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Big Data everywhere
I Microarray, GWAS, DNA sequencing, ...

I Image processing

I Tick-by-tick financial data

I Large-scale social networks

I ...
White House “Big Data Research and Development Initiative”, March 2012
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Sparsity: a direct result of “large p”

Exact meanings vary, but are similar:

I parameter sparsity (e.g., normal means model)

I transform coefficient sparsity (e.g., wavelet)

I graph sparsity (e.g., Graphical model)

I sparsity in the eigen-space (e.g., spike model)

Exploiting sparsity has become a major strategy for

analyzing Big Data
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Weak signals: a direct result of “small n”

e.g. Why most published research findings are false (Ioannidis, 2001, PLoS Med)

(Signal strength)2 ∝ n ∝ $ or manpower

I Example: GWAS, Rare Variation Association
Study (RVAS), Gravitational wave.

I An important but largely neglected notion
I Partially explains

I irreproducibility of many published works
I many problems remain unsolved by increasing p
I theoretical optimism vs. practical pessimism
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Rare/Weak signals

I Rare. only a small fraction of returns contain
tradable signals, others are merely noise

I Weak. signals are individually weak

Figure is downloaded from Wikipedia
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Normal means model

X = µ + z , z ∼ N(0,Σ), Σ ∈ Rp,p

I There are p experiments (p is presumably large)

I Xj : z-score from experiment j

I µj : (unknown) true effect in experiment j
A nonzero µj means a true discovery (“signal”)

I Rare: only a small fraction of µj ’s are nonzero

I Weak: each µj is small in magnitude

LSI for Rare/Weak Signals 6 / 100



Four interconnected problems

I Global testing. Are there any signals at all?

I Classification. Using in-sample to select a few
useful features for out-sample prediction

I Clustering. Classification when no training
sample is available

I Signal recovery. Identify signals individually
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Overview I. Higher Criticism for global
testing

I Basic ideas and phase transition:

Donoho D, Jin J (2004) Higher criticism for detecting sparse

heterogeneous mixtures. Annals of Statistics 32(3) 962-994.

I Review on ideas, methods, and applications:

Donoho D, Jin J (2015) Higher Criticism for Large-Scale Inference:

especially for Rare and Weak effects. Statistical Science 30(1)

1-25 (Invited Review Paper).

I Review on methods and theory, especially phase
transition:

Jin J, Ke T Z (2015) Rare and Weak effects in Large-Scale

Inference: methods and phase diagrams. Statistica Sinica 26 1-34

(Invited Review Paper).
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Overview, II. Classification and clustering

I Part 2. Fisher’s LDA for Classification

I HC for threshold choice in feature selection
I estimating Ω = Σ−1

I Part 3. clustering by Influential-Features PCA

I PCA applied to a few carefully selected features
I HC for threshold choice in feature selection
I use Efron’s empirical null to minimize the gap

between theory and data analysis

I Part 4. Graphlet screening for variable selection

I connected to Innovated HC
I exploits “local graphical” structure for screening
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Part I: Global Testing
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Global testing
Given a large number of

I summarizing t-scores or z-scores

I or summarizing P-values

I or regression coefficients

Test
H0 : contains no signals

vs.
H1 : contains Rare/Weak signals

Normal means model: X ∼ N(µ,Σ)

H0 : µ = 0, H1 : some µj ’s are nonzero

LSI for Rare/Weak Signals 10 / 100



Simple methods and their limitations

Chi-square test:

T =
∑p

j=1 X
2
j

I Works when many Xj ’s contain signals
I Low SNR when signals are rare, because most
Xj ’s are merely noise

Minimum P-value (minP) test:†

T = max1≤j≤p |Xj |

I Works for rare signals
I Sub-optimal for Rare and very Weak signals

† It is equivalent to using the smallest P-value as the test statistic
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1.1. Higher Criticism (HC)
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Higher Criticism in Tukey’s Lecture Notes

John W. Tukey (1915-2002)
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Tukey’s story

I A young scientist administers 250 uncorrelated
tests, where 11 were significant at the 5% level.

I Question: Is this surprising (e.g., any of the
test is truly significant)?

I Answer: No, we expect

250× 5% = 12.5 significances at 5% level
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Tukey’s Higher Criticism
Abstraction: given P-values π1, π2, . . . , πp, test

H
(p)
0 : all p (individual) tests contain nothing but noise

H
(p)
1 : some of the (individual) tests contain signals

HCp,.05 =
√
p

[
(Fraction Significant at .05)− .05√

.05× .95

]
I Reject global null H

(p)
0 ⇐⇒ HCp,.05 ≥ 2 (say)

I For Tukey’s story:

HCp,.05 =
11− 12.5√

250× .05× 0.95
= −.43 =⇒ Accept H

(p)
0
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Donoho&Jin’s Higher Criticism

Donoho and Jin (2004)

HC ∗p = max0≤α≤ 1
2

{
√
p

[
(Fraction Significant at α)− α√

α(1− α)

]}

I A way to combine sparse signals

I Sensitive to “unusually many” moderately
strong/weak signals

I Similar to Anderson-Darling statistic (Anderson and

Darling (1952); on goodness-of-fit) but different
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Implementation of Higher Criticism (HC)

We only need P-values to implement HC

I Sort P-values:

π(1) < π(2) < . . . < π(p)

I Calculate the k-th HC-score

HCp,k =
√
p

[
k/p − π(k)√
π(k)(1− π(k))

]
,

I Take maximum:

HC+
p = max

{1≤k≤p/2, π(k)≥log(p)/p}
{HCp,k}
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Illustration
P-values (left two panels) and HCp,K (right two panels) under the null
(top two panels) and the alternative (bottom two panels)
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Limiting distribution of HC under null
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Higher Criticism
Gumbel

CDF: HC (simulated) vs. Gumbel

I bp =
√

2 log log(p)

I cp =
√

2 log log(p) +
1
2
[log log log(p)]− log(4π)]

I bpHC
+
p − cp =⇒ Standard

Gumbel dist. (CDF: e−e
−x

)
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Critical value

Let h(p, α) be the critical value that satisfies

P(HC+
p ≥ h(p, α)) = α.

A good approximation of h(p, α) is

hGum(p, α) =
1

bp

[
cp−log log(

1

1− α
)

]
≈
√

2 log log(p)

p 103 5× 103 2.5× 104 1.25× 105

α = .05 3.17 (3.00) 3.22 (3.08) 3.26 (3.14) 3.30 (3.19)
α = .01 3.95 (3.83) 3.97 (3.87) 3.96 (3.90) 3.99 (3.93)
α = .005 4.29 (4.18) 4.28 (4.20) 4.26 (4.22) 4.28 (4.24)
α = .001 5.03 (5.00) 5.02 (4.98) 4.98 (4.97) 4.98 (4.97)
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1.2. Rare/Weak signal model, phase
transitions
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Rare/Weak signal model

X = µ + z , z ∼ N(0,Σ), Σ ∈ Rp,p

H
(p)
0 : µ = 0 vs. H

(p)
1 : µj

iid∼ (1−εp)ν0+εpντp

I εp = p−β, 1/2 < β < 1 (very rare)
I τp =

√
2r log(p), 0 < r < 1 (weak)

I Ω = Σ−1 sparse and known

Subtlety of the problem:
√
pX̄ ∼ N(p

1
2
−βτp, 1), p

1
2
−βτp ≈ 0 since β > 1/2

max
j
|Xj | ∼

√
2 log(p) under null, but τp <

√
2 log(p)
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Detecting RW signals by HC

To apply HC, we need to choose the level α:

I obtain P-values by

πk = P(N(0, 1) ≥ Xk), k = 1, 2, . . . , p

I obtain HC+
p by three previous steps

I reject null if

HC+
p ≥ h(p, αp), αp: Type I error,

for an αp → 0 slowly enough (e.g., αp = 1
log(p))
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Phase transition

Define standard phase function

ρ(β) =


0, 0 < β < 1/2

β − 1
2 ,

1
2 < β < 3

4

(1−
√

1− β)2, 3
4 < β < 1

Theorem 1. As p →∞,

I If r < ρ(β), for any test, (Type I + Type II) errors → 1

I If r > ρ(β), both Type I and Type II errors of HC → 0.

I Such a result does not hold for many tests (X̄ , χ2, MinP)
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Phase diagram (signal detection, Σ = Ip)
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Signal recovery (variable selection)

I Goal: identify which µj ’s are nonzero

I Hamming loss

Hamm(µ̂, µ) =

p∑
j=1

1{sign(µ̂j) 6= sign(µj)}

I Three regions:
I Exactly recoverable: Hamm(µ̂, µ) < 1
I Almost fully recoverable: 1 ≤ Hamm(µ̂, µ)� pεp
I No recoverable: Hamm(µ̂, µ) � pεp

I A variable selector µ̂ (for Σ = Ip)

µ̂j = Xj1
{
|Xj | >

√
2t log(p)

}
† Here sign(·) takes values in {−1, 0, 1}
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Phase diagram: a more complete story
Extended to more complicate cases (e.g., Σ 6= Ip, regression models); see

the review paper by Jin and Ke (2015)
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1.3. Innovated Higher Criticism
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HC for detecting RW signals (Σ 6= Ip)

y = µ + z , z ∼ N(0,Σ), Σ ∈ Rp,p

We only need P-values to implement HC

I Transform the data: For a p × p matrix A,

y 7→ ỹ ≡ Ay ∼ N(Aµ,AΣA′)

I Compute the marginal P-values

ỹj ∼ N(0, (AΣA′)jj) under the null =⇒ πj

I Plug π1, π2, ..., πp into the HC procedure
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Different transforms

I Brute-force:

y ∼ N(µ,Σ), πj = P(N(0,Σjj) ≥ yj)

I Whitening:

ỹ = Σ−
1
2y ∼ N(Σ−

1
2µ, Ip), πj = P(N(0, 1) ≥ ỹj)

I Innovated Tranform (recall Ω = Σ−1):

ỹ = Σ−1y ∼ N(Ωy ,Ω), πj = P(N(0,Ωjj) ≥ ỹj)
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Comparison of SNR

Innovated Transform y 7→ Σ−1y yields largest SNR
at k1, k2, . . . , km
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Transform. Σ is tridiagonal, and µ has 3 nonzeros
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Why Innovated Transform the right choice
I A is row-wise sparse =⇒ Aµ is still sparse

I A yields a large SNR simultaneously for j

SNRj =
(Aµ)j√
(AΣA)jj

≈ Ajj√
(AΣA)jj

µj

a′j : j-th row of A. Let ξ = Σ1/2aj and η = Σ−1/2ej

Ajj√
(AΣA)jj

=
a′jej√
a′jΣaj

=
ξ′η

‖ξ‖
,

maximize
=⇒ ξ ∝ η =⇒ aj ∝ Σ−1ej

I A = Σ−1 maximizes the SNR for all j

I Innovated HC: Innovated transform + HC
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Correlations: Curse or blessing?
I Noise correlation is a blessing: “neighboring entries”

contain useful information
I This can be seen by comparing the phase diagrams

(Left: Σ = Ip. Right: Σ is Toeplitz with unit diagonals)
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Other signal detection settings

HC is ideal for: out of many units or cases, most are null or

baseline effects; non-null effects are Rare and individually Weak

I Matrix testing (eigenvalue-based HC)

I Network anomaly detection (degree-based HC)

I Genome-Wide Association Study

I DNA Copy Number Variants (CNV)

I Cosmology and Astronomy

I Disease surveillance

I Anomaly detection

I Estimate the proportion of non-null effects (Kuiper Belt Objects)

Ke (2017); Mukherjee et al (2016); Sabatti et al (2008); Jeng et al

(2012); Bennett et al. (2012); McFowland et al (2013); Saligrama and

Zhao (2012); Meinshausen and Rice (2004)
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Summary of Part I

Higher Criticism for global testing

I only need P-values to use HC

I especially effective RW settings

I flexible, useful in many different settings

I correlation among noise is a blessing

I Innovated Transform is marginal regression in
disguise and maximize SNR at k1, k2, . . . , km

I HC achieves the optimal phase diagrams
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Reference

I For HC basics, overview, and applications, see

Donoho D, Jin J (2015) Higher Criticism for Large-Scale Inference:

especially for Rare and Weak effects. Statistical Science 30(1)

1-25 (Invited Review Paper).

I For phase diagrams, innovated transform, and
connections to regression models, see

Jin J, Ke T Z (2015) Rare and Weak effects in Large-Scale

Inference: methods and phase diagrams. Statistica Sinica 26 1-34

(Invited Review Paper).
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Part II: Classification

LSI for Rare/Weak Signals 33 / 100



Two-class classification

I n training samples (Xi ,Yi)
I Xi ∼ N(Yi · µ, Σ): feature vectors in Rp

I Yi = ±1: class labels

I Goal. given test sample vector X , predict class
label Y = 1 or Y = −1

(Pictures here are downloaded online)
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Fisher’s Linear Discriminant Analy. (LDA)

L(X ) =

p∑
j=1

w(j) · X (j)

I w(j): feature weights determined by (Xi ,Yi)

I Classify Y =

{
1, L(X ) > 0
−1, L(X ) < 0

I Optimal weights: w ∝ Ωµ, approachable when
n� p, where

Ω = Σ−1 : precision matrix
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Rare/Weak setting

Xi
iid∼ N(±µ,Σ), nonzero µj ’s are Rare/Weak

I Estimating Ω. Given iid samples from
N(0,Σ),† how to estimate Ω

I Classification. How to classify, and especially,
how to estimate µ, if signals are Rare/Weak
and Ω is sparse & known

† In our setting, Xi ∼ N(±µ,Σ), but Rare/Weak nonzero means are
thought of having negligible effects in estimating Ω
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Related work

I Case 1. Ω = Ip (Donoho and Jin (2008, 2009), Jin (2009))

I Feature selection, threshold choice by HC
Thresholding (HCT)

I Classification limits, phase transition

I Case 2. Ω is K -sparse and known (Fan, Jin, Yao (2013))

I Combine Innovated Transform with HCT
I A useful lemma in graph theory (TBA)

I Case 3. Ω is sparse and unknown (Huang, Jin, Yao (2016))

I Estimate Ω by Partial Correlation Screening (PCS)
I Classify by HCT-PCS
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2.1. The HCT Classifier
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Estimating µ when Ω is known & sparse

I Training samples: Xi ∼ N(Yi · µ, Σ), Yi = ±1

I Summarizing Z -scores:

Z =
1√
n

n∑
i=1

Yi · Xi ∼ N(
√
n · µ, Σ)

I Boost SNR by Innovated Transform:

Innovated Z -scores : Z̃ = ΩZ ∼ N(
√
n · Ωµ, Ω)

I Clipping thresholding (marginal reg. in disguise):

µ̂t(j) =

{
sign(Z̃ (j)), |Z̃ (j)| ≥ t,
0, otherwise,

j = 1, 2, . . . , p

Question.

I How to set the threshold t?
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Threshold choice

I Cross validation (CV)
I Each CV wastes a valuable fraction of samples
I Time consuming
I Comparably unstable

I Control feature-wise False Discovery Rate
I It needs to set the FDR level q (it becomes

another tuning parameter, unclear how to set)

Proposal:

I threshold choice by Higher Criticism (HC)

I optimality of this choice
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Higher Criticism Threshold (HCT)

Donoho and Jin (2008)

Innovated Z -scores: Z̃ ∼ N(
√
nΩµ,Ω)

1. Convert to P-values: πj = P{|N(0, 1)| > |Z̃(j)|√
Ω(j ,j)
}

2. Sort: π(1) < π(2) < . . . < π(p)

3. HC-scores:

HCp,k =
√
p

[
k/p − π(k)√

(k/p)(1− k/p)

]
4. HC-threshold (HCT):

tHC
p = k̂-th largest Z -score (in absolute value),

where k̂ = argmax{1≤k≤ p
10
}{HCp,k}
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Comparison of two versions of HC

Orthodox HC New HC (HCT)
Objective Global testing Threshold choice

for feature selection

HCp,k
√
p

k/p−π(k)√
π(k)(1−π(k))

√
p

k/p−π(k)√
(k/p)(1−k/p)

Statistics max{1≤k≤ p
2 ,π(k)≥

log(p)
p }
{HCp,k} k̂ = argmax{1≤k≤ p

10}
{HCp,k}

LSI for Rare/Weak Signals 41 / 100



Rationale of HCT

HCT
Ideal thresholdIdeal HCT

I Red line: true classification error, minimized at Ideal
Threshold (unknown)

I Blue line: data-driven HC scores, maximized at HCT
I Brown line: population counterpart of HC scores,

maximized at Ideal HCT

In theory, HCT ≈ Ideal HCT ≈ Ideal Threshold

(Figure is only an illustration of ideas, not from simulations)
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Estimating Ω

Xi
iid∼ N(0,Σ), Ω = Σ−1 is sparse

I Sample cov. matrix: Σ̂ = n−1
∑n

i=1 XiX
′
i

I The glasso: estimating Ω by minimizing

log(det(Ω))− trace(Σ̂Ω)− λ‖Ω‖1, Ω � 0

I Penalization methods: estimating each row of
Ω by a penalized regression (Dettling and Buhlmann

(2003); Cai, Liu, and Luo (2011))

I PCS: estimating each row of Ω by a
Screen-and-Clean method (Huang, Jin, and Yao (2016))
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Comparison with popular classifiers

A synthetic Rare/Weak setting:

Xi
iid∼ N(Yi ·µ,Σ), labels Yi = ±1 with equal prob.

I (p, n) = (5000, 1000)

I
√
nµ(j)

iid∼ (1− ε)ν0 + εντ , (ε, τ) = (.1, 3.5)

I Ω: tridiagonal (1 on diagonal, .4 on two sub-diagonals)

I 10 independent data splits

HCT-PCS HCT-glasso SVM RandForest
Average error 11.08 43.67 20.03 35.51
“Best” error 8.73 37.95 18.98 31.93
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2.2. Phase diagrams for classification

LSI for Rare/Weak Signals 44 / 100



Rare/Weak Feature Model

I n training samples (Xi , Yi): Xi ∼ N(Yi · µ,Σ),
Yi = ±1 with equal prob.

I test sample: X ∼ N(±µ, Σ)

I summarizing Z -scores:

Z =
1√
n

n∑
i=1

(Yi · Xi) ∼ N(
√
nµ,Σ)

LSI for Rare/Weak Signals 45 / 100



RW Feature Model, II

√
n · µ(j)

iid∼ (1− ε)ν0 + ε · ντ

I use p as the driving asymptotic parameter

I link (ε, τ) to p

εp = p−β, τp =
√

2r log p, 0 < β, r < 1

I link sample size n to p (3 types of growth):
I (No growth): n is fixed
I (Slow growth): 1� n� pθ, for any θ > 0
I (Regular growth): n = pθ for some θ ∈ (0, 1)
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Sparse classification boundary (Ω = Ip)

Jin (2009)

Define standard phase function

ρ(β) =

 0, 0 < β < 1/2
(β − 1/2), 1/2 ≤ β < 3/4
(1−

√
1− β)2, 3/4 ≤ β < 1

Let

(?) : r =


n

n+1 · ρ(β), no growth
ρ(β), slow growth

(1− θ) · ρ( β
1−θ ), regular growth

Call (?) the classification boundary. It partitions the β-r plane

into Region of Possibility and Region of Impossibility
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Phase Diagram (Σ = Ip)
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Summary of Part II

I Adapted Fisher’s LDA to Rare/Weak settings
I Estimating Ω from data by PCS (say)
I Adapting the idea of HC for threshold choice in

feature selection

I Clarified several popular ideas/beliefs

I Identified classification limits for RW model,
and proved optimality of HC threshold choice
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Part III: Clustering
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Clustering

I Data (Xi ,Yi)
I Yi ∈ {1, 2, · · · ,K}: class labels
I Xi ∼ N(µYi

,Σ): feature vectors in Rp

I Goal. Given the sample matrix X , estimate the
class label vector Y

I Motivation. Recover the underlying structure
I Medicine: find the hidden groups of a disease,

given the evaluations of the disease, and apply
proper treatment

I Biology: find possible subspecies of a species (iris
flower data set example)
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Clustering subjects using microarray data

# Data Name Source K n (# of subjects) p (# of genes)
1 Brain Pomeroy (02) 5 42 5597
2 Breast Cancer Wang et al. (05) 2 276 22215
3 Colon Cancer Alon et al. (99) 2 62 2000
4 Leukemia Golub et al. (99) 2 72 3571
5 Lung Cancer Gordon et al. (02) 2 181 12533
6 Lung Cancer(2) Bhattacharjee et al. (01) 2 203 12600
7 Lymphoma Alizadeh et al. (00) 3 62 4062
8 Prostate Cancer Singh et al. (02) 2 136 6033
9 SRBCT Kahn (01) 4 63 2308
10 Su-Cancer Su et al (01) 2 174 7909

Goal. Predict the class labels (clustering)

We normalize in a way so that each feature has 0 mean and unit variance
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Rare and Weak signals

features
sa

m
p

le
s

= “signal” + “noise

I Each row has a “signal” and a “noise” component

I Let µ1, µ2, . . . , µK be the K group mean vectors
I For row i , “signal” = µk if i ∈ group k (rank: K − 1)
I “Noise”: sample variation, measurement noise, etc.

I Rare/Weak signals:

K∑
k=1

µ2
k(j) =

{
0, for most (feature) j
relatively small, for other (feature) j
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Related work

I Low-dimensional clustering

I Hierarchical Clustering
I Classical k-means [James MacQueen (1967)]

arg min{g1,g2,...,gK}

{ K∑
k=1

(∑
i∈gk

‖Xi − µk‖2

)}
,

where {1, 2, . . . , n} = g1 ∪ g2 ∪ . . . ∪ gK is a
partition and µk is the mean of {Xi , i ∈ gk}

I Spectral Clustering [Lee at al (2010)]

I High dimensional clustering with sparsity

I Sparse PCA [Zou, Hastie, Tibshirani (2006)]
I Sparse k-means [Witten and Tibshirani (2010)]
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3.1. Influential Features PCA
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Pearson’s PCA

Karl Pearson (1857-1936)

I Transformation

I Dimension Reduction

I Noise Reduction
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Cluster by classical PCA

Apply k-means to the matrix

[u1, u2, . . . , uK−1], uk : k-th left singular vector

features PC’s

sa
m
pl
es

PC: Principal Components

I Problem. ‖“signal”‖ � ‖“noise”‖ (‖ · ‖: spectral norm)

I Solution. Feature selection
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Influential Feature PCA (IF-PCA)

Idea: PCA applied to carefully selected features:

I Rank features by Kolmogorov-Smirnov statistic

I Retain features that are ranked on the top

I Apply PCA to the post-selection data matrix

features selected features PC’s

sa
m

pl
es

Azizyan et al (2013), Chan and Hall (2010), Fan and Lv (2008)
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IF-PCA (microarray data)

1. Rank features with KS-scores ψ
(1)
n , ψ

(2)
n , . . . , ψ

(p)
n

2. Renormalize the KS-scores by (Efron’s empirical null)

ψ∗(j)n =
ψ

(j)
n −mean of all p different KS-scores

SD of all p different KS-scores

3. Apply PCA to post-selection mat. X̂ (t) = [xj : ψ
∗(j)
n ≥ t]

I Let uk be the k-th left singular vectors of X̂ (t)

I Apply k-means to Û (t) = [u1, u2, . . . , uK−1]

IF-PCA-HCT : t = tHCp : Higher Criticism threshold (TBA)
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The blessing of feature selection
Lung Cancer (K = 2); x-axis: 1, . . . , n; y -axis: entries of ÛHC (t = tHCp )

Left: plot of ÛHC . Right: counterpart of ÛHC without feature selection
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Feature-wise Kolmogorov-Smirnov scores

X = [x1, . . . , xp], xj ∼ N(ηj , In)

feature j is useless ⇐⇒ ηj = 0

I Compute P-values: π
(j)
i = P

(
(N(0, 1) ≥ xj(i)

)
I Sort P-values: π

(j)
(1) < π

(j)
(2) < . . . < π

(j)
(n)

I Evaluate the significance of feature j by KS-score

ψ(j)
n = max

{1≤k≤n}
{|(k/n)− π(j)

(k)|}, j = 1, 2, . . . , p

I Similar to HC, but signals here are non-sparse
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Efron’s null correction (Lung Cancer)

Theoretic Null: null density of KS-scores ψ
(j)
n if data are Gaussian (does

not depend on feature mean/variance, easy to simulate)

Theoretic null is a bad fit to ψ
(j)
n (top) but a nice fit to ψ

∗(j)
n (bottom)
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How to set the threshold t?
I CV: not implementable (class labels unknown)
I FDR: need tuning and target on Rare/Strong

signals [Benjamini and Hochberg (1995), Efron (2010)]

t (threshold) #{selected features} feature-FDR errors
.0280 12529 1.00 22
.1595 2523 1.00 28

.2814 299 .538 4

.2862 280 .50 5

.3331 132 .25 6
.3469 106 .20 43
.3622 86 .15 38
.4009 32 .10 38
.4207 27 .06 37
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Threshold choice by HC

Jin and Wang (2015), Jin, Ke and Wang (2015)

I Compute P-values: πj = 1− F0(ψ
∗(j)
n ),

1 ≤ j ≤ p (F0: CDF of Efron’s theoretical null)

I Sort P-values: π(1) < π(2) < . . . < π(p)

I Define

HCp,k =

√
p(k/p − π(k))√

k/p + max{
√
n(k/p − π(k)), 0}

I Let k̂ = argmax{1≤k≤p/2,π(k)>log(p)/p}{HCp,k}.
HC threshold tHCp is the k̂-th largest KS-score
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Illustration
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Illustration, II (Lung Cancer)
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x-axis: # of selected features; y -axis: error rate by IF-PCA
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Comparison
I SpecGem: modified classical PCA [Lee et al (2010)]

I kmeans++: Authur and Vassilvitskii (2007)

I COSA: Friedman and Meulman (2004)

I skmeans: Witten and Tibshirani (2010)

I sPCA: Zou, Hastie, Tibshirani (2006) (project data matrix to the
estimated feature space then cluster; tuning parameter ideally set)

# Data set K kmean SpecGem kmean++ COSA skmean sPCA Our
1 Brain 5 .286 .143 .427 .405 .286 .262 .262
2 Breast Cancer 2 .442 .438 .430 .359 .442 .438 .406
3 Colon Cancer 2 .443 .484 .460 .408 .468 .435 .403
4 Leukemia 2 .278 .292 .257 .167 .278 .292 .069
5 Lung Cancer 2 .116 .122 .196 .011 .116 .110 .033
6 Lung Cancer(2) 2 .436 .434 .439 .350 .448 .433 .217
7 Lymphoma 3 .387 .226 .433 .371 .387 .190 .065
8 Prostate 2 .422 .422 .432 .412 .422 .422 .382
9 SRBCT 4 .556 .508 .524 .587 .556 .428 .444
10 SuCancer 2 .477 .489 .459 .328 .477 .437 .333
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Comparison, II

Regret =
cell value− row min

row max− row min

# Data set K kmean SpecGem kmean++ COSA skmean sPCA Our
1 Brain 5 .504 0 1 .923 .504 .419 .419
2 Breast Cancer 2 1 .952 .855 0 1 .952 .566
3 Colon Cancer 2 .494 1 .704 .062 .803 .395 0
4 Leukemia 2 .937 1 .843 .440 .937 1 0
5 Lung Cancer 2 .568 .600 1 0 .568 .535 .119
6 Lung Cancer(2) 2 .948 .939 .961 .576 1 .945 0
7 Lymphoma 3 .875 .438 1 .832 .875 .340 0
8 Prostate 2 .800 .800 1 .600 .800 .800 0
9 SRBCT 4 .805 .503 .604 1 .805 0 .100
10 SuCancer 2 .926 1 .814 0 .926 .677 .031

kmean SpecGem kmean++ COSA skmean sPCA Our
Overall ranking 5 4 7 2 6 3 1
Average regret .786 .723 .878 .443 .821 .605 .124
Average error rate .384 .356 .406 .340 .388 .345 .261
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3.2. Phase transitions in clustering
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A Rare/Weak model (K = 2)

X = `µ′ + Z ∈ Rn,p, Z : iid N(0, 1) entries

I Class labels:

`i = ±1 with equal prob.

I Rows of “signal matrix” are ±µ′ (two classes)

I Feature strengths:

µ(j) =

{
0, with prob. (1− ε)
τ, with prob. ε
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Calibrations

We use p as driving asymptotic parameter and tie
(n, ε, τ) to p by fixed parameters (θ, β, α, r)

I “large p small n”:

n = pθ, 0 < θ < 1

I Rare signals:

#{of signals} sp ≈ pεp = p1−β, 0 < β < 1

I Weak signals:

τp = p−α · 4
√

4r log(p)
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Two clustering limits

n = pθ, sp ≈ pεp = p1−β, τp = p−α 4
√

4r log(p)

I Statistical limits. Fixing θ, for which (β, α) successful
clustering is possible/impossible?

I Computable statistics limits. Fix θ and restrict to
methods computable in polynomial time. For which
(β, α), successful clustering is possible/impossible?

We study these in a cruder scale, so 4
√

4r log(p) is negligible
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IF-PCA for synthetic Gaussian data

features selected features PC’s
sa

m
pl

es

microarray two-class model
pre-normalization yes skipped

feature-wise screening Kolmogorov-Smirnov chi-square scores

scores ψ
(j)
n ψ

(j)
n = (‖xj‖2 − n)/

√
2n

re-normalization Efron’s null correction skipped
threshold choice HCT same

post-selection PCA same same
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Two aggregation methods

I Simple Aggregation: cluster by sgn
(
x̄
)

I Sparse Aggregation: for a tuning integer N ,
clusters by sgn

(
x̄Ŝ
)
, where

Ŝ = argmax{S :|S |=N}
{
‖x̄S‖1

}
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Two limits (β-α plane, cruder scale)

β
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√
np Very weak PCA Impossible√

n� sp �
√
p Critical IF-PCA Necessary & subtle

1� sp �
√
n Strong IF-PCA Necessary yet trivial
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IF-PCA: most interesting on “shaded bar”

n = pθ, 1/2 < β < 1− θ/2, τp = p−α 4
√

4r log(p)

Fixing θ, α = θ
4

is a constant, 4
√

4r log(p) plays a key role:

χ2-score
‖xj‖2 − n√

2n
≈
{

N(0, 1), feature j useless

N(
√

2r log(p), 1), feature j useful

I r � 1: feature selection impossible (signals too weak)

I r > 1: feature selection is easy (signals too strong)

I Limits for IF-PCA. Fix θ. For which (β, r), successful
clustering by IF-PCA is possible/impossible?
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Phase transition for IF-PCA (β-r plane)
Recall that n = pθ. Define the standard phase function:

ρ(β) =

{
β − 1

2 ,
1
2 < β < 3

4

(1−
√

1− β)2, 3
4 < β < 1

and let ρθ(β) = (1− θ)ρ( 1
2 +

β− 1
2

1−θ ), 1
2 < β < 1− θ

2
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Consistency of HC threshold
Consider IF-PCA with a threshold t > 0. Let Err(t) be the

clustering error, and ξ̂(t) be the first singular vector of the
post-selection data matrix. Fix (β, r , θ) such that r > ρθ(β).

I There is a non-stochastic function S̃NR(t) such that for

t in an appropriate range, S̃NR(t)� 1 and

ξ̂(t) ∝ S̃NR(t)` + z + rem, z ∼ N(0, In)

I Define two non-stochastic thresholds:

t idealHC
p = argmaxt S̃NR(t), t idealp = argmaxtErr(t).

I HCT yields the right threshold choice:

tHC
p /t idealHCp → 1 in prob., t idealHCp /t idealp → 1

I IF-PCA-HCT yields successful clustering
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Summary of Part III

I Proposed IF-PCA for cancer subject clustering

I Feature ranking by Kolmogorov-Smirnov statistics
I Reduce gaps between theory and data analysis by

Efron’s null correction
I Threshold choice by Higher Criticism

I IF-PCA is conceptually simple, flexible, tuning free, and
an example of “Screen first, Estimate next” philosophy

I Identified statistical limits and computationally tractable
statistical limits for clustering problem

I Proved consistency of Higher Criticism threshold and
that IF-PCA-HCT achieves the optimal phase diagram
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Part IV: Variable Selection
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Sparse linear regression model

Y = Xβ + z , X ∈ Rn,p, z ∼ N(0, In)

I Both p and n are large

I Signals are Rare/Weak

I Columns of X are normalized, and each column
is only significantly correlated with a few others

LSI for Rare/Weak Signals 79 / 100



Variable selection approaches

I Stage-wise methods (Forward, Forward-Backward)
I Penalization methods

I Subset selection:
1

2
‖Y − Xβ‖2 +

1

2
λss‖β‖0

I The lasso:

1

2
‖Y − Xβ‖2 + λlasso‖β‖1

I Screen-and-Clean methods (Today):
I Screen: remove a large fraction of noise variables

by a computationally efficient algorithm
I Clean: further filter out falsely selected variables
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4.1. Non-optimality of penalization
methods
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Measure of success

I Oracle property (inappropriate for RW signals)†

P
{
S(β̂) = S(β)

}
, (S(β) = {1 ≤ j ≤ p : βj 6= 0}: support)

I `q-norm (more relevant for prediction):

‖β̂ − β‖q, q > 0

I Hamming selection error:

Hammp(β̂, β; Ω) = E

[ p∑
j=1

1
{
sgn(β̂j) 6= sgn(βj)

}]
† Fan and Lv (2008)

LSI for Rare/Weak Signals 81 / 100



A Rare/Weak model and three regions

βj =

{
0, 1− εp
τp, εp

,

εp = p−ϑ, τp =
√

2r log(p), 0 < ϑ, r < 1

I Region of No recovery: fixing (ϑ, r) in this region,

Hammp(β̂, ϑ, r ;X ) & pεp

I Region of Almost Full Recovery

1� Hammp(β̂, ϑ, r ;X )� pεp

I Region of Exact recovery.

Hammp(β̂, ϑ, r ;X ) = 0, except a small probability
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Phase Transition (X ′X nearly tridiag)

Y ∼ N(Xβ, In), rows of X iid from N(0, 1
nΩ), Ω =


1 a 0 . . . 0 0
a 1 a . . . 0 0
0 a 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . a 1
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4.2. Covariate-assisted screening
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Ranking variables

I Goal: rank the variables such that signal
variables are ranked above most non-signals

I Useful for identifying a few most promising
variables for follow-up lab experiments

I Useful for the follow-up tasks such as variable
selection or FDR controlling

LSI for Rare/Weak Signals 84 / 100



Marginal ranking

I Rank variables by

Tj =

∣∣∣∣(xj ,Y )

(xj , xj)

∣∣∣∣2 = (xj ,Y )2, xj : j-th column of X

I PI : projection from Rn to span{xj , j ∈ I}

Tj = ‖PIY ‖2 − ‖PI\{j}Y ‖2, (I = {j})

Problem. Signal Cancellation

(xj ,Y ) =

p∑
k=1

(xj , xk)βj+(xj , z) = βj +
∑

k:k 6=j ,βk 6=0

(xj , xk)βk+(xj , z)
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Exhaustive multivariate ranking

T ∗j = max
{I:j∈I,|I|≤m}

Tj |I , Tj |I = ‖PIY ‖2−‖PI\{j}Y ‖2

I Computationally infeasible:
m∑

k=1

(
p

k

)

I Inefficiency: T ∗j is the max over
∑m

k=1

(
p−1
k−1

)
χ2-tests, and is large even if βj is a noise

To rank above average noise terms, signals
need to be stronger far more than necessary

LSI for Rare/Weak Signals 86 / 100



Graph Of Strong Dependence (GOSD)

Define GOSD G = (V ,E ):

I V = {1, 2, . . . , p}: each variable is a node

I Nodes i and j have an edge iff∣∣(xi , xj)∣∣ ≥ δ, (δ = 1
log(p) , say)

I Under our assumptions, G is sparse
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Covariate-Assisted Ranking (CAR)

Rank variables by

T ∗j = max
I∈Aj(m)

Tj |I , Tj |I = ‖PIY ‖2 − ‖PI\{j}Y ‖2

Aj(m): size ≤ m connected subgraphs containing j

Let d be the maximum degree of G.

∣∣ ∪pj=1 Aj(m)
∣∣ ≤ Cp(2.718d)m �

m∑
k=1

(
p

k

)
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A real example

Data: gene expression of human immortalized B
cells ((p, n) = (4238, 148); Nayak et al. (2009))

I Remove the first singular vector:

Data =
n∑

k=1

σkukv
′
k = σ1u1v

′
1 +

n∑
k=2

σkukv
′
k︸ ︷︷ ︸

design matrix X

I Synthetic data for regression:

Y = N(Xβ, In), βj

{
∼ N(0, η2), 1 ≤ j ≤ s
= 0, otherwise
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Comparison of the ROC curve

For CAR, (m, δ) = (2, 0.5) βj

{
∼ N(0, η2), 1 ≤ j ≤ s
= 0, otherwise

Left: (η, s) = (0.1, 50). Right: (η, s) = (5, 50)
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GOSD and mutual orthogonality

I Ranking is “easy” if x1, x2, ..., xp split into many
small-size mutually orthogonal groups

{1, 2, . . . , p} = I1 ∪ I2 ∪ . . . ∪ Im,

X⊗,Ik ⊥ X⊗,I`, k 6= `

X⊗,I : sub-matrix with columns restricted to I
βI : sub-vector with rows restricted to I

G = G1 ∪ . . . ∪ GM︸ ︷︷ ︸
components

=⇒ X⊗,Gk approx. mutual. orth.
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Signal archipelago

GS︸︷︷︸
signal subgraph

= GS,1 ∪ GS ,2 ∪ . . . ∪ GS ,M︸ ︷︷ ︸
components

, S = S(β)

Lemma. If I{βj 6= 0} iid∼ Bernoulli(ε) and d is the max.

degree of G, then P
{

max1≤k≤M |Gm,k | > m
}
≤ p(edε)m+1
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Why signal cancellation is not an issue

GS = GS ,1∪. . .∪GS ,M , Tj |GS,k0
= ‖PGS,k0

Y ‖2−‖PGS,k0
\{j}Y ‖2

I Mutual orthogonality ⇒ Signal cancellation
only happens within GS ,k0

I For significance of βj , it suffices to consider

Y = X⊗,GS,k0βGS,k0 +z (X⊗,GS,k0 ⊥ X⊗,GS,k , approx.)

I Tj |GS,k0
is optimal for testing

H0 : βj = 0 v .s. H1 : βj 6= 0

LSI for Rare/Weak Signals 93 / 100



How CAR ensures successful ranking

T ∗j = max
I: |I| ≤ m & I 3 j
connected subgraph

Tj |I , GS = GS ,1 ∪ . . . ∪ GS ,M

I If j is a signal (say, j ∈ GS ,k0) and m ≥ |GS ,k0|,

T ∗j ≥ Tj |GS,k0
= ‖PGS,k0

Y ‖2 − ‖PGS,k0
\{j}Y ‖2 ∼ χ2

1(c2β2
j )

I If j is a noise,

T ∗j =

{
small, if no signal in all I
maybe large, otherwise (Type I; not too many)

Therefore, signals are ranked above most non-signals!
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4.3. Covariate Assisted Screening
Estimation (CASE)
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Post-screening archipelago

I CASE removes most noise while retain most signals

I Post-selection variables split into many small-size
islands, each contains some signals and some noise

I Keys. sparsity of β, sparsity of G, successful ranking
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Variable selection by CASE

Fix tuning parameters (q, ucase , v case), tq =
√

2q log(p)

I Screen. Rank variables by CAR and let

Ŝt = {1 ≤ j ≤ p, T ∗j ≥ tq}
GŜ︸︷︷︸

post-selection subgraph

= GŜ ,1 ∪ GŜ ,2 ∪ . . . ∪ GŜ ,M̂︸ ︷︷ ︸
small-size components

I Clean.
I If j /∈ Ŝt , set β̂j = 0.
I Otherwise, we must have j ∈ GŜ,k for some k .

Estimate {βj : j ∈ GŜ,k} by minimizing

‖PGŜ,k (Y −
∑
j∈GŜ,k

βjxj)‖2 +(ucase)2‖β‖0, βj = 0 or βj ≥ v case︸ ︷︷ ︸
up to
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Comparison with L0/L1-penalization

Method L0/L1-penalization CASE
Regime Rare/Strong Rare/Weak

Loss P{S(β̂ = S(β)} or Lq Hamm(sgn(β̂), sgn(β))
Optimality Not in Hamming Error Yes
Motivation Imaging/Engineering Genetics/Genomics
Design Controllable/Nice Uncontrollable/Bad
Key idea One-stage global method Multi-stage local method

L0/L1 methods: Donoho and Stark (1989), Tibshirani (1996), and many others
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Optimality of CASE (X ′X nearly tridiag)

Y ∼ N(Xβ, In), rows of X iid from N(0, 1
nΩ), Ω is tri-diagonal
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Optimality in more general designs: Ji and Jin (2012), Jin,

Zhang and Zhnag (2014), Ke, Jin and Fan (2014)
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Summary of Part IV

I Covariate-Assisted Ranking overcomes signal
cancellation and provides more satisfying
ranking than marginal ranking

I Post-screening subgraph consists of many
small-size components, which can be cleaned
separately

I CASE is optimal in terms of Hamming
selection error, while L0-L1 methods are not
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