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Detecting Rare and Faint Nonzero Means

X1, · · · ,Xn
i .i .d .⇠ N(µ, Ip⇥p), p dimensional random vectors

µ = E(Xi ) = (µ1, · · · , µp)0

Donoho and Jin (2004) test for zero mean against rare and faint Ha

H0 : µj = 0 for all j vs. Ha : µj ⇠ (1� ✏)⌫0 + ✏⌫µa

Rareness: few dimensions with nonzero mean, ✏ = p�,  2 (1/2, 1)

Faintness: weak nonzero mean, µa =
p
(2r log p)/n, r 2 (0, 1)

Most challenging situation for signal detection
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Optimal Detection Boundary

DB() =

⇢
� 1/2 if 1/2 <   3/4,
(1�

p
1� )2 if 3/4 <  < 1,
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Ingster (1997)

r < DB(): Type I Error +
Type II Error ! 1 for ANY
TEST

r > DB(): there exists a
test such that Type I Error +
Type II Error ! 0
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Higher Criticism (HC) test

Donoho and Jin (2004) proposed Higher Criticism (HC) test

{p(j)}: ordered p-values for testing each dimension

HC ⇤ = max
1jp/2

p
p[j/p � p(j)]/[p(j)(1� p(j))]

1/2

Reject H0 if HC ⇤ >
p
2 log log p

HC test is able to attain the optimal detection boundary
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Further Works on Testing Means

Hall and Jin (2008, 2010): data dependence and Innovated HC test

Apply HC on b⌃�1Xi

Zhong, Chen and Xu (2013): L2 thresholding test, more powerful

Mn(s) =
Pp

j=1 n(X̄j/sj)2I
�
|X̄j |/sj >

p
(2s log p)/n

�

Mn = max0<s<1{Mn(s)� µn(s)}/�n(s)

Chen, Li and Zhong (2016): thresholding with data transformation

Apply L2 thresholding on b⌃�1Xi

Fan (1996): goodness-of-fit test
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Settings of the Problem

Collect p responses variables from n observations under m treatments

yij : the value of the jth response variable in the ith observation

i = 1, · · · , n and j = 1, · · · , p

Let zi be the explanatory variables for the ith observation

zi = (zi ,1, · · · , zi ,m)0

m is the number of explanatory variables, fixed
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Generalized Linear Models

Suppose yij is within the exponential family

µij = E(yij) and �j is the dispersion parameter

Link function: g(µij) = ⌘ij = z 0i�j

�j = (�j ,1, · · · ,�j ,m)0: treatment e↵ect for the jth response variable
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Any Signal in the Regression Coe�cient?

Interested in testing the hypotheses

H0 : D�j = 0 for all j vs. Ha : not all the D�j = 0.

Dd⇥m is a known matrix
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Maize RNA-seq Experiment

Maize gene expressions are measured by RNA-Seq

4 genotypes: B73, Mo17, B73⇥Mo17 (BM) and Mo17⇥B73 (MB)

4 tissues: cortex, stele, elongation zone, meristematic zone

4 barcodings: AR001, AR003, AR008 and AR009

4 replications
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Genotypes and Tissues of Corn Root
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Strip-plot Experimental Design
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Negative-Binomial Model

Consider the tissue-specific analysis for the stele tissue

Denote Yj = (y1,j , · · · , y16,j) to be the expression level of the jth gene

NB model for yi ,j with mean µi ,j and dispersion parameter �j such that

log(µi ,j) = ⌫j + X 0
g ,i↵j + X 0

r ,i⇠j + X 0
b,i�j ,

↵j , ⇠j , �j : treatment e↵ects for genotype, replication and barcoding

Satisfying ↵j ,4 = �j ,4 = �j ,4 = 0, baseline
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Hypotheses

Any of the genes is di↵erentially expressed across di↵erent genotypes?

Genotype e↵ect:

H0 : ↵1,j = ↵2,j = ↵3,j = 0 for all j vs.

Ha : at least one component of ↵j not equal to 0 for some j .

Di↵erence between B73⇥Mo17 (BM) and Mo17⇥B73 (MB):

H0 : ↵2,j = ↵3,j for all j vs. Ha : ↵2,j 6= ↵3,j for some j .
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P-Value of Overall Genotype E↵ect
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P-Value of the Di↵erence Between BM and MB

How to detect rare and faint genetic signals in RNA-seq data?
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e↵ects

Song Xi Chen (PKU) Signal Detection for HD Cond Dist 15 / 46



Sparse and Weak Ha

Consider the hypotheses with rare and faint signals

H0 : �j = �j ,0 such that D�j ,0 = 0 for all j vs.

Ha : �j ⇠ (1� ✏)⌫�j,0 + ✏⌫�j,0+�j,a for all j ,

For x 2 Rm, ⌫x denotes the point mass distribution on x

Under Ha, �j comes from a binary super-population

✏ = p� for  2 (1/2, 1),  specify the sparsity

�j ,a = rj
p

2(log p)/n for rj 2 (0, 1)m and Drj 6= 0

{rj} specify the signal strength
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Regularize MLEs by Thresholding

(�̂0
j , �̂j)0: MLEs to the jth response variable

�̂j = (�̂j ,1, · · · , �̂j ,m)0 the estimated treatment e↵ects

D�̂j MLE of D�j

Most of the responses have no signal

Truncate those small kD�̂jk to 0 and keep the large ones
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Thresholding Statistic

Let nIj be the Fisher Information matrix of �j

Îj = Ij(�̂j , �̂j) is the estimated Fisher Information matrix

V̂j/n = DÎ�1
j D 0/n is the estimated asymptotic variance of D�̂j

For a constant s 2 (0, 1), the thresholding statistic is

Tn(s) =
pX

j=1

n(D�̂j)
0V̂�1

j (D�̂j)I
�
kV̂�1/2

j D�̂jk >
p

(2s log p)/n
�
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Moderate Deviation Expansion for MLE

Lemma 1. Suppose X1, · · · ,Xn are independent with pdf fi (xi , ✓)

✓ is m dimensional unknown parameter, ✓0 is the truth

✓̂ be the MLE of ✓

Under some regularity conditions, for wn ⌧ n1/6

The 2rd derivative of log fi (xi , ✓) is Lipschitz continuous
MGFs of the 1st and 2rd derivative of log fi (Xi , ✓) exist around 0

P
�
|
p
nÎ (✓̂ � ✓0)| � wn

�
= P

�
|N(0, Im)| � wn

�
(1 + O(w3

n/
p
n)).
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Moderate Deviation Expansion for MLE

Cramér moderate deviation for MLE under non identically distr data

Tail distribution of MLEs can be approximated by that of N(0, Im)

For i.i.d. data, Inglot and Kallenberg (2003)

lim
n!1

w�2
n log

�
P
�p

n|I 1/2✓ (✓̂ � ✓0)| � wn

� 
= �1/2

We provide the error rate of the normal approximation

Needed for the analysis of the thresholding approach
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Dependence among Responses

Let Yi = (yi1, · · · , yip)0 and Fb
a (Yi ) = �{Yij : a  j  b}

⇢-mixing coe�cients: ⇢i (k) = sup
m2Z

⇢{Fm
�1(Yi ),F1

m+k(Yi )}.

Assume Yi is a ⇢-mixing sequence, and

⇢i (k)  C↵k for a constant ↵ 2 (0, 1)

Only require the condition holds for some ordering of response variables
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Mean and Variance of Tn(s) under H0

Tail distribution of
p
nV̂�1/2

j D�̂j be approximated by that of N(0, Id)

Write �n(s) = 2s log p, assuming log p = o(n1/3)

µ0(s) = pE
�
�2
d I(�2

d � �(s))
 

�2
0(s) = pVar

�
�2
d I(�2

d � �(s))
 

E{Tn(s)|H0} = µ0(s){1 + O(�n(s)3/2/
p
n)}

Var{Tn(s)|H0} = �2
0(s){1 + o(1)}
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Single Level Thresholding

Theorem 1. Under H0 and some regularity conditions, if log p = o(n1/3),

Tn(s)� E{Tn(s)|H0}p
Var{Tn(s)|H0}

d! N(0, 1) as n, p ! 1.

Reject H0 if Tn(s)� µ0(s) > �0(s)z↵
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Multi-level Thresholding

Standardized thresholding statistic

T̂n(s) = �0(s)
�1{Tn(s)� µ̂(s)}

For a small positive constant !, maximize T̂n(s) over Sn

Sn = {sj : sj = n(D�̂j)
0V̂�1

j (D�̂j)/(2 log p), sj  1� !, j  p}

Let Tn = maxs2Sn T̂n(s)
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Multi-level Thresholding Test (MTT)

Theorem 2. Under H0, some regularity conditions and log p = o(n1/3)

P
�
apTn � bp(!)  x

�
! exp{� exp(�x)}

where ap and bp(!) are multi-log(p) terms.

g↵: the upper ↵ quantile of Gumbel distribution

Reject H0 if Tn > a�1
p (g↵ + bp(!))
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Power Analysis

H0 : �j = �j ,0 such that D�j ,0 = 0 for all j vs.

Ha : �j ⇠ (1� ✏)⌫�j,0 + ✏⌫�j,0+�j,a for all j ,

�j ,a = rj
p

2(log p)/n and ✏ = p�

the standardized signal strength:

rs = max
j

r 0jD
0V�1

j Drj where Vj = DI�1
j D 0
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Detection Boundary of Multi-level Thresholding (MTT)

DB() =

⇢
� 1/2 if 1/2 <   3/4,
(1�

p
1� )2 if 3/4 <  < 1,
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For type I error rates ↵n ! 0
slowly as n ! 1

If rs < DB(), power ! 0

If rs > DB(), power ! 1
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Detection Lower Bound - linear model

Linear regression model

yij = z 0i�j + "ij for "ij
i .i .d .⇠ N(0,�2).

Design matrix Z = (z1, · · · , zn)0

rs = lim
n!1

max
j

r 0jD
0{D(Z 0Z )�1D 0}�1Drj/(n�2)

If rs < DB(), Type I Error + Type II Error ! 1 for ANY TEST

MTT can attain the optimal detection boundary
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Detection Lower Bound - general models

I� = � limn!1
Pn

i=1 E
@2

@�@�0 log f (yij ; zi , ✓)/n

r0 = max
j

r 0j I�rj

rs = max
j

r 0jD
0V�1

j Drj for Vj = DI�1
j D 0

If r0 < DB(), Type I Error + Type II Error ! 1 for ANY TEST

r0 � rs with equality if �j is known and D takes the identity matrix

MTT can attain the optimal detection boundary under this case
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Signal Identification

Which genes are di↵erentially expressed?

Multiple testing: Hj ,0 : D�j = 0 vs. Hj ,a : D�j 6= 0

FDP: proportion of falsely rejected among all rejected nulls

FDR: expectation of FDP

Exceedance FDP rate: probability that FDP exceeds a specific value
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Step-down Procedure

Obtain p-value of Wald test for each dimension

⇡(j): the dimension label of the jth smallest p-value

Wj = {⇡(j),⇡(j + 1), · · · ,⇡(p)}

HWj ,0 : D�` = 0 for all ` 2 Wj

MTT on HWj ,0 for each Wj at level ↵ until no rejection

J = min{j : T (Wj)  a�1
p�j+1(g↵ + bp�j+1(!))}

Step-down procedure rejects the first J � 1 significant dimensions
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Step-down Procedure + Augmentation

Augment the rejection set of the step-down procedure by rejecting the
next b(J � 1)c/(1� c)c significant dimensions

Genovese and Wasserman (2006): maximum test for HWj ,0

Let J⇤ = min{p, b(J � 1)/(1� c)c}

Reject the first J⇤ significant dimensions
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FDP Control and Power

p � p0: total number of signals; S : true positives

Standardized signal strength homogenous across dimensions

Theorem 3. Under Ha, some regularity conditions and log p = o(n1/3)

Proposed procedure: P(FDP > c)  ↵ as n, p ! 1

SGW /(p � p0)
p! 0 when rs < 1

SGW /(p � p0)
p! 1 at rate p�(

p
rs�

p
)2+o(1) when rs > 1

Sprop/(p � p0), SBH/(p � p0) converge to 1 at rate p�(
p
rs�

p
)2+o(1)
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Simulation

H0 : �j1 = �j2 for all j vs. Ha : �j2
i .i .d .⇠ (1� ✏)⌫�j1

+ ✏⌫�j1+�a

Balanced designs with two treatments, zi = (1, 0)0 or (0, 1)0

n = 40, p = 100, 400, 700, 1000, nominal size 5%

✏ = p� and �a =
p

(2ra log p)/n

 = 0.6 (7, 11, 14 and 16) and 0.55 (8, 15, 19 and 22)

ra was chosen di↵erently to make rs 2 (0, 1)

�11, · · · ,�p1 were randomly generated, and kept fixed in simulation
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Poisson and Binomial Regression

Poisson regression

Response yij follow Poisson distribution with mean µij

Log link: log(µij) = z 0i�j and � = 1

Binomial regression

Response yij follow Binomial(mij , pij)

Logistic link: pij = exp(z 0i�j)/{exp(z 0i�j) + 1}

mij is randomly chosen from the integers between 20 and 40.
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Negative Binomial Regression

E(yij) = µij and Var(yij) = µij + µ2
ij/�j

Log link: log(µij) = z 0i�j

The dispersion parameter �j
i .i .d .⇠ Unif(3, 5)

The MLE �̂j over estimates �j ) size distortion

Use parametric bootstrap to correct the bias of �̂j
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Logistic-Normal Mixed Regression

Single normal random e↵ect

y1ij ⇠ Bin(m1ij , p1ij) and y2ij ⇠ Bin(m2ij , p2ij),

Logit(p1ij) = �1j + �ij and Logit(p2ij) = �2j + �ij

�ij ⇠ N(0,�2
j ) for i = 1, · · · , n/2, �j = 0.1

m1ij ,m2ij is randomly chosen from the integers between 20 and 40.
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Poisson and Negative Binomial Regression
Under H0, {�j1}pj=1

i.i.d.⇠ unif(2, 5)

Poisson regression, n = 40

Index = (10κ,100ra)
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Binomial and Logistic-Normal Regression
Under H0, {�j1}pj=1

i.i.d.⇠ unif(�1, 2.5)

Binomial regression, n = 40

Index = (10κ,100ra)
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Logistic normal regression, n = 40

Index = (10κ,100ra)
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Power Comparison
multi-level thresholding, HC and minimum p-value test for H0 under Poisson

n = 20, p = 1000

Index = (Number of Signals 10,10ra)
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Signal Identification: FDP and False Negatives
Negative binomial under Ha with n = 40 and p = 10000

False Discovery Rate

Index = (Number of Signals 10,10ra)
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Maize RNA-seq Study

NB model log(µi ,j) = ⌫j + X 0
g ,i↵j + X 0

r ,i�j + X 0
b,i�j

↵j , �j , �j : treatment e↵ects for genotype, replication and barcoding

Genotype e↵ect:

H0 : ↵1,j = ↵2,j = ↵3,j = 0 for all j vs.

Ha : at least one component of ↵j not equal to 0 for some j .

The di↵erence between the genotypes B73⇥Mo17 and Mo17⇥B73:

H0 : ↵2,j = ↵3,j for all j vs. Ha : ↵2,j 6= ↵3,j for some j .
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Multi-Threshold Test for the Overall Genotype E↵ect
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Reject H0 if Tn > 3.09
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Multi-Threshold Test for Di↵erence between MB and BM

Stele

Pvalue

Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0
50
0

10
00

15
00

20
00

25
00

30
00

Multi-Threshold Statistics

Tn = 22.5

Reject H0 since Tn > 3.09

Some genes DE between
genotypes MB and BM

Identify 32 DE genes

Song Xi Chen (PKU) Signal Detection for HD Cond Dist 44 / 46



Conclusion

Rare and faint signal detection for count data

Multi-level thresholding test under GLM

Step down procedure for signal identification

Extension to GLMM
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