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Sparse Linear Regression

Assume that β∗ ∈ Rp is sparse and unknown. Consider recovering β∗ from n

linear measurements

y = Xβ∗ + ε, y ∈ Rn

where ε ∼ N (0, σ2) is noise.

• Basic Sparsity: S := supp(β∗) (s = |S |) and T be its complement.

• XS (XT ) be the columns of X with indices restricted on S (T )

• X is n-by-p, with p � n ≥ s.

• Or Structural Sparsity: γ∗ = Dβ∗ is sparse, where D is a linear transform

(wavelet, gradient, etc.), S = supp(γ∗)

• How to recover β∗ (or γ∗) sparsity pattern (sparsistency) and estimate

values with variations (consistency)?
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Our Best Possible in Basic Setting: The Oracle Estimator

Had God revealed S to us, the oracle estimator was the subset least square

solution (MLE) with β̃∗T = 0 and

β̃∗S = β∗S +
1

n
Σ−1

n XT
S ε, where Σn = 1

n
XT

S XS (1)

“Oracle properties”

• Model selection consistency: supp(β̃∗) = S ;

• Normality: β̃∗S ∼ N (β∗, σ
2

n
Σ−1

n ).

So β̃∗ is unbiased, i.e. E[β̃∗] = β∗.

Yuan Yao Differential Inclusion Method in High Dimensional Statistics
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LASSO and Bias

Recall LASSO

LASSO:

min
β
‖β‖1 +

t

2n
‖y − Xβ‖2

2.

optimality condition:

ρt
t

=
1

n
XT (y − Xβt), (2a)

ρt ∈ ∂‖βt‖1, (2b)

where λ = 1/t is often used in literature.

• Chen-Donoho-Saunders’1996 (BPDN)

• Tibshirani’1996 (LASSO)

Yuan Yao Differential Inclusion Method in High Dimensional Statistics
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LASSO and Bias

The Bias of LASSO

LASSO is biased, i.e. E(β̂) 6= β∗

• e.g. X = Id , n = p = 1, LASSO is soft-thresholding

β̂τ =

{
0, if τ < 1/β̃∗;

β̃∗ − 1
τ
, otherwise,

• e.g. n = 100, p = 256, Xij ∼ N (0, 1), εi ∼ N (0, 0.1)
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LASSO and Bias

LASSO Estimator is Biased at Path Consistency

Even when the following path consistency (conditions given by Zhao-Yu’06,

Zou’06, Yuan-Lin’07, Wainwright’09, etc.) is reached at τn:

∃τn ∈ (0,∞) s.t. supp(β̂τn ) = S ,

LASSO estimate is biased away from the oracle estimator

(β̂τn )S = β̃∗S −
1

τn
Σ−1

n,Ssign(β∗S ), τn > 0.

How to remove the bias and return the Oracle Estimator?

Yuan Yao Differential Inclusion Method in High Dimensional Statistics



Outline LASSO vs. Differential Inclusions Algorithm Variable Splitting Summary

LASSO and Bias

Nonconvex Regularization?

• To reduce bias, non-convex regularization was proposed (Fan-Li’s SCAD,

Zhang’s MPLUS, Zou’s Adaptive LASSO, lq (q < 1), etc.)

min
β

∑
i

p(|βi |) +
t

2n
‖y − Xβ‖2

2.

PENALIZED KRIGING MODEL
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size is small. This result has an important practical implications,
because computer experiments can be very time-consuming.
For example, it takes 24 hours for every run of computer ex-
periments for piston slap noise example analyzed in Section 4.
In such situations, collecting a large sample may be very diffi-
cult, and penalized likelihood approaches are recommended.

3. PENALTY FUNCTION AND ALGORITHM FOR
PARAMETER ESTIMATION

In this section we propose the smoothly clipped absolute de-
viation (SCAD) penalty as the appropriate choice of penalty
function pλ(·) and the choice of regularization parameter λ

needed for the penalized likelihood in (5). A practical algo-
rithm using the Fisher scoring approach is used to estimate the
model parameters µ, σ , and θ . The performance comparison of
these penalty functions is discussed in Section 4, in which an
engineering example is used to illustrate the advantage of the
proposed method.

3.1 Selection of a Penalty Function

Because model selection is used for various purposes, many
authors have considered the issue of selecting penalty func-
tions. In the context of linear regression, penalized least squares
with L2 penalty, pλ(|θ |) = .5λ|θ |2, leads to a ridge regression,
whereas the penalized least squares with L1 penalty, defined
by pλ(|θ |) = λ|θ |, corresponds to LASSO (Tibshirani 1996).
Fan and Li (2001) proposed a new penalty function, the SCAD
penalty. The first derivative of SCAD is defined by

p′
λ(θ) = λ

{
I(θ ≤ λ) + (aλ − θ)+

(a − 1)λ
I(θ > λ)

}
(15)

for some a > 2, θ > 0, with pλ(0) = 0. This penalty function in-
volves two unknown parameters λ and a. As suggested by Fan
and Li (2001), we set a = 3.7 throughout the article. As demon-
strated by Fan and Li (2001), the performance cannot be signif-
icantly improved with a selected by data-driven methods, such
as cross-validation. Furthermore, the data-driven method can
be very computationally extensive, because one needs to search
for an optimal pair (λ,a) over a two-dimensional grid of points.
The shapes of the three penalty functions (L1, L2, and SCAD)
are shown in Figure 3.

As discussed in Section 2.2, if maxj |p′
λ(θj0)| = o(N−1/2) and

maxj |p′′
λ(θj0)| = o(N−1/2), then

√
N(θ̂ − θ0)

D−→N(0, I−1(θ0)), (16)

which is the same as that of θ̂MLE. For the L2 penalty,
p′
λ(θ) = λθ and p′′

λ(θ) = λ. Thus, when λ = o(N−1/2) for the L2
penalty, then, under certain regularity conditions, (16) holds.
For the L1 penalty, p′

λ(θ) = λ and p′′
λ(θ) = 0. Hence (16)

requires that λ = o(N−1/2). As to the SCAD penalty, when
λ → 0, maxj |p′

λ(θj0)| → 0 and maxj |p′′
λ(θj0)| → 0 for any

given θj0 > 0. This implies that if λ = o(1) for the SCAD
penalty, then (16) holds.

Figure 3. Penalty Functions With λ 1.5, 1, and 1 for the SCAD ( ),
L1 ( ), and L2 ( ) Penalties.

3.2 Fisher Scoring Algorithm

Welch et al. (1992) used a stepwise algorithm with the down-
hill simplex method of maximizing the likelihood function
in (4) to sequentially estimate the Gaussian kriging parame-
ters. Here we use a computationally more efficient gradient-
based optimization technique to estimate the parameters. The
expressions of the gradient and Hessian matrix of the penal-
ized likelihood function in (5) are given in the Appendix.
Using the first-order and second-order derivative information,
one may directly use the Newton–Raphson algorithm to op-
timize the penalized likelihood. In this article we use the
Fisher scoring algorithm to find the solution of the penal-
ized likelihood because of its simplicity and stability. Notice
that E{∂2ℓ(µ,γ )/∂µ ∂γ } = 0 [see the App. for the expres-
sion of ∂2ℓ(µ,γ )/∂µ ∂γ ]. Therefore, the updates of µ̂ and γ̂
are obtained by solving separate equations. For a given value
(µ(k), θ̂ (k)σ 2(k)) at the kth step, the new value (µ, θ ,σ 2) is up-
dated by

µ(k+1) =
{
1T

NC−1(θ (k))1N
}−11T

NC−1(θ (k))y (17)

and

σ 2(k+1) = N−1(y − 1Nµ(k))TC−1(θ)
(
y − 1Nµ(k)), (18)

where C(θ) = σ−1R(γ ), and

θ (k+1) = θ (k) +
{
I22

(
γ (k)) + #

(
θ (k))}−1

∂Q
(
µ(k),γ (k))/∂θ ,

where I22(γ ) = −E{∂2ℓ(µ, θ,σ 2)/∂θ ∂θ} and #(θ) =
diag{ p′′

λ(θ1), . . . ,p′′
λ(θd)}, a d × d diagonal matrix.

3.3 Choice of Regularization Parameter

Because Gaussian kriging gives us an exact fit at the sam-
ple point x, the residual at each sample point is exactly equal
to 0. Therefore, generalized cross-validation (GCV) cannot be
used to choose the regularization parameter λ. In this article we
use cross-validation (CV) to select the regularization parame-
ter. We implement V-fold CV, and for a given λ, compute the

TECHNOMETRICS, ???? 0, VOL. 0, NO. 0

• Yet it is generally hard to locate the global optimizer

• Any other simple scheme?
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Differential Inclusions

New Idea

• LASSO:

min
β
‖β‖1 +

t

2n
‖y − Xβ‖2

2.

• KKT optimality condition:

⇒ ρt =
1

n
XT (y − Xβt)t

• Taking derivative (assuming differentiability) w.r.t. t

⇒ ρ̇t =
1

n
XT (y − X (β̇tt + βt)), ρt ∈ ∂‖βt‖1

• Assuming sign-consistency in a neighborhood of τn,

for i ∈ S , ρτn (i) = sign(β∗(i)) ∈ ±1⇒ ρ̇τn (i) = 0,

⇒ β̇τnτn + βτn = β̃∗

• Equivalently, the blue part removes bias of LASSO automatically

β lasso
τn = β̃∗ − 1

τn
Σ−1

n sign(β∗)⇒ β̇ lasso
τn τn + β lasso

τn = β̃∗(oracle)!
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Differential Inclusions

Differential Inclusion: Inverse Scaled Spaces (ISS)

Differential inclusion replacing β̇ lasso
τn τn + β lasso

τn by βt

ρ̇t =
1

n
XT (y − Xβt), (3a)

ρt ∈ ∂‖βt‖1. (3b)

starting at t = 0 and ρ(0) = β(0) = 0.

• Replace ρ/t in LASSO KKT by dρ/dt

ρt
t

=
1

n
XT (y − Xβt)

• Burger-Gilboa-Osher-Xu’06 (in image recovery it recovers the objects in an

inverse-scale order as t increases (larger objects appear in βt first))

Yuan Yao Differential Inclusion Method in High Dimensional Statistics
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Differential Inclusions

Examples

• e.g. X = Id , n = p = 1, hard-thresholding

βτ =

{
0, if τ < 1/(β̃∗);

β̃∗, otherwise,

• the same example shown before
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Differential Inclusions

Solution Path: Sequential Restricted Maximum Likelihood Estimate

• ρt is piece-wise linear in t,

ρt = ρtk +
t − tk
n

XT (y − Xβtk ), t ∈ [tk , tk+1)

where tk+1 = sup{t > tk : ρtk + t−tk
n

XT (y − Xβtk ) ∈ ∂‖βtk ‖1}

• βt is piece-wise constant in t: βt = βtk for t ∈ [tk , tk+1) and βtk+1 is the

sequential restricted Maximum Likelihood Estimate by solving

nonnegative least square (Burger et al.’13; Osher et al.’16)

βtk+1 = arg minβ ‖y − Xβ‖2
2

subject to (ρtk+1 )iβi ≥ 0 ∀ i ∈ Sk+1,

βj = 0 ∀ j ∈ Tk+1.

(4)

• Note: Sign consistency ρt = sign(β∗)⇒ βt = β̃∗ the oracle estimator

Yuan Yao Differential Inclusion Method in High Dimensional Statistics
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Differential Inclusions

Example: Regularization Paths of LASSO vs. ISS

Figure: Diabetes data (Efron et al.’04) and regularization paths are different, yet

bearing similarities on the order of parameters being nonzero

Yuan Yao Differential Inclusion Method in High Dimensional Statistics
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A Theory of Path Consistency

How does it work? A Path Consistency Theory

Our aim is to show that under nearly the same conditions for sign-consistency

of LASSO, there exists points on their paths (β(t), ρ(t))t≥0, which are

• sparse

• sign-consistent (the same sparsity pattern of nonzeros as true signal)

• the oracle estimator which is unbiased, better than the LASSO estimate.

• Early stopping regularization is necessary to prevent overfitting noise!

Yuan Yao Differential Inclusion Method in High Dimensional Statistics
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A Theory of Path Consistency

Intuition

Yuan Yao Differential Inclusion Method in High Dimensional Statistics
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A Theory of Path Consistency

History: two traditions of regularizations

• Penalty functions

• `2: Ridge regression/Tikhonov regularization: 1
n

∑n
i=1 `(yi , x

T
i β) + λ‖β‖2

2

• `1 (sparse): Basis Pursuit/LASSO (ISTA): 1
n

∑n
i=1 `(yi , x

T
i β) + λ‖β‖2

1

• Early stopping of dynamic regularization paths

• `2-equivalent: Landweber iterations/gradient descent/`2-Boost

dβt
dt

= −1

n

n∑
i=1

∇β`(yi , xT
i β), βt = ∇

{
1

2
‖βt‖2

}
• `1 (sparse)-equiv.: Orthogonal Matching Pursuit, Linearized Bregman

Iteration (sparse Mirror Descent) (not ISTA! –later)

dρt
dt

= −1

n

n∑
i=1

∇β`(yi , xT
i β), ρt ∈ ∂‖βt‖1

Yuan Yao Differential Inclusion Method in High Dimensional Statistics
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A Theory of Path Consistency

Assumptions

(A1) Restricted Strongly Convex: ∃γ ∈ (0, 1],

1

n
XT

S XS ≥ γI

(A2) Incoherence/Irrepresentable Condition: ∃η ∈ (0, 1),∥∥∥∥1

n
XT

T X †S

∥∥∥∥
∞

=

∥∥∥∥∥1

n
XT

T XS

(
1

n
XT

S XS

)−1
∥∥∥∥∥
∞

≤ 1− η

• ”Irrepresentable” means that one can not represent (regress) column

vectors in XT by covariates in XS .

• The incoherence/irrepresentable condition is used independently in

Tropp’04, Yuan-Lin’05, Zhao-Yu’06, and Zou’06, Wainwright’09, etc.

Yuan Yao Differential Inclusion Method in High Dimensional Statistics
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A Theory of Path Consistency

Understanding the Dynamics

ISS as restricted gradient descent:

ρ̇t = −∇L(βt) =
1

n
XT (y − Xβt), ρt ∈ ∂‖βt‖1

such that

• incoherence condition and strong signals ensure it firstly evolves on index

set S to reduce the loss

• strongly convex in subspace restricted on index set S ⇒ fast decay in loss

• early stopping after all strong signals are detected, before picking up the

noise

Yuan Yao Differential Inclusion Method in High Dimensional Statistics
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A Theory of Path Consistency

Path Consistency

Theorem (Osher-Ruan-Xiong-Y.-Yin’2016)

Assume (A1) and (A2). Define an early stopping time

τ :=
η

2σ

√
n

log p

(
max
j∈T
‖Xj‖

)−1

,

and the smallest magnitude β∗min = min(|β∗i | : i ∈ S). Then

• No-false-positive: for all t ≤ τ , the path has no-false-positive with high

probability, supp(β(t)) ⊆ S ;

• Consistency: moreover if the signal is strong enough such that

β∗min ≥
(

4σ

γ1/2
∨ 8σ(2 + log s) (maxj∈T ‖Xj‖)

γη

)√
log p

n
,

there is τ ≤ τ̄ such that solution path β(t)) = β̃∗ for every t ∈ [τ, τ ].

Note: equivalent to LASSO with λ∗ = 1/τ̄ (Wainwright’09) up to log s.

Yuan Yao Differential Inclusion Method in High Dimensional Statistics



Outline LASSO vs. Differential Inclusions Algorithm Variable Splitting Summary

Linearized Bregman Iteration

Large scale algorithm: Linearized Bregman Iteration

Damped Dynamics: continuous solution path

ρ̇t +
1

κ
β̇t =

1

n
XT (y − Xβt), ρt ∈ ∂‖βt‖1. (5)

Linearized Bregman Iteration as forward Euler discretization proposed even

earlier than ISS dynamics (Osher-Burger-Goldfarb-Xu-Yin’05,

Yin-Osher-Goldfarb-Darbon’08): for ρk ∈ ∂‖βk‖1,

ρk+1 +
1

κ
βk+1 = ρk +

1

κ
βk +

αk

n
XT (y − Xβk), (6)

where

• Damping factor: κ > 0

• Step size: αk > 0 s.t. αkκ‖Σn‖ ≤ 2

• Moreau Decomposition: zk := ρk + 1
κ
βk ⇔ βk = κ · Shrink(zk , 1)

Yuan Yao Differential Inclusion Method in High Dimensional Statistics
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Linearized Bregman Iteration

Easy for Parallel Implementation

Figure: Linear speed-ups on a 16-core machine with synchronized parallel computation

of matrix-vector products.
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Linearized Bregman Iteration

Comparison with ISTA

Linearized Bregman (LB) iteration:

zt+1 = zt − αtX
T (κXShrink(zt , 1)− y)

which is not ISTA:

zt+1 = Shrink(zt − αtX
T (Xzt − y), λ).

Comparison:

• ISTA:

• as t →∞ solves LASSO: 1
n
‖y − Xβ‖2

2 + λ‖β‖1

• parallel run ISTA with {λk} for LASSO regularization paths

• LB: a single run generates the whole regularization path at same cost of

ISTA-LASSO estimator for a fixed regularization

Yuan Yao Differential Inclusion Method in High Dimensional Statistics
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Linearized Bregman Iteration

LB generates regularization paths

Figure: As κ→∞, LB paths have a limit as piecewise-constant ISS path

Yuan Yao Differential Inclusion Method in High Dimensional Statistics
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Linearized Bregman Iteration

Accuracy: LB may be less biased than LASSO

• Left shows (the magnitudes of) nonzero entries of β?.

• Middle shows the regularization path of LB.

• Right shows the regularization path of LASSO vs. t = 1/λ.
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Linearized Bregman Iteration

Path Consistency in Discrete Setting

Theorem (Osher-Ruan-Xiong-Y.-Yin’2016)

Assume that κ is large enough and α is small enough, with κα‖X ∗S XS‖ < 2,

τ :=
(1− B/κη)η

2σ

√
n

log p

(
max
j∈T
‖Xj‖

)−1

β∗max + 2σ

√
log p

γn
+
‖Xβ∗‖2 + 2s

√
log n

n
√
γ

, B ≤ κη,

then all the results for ISS can be extended to the discrete algorithm.

Note: it recovers the previous theorem as κ→∞ and α→ 0, so LB can be

less biased than LASSO.
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Generalizations

General Loss and Regularizer

η̇t = −κ0

n

n∑
i=1

∇η`(xi , θt , ηt) (7a)

ρ̇t +
θ̇t
κ1

= −1

n

n∑
i=1

∇θ`(xi , θt , ηt) (7b)

ρt ∈ ∂‖θt‖∗ (7c)

where

• `(xi , θ) is a loss function: negative logarithmic likelihood, non-convex loss

(neural networks), etc.

• ‖θt‖∗ is the Minkowski-functional (gauge) of dictionary convex hulls:

‖θ‖∗ := inf{λ ≥ 0 : θ ∈ λK}, K is a symmetric convex hull of {ai}

• it can be generalized to non-convex regularizers
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Generalizations

Linearized Bregman Iteration Algorithms

Differential inclusion (7) admits the following Euler Forward discretization

ηt+1 = ηt −
αkκ0

n

n∑
i=1

∇η`(xi , θt , ηt) (8a)

zt+1 = zt −
αk

n

n∑
i=1

∇θ`(xi , θt , ηt) (8b)

θt+1 = κ1 · prox‖·‖∗(zt+1) (8c)

where (8c) is given by Moreau Decomposition with

prox‖·‖∗(zt) = arg min
x

1

2
‖x − zt‖2 + ‖x‖∗,

and

• αk > 0 is step-size while αkκi‖∇2
θÊ`(x , θ)‖ < 2

• as simple as ISTA, easy to parallel implementation
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Cran R package: Libra

Cran R package: Libra

http://cran.r-project.org/web/packages/Libra/

Yuan Yao Differential Inclusion Method in High Dimensional Statistics
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Cran R package: Libra

Libra (1.5) currently includes

Sparse statistical models:

• linear regression: ISS (differential inclusion), LB

• logistic regression (binomial, multinomial): LB

• graphical models (Gaussian, Ising, Potts): LB

Two types of regularization:

• LASSO: l1-norm penalty

• Group LASSO: l2 − l1 penalty

Yuan Yao Differential Inclusion Method in High Dimensional Statistics
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Cran R package: Libra

A logistic regression with early stopping regularization
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Figure: Peter Hall vs. other COPSS award winners in sparse logistic regression [papers

from AoS/JASA/Biometrika/JRSSB, 2003-2012]: true coauthors are merely Tony Cai,

R.J. Carroll, and J. Fan
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Cran R package: Libra

Early stopping against overfitting in sparse Ising model learning

a true Ising model of 2-D grid a movie of LB path
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Cran R package: Libra

Example: Dream of the Red Mansion

(Xueqin Cao vs. E. Gao)

Ising Model (LB): sparsity=10%

贾政

贾珍

贾琏

贾宝⽟玉

贾探春

贾蓉
史太君

史湘云

王夫⼈人

王熙凤

薛姨妈

薛宝钗

林黛⽟玉

邢夫⼈人

尤⽒氏

李纨

袭⼈人

平⼉儿

Ising Model (LB): sparsity=10%

贾政

贾珍

贾琏

贾宝⽟玉

贾探春

贾蓉

史太君

史湘云

王夫⼈人

王熙凤

薛姨妈

薛宝钗

林黛⽟玉

邢夫⼈人

尤⽒氏

李纨

袭⼈人

平⼉儿

Figure: Left: main characters net in the first 80 chapters at sparsity 10%; Right: the

remaining 40 chapters.
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Cran R package: Libra

More reference

• Logistic Regression: loss – conditional likelihood, regularizer – l1

(Shi-Yin-Osher-Saijda’10,Huang-Yao’18)

• Graphical Models (Gaussian/Ising/Potts Model): loss – likelihood,

composite conditional likelihood, regularizer – l1 and group l1

(Huang-Yao’18)

• Fused LASSO/TV: split Bregman with composite l2 loss and l1 gauge

(Osher-Burger-Goldfarb-Xu-Yin’06, Burger-Gilboa-Osher-Xu’06,

Yin-Osher-Goldfarb-Darbon’08, Huang-Sun-Xiong-Yao’16)

• Matrix Completion/Regression: gauge – the matrix nuclear norm

(Cai-Candès-Shen’10)
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Split LB vs. Generalized LASSO

Structural Sparse Regression:

y = Xβ? + ε, γ? = Dβ? (S = supp (γ?) , s = |S | � p) , (9)

Loss that splits prediction vs. sparsity control

` (β, γ) :=
1

2n
‖y − Xβ‖2

2 +
1

2ν
‖γ − Dβ‖2

2 (ν > 0). (10)

Split LBI:

βk+1 = βk − κα∇β`(βk , γk), (11a)

zk+1 = zk − α∇γ`(βk , γk), (11b)

γk+1 = κ · prox‖·‖1
(zk+1), (11c)

Generalized LASSO (genlasso):

arg min
β

(
1

2n
‖y − Xβ‖2

2 + λ ‖Dβ‖1

)
. (12)
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Split LBI vs. Generalized LASSO paths
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Split LB may beat Generalized LASSO in Model Selection

genlasso Split LBI

ν = 1 ν = 5 ν = 10

.9426 .9845 .9969 .9982

(.0390) (.0185) (.0065) (.0043)

genlasso Split LBI

ν = 1 ν = 5 ν = 10

.9705 .9955 .9996 .9998

(.0212) (.0056) (.0014) (.0009)

• Example: n = p = 50, X ∈ Rn×p with Xj ∼ N(0, Ip), ε ∼ N(0, In)

• (Left) D = I (LASSO vs. Split LB)

• (Right) 1-D fused (generalized) LASSO vs. Split LB (next page).

• In terms of Area Under the ROC Curve (AUC), LB has less false

discoveries than genlasso

• Why? Split LB may need weaker irrepresentable conditions than

generalized LASSO...
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Structural Sparsity Assumptions

• Define Σ(ν) := (I − D(νX ∗X + DTD)†DT )/ν.

• Assumption 1: Restricted Strong Convexity (RSC).

ΣS,S(ν) � λ · I . (13)

• Assumption 2: Irrepresentable Condition (IRR).

IRR(ν) := ‖ΣSc ,S(ν) · Σ−1
S,S(ν)‖∞ ≤ 1− η. (14)

• ν → 0: RSC and IRR above reduce to the RSC and IRR neccessary and

sufficient for consistency of genlasso (Vaiter’13,LeeSunTay’13).

• ν 6= 0: by allowing variable splitting in proximity, IRR above can be weaker

than literature, bringing better variable selection consistency than

genlasso (observed before)!
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Identifiable Condition (IC) and Irrepresentable Condition (IRR)

• Let the columns of W form an orthogonal basis of ker(DSc ).

ΩS :=
(
D†Sc

)T (
X ∗XW

(
W TX ∗XW

)†
W T − I

)
DT

S , (15)

IC0 :=
∥∥∥ΩS

∥∥∥
∞
, IC1 := min

u∈ker(DSc )

∥∥∥ΩSsign (DSβ
?)− u

∥∥∥
∞
. (16)

• The sign consistency of genlasso has been proved, under IC1 < 1 (Vaiter

et al. 2013).

• We will show the sign consistency of Split LBI, under IRR(ν) < 1.

• If IRR(ν) < IC1, then our IRR is easier to be met?
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A Weaker Irrepresentable/Incoherence Condition

Split LB improves Irrepresentable Condition

(Huang-Sun-Xiong-Y.’16)

Theorem (Huang-Sun-Xiong-Y.’2016)

• IC0 ≥ IC1.

• IRR(ν)→ IC0 (ν → 0).

• IRR(ν)→ C (ν →∞). C = 0⇐⇒ ker(X ) ⊆ ker(DS).
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A Weaker Irrepresentable/Incoherence Condition

Consistency

Theorem (Huang-Sun-Xiong-Y.’2016)

Under RSC and IRR, with large κ and small δ, there exists K such that with

high probability, the following properties hold.

• No-false-positive property: γk (k ≤ K) has no false-positive, i.e.

supp(γk) ⊆ S = supp(γ?).

• Sign consistency of γk : If γ?min := min(|γ?j | : j ∈ S) (the minimal signal) is

not weak, then supp(γK ) = supp(γ?).

• `2 consistency of γk : ‖γK − γ?‖2 ≤ C1

√
s logm/n.

• `2 “consistency” of βk : ‖βK − β?‖2 ≤ C2

√
s logm/n + C3ν.

• Issues due to variable splitting (despite benefit on IRR):

• DβK does not follow the sparsity pattern of γ? = Dβ?.

• βK incurs an additional loss C3ν (ν ∼
√

s log m/n minimax optimal).
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A Weaker Irrepresentable/Incoherence Condition

Consistency

Theorem (Huang-Sun-Xiong-Y.’2016)

Define

β̃k := Projker(DSc
k

) (βk) (Sk = supp(γk)) (17)

Under RSC and IRR, with large κ and small δ, there exists K such that with

high probability, the following properties hold, if γ?min is not weak.

• Sign consistency of Dβ̃K : supp(Dβ̃K ) = supp(Dβ?).

• `2 consistency of β̃K :
∥∥∥β̃K − β?∥∥∥

2
≤ C4

√
s logm/n.

Yuan Yao Differential Inclusion Method in High Dimensional Statistics



Outline LASSO vs. Differential Inclusions Algorithm Variable Splitting Summary

A Weaker Irrepresentable/Incoherence Condition

Application: Alzheimer’s Disease Detection

Figure: [Sun-Hu-Y.-Wang’17] A split of prediction (β) vs. interpretability (β̃): β̃

corresponds to the degenerate voxels interpretable for AD, while β additionally

leverages the procedure bias to improve the prediction
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A Weaker Irrepresentable/Incoherence Condition

Application: Partial Order of Basketball Teams

Figure: Partial order ranking for basketball teams. Top left shows {βλ} (t = 1/λ) by

genlasso and β̃k (t = kα) by Split LBI. Top right shows the same grouping result

just passing t5. Bottom is the FIBA ranking of all teams.
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Summary

We have seen:

• The limit of Linearized Bregman iterations follows a restricted gradient

flow: differential inclusions dynamics

• It passes the unbiased Oracle Estimator under sign-consistency

• Sign consistency under nearly the same condition as LASSO

• Restricted Strongly Convex + Irrepresentable Condition

• Split extension: sign consistency under a weaker condition than

generalized LASSO

• under a provably weaker Irrepresentable Condition

• Early stopping regularization is exploited against overfitting under noise

A Renaissance of Boosting as restricted gradient descent ...

Yuan Yao Differential Inclusion Method in High Dimensional Statistics
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