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LASSO vs. Differential Inclusions

Sparse Linear Regression

Assume that " € RP is sparse and unknown. Consider recovering 8* from n
linear measurements
y=XB"+e¢ yeR’
where € ~ N(0, 0?) is noise.
e Basic Sparsity: S :=supp(8*) (s =|S|) and T be its complement.

Xs (X7) be the columns of X with indices restricted on S (T)
X is n-by-p, with p > n > s.

e Or Structural Sparsity: v* = D" is sparse, where D is a linear transform
(wavelet, gradient, etc.), S = supp(v*)

e How to recover 3* (or v*) sparsity pattern (sparsistency) and estimate

values with variations (consistency)?
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LASSO vs. Differential Inclusions

Our Best Possible in Basic Setting: The Oracle Estimator

Had God revealed S to us, the oracle estimator was the subset least square
solution (MLE) with 3% = 0 and

o « 1 __
Bs =85+ _5 Xl e, where £, = 1XJ Xs 1)
“Oracle properties”

 Model selection consistency: supp(3*) = S;
o Normality: 5% ~ N (3", ”—:Z;l).

So B* is unbiased, i.e. ]E[B*] = B*.
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LASSO vs. Differential Inclusions
@000
LASSO and Bias

Recall LASSO

LASSO: ,
min [|5]l + 5y — XB3.

optimality condition:

pr _ 17
i EX (y — XBe), (2a)
pr € 0||Bellx, (2b)

where A = 1/t is often used in literature.

e Chen-Donoho-Saunders'1996 (BPDN)
e Tibshirani'1996 (LASSO)
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LASSO vs. Differential Inclusions
0e00
LASSO and Bias

The Bias of LASSO

LASSO is biased, i.e. E(j) # 8*

e eg. X =1Id, n=p=1, LASSO is soft-thresholding

Br—{ 0, if 7 < 1/6%;

B* -1, otherwise,
=

e e.g. n=100, p =256, X; ~ N(0,1), ¢ ~ N(0,0.1)

0 50 100

True vs LASSO (t hand-tuned)
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LASSO vs. Differential Inclusions
[e]o] lo]
LASSO and Bias

LASSO Estimator is Biased at Path Consistency

Even when the following path consistency (conditions given by Zhao-Yu’06,
Zou'06, Yuan-Lin'07, Wainwright'09, etc.) is reached at 7,:

37, € (0,00) s.t. supp(fs,) =S,

LASSO estimate is biased away from the oracle estimator
A D% 1 —1 . %
(/37'")5 = /85 - ;Zn,}s81gll(ds)a Tn > 0.

How to remove the bias and return the Oracle Estimator?
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LASSO vs. Differential Inclusions
oooe
LASSO and Bias

Nonconvex Regularization?

e To reduce bias, non-convex regularization was proposed (Fan-Li's SCAD,
Zhang's MPLUS, Zou's Adaptive LASSO, [; (g < 1), etc.)

mﬂin Zpﬂﬁi\) + i”y - Xﬁ”%-

Ponalties

i

0 5
o

e Vet it is generally hard to locate the global optimizer

o Any other simple scheme?
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LASSO vs. Differential Inclusions
[ Jelele]e}
Differential Inclusions

New ldea

e LASSO: .
. 2
min 181l + 5 lly = XBlf2.
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LASSO vs. Differential Inclusions
[ Jelele]e}
Differential Inclusions

New ldea

e LASSO:
. t 2
min [|Blls + 5 lly — XBll2-
o KKT optimality condition:

1
= Pt = ;XT(}’ — XBe)t
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LASSO vs. Differential Inclusions
[ Jelele]e}
Differential Inclusions

New ldea

e LASSO:
. t 2
—ly — XB||5-
min |81l + 5 ly = XBI3
o KKT optimality condition:
1
= Pt = ;XT(}’ — XBe)t

e Taking derivative (assuming differentiability) w.r.t. t

= o= Xy = Xt + 6), pe € 0l
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LASSO vs. Differential Inclusions
[ Jelele]e}

Differential Inclusions

New ldea

LASSO:

. t 2
—|ly — XBll3.
min 18] + 5 lly = X513

KKT optimality condition:

1
= Pt = ;XT(}’ — XBe)t

Taking derivative (assuming differentiability) w.r.t. t

= o= Xy = Xt + 6), pe € 0l

e Assuming sign-consistency in a neighborhood of 7,,
fori €S, pr, (i) = sign(8*(V)) € £1 = p-,(i) =0,

= BTnTn + Br, = B*
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LASSO vs. Differential Inclusions
[ Jelele]e}

Differential Inclusions

New ldea

LASSO:

. t 2
min||8|l1 + =— ||y — XB||>.
5'" 18111 2n||y ll2

KKT optimality condition:

1
= Pt = ;XT(}’ — XBe)t

Taking derivative (assuming differentiability) w.r.t. t
. 1 :
= pr= ;XT(Y — X(Bet + Be)), pr € 0||Bellr
e Assuming sign-consistency in a neighborhood of 7,,
fori €S, pr, (i) = sign(8*(V)) € £1 = p-,(i) =0,

= BTnTn + Br, = B*
Equivalently, the blue part removes bias of LASSO automatically

lasso ok 1 —1_. * Hlasso lasso D
BE= = B* — — ¥ tsign(B") = BT, + B = B*(oracle)!
Th
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LASSO vs. Differential Inclusions
[e] le]e]e}
Differential Inclusions

Differential Inclusion: Inverse Scaled Spaces (ISS)

Differential inclusion replacing 67/.3"5507',, + Bfn“" by Bt

1
pe="X"(y = XB), (32)
pt € 0| Bellx- (3b)
starting at t = 0 and p(0) = 5(0) = 0.

e Replace p/t in LASSO KKT by dp/dt

pe_ Ly
tinX (y Xﬂt)

e Burger-Gilboa-Osher-Xu'06 (in image recovery it recovers the objects in an
inverse-scale order as t increases (larger objects appear in 3; first))
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LASSO vs. Differential Inclusions
[e]e] le]e}

Differential Inclusions

Examples

e eg. X =1Id, n=p =1, hard-thresholding

0, ifr<1/(B%);
5, otherwise,

672

e the same example shown before

P Y

e signal -15) — wesgna
PON reco —o Bregman recovery|

50 20 250 o 50 100 150 20 250

“:h | w “:Ta | TI

True vs LASSO True vs ISS
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LASSO vs. Differential Inclusions
[e]e]e] e}
Differential Inclusions

Solution Path: Sequential Restricted Maximum Likelihood Estimate

® p; is piece-wise linear in t,

t — tx

Pt = py + XT(y = XBy), t€ [t tisn)

where tipq = sup{t > tx : p, + ==X (y — XBs) € 9||Be. |1}

n
e [3; is piece-wise constant in t: 3 = B, for t € [tk, tky1) and Sy, is the
sequential restricted Maximum Likelihood Estimate by solving
nonnegative least square (Burger et al.’13; Osher et al.’16)

/Btk+1 = argming Hy - XB”%
subject to  (py,)ifi >0 Vi€ Sk, (4)
Bi=0 Vjé€ Tin.

o Note: Sign consistency p; = sign(8*) = 8 = * the oracle estimator

Yuan Yao Differential Inclusion Method in High Dimensional Statistics



Differential Inclusions

LASSO vs. Differential Inclusions
[e]e]ee] }

Example: Regularization

Ibetal/maxibetal

Paths of LASSO vs. ISS

Solution-Path

LASSO ISS-ungrouped
0 2 4 7 10 12 1 2 3 6 9 10 12
S 1 [T | 1 |
- o
£ g L
5 (T2 8 n [
] . = E
- = = o —_— =4
3 ° T 2 o L =
g 1 S I
= © e R
€ g | 2
5% 7 ]
T T T " T T T T T i
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure: Diabetes data (Efron et al.’04) and regularization paths are different, yet
bearing similarities on the order of parameters being nonzero
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LASSO vs. Differential Inclusions
®00000

A Theory of Path Consistency

How does it work? A Path Consistency Theory

Our aim is to show that under nearly the same conditions for sign-consistency
of LASSO, there exists points on their paths (3(t), p(t)):>0, which are

® sparse

e sign-consistent (the same sparsity pattern of nonzeros as true signal)

e the oracle estimator which is unbiased, better than the LASSO estimate.

e Early stopping regularization is necessary to prevent overfitting noise!
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LASSO vs. Differential Inclusions
O®@0000

A Theory of Path Consistency

Intuition

Wracle
¥ Gohmator

OVves fl‘#l‘lj 5.,\&9}):42..
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LASSO vs. Differential Inclusions
[e]e] le]ele]

A Theory of Path Consistency

History: two traditions of regularizations

e Penalty functions
£>: Ridge regression/Tikhonov regularization: 237 (yi, x' 8) + A||8|I3
{1 (sparse): Basis Pursuit/LASSO (ISTA): 1577 4(y;, x" B) + |83

o Early stopping of dynamic regularization paths

lr-equivalent: Landweber iterations/gradient descent/¢>-Boost
df: 1 o7 _ 1 )
= LA 8 —v {3

£y (sparse)-equiv.: Orthogonal Matching Pursuit, Linearized Bregman
Iteration (sparse Mirror Descent) (not ISTA! —later)

dpt 1

4 = n > Vallyi,xi B),  pe € 0Bl
i=1
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LASSO vs. Differential Inclusions
O00e00

A Theory of Path Consistency

Assumptions

(A1) Restricted Strongly Convex: 3y € (0,1],
1.7
EXS Xs >l

(A2) Incoherence/Irrepresentable Condition: 3n € (0, 1),

1 1 1 -1
folxg = || =XF Xs (—XSTX5> <1l-pg
n n n

oo

e "lIrrepresentable” means that one can not represent (regress) column

vectors in X7 by covariates in Xs.

e The incoherence/irrepresentable condition is used independently in
Tropp'04, Yuan-Lin'05, Zhao-Yu'06, and Zou'06, Wainwright'09, etc.
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LASSO vs. Differential Inclusions
[e]e]e]e] Je]

A Theory of Path Consistency

Understanding the Dynamics

ISS as restricted gradient descent:

pr=—=VL(B) = 1XT(Y = XBr), pr € 9Bl

n
such that
e incoherence condition and strong signals ensure it firstly evolves on index
set S to reduce the loss
e strongly convex in subspace restricted on index set S = fast decay in loss

e carly stopping after all strong signals are detected, before picking up the

noise
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ifferential Inclusions
DO00000e

A Theory of Path Consistency

Path Consistency

Theorem (Osher-Ruan-Xiong-Y.-Yin'2016)
Assume (A1) and (A2). Define an early stopping time

=il
_ n n

= — X;
T 20\ log p <rjn€a-[2(|| J”) ’

and the smallest magnitude 3, = min(|G8]| : i € S). Then

o No-false-positive: for all t < T, the path has no-false-positive with high
probability, supp(B(t)) C S;

o Consistency: moreover if the signal is strong enough such that

Bl > 4o, 80(2+ logs) (maxjer || Xil]) \/@
min = 71/2 o P

there is T < T such that solution path 3(t)) = (% for every t € [7,7].

Note: equivalent to LASSO with \* = 1/7 (Wainwright'09) up to log s.
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Algorithm
®00000

Linearized Bregman Iteration

Large scale algorithm: Linearized Bregman lteration

Damped Dynamics: continuous solution path

. 1. 1
pet o= X"y = XBD), o€l 5)
Linearized Bregman lteration as forward Euler discretization proposed even
earlier than ISS dynamics (Osher-Burger-Goldfarb-Xu-Yin'05,
Yin-Osher-Goldfarb-Darbon'08): for px € 9||B«||1,
1 1 Ak \, T g
pk+1+;dk+1 :/)k+;ﬂk+ TX (v — XBr), (6)
where

e Damping factor: x > 0
e Step size: ax > 0s.t. aws||X.|| <2

e Moreau Decomposition: zx := px + %,Bk & Bk = K - Shrink(zk, 1)
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Algorithm
O®0000

Linearized Bregman Iteration

Easy for Parallel Implementation

15 15
2 Q
® 10 ® 10
o o
> >
el el
3 2
& s 55
——actual ctual
—ideal deal
00 5 10 15 00 5 10 15
Number of thread Number of thread

(a) n=1000 (b) n=2000

Figure: Linear speed-ups on a 16-core machine with synchronized parallel computation

of matrix-vector products.
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Algorithm
[e]e] le]e]e]

Linearized Bregman Iteration

Comparison with ISTA

Linearized Bregman (LB) iteration:

Zer1 = Z¢ — otiT(f»@XShrink(zt7 1)—y)
which is not ISTA:

Zey1 = Shrink(z: — atXT(th —¥),A).
Comparison:

o ISTA:
as t — oo solves LASSO: 1|y — X313 + Al|B|1
parallel run ISTA with {A\«} for LASSO regularization paths

e LB: a single run generates the whole regularization path at same cost of
ISTA-LASSO estimator for a fixed regularization
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Algorithm
000@e00

Linearized Bregman Iteration

LB generates regularization paths

Lasso ISS

e
T
o
l
@
7
<
T
t t
LB k=64
o
P
-
- - £
=
T -
5§ o o
i v -
9 - 4
< -
' T T T T T T T T4 T T T T T T
00 05 10 15 20 25 30 00 05 10 15 20 25 30
t t

Figure: As kK — oo, LB paths have a limit as piecewise-constant ISS path
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Algorithm
0000e0

Linearized Bregman Iteration

Accuracy: LB may be less biased than LASSO

e Left shows (the magnitudes of) nonzero entries of 5.
e Middle shows the regularization path of LB.
o Right shows the regularization path of LASSO vs. t = 1/A.
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Algorithm
00000e
Linearized Bregman Iteration

Path Consistency in Discrete Setting

Theorem (Osher-Ruan-Xiong-Y.-Yin'2016)

Assume that k is large enough and « is small enough, with ka||Xs Xs|| < 2,

—1
7om EBI0 [ (a1
20 logp \ jeT

8. 420 log p I X572 + 2sy/log n 2B <
yn n\/f7

then all the results for ISS can be extended to the discrete algorithm.

Note: it recovers the previous theorem as xk — oo and a — 0, so LB can be
less biased than LASSO.
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Algorithm
@O

Generalizations

General Loss and Regularizer

. K -
Nt = _70 ;VTIZ(XU 6157771”) (73)
.6, 1
Pt + ;1 = _; ;VGZ(XMOHTH) (7b)
pr € 0|64 (7¢)

where

e /(x;,0) is a loss function: negative logarithmic likelihood, non-convex loss
(neural networks), etc.

o ||6:]|« is the Minkowski-functional (gauge) of dictionary convex hulls:
10l :=inf{\ >0:60 € AK}, K is a symmetric convex hull of {a;}

it can be generalized to non-convex regularizers
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Algorithm
(o] J

Generalizations

Linearized Bregman Iteration Algorithms

Differential inclusion (7) admits the following Euler Forward discretization

Ne+1 = Ne — ak:o ;an(x;,et,nt) (8a)
Zty1 = Zt — % ZI: VGE(XH 0:, nt) (8b)
Oer1 = K1 - prox. (Ze+1) (8c)

where (8c) is given by Moreau Decomposition with
.1 2
prox.j, (2:) = arg min EHX = z[" + lIx]l+,
and

o i > 0 is step-size while akk;||V3EL(x, 0)| < 2

e as simple as ISTA, easy to parallel implementation
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Algorithm
®00000

Cran R package: Libra

Cran R package: Libra

http://cran.r-project.org/web/packages/Libra/

@OAMN- Packacn Lo

¢ C Nittps://cran.r-prosect.ong/webi packages/L htms

Libra: Linearized Bregman Algorithms for Generalized Linsar Models

Efficient procedures for fifting the regularization path for lineas, hinnrm. multinomial, Ising and Potts models with lasso,
group lasso o¢ ealumn lassojonly for multinomial) penalty. The p ses Linearized Bregman Algorithm 1o solve the 0%
regularization path through itcrations. Brgman Inversc Scak: Spm Differcatial Inclosion solver 1salso provided for fincar
model with Easso penalty

Version: 15

Depends: R (=300 nals

Suggesis: lars. MASS. igraph

Published: 2016-02-17 -
Author: Feng Ruan. Jiechao Xiong and Yuan Yao -
Maintainer Jiechao Xiong <xiongjicchao at pku.edu.cns L
License: 2 —
URL: cilarsiv org/abs/1406.7721 S
NeedsCompilation:  yes

SystemRequirements: GNU Scicatific Library (GSL)

CRAN checks: ibra results

Bowmioads

Reference manual Libr pilf
Libra 15

< Libea LS zip, r-oldrel: Libra_1S.zip
.,.M r-oldrel: not available
L51gz

05 X Snow |.u||'.un.| binaries:
05 X Mavericks binaries:  r-release: Libra
Old sources: Libea archive

Yuan Yao
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Algorithm
O®@0000

Cran R package: Libra

Libra (1.5) currently includes

Sparse statistical models:

e linear regression: ISS (differential inclusion), LB
e logistic regression (binomial, multinomial): LB

e graphical models (Gaussian, Ising, Potts): LB
Two types of regularization:

e LASSO: h-norm penalty
e Group LASSO: L — & penalty
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Algorithm
[e]e] le]ele]

Cran R package: Libra

A logistic regression with early stopping

Logistic: Peter.Hall ~. -

1413 20 25 29 34 39 44 50 56 63 71 79 87 96
RRTITA AR RTRTRIRTHATIIIN

°
L
g o
i N
8
& H — David.Dunson
-~ Jianging Fan
Larry Wasserman
w | = Nianjan Chatterjee
S Peter.J Bickel w
— Raymond.J.Carroll
-~ RobertJ Tibshirani -
- T.Tony Cai
3 - -~ Xinong.Lin L
T

00 02 04 06 08 1.0

Solution-Path
Figure: Peter Hall vs. other COPSS award winners in sparse logistic regression [papers

from AoS/JASA/Biometrika/JRSSB, 2003-2012]: true coauthors are merely Tony Cai,
R.J. Carroll, and J. Fan

Yuan Yao Differential Inclusion Method in High Dimensional Statistics



Algorithm
O00e00

Cran R package: Libra

Early stopping against overfitting in sparse Ising model learning

©©e ©©6 606 66
©®e®6666 686
©©®© e e e e
©e©®©e©®0 e e e
®©©®®00®666e 6 6 e
©®®0®9®0®606 66
©©®0®9®0600 086
(S I - - ]
©®®®6606 08
©®ee®o®6 e 686

e-0-0-0-0-6-60-6-6-0©
[ - e - e e ]

KK = [+]
a true Ising model of 2-D grid a movie of LB path
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Algorithm
[e]e]e]e] Je]

Cran R package: Libra

Example: Dream of the Red Mansi
(Xueqin Cao vs. E. Gao)

Ising Model (LB): sparsity=10% Ising Model (LB): sparsity=10%

Figure: Left: main characters net in the first 80 chapters at sparsity 10%; Right: the
remaining 40 chapters.
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Algorithm
O0000e
Cran R package: Libra

More reference

o Logistic Regression: loss — conditional likelihood, regularizer —
(Shi-Yin-Osher-Saijda’10,Huang-Yao'18)

o Graphical Models (Gaussian/Ising/Potts Model): loss — likelihood,
composite conditional likelihood, regularizer — /1 and group h
(Huang-Yao'18)

e Fused LASSO/TV: split Bregman with composite b loss and /1 gauge
(Osher-Burger-Goldfarb-Xu-Yin'06, Burger-Gilboa-Osher-Xu'06,
Yin-Osher-Goldfarb-Darbon’08, Huang-Sun-Xiong-Yao'16)

e Matrix Completion/Regression: gauge — the matrix nuclear norm
(Cai-Candés-Shen'10)
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Variable Splitting

Split LB vs. Generalized LASSO

Structural Sparse Regression:
y=XB"+¢€ 7" =Dp" (S=supp(7’), s=|S| < p), 9)

Loss that splits prediction vs. sparsity control

— L xa+ Ly~ pal?
((,7) = o ly = XBIE+ o v~ DG (v>0).  (10)
Split LBI:
Br1 = Bk — £V gl( Bk, i), (11a)
Zk41 = Zk — avw‘g(ﬁka'yk)a (11b)
Y1 = K- prox) (2es1), (11c)

Generalized LASSO (genlasso):
. 1 2
srgmin (- ly = XBIE + A 081, ) (12

Yuan Yao Differential Inclusion Method in High Dimensional Statistics



Variable Splitting

Split LBI vs. Generalized LASSO paths

genlasso v=1
= o oo T
5 o4
g 8 I -
5§ ° £ °9 == ——
£ 5 =
2 v s v o t
s 3
o o © o P = — =
T T I T T T T T
0 5 10 15 20 25 0 5 10 15 20 25
t t
v=5 v=10
~ ~
- -
S 5
8 8
g ° g e
2 2
o - S N
3 2
RRY °
T T T T T T T T T T
0 5 10 15 20 25 0 5 10 15 20 25
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Variable Splitting

Split LB may beat Generalized LASSO in Model Selection

genlasso Split LBI genlasso Split LBI
v=1 v=>5 v =10 v=1 v=5 v =10
.9426 .9845 .9969 .9982 .9705 .9955 19996 19998

(.0300)  (.0185)  (.0065)  (.0043) (.0212)  (.0056)  (.0014)  (.0009)

e Example: n = p =50, X € R™? with X; ~ N(0, I,), e ~ N(O, I)
(Left) D =1 (LASSO vs. Split LB)
(Right) 1-D fused (generalized) LASSO vs. Split LB (next page).

In terms of Area Under the ROC Curve (AUC), LB has less false
discoveries than genlasso

Why? Split LB may need weaker irrepresentable conditions than
generalized LASSO...

Yuan Yao Differential Inclusion Method in High Dimensional Statistics



Variable Splitting

Structural Sparsity Assumptions

Define () := (I — D(vX*X +D"D)'D")/v.

e Assumption 1: Restricted Strong Convexity (RSC).
Tss(v) = Al (13)
e Assumption 2: Irrepresentable Condition (IRR).

IRR(v) = [|[Zse,s(v) - T 5(V)]loo <1—1. (14)

v — 0: RSC and IRR above reduce to the RSC and IRR neccessary and
sufficient for consistency of genlasso (Vaiter'13,LeeSunTay'13).

v # 0: by allowing variable splitting in proximity, IRR above can be weaker
than literature, bringing better variable selection consistency than

genlasso (observed before)!
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Variable Splitting

Identifiable Condition (IC) and Irrepresentable Condition (IRR)

e Let the columns of W form an orthogonal basis of ker(Dsc).
T t
Q= (D}c) (X*XW (WTX*XW) w’ — /) pI,  (15)
1Co := HQSHM, 1= _min ‘stign(Ds,B*) - un. (16)

The sign consistency of genlasso has been proved, under IC; < 1 (Vaiter
et al. 2013).

e We will show the sign consistency of Split LBI, under IRR(v) < 1.
If IRR(v) < ICy, then our IRR is easier to be met?

Yuan Yao Differential Inclusion Method in High Dimensional Statistics



Variable Splitting
[ Jelele]e}
A Weaker Irrepresentable/Incoherence Condition

Split LB improves Irrepresentable Condition
(Huang-Sun-Xiong-Y.'16)

log(v)

Theorem (Huang-Sun-Xiong-Y.'2016)

e ICy > IC;.
e IRR(v) — ICo (v — 0).
e IRR(v) = C (v = 00). C =0 <= ker(X) C ker(Ds).



Variable Splitting
[e] le]e]e}

A Weaker Irrepresentable/Incoherence Condition

Consistency

Theorem (Huang-Sun-Xiong-Y.'2016)

Under RSC and IRR, with large k and small §, there exists K such that with
high probability, the following properties hold.
o No-false-positive property: vi (k < K) has no false-positive, i.e.
supp(vk) € S = supp(7”).
e Sign consistency of yi: If vy, := min(|y/| : j € S) (the minimal signal) is
not weak, then supp(yx) = supp(7”).
e (5 consistency of yi: ||[vk — v*|l, < Ciy/slogm/n.
e (5 “consistency” of Bi: ||Bk — B”|, < Coy/slogm/n+ Gav.

Issues due to variable splitting (despite benefit on IRR):

e Dfy does not follow the sparsity pattern of v* = DS*.
e By incurs an additional loss Gzv (v ~ /s log m/n minimax optimal).
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Consistency

Theorem (Huang-Sun-Xiong-Y.'2016)

Define
i == Projiu(ogg) (B) (S = supp()) (17)

Under RSC and IRR, with large k and small §, there exists K such that with
high probability, the following properties hold, if v, is not weak.

e Sign consistency of Dfk: supp(Dfk) = supp(DS*).
e (5 consistency of f: HBK —B*|| < Gi/slogm/n.
2
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Application: Alzheimer’'s Disease Detection

Accuracy
*

( t dy b i i

Time logt B t=ts t=t5

Figure: [Sun-Hu-Y.-Wang'17] A split of prediction (8) vs. interpretability (B) B
corresponds to the degenerate voxels interpretable for AD, while 8 additionally
leverages the procedure bias to improve the prediction
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Application: Partial Order of Basketball Teams

Baseketball (genlasso)

Coor

Basektbal (Splitted LBI)

Iél

.q*
<0

S = | RO | o e RS

Figure: Partial order ranking for basketball teams. Top left shows {3,} (t = 1/)\) by
genlasso and Bk (t = kar) by Split LBI. Top right shows the same grouping result
just passing t5. Bottom is the FIBA ranking of all teams.
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Summary

We have seen:

e The limit of Linearized Bregman iterations follows a restricted gradient

flow: differential inclusions dynamics

It passes the unbiased Oracle Estimator under sign-consistency

e Sign consistency under nearly the same condition as LASSO

Restricted Strongly Convex + Irrepresentable Condition

Split extension: sign consistency under a weaker condition than
generalized LASSO
under a provably weaker Irrepresentable Condition

e Early stopping regularization is exploited against overfitting under noise

A Renaissance of Boosting as restricted gradient descent ...
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Some Reference

® Osher, Ruan, Xiong, Yao, and Yin, “Sparse Recovery via Differential Equations”, Applied and Computational Harmonic Analysis,
2016

® Xiong, Ruan, and Yao, “A Tutorial on Libra: R package for Linearized Bregman Algorithms in High Dimensional Statistics”,
Handbook of Big Data Analytics, Eds. by Wolfgang Karl Hardle, Henry Horng-Shing Lu, and Xiaotong Shen, Springer, 2017

® Xu, Xiong, Cao, and Yao, “False Discovery Rate Control and Statistical Quality Assessment of Annotators in Crowdsourced
Ranking”, ICML 2016, arXiv:1604.05910

® Huang, Sun, Xiong, and Yao, “Split LBI: an iterative regularization path with structural sparsity”, NIPS 2016,
https://github.com/yuany-pku/split-1bi

Sun, Hu, Wang, and Yao, “GSplit LBI: taming the procedure bias in neuroimaging for disease prediction”, MICCAI 2017
Huang and Yao, “A Unified Dynamic Approach to Sparse Model Selection”, AISTATS 2018

Huang, Sun, Xiong, and Yao, “Boosting with Structural Sparsity: A Differential Inclusion Approach”, Applied and Computational
Harmonic Analysis, 2018, arXiv: 1704.04833

® R package:

http://cran.r-project.org/web/packages/Libra/index.html
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