error loss: L(y , f ) = |y − f |
I logistic regression with L(y , f ) = log(1 + e−2yf ) for y ∈ {−1, 1}
I Huber’s loss for M-estimators

L(y , f ) =

{
1
2 (y − f )2, |y − f | < c

c |y − f | − 1
2c

2, |y − f | ≥ c .



From LMS to AdaBoost and gradient boosting

Friedman’s gradient boosting algorithm

The algorithm represents a generalization that connects stagewise
additive expansions to steepest-descent minimization, and can be
described as follows:

1. f̂ 0(x) = 0
2. For k = 1, . . . ,m do

(a) ûk−1
t = − ∂L

∂f
(Yt , f̂

k−1(xt)), t = 1, · · · , n
(b) b̂k = arg minb∈Γ,β∈R

∑n
t=1[ûk−1

t − βφ(xt ; b)]2

(c) β̂k = arg minβ
∑n

t=1 L(Yt , f̂
k−1(xt) + βφ(xt ; b̂k))

(d) f̂ k(x) = f̂ k−1(x) + β̂kφ(x; b̂k)

End for
3. Output f̂ m(·)

A shrinkage factor (called the “learning rate”) ν with 0 < ν < 1 can
be introduced to change step 2(d) to

f̂ k(x) = f̂ k−1(x) + νβ̂kφ(x; b̂k). (2)



Previous work on convergence and issues

Extensions that include an intercept term

Assume the more general model (1) that has an intercept term α and
uses φk instead of φ. For (1) and more general loss functions L, we
first center xt by xt − x̄, where x̄ = n−1

∑n
t=1 xt , and then modify

steps 2(b),(c),(d) to:

(̂jk , b̂k) = arg min
16j6p,b∈Γ,β∈R

n∑
t=1

[ûk−1
t − α̂k−1 − βφj(xt ; b)]2,

(α̂k , β̂k) = arg min
α,β∈R

n−1
n∑

t=1

L(Yt , f̂
k−1(xt) + α + βφĵk (xt ; b̂k)),

f̂ k(x) = f̂ k−1(x) + α̂k + β̂kφĵk (x; b̂k).

For the case L(y , f ) = (y − f )2/2, this algorithm reduces to the pure
greedy algorithm (PGA, Temlyakov 2000), which is called “matching
pursuit” by Mallet and Zhang (1993) for the special case of
“time-frequency dictionaries”, and also called L2-boosting by
Bühlmann and Yu (2003).



Previous work on convergence and issues

Convergence results for PGA in linear regression

Bühlmann and Yu (2003) study the bias-variance trade-off as the
number m of iterations increases when (x1, y1), · · · , (xn, yn) are i.i.d.

Zhang and Yu (2005) prove the convergence of an appropriately
terminated version under certain sparsity and moment conditions.

Bühlmann (2006) refines the argument further for the case
p = exp(O(nξ)) with 0 < ξ < 1 and shows that for linear regression
the conditional mean squared prediction error

CPE = E{(f (x)− f̂ m(x))2|y1, x1, · · · , yn, xn} (3)

(in which x is independent of (xt , yt) and has the same distribution as
xt) converges in probability to 0 if m = mn →∞ sufficiently slowly,
but does not provide results on how slowly mn should grow.

It is widely recognized that early termination can avoid overfitting and
some variable selection schemes such as AIC have been proposed to
choose mn, but a definitive theory on how mn should be chosen is
lacking.



Modified gradient boosting and convergence theory

Insights from OGA (orthogonal greedy algorithm)

There is a definitive convergence theory for the orthogonal greedy
algorithm (OGA), also called “orthogonal matching pursuit”. It
provides important insights to address the aforementioned
convergence issues of PGA.

A major difference between OGA and PGA is that at each iteration
OGA selects a new input variable whereas PGA can select the same
input variable in multiple iterations. For OGA, Ing and Lai (2011)
show that optimal bias-variance tradeoff in high-dimensional sparse
linear models entails that mn should be O((n/ log pn)1/2), assuming
that log pn = o(n). Central to the derivation of the optimal
convergence rate result is a semi-population version of OGA that uses
the same forward stepwise variable selection procedure but assumes
the corresponding regression parameters to be known.

Inspired by OGA, we have developed a modified gradient boosting
algorithm to address convergence issues not only for PGA but also for
gradient boosting with general L in the general model (1).



Modified gradient boosting and convergence theory

Modified gradient boosting (MGB)

1. f̂ 0(x) = 0, Ĵ0 = ∅, α̂0 = 0
2. For k = 1, . . . ,m do

(a) ûk−1
t = − ∂L

∂f
(Yt , f̂

k−1(xt))

(b) Choose b̂k ∈ Γ and ĵk such that ĵk = arg minj #k−1
j with

(n−1
n∑

t=1

φ2
j (xt , b̂k))−1/2|n−1

n∑
t=1

(ûk−1
t − α̂k−1)φj(xt , b̂k)|

≥εmax
j̃,b∈Γ

(n−1
n∑

t=1

φ2
j̃ (xt , b))−1/2|n−1

n∑
t=1

(ûk−1
t − α̂k−1)φj̃(xt , b)|

(c) (α̂k , β̂k) = arg minα,β n
−1 ∑n

t=1 L(Yt , f̂
k−1(xt) + α + βφĵk

(xt ; b̂k))

(d) f̂ k(x) = f̂ k−1(x) + α̂k + β̂kφĵk
(x; b̂k)

(e) Ĵk = {ĵ1, · · · , ĵk}
End for

3. For k = m + 1, · · · , m̃, repeat Step 2 but constrain the minimization
defining ĵk in Step 2(b) to j ∈ Ĵm.

4. Output Ĵm and f̂ m(·)



Modified gradient boosting and convergence theory

Key features of MGB

The j and j̃ in step 2(b) are taken over 1 ≤ j ≤ pn if the cardinality
|Ĵk−1| ≤ Kn, but are restricted to ĴKn otherwise. Therefore, the first
stage of MGB stops when Kn distinct ĵk ’s are included in the basis
expansion. The second stage of MGB continues the preceding
procedure with j restricted to the Kn distinct ĵk ’s until the loss
minimization step converges.

We choose (̂jk , b̂k) with the smallest number #k−1
j of iterations up to

step k − 1 among the 1 ≤ j ≤ pn and b ∈ Γ that are within εn times
the maximum squared correlation of (ûk−1

t − α̂k−1)1≤t≤n and
φj(xt ; b)1≤t≤n; this corresponds to the “weak greedy” algorithms
introduced by Temlyakov (2000).

With a prespecified tolerance for convergence, MGB terminates when
the loss is minimized within the tolerance limits.



Modified gradient boosting and convergence theory

Simulation study

Below are the results of a simulation study on a neural network with
one hidden layer.

Method GB GB+CV MGB

MSPE 15.40 3.53 2.29

Simulation setting:
yt =

∑3
k=1 βkS(

∑4
j=1 xtjbjk) + εt , t = 1, · · · , n(= 100), where S is

the sigmoid function S(z) = 1/(1 + exp(−z)), εt ∼ N(0, 2.25),

(β1, β2, β3) = (2, 3, 4), (b13, b23, b33, b43) = (−10,−11, 12, 9),

(b11, b21, b31, b41) = (1,−2,−3, 4), (b12, b22, b32, b42) = (8,−7,−6, 5),

xtj = ztj + wt , for 1 ≤ t ≤ n, 1 ≤ j ≤ 4, in which
{ztj : 1 ≤ t ≤ n, 1 ≤ j ≤ 4} are i.i.d. N(0, 1), and {wt : 1 ≤ t ≤ n}
are i.i.d. N(0, 1) and also independent of ztj .



Modified gradient boosting and convergence theory

Asymptotic theory of OGA for linear regression

For the linear regression model

yt = α +

p∑
j=1

βjxtj + εt = α + β>xt + εt , t = 1, · · · , n,

let y(x) = α + β>x and ŷm(x) = α̂ + β̂
>
mx, where β̂m is the OGA

estimate of β that terminates after m iterations, and x is independent
of {(xt , yt), 1 ≤ t ≤ n}. Then under certain regularity assumptions
(including log pn = o(n) and supn≥1

∑pn
j=1 |βjσj | <∞ with

σ2
j = Ex2

tj), as Kn →∞ such that Kn = O((n/ log pn)1/2),

max
1≤m≤Kn

(
E [{y(x)− ŷm(x)}2|y1, x1, · · · , yn, xn]

m−1 + n−1m log pn

)
= Op(1). (4)

The rate (4) is shown to be optimal in the sense of bias-variance
tradeoff.



Modified gradient boosting and convergence theory

Asymptotic theory of MGB

The proof of (4) uses (a) Temlyakov’s bounds for weak orthogonal
greedy algorithms applied to the semipopulation version of OGA, and
(b) exponential bounds relating β̂m to (βj ; j ∈ Ĵm), where Ĵm is the
set of variables selected by OGA.

This semipopulation version of OGA uses the variable selector Ĵm but
approximates y(x) by the best linear predictor of y(x) based on
xj , j ∈ Ĵm.

We can extend (4) to MGB for the high-dimensional nonlinear
regression model (1) under certain regularity assumptions on pn,∑pn

k=1 |βk |, φj and L.

The basic idea consists of a corresponding semipopulation model and
Temlyakov’s bounds for weak greedy (instead of weak orthogonal
greedy) algorithms.



Modified gradient boosting and convergence theory

Weak greedy algorithms and Temlyakov’s bound

H: Hilbert space with inner product <,> and norm ‖ · ‖.
D is a dictionary if H=closure of span of D and ‖g‖ = 1 ∀g ∈ D.
A(D,M) = {f ∈ H : f =

∑∞
k=1 ckψk , ψk ∈ D and

∑∞
k=1 |ck | ≤ M}.

Weak greedy algorithm: Let T = {tn, n ≥ 1} such that 0 < tn ≤ 1.
For each m ≥ 1, inductively choose ϕT

m ∈ D such that

| < f Tm−1, ϕ
T
m > | ≥ tm sup

g∈D
| < f Tm−1, g > |,

and define
f Tm = f Tm−1− < f Tm−1, ϕ

T
m > ϕT

m,G
T
m (f ,D) =

∑m
j=1 < f Tj−1, ϕ

T
j > ϕT

j .

The case tm ≡ 1 corresponds to the pure greedy algorithm.

Temlyakov’s bound: If tn is non-increasing and f ∈ A(D,M), then

‖f − GT
m (f ,D)‖ ≤ M(1 +

∑m
k=1 t

2
k )−

1
2
tm/(2+tm).



Modified gradient boosting and convergence theory

Discussion and related works

“Early stopping regularization” for gradient descent learning
algorithms is related to the issue of when gradient boosting algorithm
should be terminated, as has been discussed by Smale and Zhou
(2005) and Yao, Rosasco and Caponnetto (2007). We introduced a
new approach to address this issue, which becomes particularly
difficult for high-dimensional nonlinear regression problems. This
approach achieves “early stopping” by putting an upper bound on the
number of distinct basis functions that have been included in a greedy
manner, and then continues gradient boosting with these selected
basis functions. Nonlinearities in the loss function and φj(xt ; b) are
handled by successive linear approximations via the gradients.

The semipopulation model that we used effectively to analyze OGA in
Ing and Lai (2011) can be extended to the present setting because it
basically involves the greedy model selection rule used by the sample
but then the paramters are assumed known for the (data-dependent)
selected model.



Conclusion

Conclusion

The basic model (1) arises in single-layer neural networks, as
illustrated in the simulation study. Applications in the era of big data
have led to multilayer (deep) learning networks. Gradient descent
methods and their refinements (e.g. backpropagation) have been used
to train these networks.

Friedman (2002) has introduced stochastic gradient boosting and the
theory we have developed can be extended to modified stochastic
gradient boosting. More importantly, using the probabilistic
interpretation of learning networks introduced by Hinton, Bengio,
LeCun and Schmidhuber, we are working towards a theory of deep
learning and the associated algorithms by combining recent advances
in gradient boosting and adaptive filtering in hidden Markov models.
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