Detecting Rare and Faint Signals via Thresholding Maximum Likelihood Estimators

Song Xi Chen

Peking University

A joint work with Yumou Qiu and Dan Nettleton

Detecting Rare and Faint Nonzero Means

•
$$X_1, \cdots, X_n \overset{i.i.d.}{\sim} N(\mu, I_{p \times p})$$
, p dimensional random vectors

•
$$\mu = \operatorname{E}(X_i) = (\mu_1, \cdots, \mu_p)'$$

• Donoho and Jin (2004) test for zero mean against rare and faint H_a

$$H_0: \mu_j = 0$$
 for all j vs. $H_a: \mu_j \sim (1-\epsilon)\nu_0 + \epsilon
u_{\mu_a}$

- Rareness: few dimensions with nonzero mean, $\epsilon = p^{-\kappa}$, $\kappa \in (1/2, 1)$
- Faintness: weak nonzero mean, $\mu_a = \sqrt{(2r\log p)/n}$, $r \in (0,1)$
- Most challenging situation for signal detection

イロト 不得 トイヨト イヨト 二日

Optimal Detection Boundary

$$\mathsf{DB}(\kappa) = \begin{cases} \kappa - 1/2 & \text{if } 1/2 < \kappa \le 3/4 \\ (1 - \sqrt{1 - \kappa})^2 & \text{if } 3/4 < \kappa < 1, \end{cases}$$

ĸ

Phase Diagram

• Ingster (1997)

- $r < DB(\kappa)$: Type I Error + Type II Error $\rightarrow 1$ for ANY TEST
- $r > DB(\kappa)$: there exists a test such that Type I Error + Type II Error $\rightarrow 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

Higher Criticism (HC) test

- Donoho and Jin (2004) proposed Higher Criticism (HC) test
- $\{p_{(j)}\}$: ordered p-values for testing each dimension

$$HC^* = \max_{1 \le j \le p/2} \sqrt{p} [j/p - p_{(j)}] / [p_{(j)}(1 - p_{(j)})]^{1/2}$$

- Reject H_0 if $HC^* > \sqrt{2 \log \log p}$
- HC test is able to attain the optimal detection boundary

イロト 不得下 イヨト イヨト 二日

Further Works on Testing Means

- Hall and Jin (2008, 2010): data dependence and Innovated HC test
 Apply HC on Σ⁻¹X_i
- Zhong, Chen and Xu (2013): L_2 thresholding test, more powerful • $M_n(s) = \sum_{j=1}^p n(\bar{X}_j/s_j)^2 \mathbf{I}(|\bar{X}_j|/s_j > \sqrt{(2s \log p)/n})$

•
$$\mathcal{M}_n = \max_{0 < s < 1} \{ M_n(s) - \mu_n(s) \} / \sigma_n(s)$$

- Chen, Li and Zhong (2016): thresholding with data transformation
 Apply L₂ thresholding on Σ⁻¹X_i
- Fan (1996): goodness-of-fit test

◆□ ▶ ◆@ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ ����

Settings of the Problem

- Collect p responses variables from n observations under m treatments
- y_{ij}: the value of the *j*th response variable in the *i*th observation
- $i = 1, \dots, n \text{ and } j = 1, \dots, p$
- Let z_i be the explanatory variables for the *i*th observation
- $z_i = (z_{i,1}, \cdots, z_{i,m})'$
- *m* is the number of explanatory variables, fixed

- Suppose y_{ij} is within the exponential family
- $\mu_{ij} = E(y_{ij})$ and ϕ_j is the dispersion parameter

• Link function:
$$g(\mu_{ij}) = \eta_{ij} = z'_i eta_j$$

• $\beta_j = (\beta_{j,1}, \dots, \beta_{j,m})'$: treatment effect for the *j*th response variable

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Any Signal in the Regression Coefficient?

• Interested in testing the hypotheses

$$H_0: D\beta_i = 0$$
 for all j vs. H_a : not all the $D\beta_i = 0$.

• $D_{d \times m}$ is a known matrix

イロト 不得下 イヨト イヨト 二日

Maize RNA-seq Experiment

- Maize gene expressions are measured by RNA-Seq
- 4 genotypes: B73, Mo17, B73×Mo17 (BM) and Mo17×B73 (MB)
- 4 tissues: cortex, stele, elongation zone, meristematic zone
- 4 barcodings: AR001, AR003, AR008 and AR009
- 4 replications

・ 同 ト ・ ヨ ト ・ ヨ ト

Genotypes and Tissues of Corn Root

10 / 46

Strip-plot Experimental Design

B73-1-S-AR001	Mo17-1-S-AR003	BxM-1-S-AR008	MxB-1-S-AR009]
B73-1-MZ-AR001	Mo17-1-MZ-AR003	BxM-1-MZ-AR008	MxB-1-MZ-AR009]
B73-1-C-AR001	Mo17-1-C-AR003	BxM-1-C-AR008	MxB-1-C-AR009	S=stele
B73-1-EZ-AR001	Mo17-1-EZ-AR003	BxM-1-EZ-AR008	MxB-1-EZ-AR009	(differentiation zone
B73-2-S-AR009	Mo17-2-S-AR001	BxM-2-S-AR003	MxB-2-S-AR008	C=cortex (differentiation zone
B73-2-EZ-AR009	Mo17-2-EZ-AR001	BxM-2-EZ-AR003	MxB-2-EZ-AR008	MZ = meristematic zone
B73-2-C-AR009	Mø17-2-C-AR001	BxM-2-C-AR003	MxB-2-C-AR008	EZ= elongation zone
B73-2-MZ-AR009	Mo17-2-MZ-AR001	BxM-2-MZ-AR003	MxB-2-MZ-AR008	AR001-AR009: Adapter-Indices

(日) (周) (三) (三)

3

Negative-Binomial Model

- Consider the tissue-specific analysis for the stele tissue
- Denote $Y_j = (y_{1,j}, \cdots, y_{16,j})$ to be the expression level of the *j*th gene
- NB model for $y_{i,j}$ with mean $\mu_{i,j}$ and dispersion parameter ϕ_j such that

$$\log(\mu_{i,j}) = \nu_j + X'_{g,i}\alpha_j + X'_{r,i}\xi_j + X'_{b,i}\gamma_j,$$

- $\alpha_j, \xi_j, \gamma_j$: treatment effects for genotype, replication and barcoding
- Satisfying $\alpha_{j,4} = \beta_{j,4} = \gamma_{j,4} = 0$, baseline

- Any of the genes is differentially expressed across different genotypes?
- Genotype effect:

$$H_0: \alpha_{1,j} = \alpha_{2,j} = \alpha_{3,j} = 0$$
 for all j vs.
 $H_a:$ at least one component of α_j not equal to 0 for some j .

• Difference between B73×Mo17 (BM) and Mo17×B73 (MB):

$$H_0: \alpha_{2,j} = \alpha_{3,j}$$
 for all j vs. $H_a: \alpha_{2,j} \neq \alpha_{3,j}$ for some j .

3

(日)

P-Value of Overall Genotype Effect

- Wald's Test for each gene
- Many small P-values
- Strong evidence in favor of H_a
- Some of the genes are differentially expressed under some genotypes

P-Value of the Difference Between BM and MB

How to detect rare and faint genetic signals in RNA-seq data?

- Few small P-values
- Not have strong evidence to reject H_0 based on this histogram
- If *H_a* is true, few genes have different BM and MB genetic effects

Sparse and Weak H_a

Consider the hypotheses with rare and faint signals

$$\begin{split} &H_0: \beta_j = \beta_{j,0} \;\; \text{such that} \; D\beta_{j,0} = 0 \; \text{for all} \; j \;\; \text{vs.} \\ &H_a: \beta_j \sim (1-\epsilon)\nu_{\beta_{j,0}} + \epsilon\nu_{\beta_{j,0}+\beta_{j,a}} \;\; \text{for all} \; j, \end{split}$$

• For $x \in \mathbb{R}^m$, u_x denotes the point mass distribution on x

- Under H_a , β_j comes from a binary super-population
- $\epsilon = p^{-\kappa}$ for $\kappa \in (1/2, 1)$, κ specify the sparsity

•
$$\beta_{j,a} = r_j \sqrt{2(\log p)/n}$$
 for $r_j \in (0,1)^m$ and $Dr_j \neq 0$

• {*r_j*} specify the signal strength

Regularize MLEs by Thresholding

- $(\hat{eta}'_j,\hat{\phi}_j)'$: MLEs to the *j*th response variable
- $\hat{eta}_j = (\hat{eta}_{j,1}, \cdots, \hat{eta}_{j,m})'$ the estimated treatment effects
- $D\hat{\beta}_j$ MLE of $D\beta_j$
- Most of the responses have no signal
- \bullet Truncate those small $\|D\hat{\beta}_j\|$ to 0 and keep the large ones

Thresholding Statistic

- Let nI_j be the Fisher Information matrix of β_j
- $\hat{l}_j = l_j(\hat{eta}_j, \hat{\phi}_j)$ is the estimated Fisher Information matrix
- $\hat{V}_j/n = D \hat{l}_j^{-1} D'/n$ is the estimated asymptotic variance of $D \hat{eta}_j$
- For a constant $s \in (0,1)$, the thresholding statistic is

$$T_n(s) = \sum_{j=1}^p n(D\hat{\beta}_j)' \hat{V}_j^{-1}(D\hat{\beta}_j) \mathbf{I}(\|\hat{V}_j^{-1/2} D\hat{\beta}_j\| > \sqrt{(2s\log p)/n})$$

Lemma 1. Suppose X_1, \dots, X_n are independent with pdf $f_i(x_i, \theta)$

- θ is m dimensional unknown parameter, θ_0 is the truth
- $\hat{\theta}$ be the MLE of θ
- Under some regularity conditions, for $w_n \ll n^{1/6}$
 - The 2rd derivative of log $f_i(x_i, \theta)$ is Lipschitz continuous
 - MGFs of the 1st and 2rd derivative of log $f_i(X_i, \theta)$ exist around 0

$$P(|\sqrt{n\hat{l}(\hat{\theta}-\theta_0)}| \geq w_n) = P(|N(0,I_m)| \geq w_n)(1+O(w_n^3/\sqrt{n})).$$

イロト 不得 トイヨト イヨト 二日

Moderate Deviation Expansion for MLE

- Cramér moderate deviation for MLE under non identically distr data
- Tail distribution of MLEs can be approximated by that of $N(0, I_m)$
- For i.i.d. data, Inglot and Kallenberg (2003)

$$\lim_{n\to\infty} w_n^{-2} \log\left\{P(\sqrt{n}|I_{\theta}^{1/2}(\hat{\theta}-\theta^0)| \ge w_n\right)\right\} = -1/2$$

- We provide the error rate of the normal approximation
- Needed for the analysis of the thresholding approach

・ロト ・ 同ト ・ ヨト ・ ヨト

Dependence among Responses

• Let
$$Y_i = (y_{i1}, \cdots, y_{ip})'$$
 and $\mathcal{F}^b_a(Y_i) = \sigma\{Y_{ij} : a \le j \le b\}$

• ρ -mixing coefficients: $\rho_i(k) = \sup_{m \in \mathbb{Z}} \rho\{\mathcal{F}_{-\infty}^m(Y_i), \mathcal{F}_{m+k}^\infty(Y_i)\}.$

• Assume Y_i is a ρ -mixing sequence, and

 $\rho_i(k) \leq C \alpha^k$ for a constant $\alpha \in (0, 1)$

• Only require the condition holds for some ordering of response variables

Mean and Variance of $T_n(s)$ under H_0

- Tail distribution of $\sqrt{n}\hat{V}_j^{-1/2}D\hat{\beta}_j$ be approximated by that of $N(0, I_d)$
- Write $\lambda_n(s) = 2s \log p$, assuming $\log p = o(n^{1/3})$
- $\mu_0(s) = p \mathbb{E} \{ \chi_d^2 \ \mathbf{I}(\chi_d^2 \ge \lambda(s)) \}$
- $\sigma_0^2(s) = p \operatorname{Var} \left\{ \chi_d^2 \ \mathbf{I}(\chi_d^2 \ge \lambda(s)) \right\}$
- $E\{T_n(s)|H_0\} = \mu_0(s)\{1 + O(\lambda_n(s)^{3/2}/\sqrt{n})\}$
- Var{ $T_n(s)|H_0$ } = $\sigma_0^2(s)$ {1 + o(1)}

Theorem 1. Under H_0 and some regularity conditions, if $\log p = o(n^{1/3})$, $\frac{T_n(s) - \mathrm{E}\{T_n(s)|H_0\}}{\sqrt{\mathrm{Var}\{T_n(s)|H_0\}}} \xrightarrow{d} N(0,1) \text{ as } n, p \to \infty.$

• Reject H_0 if $T_n(s) - \mu_0(s) > \sigma_0(s) z_\alpha$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Standardized thresholding statistic

$$\hat{T}_n(s) = \sigma_0(s)^{-1} \{ T_n(s) - \hat{\mu}(s) \}$$

• For a small positive constant ω , maximize $\hat{T}_n(s)$ over S_n

$$\mathcal{S}_n = \{s_j : s_j = n(D\hat{\beta}_j)'\hat{V}_j^{-1}(D\hat{\beta}_j)/(2\log p), s_j \leq 1-\omega, j \leq p\}$$

• Let $\mathcal{T}_n = \max_{s \in \mathcal{S}_n} \hat{\mathcal{T}}_n(s)$

3

(日)

Multi-level Thresholding Test (MTT)

Theorem 2. Under H_0 , some regularity conditions and $\log p = o(n^{1/3})$

$$P(a_p \mathcal{T}_n - b_p(\omega) \le x) \to \exp\{-\exp(-x)\}$$

where a_p and $b_p(\omega)$ are multi-log(p) terms.

- g_{α} : the upper α quantile of Gumbel distribution
- Reject H_0 if $\mathcal{T}_n > a_p^{-1}(g_\alpha + b_p(\omega))$

▲ロト ▲帰 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - - のへで

Power Analysis

$$egin{aligned} &\mathcal{H}_0: eta_j=eta_{j,0} \;\; ext{such that} \; Deta_{j,0}=0 \; ext{for all} \; j \;\; ext{vs.} \ &\mathcal{H}_a: eta_j\sim (1-\epsilon)
u_{eta_{j,0}}+\epsilon
u_{eta_{j,0}+eta_{j,a}} \;\; ext{for all} \; j, \end{aligned}$$

•
$$eta_{j, a} = r_j \sqrt{2(\log p)/n}$$
 and $\epsilon = p^{-\kappa}$

• the standardized signal strength:

$$r_s = \max_j r'_j D' V_j^{-1} Dr_j$$
 where $V_j = DI_j^{-1} D'$

æ

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Detection Boundary of Multi-level Thresholding (MTT)

$$\mathsf{DB}(\kappa) = \begin{cases} \kappa - 1/2 & \text{if } 1/2 < \kappa \le 3/4, \\ (1 - \sqrt{1 - \kappa})^2 & \text{if } 3/4 < \kappa < 1, \end{cases}$$

• For type I error rates $\alpha_n \to 0$ slowly as $n \to \infty$

• If
$$r_s < \mathsf{DB}(\kappa)$$
, power $ightarrow 0$

• If
$$r_{s} > \mathsf{DB}(\kappa)$$
, power $ightarrow 1$

Song Xi Chen (PKU)

Detection Lower Bound - linear model

• Linear regression model

$$y_{ij} = z'_i \beta_j + \varepsilon_{ij}$$
 for $\varepsilon_{ij} \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$.

• Design matrix $Z = (z_1, \cdots, z_n)'$

•
$$r_s = \lim_{n \to \infty} \max_j r'_j D' \{ D(Z'Z)^{-1} D' \}^{-1} Dr_j / (n\sigma^2)$$

- If $r_s < DB(\kappa)$, Type I Error + Type II Error $\rightarrow 1$ for ANY TEST
- MTT can attain the optimal detection boundary

Detection Lower Bound - general models

•
$$I_{\beta} = -\lim_{n \to \infty} \sum_{i=1}^{n} \mathrm{E} \frac{\partial^2}{\partial \beta \partial \beta'} \log f(y_{ij}; z_i, \theta) / n$$

•
$$r_0 = \max_j r'_j I_\beta r_j$$

•
$$r_s = \max_j r'_j D' V_j^{-1} Dr_j$$
 for $V_j = DI_j^{-1} D'$

- If $r_0 < DB(\kappa)$, Type I Error + Type II Error $\rightarrow 1$ for ANY TEST
- $r_0 \ge r_s$ with equality if ϕ_j is known and D takes the identity matrix
- MTT can attain the optimal detection boundary under this case

イロト 不得下 イヨト イヨト 二日

- Which genes are differentially expressed?
- Multiple testing: $H_{j,0}: D\beta_j = 0$ vs. $H_{j,a}: D\beta_j \neq 0$
- FDP: proportion of falsely rejected among all rejected nulls
- FDR: expectation of FDP
- Exceedance FDP rate: probability that FDP exceeds a specific value

Step-down Procedure

- Obtain p-value of Wald test for each dimension
- $\pi(j)$: the dimension label of the *j*th smallest p-value

•
$$W_j = \{\pi(j), \pi(j+1), \cdots, \pi(p)\}$$

- $H_{W_j,0}: D\beta_\ell = 0$ for all $\ell \in W_j$
- MTT on $H_{W_i,0}$ for each W_j at level α until no rejection

•
$$J = \min\{j : \mathcal{T}(W_j) \leq a_{p-j+1}^{-1}(g_\alpha + b_{p-j+1}(\omega))\}$$

• Step-down procedure rejects the first J-1 significant dimensions

イロト 不得 トイヨト イヨト 二日

Step-down Procedure + Augmentation

- Augment the rejection set of the step-down procedure by rejecting the next ⊥(J-1)c/(1-c) ≤ significant dimensions
- Genovese and Wasserman (2006): maximum test for $H_{W_{i},0}$

• Let
$$J^* = \min\{p, \lfloor (J-1)/(1-c) \rfloor\}$$

• Reject the first J^* significant dimensions

イロト 不得 トイヨト イヨト 二日

FDP Control and Power

- $p p_0$: total number of signals; S: true positives
- Standardized signal strength homogenous across dimensions

Theorem 3. Under H_a , some regularity conditions and $\log p = o(n^{1/3})$

• Proposed procedure: $P(\mathsf{FDP} > c) \leq \alpha$ as $n, p \rightarrow \infty$

•
$$S_{GW}/(p-p_0) \stackrel{p}{
ightarrow} 0$$
 when $r_s < 1$

•
$$S_{GW}/(p-p_0) \stackrel{p}{ o} 1$$
 at rate $p^{-(\sqrt{r_s}-\sqrt{\kappa})^2+o(1)}$ when $r_s>1$

• $S_{prop}/(p-p_0)$, $S_{BH}/(p-p_0)$ converge to 1 at rate $p^{-(\sqrt{r_s}-\sqrt{\kappa})^2+o(1)}$

Simulation

$$H_0: \beta_{j1} = \beta_{j2}$$
 for all j vs. $H_a: \beta_{j2} \stackrel{i.i.d.}{\sim} (1-\epsilon)\nu_{\beta_{j1}} + \epsilon\nu_{\beta_{j1}+\beta_a}$

- Balanced designs with two treatments, $z_i = (1,0)'$ or (0,1)'
- *n* = 40, *p* = 100, 400, 700, 1000, nominal size 5%

•
$$\epsilon = p^{-\kappa}$$
 and $\beta_{a} = \sqrt{(2r_{a}\log p)/n}$

- $\kappa = 0.6$ (7, 11, 14 and 16) and 0.55 (8, 15, 19 and 22)
- r_a was chosen differently to make $r_s \in (0,1)$
- $\beta_{11}, \cdots, \beta_{p1}$ were randomly generated, and kept fixed in simulation

Poisson and Binomial Regression

Poisson regression

- Response y_{ij} follow Poisson distribution with mean μ_{ij}
- Log link: $\log(\mu_{ij}) = z'_i \beta_j$ and $\phi = 1$

Binomial regression

- Response y_{ij} follow Binomial (m_{ij}, p_{ij})
- Logistic link: $p_{ij} = \exp(z'_i\beta_j) / \{\exp(z'_i\beta_j) + 1\}$
- m_{ij} is randomly chosen from the integers between 20 and 40.

Negative Binomial Regression

•
$$\mathrm{E}(y_{ij}) = \mu_{ij}$$
 and $\mathrm{Var}(y_{ij}) = \mu_{ij} + \mu_{ij}^2/\phi_j$

• Log link:
$$\log(\mu_{ij}) = z'_i \beta_j$$

- The dispersion parameter $\phi_j \stackrel{i.i.d.}{\sim}$ Unif(3,5)
- The MLE $\hat{\phi}_j$ over estimates $\phi_j \Rightarrow$ size distortion
- Use parametric bootstrap to correct the bias of $\hat{\phi}_i$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

• Single normal random effect

$$y_{1ij} \sim Bin(m_{1ij}, p_{1ij})$$
 and $y_{2ij} \sim Bin(m_{2ij}, p_{2ij})$,
 $Logit(p_{1ij}) = \beta_{1j} + \gamma_{ij}$ and $Logit(p_{2ij}) = \beta_{2j} + \gamma_{ij}$

•
$$\gamma_{ij} \sim N(0,\sigma_j^2)$$
 for $i=1,\cdots,n/2, \ \sigma_j=0.1$

• m_{1ij}, m_{2ij} is randomly chosen from the integers between 20 and 40.

3

(日)

Poisson and Negative Binomial Regression Under H_0 , $\{\beta_{j1}\}_{j=1}^p \stackrel{i.i.d.}{\sim} unif(2,5)$

38 / 46

(日) (同) (三) (三)

Binomial and Logistic-Normal Regression Under H_0 , $\{\beta_{j1}\}_{j=1}^{p} \stackrel{i.i.d.}{\sim} unif(-1, 2.5)$

39 / 46

▲ @ ▶ < ∃ ▶</p>

- ∢ ⊒ →

Power Comparison

multi-level thresholding, HC and minimum p-value test for H_0 under Poisson

Image: A math a math

- ∢ ≣ →

୬ ୦ ୦ 40 / 46

Signal Identification: FDP and False Negatives Negative binomial under H_a with n = 40 and p = 10000

Song Xi Chen (PKU)

Signal Detection for HD Cond Dist

3

Maize RNA-seq Study

- NB model $\log(\mu_{i,j}) = \nu_j + X'_{g,i}\alpha_j + X'_{r,i}\beta_j + X'_{b,i}\gamma_j$
- α_j , β_j , γ_j : treatment effects for genotype, replication and barcoding
- Genotype effect:

$$H_0: \alpha_{1,j} = \alpha_{2,j} = \alpha_{3,j} = 0$$
 for all j vs.
 $H_a:$ at least one component of α_j not equal to 0 for some j .

• The difference between the genotypes $B73 \times Mo17$ and $Mo17 \times B73$:

$$H_0: \alpha_{2,j} = \alpha_{3,j}$$
 for all j vs. $H_a: \alpha_{2,j} \neq \alpha_{3,j}$ for some j .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Multi-Threshold Test for the Overall Genotype Effect

Multi-Threshold Statistics

 $T_n = 2826.1$

At 5% nominal level,

Reject H_0 if $T_n > 3.09$

- Strong evidence in favor of H_a
- Consistent with the findings from the P-value histogram

< A > < > > <

- ∢ ≣ →

Multi-Threshold Test for Difference between MB and BM

- Multi-Threshold Statistics
 - $T_n = 22.5$
- Reject H_0 since $\mathcal{T}_n > 3.09$
- Some genes DE between genotypes MB and BM

< /⊒ ► < ≡ ►

Identify 32 DE genes

- Rare and faint signal detection for count data
- Multi-level thresholding test under GLM
- Step down procedure for signal identification
- Extension to GLMM

3

イロト イポト イヨト イヨト

Reference

QIU, Y., CHEN, S. X. AND NETTLETON, D. (2016). Detecting Rare and Faint Signals via Thresholding Maximum Likelihood Estimators. *Accepted by The Annals of Statistics.*

DONOHO, D. AND JIN, J. (2004). Higher Criticism for Detecting Sparse Heterogeneous Mixtures. *The Annals of Statistics*, **32**, 962 - 994.

FAN, J. (1996). Test of Significance based on Wavelet Thresholding and Neyman's Truncation. *Journal of the American Statistical Association*, **91**, 674 - 688.

GENOVESE, C., AND WASSERMAN, L. (2006). Exceedance Control of the False Discovery Proportion. *Journal of the American Statistical Association*, **101**, 1408 - 1417.

HALL, P. AND JIN, J. (2010). Innovated Higher Criticism for Detecting Sparse Signals in Correlated Noise. *The Annals of Statistics*, **38**, 1686-1732.

ZHONG, P.-S., CHEN, S. X. AND XU, M. (2013). Tests Alternative to Higher Criticism for High Dimensional Means under Sparsity and Column-wise Dependence. *The Annals of Statistics*, **41**, 2820 - 2851.