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Motivating Examples

I In the cryo Electron Microscopy problem (Frank, 2006), the
images are located on the 3-dimensional manifold SO(3).

I Radar signals can be modeled as being sampled from the
Grassmannian manifold (Chikuse, 2003).

I The general manifold model for image and signal analysis is
considered in Peyré (2009).

I Carlsson, et al. (2008) argued that natural images lie on a
Klein bottle.



Local linear regression on unknown manifolds

I Y : scalar response variable

I X : p-dimensional predictor

I The distribution of X is assumed to be concentrated on a
d-dimensional compact, smooth Riemannian manifold M
embedded in Rp via the embedding ι : M ↪→ Rp.

I Consider the following regression model

Y = m(X ) + σ(X ) ε, (1)

where m and σ are functions defined on M, and ε is a random
error independent of X with E(ε) = 0 and Var(ε) = 1.



Local Linear Regression on Unknown Manifolds (MALLER)

Let {(Xl ,Yl)}nl=1 denote a random sample observed from the
regression model (1) with X = {Xl}nl=1 being sampled from the
distribution of X .

Our nonparametric method to estimate the regression function m
consists of the following four steps.

I Step 1: obtaining the intrinsic dimension d

I Step 2: reducing effects of the condition number

I Step 3: embedded tangent plane estimation

I Step 4: local linear regression on the tangent plane estimate



Step 1: Obtaining the intrinsic dimension

I Assume that we are given the intrinsic dimension d of the
manifold M.

I If d is unknown a priori and needs to be estimated based on
the data X , estimate it by the maximum likelihood estimator
proposed by Levina and Bickel (2005).

I Given that the sample size n is large enough, we assume the
dimension estimate is correct and hence will not distinguish it
from the true value of d from now on.



Step 2: reducing effects of the condition number

I X = {X1, . . . ,Xn}

I NRp

x ,δ =
{
Xj ∈ X : ‖Xj − x‖Rp <

√
δ
}

: the set of Euclidean√
δ-neighbors of x

I d(·, ·): the geodesic distance

I NM
x ,δ =

{
Xj ∈ X : d(Xj , x) <

√
δ
}

: the set of geodesic√
δ-neighbors of x from X

I Apply the self-tuning spectral clustering algorithm
(Zelnik-Manor and Perona, 2004) to the set NRp

x ,δ ∪ {x}, and
use the set

N true
x ,δ :=

{
Xj ∈ NRp

x ,δ : Xj is in the same cluster as x
}

as an estimate of NM
x ,δ.



Figure : τ : reach, 1/τ : the condition number of M. The set of Euclidean√
δ-neighbors of x , NRp

x,δ, consists of both the red and green crosses. The

set of geodesic
√
δ-neighbors of x , NM

x,δ, consists of the red crosses but
not the green crosses.



Step 3: embedded tangent plane estimation

Tangent plane:

I TxM: the tangent plane of the manifold at x ∈ M

I ι∗: the total differential of ι, that is, ι∗ : TxM→ Tι(x)Rp

I ι∗TxM: the embedded tangent plane into Rp

Local PCA:

I Σx : the sample covariance matrix of N true
x ,hPCA

.

I {Uk(x)}dk=1: the first d eigenvectors of Σx .

I Let Bx be the p × d matrix Bx =
[
U1(x) . . . Ud(x)

]
.

Projecting the design points onto a tangent plane estimate:

I For l = 1, . . . , n, let x l = (x l ,1, . . . , x l ,d)T = BT
x (Xl − x): the

projection of Xl − x onto the affine space spanned by the
orthonormal basis {Uk(x)}dk=1, which is an approximation to
the embedded tangent plane ι∗TxM.



Step 4: local linear regression on tangent plane
estimate

I K : [0,∞]→ R: nonzero kernel function so that
K |[0,1] ∈ C 1([0, 1]) and K |(1,∞] = 0

I h > 0: a bandwidth

I Let

β̂x = argmin
β∈Rd+1

n∑
l=1

(
Yl − β0 −

d∑
k=1

βkx l ,k

)2
IN true

x,h
(Xl)Kh(Xl , x),

where β = (β0, β1, . . . , βd)T , Kh(Xl , x) := 1
hd/2K

(
‖Xl−x‖Rp√

h

)
and I is the indicator function.



I Let Xx =

[
1 . . . 1
x1 . . . xn

]T
, and

Wx = diag
(
Kh(X1, x)IN true

x,h
(X1), . . . ,Kh(Xn, x)IN true

x,h
(Xn)

)
.

I The functional β̂x can be written as

β̂x = (XT
x WxXx)−1XT

x WxY ,

where Y = (Y1, . . . ,Yn)T , if (XT
x WxXx)−1 exists.

I The estimator of m(x) we propose is given by

m̂(x , h) := vT1 β̂x = vT1 (XT
x WxXx)−1XT

x WxY , (2)

where vk ∈ Rd+1 is the (d + 1)× 1 unit vector with the k-th
entry being 1.



If the interest is to estimate the embedded gradient of m at x , the
following estimator is considered:

̂ι∗gradm(x) :=
d∑

i=1

∇̂∂i (x)m(x , h)Ui (x). (3)

where grad denotes the gradient,

∇̂∂i (x)m(x , h) := vTi+1β̂x , (4)

and {∂i (x)}di=1 is the orthonormal basis of TxM closest to the
estimated orthonormal basis {Uk(x)}dk=1.



Theoretical results

Notation

I Take the metric g to be the one such that, for u, v ∈ TxM,

gx(u, v) := 〈ι∗u, ι∗v〉.

I The exponential map at x ∈ M is denoted as expx .

I The volume form on M induced from g is denoted as dV .

I Define the set of points close to the boundary ∂M with
distance less than δ ≥ 0, where δ is small enough, as

Mδ(x) =
{
y ∈ M : min

y∈∂M
d(x , y) ≤ δ

}
,

where d(x , y) is the geodesic distance between x and y .

I Denote by ∇ the Levi-Civita connection, ∆ the
Laplace-Beltrami operator, and Hess the second order
covariant derivative operator on (M, g).



Probability density function of the random vector X : Ω→ ι(M):

I X : a measurable function with respect to the probability
space (Ω,F ,P)

I B̃: the Borel sigma algebra of ι(M).

I P̃X : the probability measure of X defined on B̃, induced from
P.

I Assume that P̃X is absolutely continuous w.r.t. the volume
measure dV so that dP̃X (x) = f (ι−1(x))ι∗dV (x) for some
f ∈ C 2(M). That is, for an integrable function ζ : ι(M)→ R,

Eζ(X ) =

∫
Ω
ζ(X (ω))dP(ω) =

∫
ι(M)

ζ(x)dP̃X (x)

=

∫
ι(M)

ζ(x)f (ι−1(x))ι∗dV (x) =

∫
M
ζ(ι(y))f (y)dV (y).

In this sense we interpret f as the p.d.f. of X on M.



Assumptions:

(A1) h→ 0 and nhd/2 →∞ as n→∞.

(A2) f belongs to C 2(M) and satisfies

0 < inf
x∈M

f (x) ≤ sup
x∈M

f (x) <∞. (5)

(A3) For every given h > 0 and every point x ∈ M√h, the set

BM√
h
(x) ∩M contains a non-empty interior set.

(A4) Assume that h
1/2
PCA < min(2τ, inj(M)) and

h1/2 < min(2τ, inj(M)), where inj(M) is the injectivity radius
of M and 1/τ is the condition number of M.



Denote µi ,j :=
∫
BRd

1 (0)
K i (‖u‖Rd )‖u‖jRd du and we normalize K so

that µ1,0 = 1.

Theorem 1. Suppose hPCA�n−2/(d+1) and h≥hPCA. When
x∈M\M√h, the conditional mean square error (MSE) for the
estimator m̂(x , h) is

MSE{m̂(x , h)|X} = h2
µ2

1,2

4d2
(∆m(x))2 +

1

nhd/2

µ2,0σ
2(x)

f (x)

+ Op(h5/2) + Op

( 1

n1/2hd/4−2
+

1

nhd/2−1
+

1

n3/2h3d/4

)
.

Thus, the minimal asymptotic conditional MSE is achieved when
h � n−2/(d+4).



For x ∈ M√h and h > 0, define

νi ,x :=

[
νi ,x ,11 νi ,x ,12

νTi ,x ,12 νi ,x ,22

]

:=

[ ∫
1√
h
D(x) K

i (‖u‖)du
∫

1√
h
D(x) K

i (‖u‖)uTdu∫
1√
h
D(x) K

i (‖u‖)udu
∫

1√
h
D(x) K

i (‖u‖)uuTdu

]
,

D(x) := exp−1
x (BM√

h
(x) ∩M) ⊂ TxM,

C :=

[
1 0

0 h
1
2 Id

]
.

Here, Ik denotes the k × k identity matrix for any k ∈ N.



Theorem 2. Suppose x ∈ M√h, hPCA � n−2/(d+1) and h ≥ hPCA.
The conditional MSE of the estimator m̂(x , h) is

MSE{m̂(x , h)|X} =
h2

4

[tr
(
Hessm(x)ν1,x ,22

)
]2

ν2
1,x ,11

+
vT1 ν

−1
1,xν2,xν

−1
1,x v1

nhd/2

σ2(x)

f (x)

+Op

(
h3/2h

3/4
PCA + h5/2

)
+ Op

( 1

n1/2hd/4−2
+

1

nhd/2−1/2
+

1

n3/2h3d/4

)
Corollary 1. Suppose ∂M is smooth, x ∈ M√h, hPCA � n−2/(d+1)

and h ≥ hPCA. Then the asymptotic conditional bias of m̂(x , h) is
a linear combination of the second order covariant derivative of m:

E{m̂(x , h)−m(x)|X} =
h

2

d∑
k=1

ck(x)∇2
∂k ,∂k

m(x)

+Op(h1/2h
3/4
PCA + h3/2) + Op

( 1

n1/2hd/4−1

)
,

where {∂k}dk=1 is a normal coordinate around x and ck(x) is
uniformly bounded for all k = 1, . . . , d .



Theorem 3. Suppose x ∈ M\M√h, hPCA � n−2/(d+1) and

h ≥ hPCA. The conditional MSE for the estimator ∇̂∂i (x)m(x , h)
given in (4) is

MSE{∇̂∂i (x)m(x , h)|X}

= h2

[
µ1,2

d

∇∂i f (x)

f (x)
∆m(x)−

µ1,2d
∫
Sd−1 θ

THessm(x)θθ∇θf (x)dθ

|Sd−1|f (x)

]2

+
1

nh
d
2

+1

dµ2,2σ
2(x)f (x)

µ2
1,2

+ Op(h
5
2 + h

3
2 h

3
4
PCA)

+ Op

( 1

n
1
2 h

d
4
− 3

2

+
1

nh
d
2

+
1

n
3
2 h

3d
4

+1

)
,

where {∂i (x)}di=1 is an orthonormal basis of TxM.



Theorem 4. Suppose x ∈ M√h, hPCA � n−2/(d+1) and h ≥ hPCA.

The conditional MSE for the estimator ∇̂∂i (x)m(x , h) given in (4) is

MSE{∇̂∂i (x)m(x , h)|X}

= h

(
vTi+1ν

−1
1,x

2

∫
1√
h
D(x)

K (‖u‖)uTHessm(x)u

[
1
u

]
du

)2

+
vTi+1ν

−1
1,xν2,xν

−1
1,x v i+1

nh
d
2

+1

σ2(x)

f (x)
+ Op

(
h

1
2 h

3
4
PCA + hh

1
2
PCA

)
+Op

( 1

n
1
2 h

d
4
− 3

2

+
1

nh
d
2

+ 1
2

+
1

n
3
2 h

3d
4

)
,

where {∂i (x)}di=1 is an orthonormal basis of TxM.



Bandwidth selection

I. Pilot bandwidth

The modified generalized cross-validation (mGCV) suggested in
Bickel and Li (2007).

I For each Xl , choose a block of data points {(Xj ,Yj)}j∈J .

I The mGCV bandwidth, denoted as hmGCV,m̂, is chosen to be
the value of h in HmGCV which minimizes

mGCV(h) =
(

1 + 2atrJ (h)
) 1

|J |
∑
j∈J

(
Yj − m̂(Xj , h)

)2
,

where atrJ (h) := 1
|J |
∑

j∈J vT1 (XT
Xj
WXj

XXj
)−1v1h

−d/2K (0).



II. Estimate the value of the conditional variance σ2 at x:

I Define the residuals as r̂l :=
(
Yl − m̂(Xl , hmGCV,m̂)

)2
,

l = 1, . . . , n.

I Let (α̂(x), β̂(x)) be the minimizer of the following function of
α ∈ R, β ∈ Rd :∑
Xl∈N true

hmGCV,r̂

(
log(r̂l +1/n)−α−βTBT

x (Xl−x)
)2

KhmGCV,r̂
(Xl , x),

where hmGCV,r̂ is the bandwidth determined by minimizing the
mGCV upon the data set {(Xl , log(r̂l + 1/n))}nl=1.

I The estimated σ2 at x , σ̂2(x), is then defined by

σ̂2(x) := eα̂(x)

[
1

n

n∑
l=1

r̂le
−α̂(Xl )

]−1

.



III. Bandwidth for m̂(x , h):

I Estimate the conditional bias and the conditional variance of
m̂(x , h) respectively by

b̂(x , h) =
m̂(x , h)− m̂(x , h/2)

1/2

v̂(x , h) = vT1 (XT
x WxXx)−1XT

x Wx ŜxWxXx(XT
x WxXx)−1v1,

where Ŝx = diag
{
σ̂2(X1), . . . , σ̂2(Xn)

}
.

I The conditional MSE of m̂(x , h) is estimated by

M̂SE(x , h) := b̂(x , h)2 + v̂(x , h).

I The value of h which minimizes M̂SE(x , h), denoted as
ĥopt(x), is selected to approximate the optimal bandwidth.



Isomap face data

Isomap face data (Tenenbaum, 2000):

I There are 698 64× 64 images, denoted as {I 64
l }698

l=1, labeled
with three variable: the horizontal orientation, the vertical
orientation, and the illumination direction.

I The dataset was sampled from a 3-dimensional manifold
embedded in R64×64, which is parametrized by the above
three variables.

I Denote the resized images of size k × k as {I kl }698
l=1, where

k ∈ [1, 64] ∩ Z.



We performed 200 replications of the following experiment, which
was suggested by Aswani, Bickel, and Tomlin (2011).

I Fix k = 7. We randomly split {I 7
l }698

l=1 into a training set
consisting of 688 images and a testing set consisting of 10
images.

I The horizontal orientation of the images in the testing set was
then estimated from the training set.

RASE computational time

MALLER 1.320± 0.992 13.429± 4.920
NEDE 1.785± 1.212 34.461± 4.585

NALEDE 1.776± 1.200 170.709± 28.819
NEDEP 1.869± 1.241 53.721± 8.359

NALEDEP 2.810± 3.653 187.375± 31.262

Table : The averages and standard deviations, over 200 replications, of
RASE and computational time in seconds for different estimators tested
on the resized Isomap face data {I 7

l }698
l=1.



I Next, we carried out another 200 replications of the same
experiment but with k = 14, 21, or 28.

I When k = 14, 21 or 28, it takes a long time to compute the
methods by Aswani, Bickel, and Tomlin (2011).

k = 14 k = 21 k = 28
RASE 1.048± 0.645 1.185± 1.583 1.014± 0.697

computational time 17.229± 5.826 18.782± 5.636 33.439± 16.601

Table : The averages and standard deviations over 200 replications of
RMSE and computational time (in seconds) for our estimator using the
resized data {I 14

l }698
l=1, {I 21

l }698
l=1, or {I 28

l }698
l=1.



Figure : The running time for MALLER, NEDE, NALEDE, NEDEP and
NALEDEP when k = 7, 8, . . . , 16. The y -axis is in the natural log scale.



Registration Problem with Computed Tomography data

A. Frank and A. Asuncion. UCI machine learning repository,
2010.

I There are 53500 2D CT images from 97 volumes scanned
from 71 different patients.

I There are si slices in the i-th volume. So,
∑97

i=1 si = 53500.

I The age of the patients ranges from 4 to 86 years old.

I The collection covers the complete area between the top of
the head to the end of the coccyx. Each patient contributed
no more than 1 thorax and 1 neck scan.

I Then 53500 feature vectors in R384 are determined based on
the radial image descriptor (Graf et al., 2011).



Two-level nearest neighbors search (Graf et al., 2011):

I PCA is applied to the 384-dim feature vectors to project them
onto the first 50 dominant principal components.

I Let x be the PCA vector corresponding to the test image.

I First, find the k1 ∈ N nearest neighbors of x in each volumn
and get N × k1 vectors, denoted as S .

I Then, find the k2 ∈ N nearest neighbors of x in S and their
associated ground truth, denoted as yl , l = 1 . . . , k2.

I The estimate of the true location of the test image is given by
1
k2

∑k2
l=1 yl .

I We call this the NN(k1, k2) algorithm.



Application of MALLER to CT data

I We followed the same PCA dimension reduction, two-level
estimation, and leave-one-volume-out schemes.

I Following Graf et al. (2011), we set the dimension of the PCA
vectors as 50.

I It may occur that some of the images in S actually come from
different anatomical sections from the location of the test
image, so we included the corresponding location information
in step 2 of MALLER.

I We took k1 = 6 to build up S in order to speed up the
computation for clinical purpose, and to ensure that the
number of points is not too small.



estimation error (cm) Q90 F(1) computational time (sec)

MALLER 1.726± 3.26 3.55 47.42% 3.1± 0.52
NN(1, 3) 1.84± 3.06 3.8 45.56% 3× 10−3 ± 0.19× 10−3

NN(6, 3) 1.95± 3.39 4.03 42.81% 4.2× 10−3 ± 0.15× 10−3

NEDE 3.386± 4.247 8.06 29.77% 5.93± 0.86
NALEDE 3.275± 4.113 7.73 30.16% 11.31± 2
NEDEP 3.388± 4.258 8.06 29.77% 9.29± 1.35

NALEDEP 3.276± 4.113 7.73 30.15% 14.66± 2.26

Table : CT Data. F (1): the proportion of the estimation errors being less
than 1cm; Q90: the 90% quantile of the estimation errors.



Figure : The cumulative proportion of the estimation errors of MALLER
(red) and NN(1, 3) (blue). The unit in the x-axis is cm.



Application to Manifold Learning

Diffusion map
For a fixed bandwidth h > 0, define n × n matrix W and n × n
diagnal matrix D by

W (i , j) = K

(
‖Xi − Xj‖Rp

√
h

)
and D(i , i) =

n∑
j=1

W (i , j).

Then A := D−1W is a Markov transition matrix of a random walk
over the sample points {Xi}ni=1.
Given the regression model (1), define the Nadaraya-Watson type
estimator m̂NW of m at Xi as

m̂NW (Xi , h) := (AY )(i) =

∑n
j=1 K

(
‖Xi−Xj‖Rp√

h

)
Yj∑n

j=1 K
(
‖Xi−Xj‖Rp√

h

) , i = 1, . . . , n,

so A is the smoothing matrix of m̂NW (·, h).



When m ∈ C 3(M) and Xi /∈ M√h, as n→∞,

(Am)(i) = m(Xi ) + h
µ1,2

2d

(
∆m(Xi ) + 2

m(Xi )∆f (Xi )

f (Xi )

)
+O(h2) + Op

( 1

n1/2hd/4−1/2

)
,

where m = (m(X1), . . . ,m(Xn))T .
Define

W1 = D−1WD−1, D1(i , i) =
n∑

j=1

W1(i , j) , L1 = h−1
(
D−1

1 W1−In
)
.

When n→∞, it is shown by Coifman and Lafon (2006) that

(L1m)(i) =
µ1,2

2d
∆m(Xi ) + O(h) + Op

( 1

n1/2hd/4+1/2

)
.



I
∫

M ‖∇m‖
2 = −

∫
M(∆m)m for twice differentiable m : M→ R.

I The minimizer of
∫

M ‖∇m‖
2 subject to ‖m‖ = 1 is given by

the eigenfunctions of the Laplace-Beltrami operator ∆.

I The diffusion map is ψt : V → Rd such that
ψt(v) = (λt1ψ1v , . . . , λ

t
dψdv) ∈ Rd , where ψ1, . . . , ψd are the

first d eigenvectors of L1 and λ1 . . . , λd are the corresponding
eigenvalues.



Suppose M is compact, smooth and ∂M is non-empty and smooth.
When Xi ∈ M√h,

(D−1
1 W1m)(i) = m(X0)+

√
hC1∂νm(X0)+O(h)+Op

( 1

n1/2hd/4−1/2

)
,

where C1 = O(1), X0 ∈ ∂M is the point on ∂M closest to Xi , and
ν is the normal direction at X0.
If the

√
h-order term is non-zero, the estimator (L1m)(i) blows up

when h→ 0. Thus, the Neuman’s boundary condition ∂m
∂ν = 0 is

necessary for L1:{
∆m(x) = λm(x) when x ∈ M
∂m
∂ν (x) = 0 when x ∈ ∂M



Our method
For given h > 0, consider the proposed MALLER and define

Ap =

 vT1 (XT
X1
WX1XX1)−1XT

X1
WX1

...
vT1 (XT

Xn
WXnXXn)−1XT

Xn
WXn

 ,
Lp = h−1

(
Ap − In

)
.

Then, for any m ∈ C 3(M) and Xi /∈ M√h, from Theorem 1 we
have directly

(Lpm)(i) =
µ1,2

2d
∆m(Xi ) + O(h1/2) + Op

( 1

n1/2hd/4

)
.

Thus the matrix Lp can be used to construct an estimator of the
Laplace-Beltrami operator ∆.



Suppose M is compact, smooth, and its boundary ∂M is nonempty
and smooth.
For Xi ∈ M√h, Corollary 1 leads to

(Lpm)(i) =
1

2

d∑
k=1

ck(Xi )∇2
∂k ,∂k

m(Xi ) + Op(h−1/2h
3/4
PCA + h

1/2
PCA)

+Op

( 1

n1/2hd/4

)
.

Thus, we know that when Xi is near the boundary, the estimator
Lp does not blow up when h→ 0, and a different boundary
condition can be imposed.



Example: spheres

We sampled 1000 points uniformly from the 2-dim sphere S2

embedded in R3, 2000 points uniformly from the 3-dim sphere S3

embedded in R4, and 4000 points uniformly from the 4-dim sphere
S4 embedded in R4, and built the matrix Lp with h = 0.09.

(a) S2 (b) S3 (c) S4

Figure : Bar plots of the first 30 eigenvalues of Lp. The first eigenvalue
of ∆ is zero for S2, S3 and S4, and the multiplicities of the first few
eigenvalues of ∆ of Sk are 1, 3, 5, 7 . . . when k = 2, are 1, 4, 9, 16 . . .
when k = 3, and are 1, 5, 14, 30 . . . when k = 4.



Example: half circle

We sampled 2000 points {(cos(θl), sin(θl))}2000
l=1 from the half circle

embedded in R2, where θl were uniformly sampled from [0, π], and
evaluated the eigenvectors of Lp built on {(cos(θl), sin(θl))}2000

l=1 .

Figure : The first four eigenvectors of Lp and the first 10 eigenvalues of
Lp. The first two eigenvalues are zero. Notice that the second, third and
fourth eigenvectors can not happen if the Laplace-Beltrami operator
satisfies the Neuman’s condition.



Example: Swiss roll

Figure : Visualization of Swiss roll data. Left panel: data X1, . . . ,Xn.
Right panel: Xi → (λt1φ1(i), λt2φ2(i)), where Lpφj = λjφj , j = 1, 2.


