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Big Data everywhere

» Microarray, GWAS, DNA sequencing, ...

»

v

v

| 2

Image processing
Tick-by-tick financial data
Large-scale social networks

White House “Big Data Research and Development Initiative”, March 2012
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OBAMA ADMINISTRATION UNVEILS “BIG DATA™ INITIATIVE:
ANNOUNCES $200 MILLION IN NEW R&D INVESTMENTS

Ajming to make the most of the fast-growing volume of digital data. the Obama
Adminestration today announced a “Big Data Research and Development Initative ™ By

y knowledge g x
collections of digial data, the initiative promises to help solve some the Nation's most
pressing chalienges.

To launch the infiatve, six Federal and agences today
than $200 million n new commitments that, together, promsse o greatly improve the
tools and technigues nesded io access. organce, nd glean dscoverss from huge
volumes of digtal dats
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Sparsity: a direct result of “large p”

Exact meanings vary, but are similar:

v

parameter sparsity (e.g., normal means model)
transform coefficient sparsity (e.g., wavelet)

v

graph sparsity (e.g., Graphical model)

v

sparsity in the eigen-space (e.g., spike model)

v

Exploiting sparsity has become a major strategy for
analyzing Big Data
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Weak signals: a direct result of “small n”

e.g. Why most published research findings are false (loannidis, 2001, PLoS Med)

(Signal strength)> o n o $ or manpower

» Example: GWAS, Rare Variation Association
Study (RVAS), Gravitational wave.
» An important but largely neglected notion

» Partially explains
» irreproducibility of many published works
» many problems remain unsolved by increasing p
» theoretical optimism vs. practical pessimism
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Rare/Weak signals

» Rare. only a small fraction of returns contain
tradable signals, others are merely noise

» Weak. signals are individually weak

~logso(P)
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5
-

chromosome

Figure is downloaded from Wikipedia
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Normal means model

X=pu+z, z~ N(0,%), Y € RPP

There are p experiments (p is presumably large)

v

v

Xj: z-score from experiment j

v

pj: (unknown) true effect in experiment j
A nonzero pi; means a true discovery (“signal”)

v

Rare: only a small fraction of x;'s are nonzero

v

Weak: each yi; is small in magnitude
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Four interconnected problems

v

Global testing. Are there any signals at all?

Classification. Using in-sample to select a few
useful features for out-sample prediction

v

v

Clustering. Classification when no training
sample is available

v

Signal recovery. ldentify signals individually
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Overview |. Higher Criticism for global

testing

» Basic ideas and phase transition:

Donoho D, Jin J (2004) Higher criticism for detecting sparse
heterogeneous mixtures. Annals of Statistics 32(3) 962-994.

» Review on ideas, methods, and applications:

Donoho D, Jin J (2015) Higher Criticism for Large-Scale Inference:
especially for Rare and Weak effects. Statistical Science 30(1)
1-25 (Invited Review Paper).

» Review on methods and theory, especially phase
transition:

Jin J, Ke T Z (2015) Rare and Weak effects in Large-Scale
Inference: methods and phase diagrams. Statistica Sinica 26 1-34
(Invited Review Paper).
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Overview, Il. Classification and clustering

» Part 2. Fisher's LDA for Classification

» HC for threshold choice in feature selection
» estimating Q =¥ !

» Part 3. clustering by Influential-Features PCA

» PCA applied to a few carefully selected features

» HC for threshold choice in feature selection

» use Efron’s empirical null to minimize the gap
between theory and data analysis

» Part 4. Graphlet screening for variable selection

» connected to Innovated HC
» exploits “local graphical” structure for screening
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Part |: Global Testing
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Global testing

Given a large number of
» summarizing t-scores or z-scores
» or summarizing P-values
» or regression coefficients
Test
Hy : contains no signals

VS,
H; : contains Rare/Weak signals

Normal means model: X ~ N(pu,X)
Ho: =0, H, : some p;'s are nonzero
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Simple methods and their limitations

Chi-square test:
T=3LX

» Works when many X;'s contain signals
» Low SNR when signals are rare, because most
Xj's are merely noise

Minimum P-value (minP) test:!
T = maxi<j<p | X

» Works for rare signals
» Sub-optimal for Rare and very Weak signals

t It is equivalent to using the smallest P-value as the test statistic
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1.1. Higher Criticism (HC)

LSI for Rare/Weak Signals 11 /100



Higher Criticism in Tukey's Lecture Notes

K - : £2L{exT4-1

— , 1976 Stattstaics L2l

T31{exT21 {ax%T4))
THE EIGHER CRITICIEM AND KENDS OF ERRGH RATES

Ones ve deal with pariliel eabimakes —- we will take parallel
ceaterings Tor our prototype, bub the same questions arise vherever thers
1x parelleliss — ve have problens concemning sigairicance, contldence, sbo.
Those problems cos heve more then ome resolution, bub the moTe uabopry
repolutiona -{fn teims of discovering less) ere often thoue that sech

better justiffod vhen we comsider things carefdlly.

The slaple bigher griticien

. There is always the story about the young psychologist -=

" cice he was 5ald To go To & pilot Tralning school, but teday he”
1a perhaps wove lilkely to be said to go to the management
training school of some large businsss o industrial organization.
Whereven he goes he takes 250 aiffsvent poyehological tests |
(whieh wa will hereafter call psychologieal proceduress to aveid
two uges of the word "rtesta™).

 w= and he comea back full of joy because 12 - Gount them,

fwolve - of his Drocedures are §igREFidkar. (et 5h)

predictors of perfornarce (as a pilot, maneger, or what

have you), He iz ready to do good thinge!

John W. Tukey (1915-2002)

ALl rights reserved, Joha W. Tukey, 197831975, 1977
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Tukey's story

» A young scientist administers 250 uncorrelated
tests, where 11 were significant at the 5% level.

» Question: Is this surprising (e.g., any of the
test is truly significant)?

» Answer: No, we expect

250 x 5% = 12.5 significances at 5% level
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Tukey's Higher Criticism

Abstraction: given P-values my,my, ..., 7p, test
H:  all p (individual) tests contain nothing but noise
Hl(p): some of the (individual) tests contain signals

(Fraction Significant at .05) — .05
V.05 x .95

» Reject global null HP) <= HC, o5 > 2 (say)

» For Tukey's story:
11 —-12.5

HC, os = — — 43 = Accept H®
P05 /250 x .05 x 0.95 Pt o
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Donoho& Jin's Higher Criticism

Donoho and Jin (2004)

. Fraction Significant at o) — «
HC: = max0<a<;{ ﬁ[( ) ] }
a(l — a)
» A way to combine sparse signals

» Sensitive to “unusually many” moderately
strong/weak signals

» Similar to Anderson-Darling statistic (Anderson and
Darling (1952); on goodness-of-fit) but different
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Implementation of Higher Criticism (HC)

We only need P-values to implement HC

» Sort P-values:
(1) < T(2) < ... < T(p)

» Calculate the k-th HC-score

k/p— 7 ]
HC,)\ = ,
o \/ﬁlx/m)(l — (k)

» Take maximum:

HCH = max HC
P 1<k<p/2, 7T(k)ZIog(P)/P}{ i}

LS| for Rare/Weak Signals
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[llustration

P-values (left two panels) and HC, k (right two panels) under the null
(top two panels) and the alternative (bottom two panels)
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Limiting distribution of HC under null

——Higher Criticism
o°F ——Gumbel

» b, = /2loglog(p)

> ¢, = +/2loglog(p) +
1[log log log(p)] — log(4m)]
» b,HC — ¢, = Standard
Gumbel dist. (CDF: e™¢ )

0 1 1 1 1 1
6 -4 2 [ 2 4 6 8 10

CDF: HC (simulated) vs. Gumbel
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Critical value

Let h(p, ) be the critical value that satisfies
P(HC) > h(p,)) = a.
A good approximation of h(p, a) is

heum(p, ) = bl[cp—log Iog(ﬁ)} ~ \/2loglog(p)

p

p 103 5x 103 25x10%[ 1.25 x 10°
a = .05 3.17 (3.00) | 3.22 (3.08) | 3.26 (3.14) | 3.30 (3.19)
o = .01 | 3.95 (3.83) | 3.97 (3.87) | 3.96 (3.90) | 3.99 (3.93)
a = .005 | 429 (4.18) | 4.28 (4.20) | 4.26 (4.22) | 4.28 (4.24)
a = .001 | 5.03 (5.00) | 5.02 (4.98) | 4.98 (4.97) | 4.98 (4.97)
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1.2. Rare/Weak signal model, phase
transitions
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Rare/Weak signal model

X=u+z, z~ N(0,%), Y € RPP

Hép) cpu=0 Vs. H{p) L < (1—€p)vo+epvs,

> e, =p P, 1/2 < B <1 (very rare)

> 7, = +/2rlog(p), 0 < r < 1 (weak)

» Q = Y1 sparse and known

Subtlety of the problem:
VpX ~ N(p%_ﬂTP7 1), p%_ﬂTp ~ 0 since § > 1/2
max | Xj| ~ /2log(p) under null, but 7, < /2log(p)
J
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Detecting RW signals by HC

To apply HC, we need to choose the level a:
» obtain P-values by

ﬂk:P(N(O,l)ZXk), k:1,2,...,p

» obtain HC,;L by three previous steps
» reject null if

HC;r > h(p, ap), ap: Type | error,

for an a, — 0 slowly enough (e.g., a, = Iogl(p))
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Phase transition

Define standard phase function
0, 0<p<1)/2
p(B)=1{8~3 3<B<i
(1-v1I-05)2 2<p<1
Theorem 1. As p — o0,
» If r < p(p), for any test, (Type | + Type Il) errors — 1
» If r > p(53), both Type I and Type Il errors of HC — 0.

» Such a result does not hold for many tests ()_<, X2, MinP)
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Phase diagram (signal detection, ¥ = /,)

Estimable

Detectable
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Signal recovery (variable selection)

» Goal: identify which ;s are nonzero

» Hamming loss
p

Hamm(fi, pn) = Z 1{sign(1;) # sign(p;)}
j=1
» Three regions:

» Exactly recoverable: Hamm(ji, ) <1
» Almost fully recoverable: 1 < Hamm(fi, 1) < pe,
» No recoverable: Hamm(ji, j1) < pep

» A variable selector /i (for ¥ = ;)
i = X1{1X| > /2t Tog(p)}

1 Here sign(-) takes values in {—1,0,1}



Phase diagram: a more complete story

Extended to more complicate cases (e.g., ¥ # |,, regression models); see

the review paper by Jin and Ke (2015)

4 T T T 1
Exact Recovery |
asf Estimable
08
o
07
251 06
~ 2r Almost Full Recovery =0
| | Detectable
031
=
02r
0sF 01fF U ndeteCtable

‘(‘).5 0.55 06 0.65 0.7 0.75 08 0.85 09 0.95 1
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1.3. Innovated Higher Criticism
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HC for detecting RW signals (X # 1)

y =+ z, z~ N(0,X), Y € RPP

We only need P-values to implement HC
» Transform the data: For a p x p matrix A,

y+— y=Ay ~ N(Au, AZA)

» Compute the marginal P-values

yi ~ N(0, (AXA");) under the null = 7

» Plug m1, 7, ..., m, into the HC procedure

LSI for Rare/Weak Signals
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Different transforms

» Brute-force:
y~N(px),  m=PN0O ;) = y)
» Whitening:
y=2"2y ~NE"2p,b), m=PNQO1) =)
> Innovated Tranform (recall Q = ¥ °1):

y= Z_ly ~ N(QY7Q)7 = P(N(Ovﬂjj) > )71)
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Comparison of SNR

Innovated Transform y — ¥~y yields largest SNR
at kl,kg,...,km

2 2
15 15 15
1 1

I| |I I| |I I| |I
|||| |||| |||| || || || || || ||
5 05 5

S S S S 1 T S S S R S 1 S S S S
0 W 2 W 4 N B M @ N W 0 0 2 N L H O 7 & W W 0 0 2 D o N0 © 0 O 0 1.

SNR for Brute-force, Whitening, and Innovated
Transform. ¥ is tridiagonal, and 11 has 3 nonzeros
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Why Innovated Transform the right choice

» Ais row-wise sparse = Ay is still sparse

» A vyields a large SNR simultaneously for j

o (Aﬂ)j ~ Ajj
M= sy, s,

aJ’-: Jj-th row of A. Let £ = Zl/zaj and n = Z—l/er

Hj

/A, /
a 'j ej § maximize

\/ AZA ] a zaj |£||

fxn = axXle

» A=Y ! maximizes the SNR for all j
» Innovated HC: Innovated transform + HC
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Correlations: Curse or blessing?

» Noise correlation is a blessing: “neighboring entries”
contain useful information
» This can be seen by comparing the phase diagrams

(Left: ¥ = /,. Right: X is Toeplitz with unit diagonals)

. Estimable .
07| 07 ESt|mab|e
o Detectable o
oar 04 Detectable
o1 Undetectable o1 Undetectable

05 05 06 06 07 075 08 08 08 0% 1 05 05 06 08 07 075 08 08 03 0% 1
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Other signal detection settings

HC is ideal for: out of many units or cases, most are null or
baseline effects; non-null effects are Rare and individually Weak

> Matrix testing (eigenvalue-based HC)

Network anomaly detection (degree-based HC)
Genome-Wide Association Study

DNA Copy Number Variants (CNV)
Cosmology and Astronomy

Disease surveillance

Anomaly detection

vV vV vV vV VvV VY

Estimate the proportion of non-null effects (Kuiper Belt Objects)

Ke (2017); Mukherjee et al (2016); Sabatti et al (2008); Jeng et al
(2012); Bennett et al. (2012); McFowland et al (2013); Saligrama and

Zhao (2012); Meinshausen and Rice (2004)



Summary of Part |

Higher Criticism for global testing

v

only need P-values to use HC

» especially effective RW settings

» flexible, useful in many different settings
» correlation among noise is a blessing

» Innovated Transform is marginal regression in
disguise and maximize SNR at ki, ko, ..., kp

» HC achieves the optimal phase diagrams
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Reference

» For HC basics, overview, and applications, see

Donoho D, Jin J (2015) Higher Criticism for Large-Scale Inference:
especially for Rare and Weak effects. Statistical Science 30(1)
1-25 (Invited Review Paper).

» For phase diagrams, innovated transform, and
connections to regression models, see

Jin J, Ke T Z (2015) Rare and Weak effects in Large-Scale
Inference: methods and phase diagrams. Statistica Sinica 26 1-34
(Invited Review Paper).
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Part Il: Classification
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Two-class classification

> n training samples (X, Y;)
» Xi~ N(Y;-pn, X): feature vectors in RP
» Y; ==£1: class labels
» Goal. given test sample vector X, predict class
label Y =1or Y = -1
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please @ somethingeven things,
can: umgett:y
g t d Ehalreadysw,m‘g at == anything
send mucl
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(Pictures here are downloaded online)
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Fisher's Linear Discriminant Analy. (LDA)

LX) =) w(j)-X())

» w(j): feature weights determined by (X, Y;)

: 1, L(X)>0
» Classify Y = { 1, L(X) <0
» Optimal weights: w o Qu, approachable when

n > p, where

Q=31 precision matrix
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Rare/Weak setting

X: N(£u, X), nonzero ;'s are Rare/Weak

» Estimating 2. Given Jiid samples from
N(0,%)," how to estimate Q

» Classification. How to classify, and especially,
how to estimate u, if signals are Rare/Weak
and € is sparse & known

t In our setting, X; ~ N(=%u, X), but Rare/Weak nonzero means are
thought of having negligible effects in estimating Q
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Related work

» Case 1. Q = [, (Donoho and Jin (2008, 2009), Jin (2009))

» Feature selection, threshold choice by HC

Thresholding (HCT)
» Classification limits, phase transition

» Case 2. Q is K-sparse and known (Fan, Jin, Yao (2013))

» Combine Innovated Transform with HCT
» A useful lemma in graph theory (TBA)

» Case 3. Q is sparse and unknown (Huang, Jin, Yao (2016))

» Estimate Q by Partial Correlation Screening (PCS)
» Classify by HCT-PCS
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2.1. The HCT Classifier
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Estimating 1 when 2 is known & sparse

>

» Summarizing Z-scores:

ZYX~ (Vn-p, ¥)

Training samples: X; ~ N(Y;-p, ¥), Y;==+1

v

Boost SNR by Innovated Transform:
Innovated Z-scores : Z=Q7 ~ N(/n-Qu, Q)

v

Clipping thresholding (marginal reg. in disguise):

ooy sien(Z(), 1Z0) >t 19
fieli) { 0, otherwise, J 1S 000 P
Question.
» How to set the threshold t?
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Threshold choice

» Cross validation (CV)

» Each CV wastes a valuable fraction of samples
» Time consuming
» Comparably unstable

» Control feature-wise False Discovery Rate

» It needs to set the FDR level g (it becomes
another tuning parameter, unclear how to set)

Proposal:
» threshold choice by Higher Criticism (HC)
» optimality of this choice
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Higher Criticism Threshold (HCT)

Donoho and Jin (2008)
Innovated Z-scores: Z ~ N(y/nfyu, Q)

. Convert to P-values: m; = P{|N(0,1)| > 1200 }

e

. Sort: 1) < TR) < ... < T(p)

. HC-scores:

k/p— )

ook = VP | ki)t kP)

. HC-threshold (HCT):

the = k-th largest Z-score (in absolute value),

where k = argmax{lgké%}{HCpk}
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Comparison of two versions of HC

Orthodox HC New HC (HCT)
Objective Global testing Threshold choice
for feature selection
k P—T(k k P—T(k
HC (k) (k)
Pk VP i) ] VP Jina k)
Statistics max{1§k§g7ﬂ_(k>2Iogp(p)}{HCp’k} k = argl’nax{lgkgl%}{/'lcp’k}
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Rationale of HCT

7 HCT

Ideal HCT Ideal threshold

» Red line: true classification error, minimized at /deal
Threshold (unknown)
» Blue line: data-driven HC scores, maximized at HCT

» Brown line: population counterpart of HC scores,
maximized at /deal HCT

In theory, HCT = |deal HCT = Ideal Threshold

(Figure is only an illustration of ideas, not from simulations)
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X: N(0,X), Q =Y is sparse

» Sample cov. matrix; ¥ = n! S XX
» The glasso: estimating 2 by minimizing

log(det(Q)) — trace(£Q) — A|Q]1, Q>0

» Penalization methods: estimating each row of
(2 by a penalized regression (Dettling and Buhlmann
(2003); Cai, Liu, and Luo (2011))

» PCS: estimating each row of {2 by a
Screen-and-Clean method (Huang, Jin, and Yao (2016))
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Comparison with popular classifiers

A synthetic Rare/Weak setting:

X: % N(Y;p,X),  labels Y; = £1 with equal prob.

(p, n) = (5000, 1000)

Vau() % (L= o + ev,, (e,7) = (.1,35)
Q: tridiagonal (1 on diagonal, .4 on two sub—diagonals)

v

v

v

v

10 independent data splits

HCT-PCS | HCT-glasso | SVM | RandForest
Average error 11.08 43.67 20.03 35.51
“Best” error 8.73 37.95 18.98 31.93
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2.2. Phase diagrams for classification
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Rare/Weak Feature Model

» n training samples (X, Yi): X; ~ N(Y;- p, X),
Y; = +1 with equal prob.

> test sample: X ~ N(%pu, X)

» summarizing Z-scores:

z- %;m-xf) ~ N(/p1, %)
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RW Feature Model, Il

-~ Iid
Vi-u() B (1= e+,

» use p as the driving asymptotic parameter
» link (e,7) to p

ep:p_ﬁ, T, = \/2rlog p, 0<pB,r<l

» link sample size n to p (3 types of growth):
» (No growth): n is fixed
» (Slow growth): 1 < n < p?, for any § > 0
» (Regular growth): n = p’ for some 6 € (0,1)
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Sparse classification boundary (2 = /,)

Jin (2009)
Define standard phase function
0, 0<p<1)2
p(B) =4 (6-1/2), 1/2< B <3/4
(1-VI-BR,  3/4<fB<1
Let
,,11 -p(B), no growth
(x) r=4q p(B), slow growth
(1-6)- p(%), regular growth

Call (x) the classification boundary. It partitions the (-r plane
into Region of Possibility and Region of Impossibility
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Phase Diagram (X =

1 : T T T
= NO growth (nD =2) .
0911 —— Slow growth oo Estimable
sl Regular growth (6 = .25) 08
07 0.7
06 0.6 . .
Possibility
& 05 = 05
04 0.4
03 03
0z 02 .b.l.
o " Impossibility
o 05 0.55 0.6 0.65 0.7 0.75 08 0.85 09 0.95 1

Left: Classification Boundaries. Right: Phase diagram (slow growth)

ep:p’ﬂ, Tp =+/2rlogp, 0 < B,r <1



Summary of Part |

» Adapted Fisher's LDA to Rare/Weak settings

» Estimating Q from data by PCS (say)
» Adapting the idea of HC for threshold choice in
feature selection

» Clarified several popular ideas/beliefs

» |dentified classification limits for RW model,
and proved optimality of HC threshold choice
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Main references
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feature selection when useful features and rare and weak. Proc.
Natl. Acad. Sci. 105(39), 14790-14795.

v

Jin J (2009) Impossibility of successful classification when useful
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Part Ill: Clustering
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Clustering

» Data (X, Y))
» Y;€{1,2,--- ,K}: class labels
» Xi ~ N(uy, X): feature vectors in RP
» Goal. Given the sample matrix X, estimate the

class label vector Y
» Motivation. Recover the underlying structure
» Medicine: find the hidden groups of a disease,
given the evaluations of the disease, and apply

proper treatment
» Biology: find possible subspecies of a species (iris
flower data set example)
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Clustering subjects using microarray data

# | Data Name Source K | n (# of subjects) | p (# of genes)
1 | Brain Pomeroy (02) 5 42 5597
2 | Breast Cancer | Wang et al. (05) 2 276 22215
3 | Colon Cancer | Alon et al. (99) 2 62 2000
4 | Leukemia Golub et al. (99) 2 72 3571
5 | Lung Cancer Gordon et al. (02) 2 181 12533
6 | Lung Cancer(2) | Bhattacharjee et al. (01) | 2 203 12600
7 | Lymphoma Alizadeh et al. (00) 3 62 4062
8 | Prostate Cancer | Singh et al. (02) 2 136 6033
9 | SRBCT Kahn (01) 4 63 2308
10 | Su-Cancer Su et al (01) 2 174 7909

Goal. Predict the class labels (clustering)

We normalize in a way so that each feature has 0 mean and unit variance
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Rare and Weak signals

features

= “signal” + “noise

samples

» Each row has a “signal” and a “noise” component

» Let pq, pio, ..., ik be the K group mean vectors
» For row i, “signal” = py if i € group k (rank: K —1)
» “Noise”: sample variation, measurement noise, etc.

» Rare/Weak signals:

ilﬁ () = 0, for most (feature) j.
o k relatively small,  for other (feature) j
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Related work

» Low-dimensional clustering

» Hierarchical Clustering
» Classical k-means [James MacQueen (1967)]

K
srgming .o 20 (0 1%~ ) }

k=1 “icgk

where {1,2,... n} =g UgU...Ugk is a
partition and i is the mean of {X;,i € gk}
» Spectral Clustering [Lee at al (2010)]
» High dimensional clustering with sparsity

» Sparse PCA [Zou, Hastie, Tibshirani (2006)]
» Sparse k-means [Witten and Tibshirani (2010)]
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3.1. Influential Features PCA
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Pearson’'s PCA

» Transformation
» Dimension Reduction
» Noise Reduction

Karl Pearson (1857-1936)
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Cluster by classical PCA

Apply k-means to the matrix

[ur, up,y ... Uk 1], ui: k-th left singular vector
features PC’s
N
D
o
5 =
wn

PC: Principal Components

» Problem. || “signal”|| < || “noise” || (|| - ||: spectral norm)

» Solution. Feature selection
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Influential Feature PCA (IF-PCA)

Idea: PCA applied to carefully selected features:
» Rank features by Kolmogorov-Smirnov statistic
» Retain features that are ranked on the top
» Apply PCA to the post-selection data matrix

features selected features PC’s

= ||||///]|| =

samples

Azizyan et al (2013), Chan and Hall (2010), Fan and Lv (2008)
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IF-PCA (microarray data)

1. Rank features with KS-scores @b,(,l), f,2), . ,wf,p)

2. Renormalize the KS-scores by (Efron’s empirical null)

pU) = 1/),9) — mean of all p different KS-scores
o SD of all p different KS-scores

3. Apply PCA to post-selection mat. X = [x; : ¢n ) > t]

» Let uy be the k-th left singular vectors of X®
» Apply k-means to U®) = [uy, uy, . .., ux_1]

IF-PCA-HCT : t = t}/°: Higher Criticism threshold (TBA)
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The blessing of feature selection

Lung Cancer (K = 2); x-axis: 1,...,n; y-axis: entries of Upc (t = the)

Left: plot of UHC. Right: counterpart of UHC without feature selection
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Feature-wise Kolmogorov-Smirnov scores

X=[x1,....%], xi~ N(nj, 1)
feature j is useless — nj =0

» Compute P-values: 7T§j) = P((N(0,1) > x(i))

)] () ()
» Sort P-values: Ty < Ty <. <7,

» Evaluate the significance of feature j by KS-score

P = k/n) — () —12..
Vo' = max {|(k/n) = mgolt, J=12.p

» Similar to HC, but signals here are non-sparse
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Efron’s null correction (Lung Cancer)

Theoretic Null: null density of KS-scores z/;,(,j) if data are Gaussian (does
not depend on feature mean/variance easy to simulate)
Theoretic null is a bad fit to (top) but a nice flt to 1/),,(J) (bottom)
I == 2500
u h 2000F

1500

1000
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How to set the threshold t?

» CV: not implementable (class labels unknown)
» FDR: need tuning and target on Rare/Strong
signals [Benjamini and Hochberg (1995), Efron (2010)]

t (threshold) | #{selected features} feature-FDR errors
.0280 12529 1.00 22
.1595 2523 1.00 28
.2814 299 .538 4
.2862 280 .50 5
3331 132 .25 6
.3469 106 .20 43
3622 86 15 38
4009 32 10 38
4207 27 .06 37
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Threshold choice by HC

Jin and Wang (2015), Jin, Ke and Wang (2015)
Compute P-values: mj =1 — Fo( ;k,(’/)),
1 < j < p (Fy: CDF of Efron’s theoretical null)
Sort P-values: m(1) < m(p) < ... < T(p)
Define

v

v

v

VP(k/p — k)
VK/p+ max{V/n(k/p — 7,0}

Let i% = argmax{1§k§p/277:(k)>|0g(p)/p}{HCp’k}.
HC threshold tg’c is the k-th largest KS-score

HC, ) =

v
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[llustration

ordered KS—scores

5 -
O L L L L
0] 0.02 0.04 0.06 0.08 0.1
ordered p—values
0.1
0.051 |
O L L L L
0] 0.02 0.04 0.06 0.08 0.1
HC objective Function
10 ;
5/’M
(0]

0] 0.02 0.04 0.06 0.08 0.1

LSI for Rare/Weak Signals 64 /100



llustration, Il (Lung Cancer)

0.2
0.15
0.1

0.05

0.05

x-axis: # of selected features;
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Comparison

SpecGem: modified classical PCA [Lee et al (2010)]
kmeans++: Authur and Vassilvitskii (2007)

COSA: Friedman and Meulman (2004)

skmeans: Witten and Tibshirani (2010)

sPCA: Zou, Hastie, Tibshirani (2006) (project data matrix to the
estimated feature space then cluster; tuning parameter ideally set)

vV V. v Vv Y

# | Data set K | kmean SpecGem kmean++ COSA skmean sPCA Our
1 | Brain 5] .286 143 427 405 .286 262 .262
2 | Breast Cancer | 2 | .442 438 430 .359 442 438 406
3 | Colon Cancer 2| .443 484 460 408 468 435 403
4 | Leukemia 2| .278 292 257 167 278 292 .069
5 | Lung Cancer 2| .116 122 .196 011 116 110 .033
6 | Lung Cancer(2) | 2 | .436 434 439 350 448 433 217
7 | Lymphoma 3| .387 .226 433 371 387 190 .065
8 | Prostate 2| 422 422 432 412 422 422 382
9 | SRBCT 4 | .556 .508 524 587 .556 428 444
10 | SuCancer 2| AT 489 .459 .328 ATT 437 333
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Comparison, |l

cell value — row min

Regret = -
row max — row min

# | Data set K | kmean SpecGem kmean++ COSA skmean sPCA Our
1 | Brain 5 .504 0 1 923 504 419 419
2 | Breast Cancer | 2 1 .952 .855 0 1 .952 .566
3 | Colon Cancer 2 494 1 704 062 .803  .395 0
4 | Leukemia 2 .937 1 .843 440 .937 1 0
5 | Lung Cancer 2 .568 .600 1 0 568 535 .119
6 | Lung Cancer(2) | 2 | .948 .939 961 576 1 .945 0
7 | Lymphoma 3 .875 438 1 832 875 340 0
8 | Prostate 2 .800 .800 1 .600 .800  .800 0
9 | SRBCT 4 .805 .503 .604 1 .805 0 .100
10 | SuCancer 2 .926 1 .814 0 926 .677 .031

kmean SpecGem kmean++ COSA skmean sPCA Our
Overall ranking 5 4 7 2 6 3 1
Average regret .786 723 .878  .443 821 .605 .124
Average error rate .384 .356 406 340 388 345 .261
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3.2. Phase transitions in clustering
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A Rare/Weak model (K = 2)

X=0l'+Z €R"™, Z: iid N(0,1) entries

» Class labels:
;= +1 with equal prob.

» Rows of “signal matrix” are =4 (two classes)
» Feature strengths:

~_ |0, with prob. (1 —¢)
i) = { T, with prob. €

LS| for Rare/Weak Signals
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Calibrations

We use p as driving asymptotic parameter and tie
(n,e,7) to p by fixed parameters (0, 3, av, r)
» “large p small n":

n=p’ 0<bd<l1
» Rare signals:
#{of signals} s, ~ pe, = pt=7’, 0<pf<l1
» Weak signals:
To=p - +/4rlog(p)
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Two clustering limits

n=p",  s,mpe,=p""  1,=p “4rlog(p)

» Statistical limits. Fixing 6, for which (3, @) successful
clustering is possible/impossible?

» Computable statistics limits. Fix 6 and restrict to
methods computable in polynomial time. For which
(8, ), successful clustering is possible/impossible?

We study these in a cruder scale, so {/4rlog(p) is negligible
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IF-PCA for synthetic Gaussian data

features selected features PC’s

[%2]
D
o
5
microarray two-class model
pre-normalization yes skipped
feature-wise screening | Kolmogorov-Smirnov chi-square scores
scores v | 98 = (x> — m)/V2n
re-normalization Efron’s null correction skipped
threshold choice HCT same
post-selection PCA same same
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Two aggregation methods

» Simple Aggregation: cluster by sgn(f()
» Sparse Aggregation: for a tuning integer N,
clusters by sgn(xz), where

~

S = argmax{5;|5|zN}{ H>_<5H1}

F r
Features eatures
p 0
Q) —
E‘ X1 X[ X3]  vvvvrniinnnene xp—Z.Xp_lxl, g- e £ £ IR xp—pr_lxp
& a

\ ; N

‘ \ JES/

X
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Two limits (8-« plane, cruder scale)

E) 05 __4:) 0.
§ 0.45 § 0451
T =p/s H
ol X . ¥ ool Impossible
Impossible
— 12 |
S 025 : = oasf : P-har
. : Simple
oz} Simple 02t H
oé—ggregatid'n = 5'71/2 0.15 Aggreg ;
o1 Sparse Aggregation o1 i Classical |
: (NP-hard) i PCA & |F-PCA
b —» sparser B —» sparser
Sparsity level Signals | Optimal methods | Feature Selection
Vnp K s, K p | Very weak Simple Agg. Impossible
VP K sp K /np | Very weak PCA Impossible
Vn <L sp < /P Critical IF-PCA Necessary & subtle
1< s, </n Strong IF-PCA Necessary yet trivial
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IF-PCA: most interesting on “shaded bar”

n=p’ 1/2<p<1-46/2, T, = p “+/4rlog(p)

Fixing 6, o = ¢ is a constant, {/4rlog(p) plays a key role:

117 - N(O, 1 feature | usel
Y2-score Ill® —n { (0, 1), eature j useless

V2n | N(\/2rlog(p), 1), feature j useful

» r < 1: feature selection impossible (signals too weak)
» r > 1: feature selection is easy (signals too strong)

» Limits for IF-PCA. Fix 6. For which (5, r), successful
clustering by IF-PCA is possible/impossible?
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Phase transition for IF-PCA (3-r plane)

Recall that n = p?. Define the standard phase function:

_ -3
p(ﬂ) - {(1_ /71 _6)2’

<p<3
<p<1

BN

dl =(1-20 1 ﬁ 1 17@
and let pg(3) = ( )p(z+1=5)3<B< 2

1

09r
08
071
ol Suceess
=~ 05
04r
03r
0.2r

o Failure

0.1f

0

. . . . . . . .
0 01 02 03 04 05 06 07 08 09 1 05 055 06 0.65 07 075 08 085
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Consistency of HC threshold

Consider IF-PCA with a threshold t > 0. Let Err(t) be the
clustering error, and £(*) be the first singular vector of the
post-selection data matrix. Fix (3, r,#) such that r > py(03).
» There is a non-stochastic function SNR(t) such that for
t in an appropriate range, SNR(t) > 1 and

&0 o SNR(t) + z + rem, z ~ N(0, 1,)

» Define two non-stochastic thresholds:

idealHC SNR ideal
tye = argmax,SNR(t), tye = argmax,Err(t).

» HCT yields the right threshold choice:
HC / cidealHC : idealHC / Lideal
)/t — 1 in prob., ty [ty — 1

» |F-PCA-HCT vyields successful clustering
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Summary of Part Il

» Proposed IF-PCA for cancer subject clustering

» Feature ranking by Kolmogorov-Smirnov statistics

» Reduce gaps between theory and data analysis by
Efron’s null correction

» Threshold choice by Higher Criticism

» |F-PCA is conceptually simple, flexible, tuning free, and
an example of “Screen first, Estimate next” philosophy

» ldentified statistical limits and computationally tractable
statistical limits for clustering problem

» Proved consistency of Higher Criticism threshold and
that IF-PCA-HCT achieves the optimal phase diagram
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Part IV: Variable Selection
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Sparse linear regression model

Y=XB+z, XeR™  z~ NO,I)

» Both p and n are large
» Signals are Rare/Weak

» Columns of X are normalized, and each column
is only significantly correlated with a few others
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Variable selection approaches

» Stage-wise methods (Forward, Forward-Backward)
» Penalization methods
» Subset selection:

1 1

- Y—X 2 ~\Ss

1Y = XBI + 5X%1181l
» The lasso:

1

§||Y—X5HZ+A""SS°IIBH1

» Screen-and-Clean methods (Today):

» Screen: remove a large fraction of noise variables
by a computationally efficient algorithm
» Clean: further filter out falsely selected variables
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4.1. Non-optimality of penalization
methods
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Measure of success

» Oracle property (inappropriate for RW signals)T

P{S(B) - 5(6)}7 (S(ﬂ) ={1<j<p:B;#0} support)

» (9-norm (more relevant for prediction):

16 -Blg;  q>0

» Hamming selection error:

p
Hammp(é, B,Q)=E [Z 1{sgn(3j) # sgn(ﬁj)}
j=1
t Fan and Lv (2008)
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A Rare/Weak model and three regions

0, 1—c¢
512{ P

Tp; €p

€p = p . T, =/ 2r log(p), 0<,r<1

» Region of No recovery: fixing (¥, r) in this region,
Hammp(ﬁ, 0, r; X) 2 pep
» Region of Almost Full Recovery
1< Hammp(ﬁ,ﬁ, r; X) < pep
» Region of Exact recovery.

Hamm, (5,9, r; X) =0, except a small probability



Phase Transition (X'X nearly tridiag)

Y ~ N(XB,1,), rows of X iid from N(O, %Q), Q

Exact Recovery

Exact Recovery

4 4
r
s 3 Non-optimal
2 2
Almost Full Recovery Optimal
1 1
0 No Recovery 0 No Recovery
0 02 04 06 08 1 0 02 04 06 08
b D)
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4.2. Covariate-assisted screening
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Ranking variables

» Goal: rank the variables such that signal

variables are ranked above most non-signals

» Useful for identifying a few most promising
variables for follow-up lab experiments

» Useful for the follow-up tasks such as variable
selection or FDR controlling
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Marginal ranking

» Rank variables by
(%, Y)
(%, ;)

» Pz: projection from R” to span{x;,j € 7}
T =PY > = IPogy Y12, (Z=1{})

2

T = = (x;, Y)?, x;: j-th column of X

Problem. Signal Cancellation

p

(Xj7 Y):Z(vaxk)/gj—'—(xb ) BJJF Z XJ7X’< /3k+ Xj, Z )

k=1 kik ), Bi 40
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Exhaustive multivariate ranking

J = g i i |PzY |I*=[|Pr\(j Y

» Computationally infeasible:
~(p
> (%)

> Inefficiency: T} is the max over /" | (ij)
x°-tests, and is large even if j3; is a noise

To rank above average noise terms, signals
need to be stronger far more than necessary
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Graph Of Strong Dependence (GOSD)

Define GOSD G = (V, E):
» V={1,2,...,p}: each variable is a node
» Nodes i and j have an edge iff

|(xi, )| > 6, (6 = m say)

» Under our assumptions, G is sparse
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Covariate-Assisted Ranking (CAR)

Rank variables by

T = X, Tiz, Tz =IPY|? = |Prp YII°
A;(m): size < m connected subgraphs containing j

Let d be the maximum degree of G.

| U2, Aj(m)| < Cp(2.718d)" < zm:(i)
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A real example

Data: gene expression of human immortalized B
cells ((p, n) = (4238,148); Nayak et al. (2009))

» Remove the first singular vector:

n n
/ / /
Data = E OkUkV, = o1U1Vvq] + E OkUkVy
k=1 k=2

design matrix X

» Synthetic data for regression:

- [ ~N(©O,7%), 1<j<s
Y = N(XB, I), Bj { =0, otherwise
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Comparison of the ROC curve

~ N@,7?), 1<j<s

For CAR, (m,d) = (2,0.5) B { -0, otherwise

Left: (n,s) = (0.1,50). Right: (n,s) = (5,50)
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GOSD and mutual orthogonality

» Ranking is “easy” if xi, X2, ..., X, split into many
small-size mutually orthogonal groups

{1,2,...,[)}:IlLJIQU...UIm,
X&ho 1 X®E k£

X®I: sub-matrix with columns restricted to Z
BT: sub-vector with rows restricted to Z

g=Gi1U...UGy = X9 approx. mutual. orth.

components
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Signal archipelago

Gs =Gs1UGsoU...UGs um, S=5(B)
v (. ~~ J
signal subgraph components

Lemma. If /{3; # 0} % Bernoulli(¢) and d is the max.
degree of G, then P{ maxy<y<m |Gmi| > m} < p(ede)™?

(//\’\ g q \ Q (/(\ QTC\
2N
o ) /\n/
\\—0 \ J(> )

g \o

LSI for Rare/Weak Signals 92 /100



Why signal cancellation is not an issue

s = gs,1U- . -UgS,M7 Tilgs,ko = HPgS,kO Y||2_||Pgs,ko\{f}y||2

» Mutual orthogonality = Signal cancellation
only happens within Gs

» For significance of 3;, it suffices to consider
Y = X®9sh 395k 4z (XDIsh | XYsk approx.)

> Tjigs,, is optimal for testing

Ho: 8; =0 V.S. Hy: B #0
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How CAR ensures successful ranking

Tj* = max 7}‘1, gs = Q571 Uu...U gs’/\//
|1 Z|<m&ZI>j
connected subgraph

» If j is a signal (say, j € Gsk,) and m > |Gs 4|,
Tz Tjigs sy = H'Dgs,ko Y7~ ”Pgs,ko\{J'}YH2 ~ Xi(czﬂjz)
» If j is a noise,

T _ small, if no signal in all Z
J 771 maybe large, otherwise (Type I; not too many)

Therefore, signals are ranked above most non-signals!
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4.3. Covariate Assisted Screening
Estimation (CASE)
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Post-screening archipelago

» CASE removes most noise while retain most signals

» Post-selection variables split into many small-size
islands, each contains some signals and some noise

» Keys. sparsity of 3, sparsity of G, successful ranking
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Variable selection by CASE

Fix tuning parameters (q, u®, v<*), t, = y/2qlog(p)
» Screen. Rank variables by CAR and let

Se={1<j<p T} >ty

g; = gg’lugg’zu...ugi,\;,
\././ . ~ /
post-selection subgraph small-size components

» Clean.
> Ifj ¢S, set 3 =0.
» Otherwise, we must have j € Qik for some k.
Estimate {f3; : j € G5, } by minimizing

1P, (¥ = > Bp)IP+ (™) Bllo. ;=0 or ;> v

J€Gs

u;;rto
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Comparison with L°/[-penalization

Method L°/1*-penalization CASE

Regime Rare/Strong Rare/Weak

Loss P{S(3 = S(B)} or L7 | Hamm(sgn(5),sgn(p))
Optimality | Not in Hamming Error Yes

Motivation | Imaging/Engineering Genetics/Genomics
Design Controllable/Nice Uncontrollable/Bad

Key idea One-stage global method | Multi-stage local method

L%/ methods: Donoho and Stark (1989), Tibshirani (1996), and many others
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Optimality of CASE (X'X nearly tridiag)

Y ~ N(XB,1,), rows of X iid from N(0, %Q), Q is tri-diagonal

6
Exact Recovery Exact Recovery 5 Exact Recovery
5
4/Non-
4 optimal
s
3 .
Non-optimal
2 2 )
Almost Full Recovery Optimal Optimal
1 1
No Recovery 0 No Recovery 0 No Recovery
0 02 04 06 08 1 0 02 04 06 08 1 0 0.2 0.419 06 08

Optimality in more general designs: Ji and Jin (2012), Jin,
Zhang and Zhnag (2014), Ke, Jin and Fan (2014)
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Summary of Part IV

» Covariate-Assisted Ranking overcomes signal
cancellation and provides more satisfying
ranking than marginal ranking

» Post-screening subgraph consists of many
small-size components, which can be cleaned
separately

» CASE is optimal in terms of Hamming
selection error, while L%-L1 methods are not
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