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1.1 Background

An Illustrative Dose Response Example

y = θ0 + θ1 x + error = f T (x)θ + error , θT = (θ1, θ2)

E(error) = 0 var(error) = σ2 N i.i.d. observations
On X = [−1, 1], what is the optimal design for estimating

(1) θ0?
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1.1 Background

An Illustrative Dose Response Example

y = θ0 + θ1 x + error = f T (x)θ + error , θT = (θ1, θ2)

E(error) = 0 var(error) = σ2 N i.i.d. observations
On X = [−1, 1], what is the optimal design for estimating

(1) θ0?

(2) θ1?

(3) both θ0 and θ1?

Answer for (2) comes from

var(θ̂1) =
σ2

∑N
i=1(xi − x̄)2

≥
σ2

∑N
i=1 x

2
i

≥
σ2

N
.
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1.1 Background

An Illustrative Dose Response Example

y = θ0 + θ1 x + error = f T (x)θ + error , θT = (θ1, θ2)

E(error) = 0 var(error) = σ2 N i.i.d. observations
On X = [−1, 1], what is the optimal design for estimating

(1) θ0?

(2) θ1?

(3) both θ0 and θ1?

Answer for (2) comes from

var(θ̂1) =
σ2

∑N
i=1(xi − x̄)2

≥
σ2

∑N
i=1 x

2
i

≥
σ2

N
.

For (2) and (3), take equal number of observations at ±1.

For (1) answer is any design with x̄ = 0.
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1.2 A Typical Setup for a Design Problem

a given compact design space X

a parametric model with unknown parameters

errors are normally and independently distributed

observations have with constant variance

a pre-determined sample size N

QUESTION

Given X , f (x), N and an optimality criterion φ, how best to select
the N points from the design space X to observe the responses y?
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1.3 Approximate designs (Kiefer, 1958-1982)

Optimal Approximate Design Problem: How many points are
needed to optimize the criterion? Find k

Where are the optimal design (or support) points?
Find x1, x2, · · · , xk ∈ X

What is the optimal proportion of the total observations to take at
each of these points?
Find w1,w2, · · · ,wk such that 0 < wi < 1, i = 1, 2, · · · , k and
w1 + w2+ · · ·+ wk = 1.

The implemented design takes ni = [Nwi ] observations at
xi , i = 1, 2, · · · , k and rounded so that n1 + n2 + · · ·+ nk = N.
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1.3 Approximate designs (Kiefer, 1958-1982)

Optimal Approximate Design Problem: How many points are
needed to optimize the criterion? Find k

Where are the optimal design (or support) points?
Find x1, x2, · · · , xk ∈ X

What is the optimal proportion of the total observations to take at
each of these points?
Find w1,w2, · · · ,wk such that 0 < wi < 1, i = 1, 2, · · · , k and
w1 + w2+ · · ·+ wk = 1.

The implemented design takes ni = [Nwi ] observations at
xi , i = 1, 2, · · · , k and rounded so that n1 + n2 + · · ·+ nk = N.

Optimal Exact Design Problem finds positive integers ni
directly subject to n1 + n2 + · · ·+ nk = N.
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1.4 Advantages of Approximate Designs

When the optimality criteria is formulated as a convex function of
the design:
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1.4 Advantages of Approximate Designs

When the optimality criteria is formulated as a convex function of
the design:

There are algorithms available for generating many types of
optimal designs.

These algorithms can be shown to converge to the optimum.

Theory provides an equivalence theorem for confirming
optimality of the generated design or assessing its proximity to
the optimum using an efficiency lower bound.

Does not require an endless list of tables describing optimal
design for each model, each N and each type of criterion

When the design space X has dimension 1 or 2, a simple way
to verify whether a design is optimal among all designs on X

is to*********draw pictures!
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1.5 Optimal Approximate Designs on X = [−1, 1]

D-optimal designs for estimating model parameters and making
inference on the mean response at a given dose level.

design
criterion linear model quadratic model

D-optimality xi −1 1 −1 0 1
wi 1/2 1/2 1/3 1/3 1/3

Extrapolation xi −1 1 −1 0 1
at dose level
z = 2 wi 1/4 3/4 1/7 3/7 3/7
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1.5 Optimal Approximate Designs on X = [−1, 1]

D-optimal designs for estimating model parameters and making
inference on the mean response at a given dose level.

design
criterion linear model quadratic model

D-optimality xi −1 1 −1 0 1
wi 1/2 1/2 1/3 1/3 1/3

Extrapolation xi −1 1 −1 0 1
at dose level
z = 2 wi 1/4 3/4 1/7 3/7 3/7

Next, designs for nonlinear models are complicated because
they depend on the parameters we want to estimate!
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1.6 Locally D-optimal Designs for the Logistic Model
on X = [−1, 1] (Ford’s PhD thesis, 1972)

log
π(x)

1− π(x)
= θ1 + θ2x , θT = (θ1, θ2), θ1 > 0 & θ2 > 0.
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log
π(x)

1− π(x)
= θ1 + θ2x , θT = (θ1, θ2), θ1 > 0 & θ2 > 0.

Let a solve exp(z) = (z + 1)/(z − 1) and let u∗ solve

exp(θ1 + θ2u) =
2 + (u + 1)θ2
−2 + (u + 1)θ2

.
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1.6 Locally D-optimal Designs for the Logistic Model
on X = [−1, 1] (Ford’s PhD thesis, 1972)

log
π(x)

1− π(x)
= θ1 + θ2x , θT = (θ1, θ2), θ1 > 0 & θ2 > 0.

Let a solve exp(z) = (z + 1)/(z − 1) and let u∗ solve

exp(θ1 + θ2u) =
2 + (u + 1)θ2
−2 + (u + 1)θ2

.

condition locally D-optimal design

{θ : θ2−θ1 ≥ a} {
a − θ1
θ2

,
−a− θ1

θ2
;
1

2
,
1

2
}

{θ : θ2−θ1 < a, exp(θ1+θ2) ≤
θ2 + 1

θ2 − 1
} {−1, u∗;

1

2
,
1

2
}

{θ : exp(θ1+θ2 >
θ2 + 1

θ2 − 1
} {−1, 1;

1

2
,
1

2
}
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log
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Corrected results in Sebastiani and Settimi (JSPI, 1997)
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1.7 By Brute Force and Guess Work

Consider the logistic model on a given design space X given by

log
π(x)

1− π(x)
= θ0 + θ1x ,

where θT = (θ0, θ1) ∈ Θ and Θ is known.

Design Criterion: Find ξ∗ = arg minξ maxθ∈Θ log |M(ξ, θ)|−1.
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= θ0 + θ1x ,

where θT = (θ0, θ1) ∈ Θ and Θ is known.

Design Criterion: Find ξ∗ = arg minξ maxθ∈Θ log |M(ξ, θ)|−1.

There is no known algorithm that is guaranteed to find a
minimax optimal design.
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1.7 By Brute Force and Guess Work

Consider the logistic model on a given design space X given by

log
π(x)

1− π(x)
= θ0 + θ1x ,

where θT = (θ0, θ1) ∈ Θ and Θ is known.

Design Criterion: Find ξ∗ = arg minξ maxθ∈Θ log |M(ξ, θ)|−1.

There is no known algorithm that is guaranteed to find a
minimax optimal design.
King & Wong (Biometrics, 2002) found minimax D-optimal
designs when Θ = [0, 3.5] × [1, 3.5] and X is unrestricted:

xi − 0.35 0.62 1.39 2.11 2.88 3.85

wi 0.18 0.21 0.11 0.11 0.21 0.18
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1.8 Sensitivity Plot of the Generated Design
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1.8 Sensitivity Plot of the Generated Design

References: Wong (Biometrika, 1992), Wong & Cook
(JRSSB, 1993), Berger, King & Wong (Psychometrika, 1994)

Nature-Inspired metaheuristic algorithms for finding optimal designs
12 / 55



Motivation from Optimal Design Problems
Nature-inspired Metaheuristic Algorithms

Optimal Designs via PSO and a Quick Demonstration
Closing Thoughts

1.9 Time required to discretize a 10-dimensional search
space with different number of equally spaced points using

a Mac laptop 2.6 GHz Intel Core i5

number of equally spaced total number of CPU time required
points per covariate space grid points to generate the grid ( secs)

2 210 = 1024 0.0067

3 310 = 59049 0.2302

4 410 = 1, 048, 576 3.1136

5 510 = 9, 765, 625 27.5529

6 610 = 60, 466, 176 172.2832

7 710 = 282, 475, 249 848.2922
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1.9 Time required to discretize a 10-dimensional search
space with different number of equally spaced points using

a Mac laptop 2.6 GHz Intel Core i5

number of equally spaced total number of CPU time required
points per covariate space grid points to generate the grid ( secs)

2 210 = 1024 0.0067

3 310 = 59049 0.2302

4 410 = 1, 048, 576 3.1136

5 510 = 9, 765, 625 27.5529

6 610 = 60, 466, 176 172.2832

7 710 = 282, 475, 249 848.2922

There are immediate implications....
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1.10 Implications

Current design algorithms such as Cocktail-based algorithms:
Yu (Stat. & Comp., 2011) and Yang, et al., (JASA, 2014)
may not work for high dimensional problems.

Nature-Inspired metaheuristic algorithms for finding optimal designs
14 / 55



Motivation from Optimal Design Problems
Nature-inspired Metaheuristic Algorithms

Optimal Designs via PSO and a Quick Demonstration
Closing Thoughts

1.10 Implications

Current design algorithms such as Cocktail-based algorithms:
Yu (Stat. & Comp., 2011) and Yang, et al., (JASA, 2014)
may not work for high dimensional problems.

What about Bayesian optimal designs, other than independent
uniform prior distribution on [−1, 1]? Even finding optimal
designs for additive models on [−10, 1]k instead of [−1, 1]k

becomes quickly problematic.
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1.10 Implications

Current design algorithms such as Cocktail-based algorithms:
Yu (Stat. & Comp., 2011) and Yang, et al., (JASA, 2014)
may not work for high dimensional problems.

What about Bayesian optimal designs, other than independent
uniform prior distribution on [−1, 1]? Even finding optimal
designs for additive models on [−10, 1]k instead of [−1, 1]k

becomes quickly problematic.

Mathematical programming tools that require the search space
be discretized, such as semi-definite programming (Papp,
JASA, 2011, Duarte & Wong, Stat. & Comp., 2014, Duarte,
Wong & Atkinson, J. of Multi. Ana., 2015 and Duarte, Wong
& Dette, Stat. & Comp., 2017) may become inapplicable.
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1.11 Mathematistry

In Praise of Simplicity not Mathematistry! Ten Simple

Powerful Ideas for the Statistical Scientist

Roderick J. LITTLE

Ronald Fisher was by all accounts a first-rate mathematician, but he saw himself as a scientist, not a mathematician, and he railed against

what George Box called (in his Fisher lecture) “mathematistry.” Mathematics is the indispensable foundation of statistics, but for me the real

excitement and value of our subject lies in its application to other disciplines. We should not view statistics as another branch of mathematics

and favor mathematical complexity over clarifying, formulating, and solving real-world problems. Valuing simplicity, I describe 10 simple

and powerful ideas that have influenced my thinking about statistics, in my areas of research interest: missing data, causal inference, survey

sampling, and statistical modeling in general. The overarching theme is that statistics is a missing data problem and the goal is to predict

unknowns with appropriate measures of uncertainty.

KEY WORDS: Calibrated Bayes; Causal inference; Measurement error; Missing data; Penalized spline of propensity.

1. INTRODUCTION: THE UNEASY RELATIONSHIP

BETWEEN STATISTICS AND MATHEMATICS

American Statistical Association President, Sastry Pantula,

recently proposed renaming the Division of Mathematical Sci-

ences at the U.S. National Science Foundation as the Division of

Mathematical and Statistical Sciences. Opponents, who viewed

statistics as a branch of mathematics, questioned why statistics

should be singled out for special treatment.

Data can be assembled in support of the argument that statis-

tics is different—for example, the substantial number of aca-

demic departments of statistics and biostatistics, the rise of the

statistics advanced placement examination, and the substantial

number of undergraduate statistics majors. But the most im-

portant factor for me is that statistics is not just a branch of

mathematics. It is an inductive method, defined by its applica-

tions to the sciences and other areas of human endeavor, where

we try to glean information from data.

The relationship between mathematics and statistics is some-

what uneasy. Since the mathematics of statistics is often viewed

as basically rather pedestrian, statistics is rather low on the totem

pole of mathematical subdisciplines. Statistics needs its mathe-

matical parent, since it is the indispensable underpinning of the

subject. On the other hand, unruly statistics has ambitions to

reach beyond the mathematics fold; it comes alive in applica-

and medicine, and with increasing influence recently on the

hard sciences such as astronomy, geology and physics.

The scientific theme of modern statistics fits the character of

its most influential developer, the great geneticist, R. A. Fisher,

who seemed to revolutionize the field of statistics in his spare

time! Fisher’s momentous move to Rothampsted Experimental

Station rather than academia underlined his dedication to sci-

ence. Though an excellent mathematician, Fisher viewed him-

self primarily as a scientist, and disparaged rivals like Neyman

and Pearson as mere “mathematicians.”

George Box’s engaging Fisher lecture focused on the links

between statistics and science (Box 1976). He wrote:

My theme then will be first to show the part that [Fisher]

being a good scientist played in his astonishing ingenuity,

originality, inventiveness, and productivity as a statistician,

and second to consider what message that has for us now.

Box attributed Fisher’s hostility to mathematicians to distaste

for what he called “mathematistry,” which he defined as

[. . .] the development of theory for theory’s sake, which,

since it seldom touches down with practice, has a tendency

to redefine the problem rather than solve it. Typically, there

has once been a statistical problem with scientific relevance

but this has long since been lost sight of. (Box 1976)
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2.1 Why Nature-Inspired Metaheuristic Algorithms?
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amazing, magical

does not need to discretize the search space
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solely reliance on a mathematical approach can be limiting

can help find analytic solution or formula of optimal design for
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2.3 Usage of Nature-Inspired Metaheuristic Algorithms

Recent trends indicate rapid growth of nature-inspired
optimization in academia and industry. (Whitacre, 2011,
Computing, Vol. 93, 121-133.)

Survival of the flexible: explaining the recent dominance of
nature-inspired optimization within a rapidly evolving world.
(Whitacre, 2011, Computing, Vol. 93, 135-146.)
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Computing, Vol. 93, 121-133.)

Survival of the flexible: explaining the recent dominance of
nature-inspired optimization within a rapidly evolving world.
(Whitacre, 2011, Computing, Vol. 93, 135-146.)

Can lead in the new frontier of research: solve optimization
problems with millions or billions of variables (Foreword by
editors in a special issue in Information Sciences, 2015, Vol.
316, 437-439.)
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2.4 Metaheuristic Algorithms

From Wikipedia, the free encyclopedia: Metaheuristic

In computer science, metaheuristic designates a computational
method that optimizes a problem by iteratively trying to improve a
candidate solution with regard to a given measure of quality.
Metaheuristics make few or no assumptions about the problem
being optimized and can search very large spaces of candidate
solutions. However, metaheuristics do not guarantee an optimal
solution is ever found. Many metaheuristics implement some form
of stochastic optimization.
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In computer science, metaheuristic designates a computational
method that optimizes a problem by iteratively trying to improve a
candidate solution with regard to a given measure of quality.
Metaheuristics make few or no assumptions about the problem
being optimized and can search very large spaces of candidate
solutions. However, metaheuristics do not guarantee an optimal
solution is ever found. Many metaheuristics implement some form
of stochastic optimization.

Our interest here is nature-inspired metaheuristic algorithms

Particle Swarm Optimization (PSO) method is based on
animal instincts (Eberhard & Kennedy, IEEE, 1995)
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2.5 PSO (Kennedy & Eberhard, 1995)
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2.6 PSO: School of Fish
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2.7 Basic Equations and Tuning Parameters in PSO

Two defining equations:
vi+1 = ωivi + c1β1(pi − xi ) + c2β2(pg − xi ),

xi+1 = xi + vi .

xi and vi : position and velocity for the i th particle
β1 and β2: random vectors
ωi : inertia weight that modulates the influence of the last velocity
c1: cognitive learning parameter
c2: social learning parameter
pi : Best position for the i th particle (local optimal)
pg : Best position for all particles (global optimal)

For many applications, c1 = c2 = 2 seem to work well and
usually 20− 50 particles will suffice (Kennedy, IEEE, 1997).
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2.8 Other Nature-Inspired Meta-Heuristic Algorithms

Ant colony (1991)
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Differential Evolutionary (1997)
Bees algorithm (2006)
Artificial bee colony algorithm (2007)
Saplings growing-up algorithm (2007)
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Intelligent water drops algorithm (2009)
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Firefly algorithm (2009, 2010)
Bat algorithm (2010)
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2.9 Cuckoo search (Yang & Deb, 2010)

Cuckoo search is a metaheuristic algorithm inspired by cuckoos’
parasitic breeding behavior.

Figure 1: Balmer, 2009
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2.10 Examples of Variants of Particle Swarm Optimization

Hierarchical PSO (Applications of Evol. Comput., 2004)

Quantum PSO (Evolutionary Computation, 2004)

Unified PSO (Advances in Natural Computation, 2005)

Tournament PSO (IEEE Symposium Proceedings, 2007)

Ladder PSO (Applied Soft Computing, 2009)

Simplified PSO (Natural Computation, 2010)

Strength Pareto PSO (Evolutionary Computation, 2010)

Set-Based PSO (IEEE Transactions on Evol. Comp., 2010)

Catfish PSO (Artificial Intelligence Research, 2012)

Compact PSO (Information Sciences, 2013)

Human Behavior-based PSO (Scientific World Journal, 2014)

Selectively Informed PSO (Scientific Reports, 2014)

Competitive Swarm Optimizer (Cybernetika, 2014)

Fast PSO (Soft Computing, 2015)

Galactic Swarm Optimization (Applied Soft Computing, 2016)
Nature-Inspired metaheuristic algorithms for finding optimal designs
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2.11 Resources for Metaheuristic Optimization
and Nature-Inspired Metaheuristic Codes

Scholarpedia, the peer-reviewed open-access encyclopedia:
http://www.scholarpedia.org/article/Metaheuristic Optimization
Xin-She Yang’s 2008 book and updated in 2010:

 

  2008       2010 (2
nd

 edition) 
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2.12 Applications of PSO to Find Optimal Designs

Qiu, J. H., Chen, R. B., Wang, W.C. & Wong, W. K. (2014). Using Animal Instincts to Design Efficient

Biomedical Studies. Swarm and Evolutionary Computation Journal.

Chen, R. B., Wang, W.C., Chang, & Wong, W. K. (2014). Minimax Optimal Designs via Particle Swarm

Optimization Methods. Statistics & Computing.

Wong, W. K., Wang, W.C., Chang, C. & Chen, R. B. (2015). Optimal Designs for Mixture Models using

Particle Swarm Optimization Methods. PlosOne.

Phoa, K. H. F., Chen, R. B., Wang, W. C. & Wong, W. K. (2015). Optimizing Two-level Supersaturated

Designs by Particle Swarm. Technometrics.

Kim, S. & Wong, W. K. (2017). Extended Two-stage Adaptive Designs for Phase II Clinical Trials.

Statistical Methods in Medical Research.

Chen, P. Y., Chen, R. B., Tung, H. C. and Wong, W. K. (2017). Standardized Maximim D-optimal

Designs for Enzyme Kinetic Inhibition Models. Chemometrics and Intelligent Laboratory System.

Lukemire, J., Mandal, A. and Wong, W. K. (2018). d-QPSO: A Quantum-Behaved Particle Swarm

Technique for Finding D-Optimal Designs for Models with Mixed Factors and a Binary Response.

Technometrics. Nature-Inspired metaheuristic algorithms for finding optimal designs
27 / 55



Motivation from Optimal Design Problems
Nature-inspired Metaheuristic Algorithms

Optimal Designs via PSO and a Quick Demonstration
Closing Thoughts

Outline

1 Motivation from Optimal Design Problems

2 Nature-inspired Metaheuristic Algorithms

3 Optimal Designs via PSO and a Quick Demonstration

4 Closing Thoughts

Nature-Inspired metaheuristic algorithms for finding optimal designs
28 / 55



Motivation from Optimal Design Problems
Nature-inspired Metaheuristic Algorithms

Optimal Designs via PSO and a Quick Demonstration
Closing Thoughts

3.1 Application I: Standardized Maximin Designs

Locally optimal designs can be sensitive to nominal values.

The maximin approach assumes a known plausible region Θ
for the model parameters θ. These maximin or minimax
optimal designs maximize the minimal efficiency among all
θ ∈ Θ, see King & Wong (Biometrics, 2000), and Biedermann
and Dette (JASA, 2003).

The standardized maximin D-optimal design ξ∗SM maximizes

Ψ(ξ) = min
θ∈Θ

{
|M(ξ, θ)|

supγ |M(γ, θ)|

}1/p

,

where M(γ, θ) is the p × p Fisher Information matrix for the
nonlinear model with parameter θ from design γ.

Nature-Inspired metaheuristic algorithms for finding optimal designs
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3.2 Application I: Standardized Maximin Designs (cont’d)

Chen, Chen & Wong (Chemometrics and Intelligent
Laboratory System, 2018) applied PSO and found locally
standardized maximin D-optimal designs for 4 common inhibit
models used in enzyme kinetic studies.

Contrary to common assumptions, not all locally D-optimal
designs for these 3 or 4-parameter models with 2 factors are
minimally supported.

Using information of the PSO-generated designs, we were able
to derive formulae of such optimal designs for the various
inhibit models, including some with 3 nonlinear parameters.
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3.3 Application II: Adaptive Designs

In Simon 2-Stage design for Phase II trials, user first selects two
efficacy rates of interest p0 and p1 with p0 < p1.

Set up hypothesis: HO : p ≤ p0 versus H1 : p > p1
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3.3 Application II: Adaptive Designs

In Simon 2-Stage design for Phase II trials, user first selects two
efficacy rates of interest p0 and p1 with p0 < p1.

Set up hypothesis: HO : p ≤ p0 versus H1 : p > p1

Determine 4 positive integers subject to type 1 and type 2
error constraints:

number of patients in Stage 1
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3.3 Application II: Adaptive Designs

In Simon 2-Stage design for Phase II trials, user first selects two
efficacy rates of interest p0 and p1 with p0 < p1.

Set up hypothesis: HO : p ≤ p0 versus H1 : p > p1

Determine 4 positive integers subject to type 1 and type 2
error constraints:

number of patients in Stage 1
number of responders in Stage 1
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3.3 Application II: Adaptive Designs

In Simon 2-Stage design for Phase II trials, user first selects two
efficacy rates of interest p0 and p1 with p0 < p1.

Set up hypothesis: HO : p ≤ p0 versus H1 : p > p1

Determine 4 positive integers subject to type 1 and type 2
error constraints:

number of patients in Stage 1
number of responders in Stage 1
number of (additional) patients in Stage 2
number of (additional) responders in Stage 2

Apply a greedy search to solve the discrete optimization
problem relating Binomial probabilities and error rates
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3.3 Application II: Adaptive Designs

In Simon 2-Stage design for Phase II trials, user first selects two
efficacy rates of interest p0 and p1 with p0 < p1.

Set up hypothesis: HO : p ≤ p0 versus H1 : p > p1

Determine 4 positive integers subject to type 1 and type 2
error constraints:

number of patients in Stage 1
number of responders in Stage 1
number of (additional) patients in Stage 2
number of (additional) responders in Stage 2

Apply a greedy search to solve the discrete optimization
problem relating Binomial probabilities and error rates

Lin & Shih (Biometrics, 2004) generalized the problem to 2
alternative hypotheses, and we extended it to 3 sets of
alternative hypotheses.
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3.4 Application II: A Discrete Optimization Problem
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3.5 Test limits of PSO

Simon’s 2-stage design has 4 parameters and the criterion was to
minimize the expected sample size, or minimize the maximum
sample size for the whole trial.

Goal: Extend Simon’s 2 stage designs for 3 alternatives

target efficacy rates
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3.5 Test limits of PSO

Simon’s 2-stage design has 4 parameters and the criterion was to
minimize the expected sample size, or minimize the maximum
sample size for the whole trial.

Goal: Extend Simon’s 2 stage designs for 3 alternatives

target efficacy rates

Kim & Wong (SMMR, 2018) applied a modified version of
PSO and searched over a constrained 10-dimensional space of
positive integers and found optimal designs that a greedy
algorithm cannot.

Nature-Inspired metaheuristic algorithms for finding optimal designs
33 / 55



Motivation from Optimal Design Problems
Nature-inspired Metaheuristic Algorithms

Optimal Designs via PSO and a Quick Demonstration
Closing Thoughts

3.6 A 10 Integer-valued Parameters Problem to Optimize

Problem is to optimize θT = (s1, r1, q1, n1, s, l , r , m, q, n) given
error for testing each of the three possible alternative hypotheses
rates and the criterion is one of minimizing the maximum (or
expected) sample sizes.

The parameters l ,m, n are the total number of patients required
for the entire trial corresponding to the alternative hypotheses,
H11: p > p1, H12: p > p2, and H13: p > p3, respectively.

If true response probability is p, similar argument in Simon’s
original paper shows the probability of failing to reject H0 is

G(θ|p) = B(s1, n1, p) +

min(r1,s)∑

x=s1+1

b(x, n1, p)B(s − x, l2, p) +

min(q1,r)∑

x=r1+1

b(x, n1, p)B(r − x,m2, p)

+

min(q,n1)∑

x=q1+1

b(x, n1, p)B(q − x, n2, p),

where l = l1 + l2, m = m1 + m2 and n = n1 + n2 . For our application,Nature-Inspired metaheuristic algorithms for finding optimal designs
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3.7 Application 3:Optimal Designs for GLMs with Mixed
Factors

Table 1: The left panel is the theoretical design from Yang, Zhang &
Huang (Statistica Sinica, 2011) assuming one continuous factor has a
unbounded range. The right panel is the D-optimal design from PSO
with a large boundary [−10, 10].

X1 X2 X3 pi
−2 −1 −0.456 0.125
−2 −1 −2.544 0.125
−2 1 −1.456 0.125
−2 1 −3.544 0.125
2 −1 1.544 0.125
2 −1 −0.544 0.125
2 1 0.544 0.125
2 1 −1.544 0.125

X1 X2 X3 pi
−2 −1 −2.544 0.25
−2 1 −1.457 0.25
2 −1 1.544 0.25
2 1 −1.544 0.25
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3.8 The PSO-generated design when the continuous factor
has a small range [−2, 2] (Lukemire, Mandal & Wong,

Technometrics, 2018).
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3.8 The PSO-generated design when the continuous factor
has a small range [−2, 2] (Lukemire, Mandal & Wong,

Technometrics, 2018).

When theory is not available, PSO methodology can help.
When we restrict the final continuous factor to its natural
setting PSO finds the following design.

Nature-Inspired metaheuristic algorithms for finding optimal designs
36 / 55



Motivation from Optimal Design Problems
Nature-inspired Metaheuristic Algorithms

Optimal Designs via PSO and a Quick Demonstration
Closing Thoughts

3.8 The PSO-generated design when the continuous factor
has a small range [−2, 2] (Lukemire, Mandal & Wong,

Technometrics, 2018).

When theory is not available, PSO methodology can help.
When we restrict the final continuous factor to its natural
setting PSO finds the following design.

X1 X2 X3 wi

−2 −1 −2.000 0.212
−2 1 −2.000 0.043
−2 1 −1.649 0.166
2 −1 1.745 0.214
2 −1 −0.748 0.075
2 1 −1.748 0.214
2 1 0.748 0.075
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3.9 Minimally supported designs for logistic model with 2
additive factors and an intercept term
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3.10 Application 4: Multiple-objective Optimal Designs

Experiments may have multiple objectives of varying
importance. For example, extrapolate and estimate
parameters at the same time or estimate parameters but there
is model uncertainty (Dette, Melas & Wong, JASA, 2001)
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3.10 Application 4: Multiple-objective Optimal Designs

Experiments may have multiple objectives of varying
importance. For example, extrapolate and estimate
parameters at the same time or estimate parameters but there
is model uncertainty (Dette, Melas & Wong, JASA, 2001)

Want to find a design that delivers user-specified efficiencies
under the various objectives with more important objectives
having higher efficiencies requirements
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3.10 Application 4: Multiple-objective Optimal Designs

Experiments may have multiple objectives of varying
importance. For example, extrapolate and estimate
parameters at the same time or estimate parameters but there
is model uncertainty (Dette, Melas & Wong, JASA, 2001)

Want to find a design that delivers user-specified efficiencies
under the various objectives with more important objectives
having higher efficiencies requirements

Cook & Wong (JASA, 1994) proposed a graphical method of
constructing a dual-objective optimal design for linear
regression problems; Clyde & Chaloner (JASA, 1996) extended
the method to several objectives for nonlinear models
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3.11 Dual Objective Optimal Designs

Constrained Optimal Designs
i.e. design that satisfies a set of user-specified efficiency
requirements; eg. minimize φ2(ξ) subject to φ1(ξ) ≤ c .
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3.11 Dual Objective Optimal Designs

Constrained Optimal Designs
i.e. design that satisfies a set of user-specified efficiency
requirements; eg. minimize φ2(ξ) subject to φ1(ξ) ≤ c .

Compound Optimal Designs
i.e. design that minimizes a fixed convex combination of
convex functionals: φ(ξ|λ) = λφ1(ξ) + (1− λ)φ2(ξ).
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3.11 Dual Objective Optimal Designs

Constrained Optimal Designs
i.e. design that satisfies a set of user-specified efficiency
requirements; eg. minimize φ2(ξ) subject to φ1(ξ) ≤ c .

Compound Optimal Designs
i.e. design that minimizes a fixed convex combination of
convex functionals: φ(ξ|λ) = λφ1(ξ) + (1− λ)φ2(ξ).

Compound Optimal Designs are equivalent to Constrained
Optimal Designs: Plot efficiencies of each compound optimal
versus λ, λ ∈ [0, 1].
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3.11 Dual Objective Optimal Designs

Constrained Optimal Designs
i.e. design that satisfies a set of user-specified efficiency
requirements; eg. minimize φ2(ξ) subject to φ1(ξ) ≤ c .

Compound Optimal Designs
i.e. design that minimizes a fixed convex combination of
convex functionals: φ(ξ|λ) = λφ1(ξ) + (1− λ)φ2(ξ).

Compound Optimal Designs are equivalent to Constrained
Optimal Designs: Plot efficiencies of each compound optimal
versus λ, λ ∈ [0, 1].

Prioritize the importance of the objectives and apply theory
for single-objective study (Cook & Wong, JASA, 1994).
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3.12 Efficiency Plots
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3.13 A Quick Demonstration using the Hill’s model

Additional references include: (Stigler, JASA, 1971, Studden,
JASA, 1980, Cook & Wong, JASA, 1992, Clyde & Chaloner,
JASA, 1994, Huang & Wong, Biometrics, 1998, Zhu & Wong,
J. Biopharm. Stat., 2000, Stat. in Med., 2001, Imhof &
Wong , Biometrics, 2000).
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3.13 A Quick Demonstration using the Hill’s model

Additional references include: (Stigler, JASA, 1971, Studden,
JASA, 1980, Cook & Wong, JASA, 1992, Clyde & Chaloner,
JASA, 1994, Huang & Wong, Biometrics, 1998, Zhu & Wong,
J. Biopharm. Stat., 2000, Stat. in Med., 2001, Imhof &
Wong , Biometrics, 2000).

We now present a demo to find single and multiple-objective
locally optimal approximate designs using different
nature-inspired metaheuristic algorithms. The 3 objectives of
interest are to estimate the ED50, minimum effective dose
(MED) or parameters in a 4-parameter logistic model.
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3.13 A Quick Demonstration using the Hill’s model

Additional references include: (Stigler, JASA, 1971, Studden,
JASA, 1980, Cook & Wong, JASA, 1992, Clyde & Chaloner,
JASA, 1994, Huang & Wong, Biometrics, 1998, Zhu & Wong,
J. Biopharm. Stat., 2000, Stat. in Med., 2001, Imhof &
Wong , Biometrics, 2000).

We now present a demo to find single and multiple-objective
locally optimal approximate designs using different
nature-inspired metaheuristic algorithms. The 3 objectives of
interest are to estimate the ED50, minimum effective dose
(MED) or parameters in a 4-parameter logistic model.

Bayesian optimal approximate designs can likewise be
constructed and verified using an equivalence theorem.
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3.11 Mean function of the Hill model

 E
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3.12 Three-Objective Optimal Designs

Assume nominal values, dose interval and the minimum effect
sought δ are given for the Hill’s model. For a user-selected vector
λ = (λ1, λ2, λ3) with λi ≥ 0, i = 1, 2, 3 and λ1+λ2+λ3 = 1, the
sought multiple-objective optimal design is the approximate design
that maximizes

λ1log(EffD(ξ)) + λ2log(EffED50(ξ)) + λ3log(EffMED(ξ))

= λ10.25log(|M(ξ,Θ)|)− λ2log(Var(ÊD50))− λ3log(Var(M̂ED)).

Here ED50 and MED are the median effective dose and the
user-specified minimum effective dose.
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3.12 Three-Objective Optimal Designs

Assume nominal values, dose interval and the minimum effect
sought δ are given for the Hill’s model. For a user-selected vector
λ = (λ1, λ2, λ3) with λi ≥ 0, i = 1, 2, 3 and λ1+λ2+λ3 = 1, the
sought multiple-objective optimal design is the approximate design
that maximizes

λ1log(EffD(ξ)) + λ2log(EffED50(ξ)) + λ3log(EffMED(ξ))

= λ10.25log(|M(ξ,Θ)|)− λ2log(Var(ÊD50))− λ3log(Var(M̂ED)).

Here ED50 and MED are the median effective dose and the
user-specified minimum effective dose.

Reference: Hyun, W. & Wong, W. K. (2015). Multiple-objective
optimal designs for studying the dose response function and
interesting dose levels. International Journal of Biostatistics.
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3.13 Sensitivity Plot of a Robust Bayesian Multiple
Objective Optimal Design with uniform prior distributions
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3.14 Current Work
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3.14 Current Work

Given a fixed time interval, a fixed number of observations, a
statistical model and an optimality criterion, design questions
for a longitudinal study are
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3.14 Current Work

Given a fixed time interval, a fixed number of observations, a
statistical model and an optimality criterion, design questions
for a longitudinal study are

how many time points is optimal?
what are the sampling time points to observe the correlated
responses?
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3.14 Current Work

Given a fixed time interval, a fixed number of observations, a
statistical model and an optimality criterion, design questions
for a longitudinal study are

how many time points is optimal?
what are the sampling time points to observe the correlated
responses?
do I need replicates and if so how to distribute the replicates?
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3.14 Current Work

Given a fixed time interval, a fixed number of observations, a
statistical model and an optimality criterion, design questions
for a longitudinal study are

how many time points is optimal?
what are the sampling time points to observe the correlated
responses?
do I need replicates and if so how to distribute the replicates?

Convergence Issues of PSO

Nature-Inspired metaheuristic algorithms for finding optimal designs
45 / 55



Motivation from Optimal Design Problems
Nature-inspired Metaheuristic Algorithms

Optimal Designs via PSO and a Quick Demonstration
Closing Thoughts

3.14 Current Work

Given a fixed time interval, a fixed number of observations, a
statistical model and an optimality criterion, design questions
for a longitudinal study are

how many time points is optimal?
what are the sampling time points to observe the correlated
responses?
do I need replicates and if so how to distribute the replicates?

Convergence Issues of PSO

Finding optimal designs for nonlinear models with many
factors and interaction terms (high dimension models)
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3.15 A locally D-optimal design found by Twice
Competitive Swarm Optimizer for a five-factor Poisson

model with all pairwise interaction terms (Zhang and
Wong, IEEE, 2018, under review)

x1 x2 x3 x4 x5 wi

1.000 1.000 0.685 1.000 -0.730 0.033
1.000 1.000 0.430 -1.000 -1.000 0.062
1.000 -1.000 -1.000 1.000 1.000 0.010
1.000 0.011 1.000 1.000 -1.000 0.062
1.000 1.000 1.000 -0.460 -1.000 0.063
1.000 1.000 0.677 1.000 -1.000 0.057
0.404 1.000 0.670 1.000 -1.000 0.058
1.000 -0.470 1.000 1.000 -0.581 0.061
0.406 1.000 1.000 -0.454 -1.000 0.063
1.000 -0.479 0.508 1.000 -1.000 0.062
-1.000 -1.000 -1.000 1.000 1.000 0.048
1.000 1.000 1.000 1.000 -0.724 0.056
1.000 0.405 1.000 0.127 -1.000 0.062
0.390 -0.012 1.000 1.000 -1.000 0.062
1.000 1.000 1.000 -0.601 -0.691 0.063
1.000 1.000 1.000 1.000 -1.000 0.061
0.337 1.000 1.000 1.000 -0.686 0.057
0.411 1.000 1.000 1.000 -1.000 0.059

With small weights, a large sample is required to implement the design.
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3.16 Optimal Discrimination Designs for 2 or 3 multi-factor
polynomial models without a null model assumption (Yue,

Vanderburgh & Wong, under review)
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4.1 Closing Thoughts

Remember the ”No Free Lunch Theorem”
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Remember the ”No Free Lunch Theorem”

How to find efficient algorithms for a class of problems of
interest?
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Remember the ”No Free Lunch Theorem”

How to find efficient algorithms for a class of problems of
interest?

PSO is a general optimization tool, not limited to minimizing
convex functionals or for finding efficient designs
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4.1 Closing Thoughts

Remember the ”No Free Lunch Theorem”

How to find efficient algorithms for a class of problems of
interest?

PSO is a general optimization tool, not limited to minimizing
convex functionals or for finding efficient designs

Find minimum bias designs, minimum mean-square error
(MSE) designs (Stokes, Mandal & Wong, 2017, under prep.)

Nature-Inspired metaheuristic algorithms for finding optimal designs
49 / 55



Motivation from Optimal Design Problems
Nature-inspired Metaheuristic Algorithms

Optimal Designs via PSO and a Quick Demonstration
Closing Thoughts

4.1 Closing Thoughts

Remember the ”No Free Lunch Theorem”

How to find efficient algorithms for a class of problems of
interest?

PSO is a general optimization tool, not limited to minimizing
convex functionals or for finding efficient designs

Find minimum bias designs, minimum mean-square error
(MSE) designs (Stokes, Mandal & Wong, 2017, under prep.)

Identify parameter redundancy in mixture distributions (Park
& Wong, 2017, under prep.)
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4.1 Closing Thoughts

Remember the ”No Free Lunch Theorem”

How to find efficient algorithms for a class of problems of
interest?

PSO is a general optimization tool, not limited to minimizing
convex functionals or for finding efficient designs

Find minimum bias designs, minimum mean-square error
(MSE) designs (Stokes, Mandal & Wong, 2017, under prep.)

Identify parameter redundancy in mixture distributions (Park
& Wong, 2017, under prep.)

Can hybridize with mathematical programming tools and
traditional methods (such as simplex methods,Interior Point,
etc) and speed up the search for the optimum
(Garcia-Rodenas, Fidalgo-Lopez & Wong, 2018, under review)
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4.2 PSO for Solving a System of Nonlinear Equations

Let xT = (x1, x2, .., xn). We want to solve
f1(x1, x2, .., xn) = 0,
f2(x1, x2, .., xn) = 0,

.

.
and

fr (x1, x2, .., xn) = 0.
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4.2 PSO for Solving a System of Nonlinear Equations

Let xT = (x1, x2, .., xn). We want to solve
f1(x1, x2, .., xn) = 0,
f2(x1, x2, .., xn) = 0,

.

.
and

fr (x1, x2, .., xn) = 0.

If x∗ is the global minimum of F (x) =

r∑

i=1

fi
2(x), then x∗

solves the above system of equations. (Jabeipour, et al.,
2011, Computers and Mathematics with Applications)
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4.2 PSO for Solving a System of Nonlinear Equations

Let xT = (x1, x2, .., xn). We want to solve
f1(x1, x2, .., xn) = 0,
f2(x1, x2, .., xn) = 0,

.

.
and

fr (x1, x2, .., xn) = 0.

If x∗ is the global minimum of F (x) =

r∑

i=1

fi
2(x), then x∗

solves the above system of equations. (Jabeipour, et al.,
2011, Computers and Mathematics with Applications)

Alternatively, assume r = n and define F (x) =

r∑

i=1

|fi (x)| and

find its global minimum. (Wang, et al., 2009, IEEE Xplore)
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4.6 Conclusions

There are many more meta-heuristic algorithms, for example,
Imperialist Competitive Algorithm (Masoudi, Holling & Wong,
CSDA, 2016)
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4.6 Conclusions

There are many more meta-heuristic algorithms, for example,
Imperialist Competitive Algorithm (Masoudi, Holling & Wong,
CSDA, 2016)

Incorporate optimization classes from Engineering and
Computer Science into the statistics training curriculum
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4.6 Conclusions

There are many more meta-heuristic algorithms, for example,
Imperialist Competitive Algorithm (Masoudi, Holling & Wong,
CSDA, 2016)

Incorporate optimization classes from Engineering and
Computer Science into the statistics training curriculum

More?
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4.6 Conclusions

There are many more meta-heuristic algorithms, for example,
Imperialist Competitive Algorithm (Masoudi, Holling & Wong,
CSDA, 2016)

Incorporate optimization classes from Engineering and
Computer Science into the statistics training curriculum

More?

Workshop on Particle Swarm Optimization and Evolutionary
Computation (20 - 21 Feb 2018) at IMS, NUS (in this room).

http://ims.nus.edu.sg/events/2018/wpso/index.php
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