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Introduction: Covariance/precision matrices estimation

@ Precision matrices are the inverse of covariance matrices. They
are important in many statistical methods, such as PCA,
LDA/QDA, regression, clustering analysis and graphical models.

@ In high-dimensional setting, the sample covariance matrix is not
consistent. (e.g., [Johnstone, 2001]).

@ Structural assumptions on matrices are needed in order to
overcome the difficulty due to high-dimensionality.
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Introduction: Structures

@ “Sparsity”
» Unordered: sparse covariance/precision matrices;
» Ordered: bandable covariance, precision with bandable Cholesky
factor.

@ More complicated: Spiked covariance matrices, Covariance with
tensor product, latent graphical models, etc.
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Introduction: Sparsity Structures

On the covariance matrix:

@ sparse: [d'Aspremont et al., 2008], [Cai and Zhou, 2012]...

@ bandable: [Bickel and Levina, 2008a], [Bickel and Levina, 2008b],
[Cai et al., 2010]...

On the precision matrix:

@ sparse: [Yuan and Lin, 2007],
[Meinshausen and Biihlmann, 2006], [Ren et al., 2015],...

e "bandable”: [Bickel and Levina, 2008b], [Lee and Lee, 2017]...
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Introduction: Sparsity Structures

Minimax framework:
On the covariance matrix:

@ sparse: [d'Aspremont et al., 2008], [Cai and Zhou, 2012]...

e bandable: [Bickel and Levina, 2008a], [Bickel and Levina, 2008b],
[Cai et al., 2010]...

On the precision matrix:

@ sparse: [Yuan and Lin, 2007],
[Meinshausen and Biihlmann, 2006], [Ren et al., 2015]...

e "bandable”: [Bickel and Levina, 2008b], [Lee and Lee, 2017]...
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Cholesky decomposition of precision matrices

Build the connection between the regression and precision matrices:
Assume X = (X1, X2,...,X,)" is the p-variate random vector,

Auto-regression:

X1=04+¢
Xo = anXi+ e
X3 = a3 Xo + a31 X1 + €3

Xp = ap(p-1)Xp—1 + ap(p-2)Xp—2 + - + ap1 X1 + ¢p
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Cholesky decomposition of precision matrices

Build the connection between the regression and precision matrices:
Assume X = (X1, X2,...,X,)" is the p-variate random vector,

Rewrite it as:

X1 =€
—an X1+ Xo =e
—a31 X1 —apXo + X3 = €3
—ap1X1 — ap2X2 — ap3X3 cee— ap(p—l)Xp—l + Xp =é€p
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Cholesky decomposition of precision matrices

The matrix form:

1
—az1
—asi

0 0 . 0] [X{]
1 0 .0 | Xo
—d3z2 1 .0 X3
0 :
—dp2 —ap3 1_ _Xp_
(I —AX=¢€

Yy=>U-A7D(-A"T
Q=(-ATD-A

= |€3

€1
€2

where A is a lower triangular matrix with zero diagonals, D is a

diagonal matrix.
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Cholesky decomposition of precision matrices - Example

Example
The autoregressive model in time series: AR(1)
1 0 0 . 0] [Xi] [e1]
—aroi 1 0 . 0 X2 €2
0 —das2 1 . 0 X3 — | €3
: : . 0 :
| 0 0 0 1] [Xp] €]

In AR(k) model, A is a k-banded matrix.
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Bandable structures on the Cholesky factors

[Bickel and Levina, 2008b, Cai et al., 2010] proposed two different
bandable structures:

max .Zk|a,-j| <Mk™, V1<k<p
<i—

laj| < M(i—j)™ >, vi<j<i-1
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Parameter spaces

We consider two bandable structures on the Cholesky factors of
precision matrices mentioned above:

Assume that Q = (/ — A)TD=Y(/ — A) For M >0, n > 1,

Paln, M) = {Q : 77_1 < Amin(2) < Amax(R2) < m,

max Y [ag < Mk, V1< k< p},
j<i—k

Qa(na M) = {Q : 77_1 < )\min(Q) < )\max(Q) <,
lag| < M(i —j)™°Y, v1<j<i-— 1}.

Remark: Q. (1, aM) C Pu(n, M).
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A minimax decision framework

@ Minimax framework is one way to evaluate the performance of
estimators within a given parameter space.
e Given a parameter space © and a loss function L(-,-), one is
looking for the optimal rate of convergence
R* =< infsup EL(6, ).
0 6o
@ We consider Operator norm and Frobenius norm in this talk

» Operator norm:

X.
1Xlop = sup{ 1l
o [all2

}

It is the largest singular value of the matrix.

» Frobenius norm: > b
1
IXIe =2 a5)2.

i=1 j=1
It treats the matrix as a long vector, it is the L, norm of that
vector.
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Our Goals:

Given n i.i.d samples, we consider the minimax risks in estimating the
precision matrix Q of X, over two parameter spaces P, (7, M) and
Qn(n, M), under Operator norm and Frobenius norm.

nf sup EIS-QP,  inf sup EJIQ- Q2
Q Pa(nvM) Q Qa(ﬂ’M)

1 =~ 1 -
nf sup ESQ-Q2  inf sup E—|6— Q2
Q Pa(nM) P Q Qa(n,M) P
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Why the rate optimality was not developed?
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A striking phenomenon

@ Intuitively, one would expect the same minimax rates of
convergence under the operator norm between estimating
bandable covariance matrices and precision matrices with
bandable Cholesky factor.

o [Cai et al., 2010] established the optimal rate of convergence

E|% — Z||(2)p = n7ET 4 IO% for bandable covariance matrices
Y = Q7! = [0]pxp such that max; (i« |oil < Mk™*,
k € [p].

@ We show a surprising result: estimation over P,(n, M) is a much
harder task than that over bandable covariance matrices.
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Existing procedures

@ Almost all existing approaches reply on an intermediate estimator
A of A via regressions (i.e., estimator of each a;). For example,
[Wu and Pourahmadi, 2003], [Huang et. al, 2006], [Levina,
Rothman and Zhu, 2008], [Bickle and Levina (2008b)], [Fan, Xue
and Zou, 2016], etc.

@ Analysis relies on bounding max; ||a; — a;|| in order to bound
A= All3,.

@ The analysis above usually is not sharp. (e.g., [Cai et al., 2010]
for bandable covariance matrix estimation)
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Existing procedures - Bickle and Levina (2008b)

Since the Cholesky factors of Q2 has the bandable structure, Bickle and
Levina approximated A by the k-banded matrix Ag.

"1 0 0 0 0 o] |
“an 10 0 0 o| |%
—d31 —as2 1 0 0 0 X3
—as1 —as —as 1 0 0
—as] —asp —as3  —asg 1 0

: 0
[—ap1 —ap2 .- —3p(p-3) —ap(p-2) —Ip(p-1) 1] X,

Xi=aiXyi1+¢€ var(e) = d;
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Existing procedures - Bickle and Levina (2008b)

Since the Cholesky factors of Q2 has the bandable structure, Bickle and
Levina approximate A by the k-banded matrix By.

10 0 0 0 0] §1
by 10 0 0 | |32
by —bypy 10 0 MRRE
0 —by —by 1 0 ol | :
0 0 —bss —beg 1 0
: : : : : . 0 :
| 0 0 0 —bpp-2) —bp(p-1) 1. Xp

Xi =biX;_.j—1+6; var(;) = fi
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Minimax risk under operator norm

inf sup IEHQ—QH%I) inf sup IE||S~2—Q||(2)p
Q2 Pa(n,M) 2 Qa(n,M)
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Estimation procedure: Motivation |

The bandable structure on the Cholesky factors implies “certain”
bandable structure on the precision matrix.

What we have learned from estimating bandable
covariance matrices [Cai et al., 2010]?
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Estimation procedure: Motivation |l

For bandable covariance ¥ = (o), a direct target is a tapered
population covariance with bandwidth k [Cai et al., 2010]:

The tapered population weight
covariance: .
o = gy 1]
v K2k i)
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Estimation procedure: Motivation |l

H EaE ‘ o} weight
“H e m 3% —,

:‘ ‘H weight
+A7 + ++ = 5‘-..q z%
li1

welght 1 welght welght

B N

0
ko2k i) 2k i) k li-il

Zhao Ren (Pitt) Bandable Cholesky Factor



Estimation procedure: Motivation

@ The core analysis relies on a rate-optimal estimator of each
principal submatrix of ¥ of smaller size k under operator norm:
local sample covariance of size k.

@ How should we estimate each principal submatrix of Q of smaller
size k7 Inversing local sample covariance of size k is NOT

optimal?
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Estimation procedure: Local cropping estimator
Target: each principal submatrix of the precision matrix, Qﬁfk
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Estimation procedure: Local cropping estimator
Target: each principal submatrix of the precision matrix, Qfﬁfk

: . Hloc
Estimator: (09

1.Collect the

; 2.Calculate the sample i
observation of p 3.Crop its central part

X _ precision matrix: as the local estimator:
m—k:m+2k—1-
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Estimation procedure: Local cropping estimator

Our final estimator is

»Il—‘

p
EHIE DY

m=2-2k m=2—k
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Upper bound: Analysis

@ The local cropping estimator can be written as a sum of many
principal submatrix estimators.

@ There is natural bias and variance trade off, when picking optimal
bandwidth k.

risk = variance + bias |+bias Il

e variance is due to ¢ — EQP : bias | is due to EQ’OC Qloc .

mk?!
@ bias Il is due to Q — Qiap.

Remark: In constrast, the analysis of bandable covariance only has one
bias term.
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Upper bound - Variance

@ The variance is controlled by the maximum variance among all
principal submatrices estimators.

e By Bonferroni correction:

<C

A logp+ k
loc loc
mnaxIEHmek EQ —

k“op
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Upper bound - bias | over P,(n, M)

The bias:
the Cholesky decomposition of the precision matrix:

the Cholesky decomposition of the 3k-precision matrix:
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Upper bound - bias | over P,(n, M)

The bias: k=22
the Cholesky decomposition of the precision matrix:

i L%

the Cholesky decomposition of the 3k-precision matrix:

X

The bias:
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Upper bound - bias Il over P, (n, M)

The bias of the entire matrix:

- k1—2a

Remark: The proof is based on the block-wise analysis.
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Upper bound over P, (7, M)

The upper bound of the estimator:

@ The variance: w.

o The bias I: k1722,

@ The bias II: k172,
Combining the above together, we find the upper bound of the
estimator:

[ k
sup K[y — Q|2 < cki=2 4 cBPEE

7)04(77 M)
Choose k = ni, we have

log p
—

sup EHQk - Qng < 2t L C
77&(777/\/7)
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Upper bound over Q,(n, M)

The upper bound of the estimator:
@ The variance: lggg_+k‘
@ The bias I: k=2
@ The bias II: k=2,

Combining the above together, we find the upper bound of the
estimator:

I k
sup E[|Qy — Q|2, < Ck20 4+ ¢1BPEE
Qa("h n
Choose k = nﬁ, we have
A log
sup E|Qy — Qng <

Qa(n,M)

Zhao Ren (Pitt) Bandable Cholesky Factor February 6th, 2018 @NUS 33 /51



Lower bound

@ Lower bound of the convergence rate characterize the difficulty of
the estimation problem.

@ The basic strategy is to select finite points in the parameter
space, and then “reduce” it to a testing question.

e The difference between P, (n, M) and Q. (n, M) is established by
constructing the corresponding (different) minimax lower bounds:
Assouad’s Lemma.

Zhao Ren (Pitt) Bandable Cholesky Factor February 6th, 2018 @NUS 34 /51



Lower bound - construction in Q,(n, M)

Pr = {Q(0) : 20) = (1, — A6))T () — A(9)).0 € ©}

Ok k Oksck Okx(p—2k)
(nk)_% (nk)_% (nk)_%

where A(f) = (k)2 o (k)72 (k) Okxk  Oxx(p—2k)
(nk)™2 ... (nk)™2 (nk)"2

i O(p—2k)xk Op—2k)xk  O(p—2k)2

where © = {0,1}%. k = 7,
The lower bound over the subset Py is:

sup E[Q— Q|2 > sup B} — Q|2 > Cnzit
Pa(nyM) Pl
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Lower bound - construction in P,(n, M)

Pz = {Q(0) : Q0) = (1, — A6))T (lp ~ A(9)).0 € ©}

Ok x k Okxk  Okx(p—24)]
0 ... 0 n*%

where A(0) = 0 ... 0 nmz Okxk Ok (p—2k)
0 0 n2

| O(p—2k)xk Op—2k)xk  O(p—24)2

where © = {0,1}%, k = nea.

The lower bound over the subset P, is:

sup E[C - Q|2, > supE[[Q — Q|2, > Cn~ 35
Pa(m’V’) Po
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Main results: Minimax risk over P,(n, M)

Theorem 1 (Minimax risk over P,(n, M))

The minimax risk of the precision matrix Q2 with a > % over Py (n, M)

satisfies !
inf sup E|Q— Q||(2,p =n % 4 2P
Q Pa(n,M) n

this rate can be achieved by the local cropping estimator.

Remark: When av < 1/2, there is NO consistent estimator for most
settings!
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Main results: Minimax risk over Q,(n, M)

Theorem 2 (Minimax risk over Q,(n, M))

The minimax risk of the precision matrix Q over Q,(n, M) satisfies

~ & |
inf sup E[— Q|2 = n it 4 —=F
Q Qa(n,M) n

this rate can be achieved by the local cropping estimator.

Remark: The local cropping estimator is consistent as long as o > 0.

Remark: The convergence rate of the banding estimator proposed by
2
[Bickel and Levina, 2008b] is (n/log p)~ 2a+2, which is sub-optimal.
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Simulation studies in Q,(n, M)

o Consider the precision matrix in the following form:
Q=(-A)TD I -A), A=[ajlpxp. D=1,
where a;; = —(i — j)*"! when i > j; otherwise a;; = 0.

@ cropping Q: The local cropping estimator with bandwidth
1
k = Ln2a+lJ_

@ B&L: The banding estimator proposed in
[Bickel and Levina, 2008a] with bandwidth
k= (n/log p)"/@o2) |
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Simulation studies in P,(n, M)

e Consider the precision matrix in Py(n, M) but not always in

Qa(naM):
Q=(-ATD I -A), A=lajlpxp, D=1,

where aj; = —2(i — 1) when 2 </ < p; otherwise aj;; = 0.

@ cropping P: The local cropping estimator with optimal bandwidth
1
k = |n2a |.

@ cropping Q: The local cropping estimator with sub-optimal
1
bandwidth k = | n2e+1 |,

@ B&L: The banding estimator proposed in
[Bickel and Levina, 2008a] with bandwidth
k = [(n/ log p)*/ot2) |,
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Adaptive procedure

@ Lepski’'s method: a popular data-driven procedure in many
nonparametric estimation problems.

@ Our adaptive (to the knowledge of «) procedure: V\/Aith a discrete
set of bandwidths H = {1,...,n/log p}, we select k by

A I+lo
k:min{kE’H ||Q;<—Q/||2 <C¥ foralll>k}

@ Main results:

log p

sup E|ly; - QJ2, < Cn 5 4+ €=

PQ(T]>M
) lo

sup E[Q; — Q|2 < Cn it 4 C—5P,
Qa(n,M n
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An Extension to Nonparanormal distributions

o Instead of X = (X1, X2,...,X,)" ~ N(0,Q271), one only observe
its transformed variables, Y = (A(X1), £(X2), .- -, fo(Xp)) 7,
where {fi}£_; are some unknown strictly increasing functions.

@ Goal: Estimate the inverse of correlation matrix.

@ Procedures: local sample covariance replaced by rank-based
correlation matrix (Kendall's tau and Spearman’s rho.)

@ Analysis: Variance terms can be controlled by concentration
inequalities of rank-based correlation matrices (e.g.,
[Mitra and Zhang, 2014]).
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Minimax risk under Frobenius norm

inf sup E[Q— Q| inf sup E[Q— Q|
Q Pa(n,M) Q Qa(n,M
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Minimax risk under Frobenius norm

Theorem 3 (Minimax risks under Frobenius norm)

The minimax risk of the precision matrix Q over P,(n, M) and
Qn(n, M) satisfies

1 = 1 ~ (e}
inf sup —E|Q—-Q|?=<inf sup —E|Q-Q|2= N zatz
Q Pa(n,M) P Q Qua(nM

this rate can be achieved by the estimator defined as following.
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Minimax risk under Frobenius norm

Theorem 3 (Minimax risks under Frobenius norm)

The minimax risk of the precision matrix Q over P,(n, M) and
Qn(n, M) satisfies

1 = 1 ~ (e}
inf sup —E|Q—-Q|?=<inf sup —E|Q-Q|2= N zatz
Q Pa(ﬂ,M) p Q Qa("%M p

this rate can be achieved by the estimator defined as following.

Remark: Since Qn(n, aM) C Py(n, M), it suffices to show the upper
bound for Q,(n, M) and the matching lower bound for Q,(n, M)
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Estimation procedure: regression-based estimator
QY = (1 - A)TD1(1 - A).

o Step 1: First regress X; against X;_j.i-1 = (Xji—kp>---> Xi—1)"
2a+1
with a slightly larger bandwidth k; = [n(e+22] to obtain &;;
@ Step 2: Apply the block-thresholding rule

ay = a1(lag| > Nj),i—k <j<i—1, (1)
where \j = (ﬂogé‘j _ |ogl2‘°1R)1/2 with
R = 77”(21'7——k1;i—1zi—k1:i—1)_1”op and kO = nT1+2_ Set AN by

S
arranging &y.

@ Step 3: Estimate each d; using sample variance of empirical
residuals d; of the ith regression above. Set D = diag(d}):

Zhao Ren (Pitt) Bandable Cholesky Factor February 6th, 2018 @NUS 47 / 51



Estimation procedure: regression-based estimator

4 thresholding A

—

index=1—j

Za+1

+1 2 se2atl
1 2Ja 2/ 2Jot 2Jo+3 nBat3ia

Remark: Motivated by wavelet analysis over Besov balls.

Remark: For the space Q,(n, M), a simpler banding estimation
scheme is able to achieve the minimax rates.
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Lower bound

P = {Q(6) : 260) = (I — A®)) (I, — A6)),0 = {6(i)}.6(7) € ©} .

0 O |
0 0
n20(1) Ok 2k 2k
Ok Ok
0 0
A(f) = 2k n_%9(2) Ok 2K
Ok Ok

where © = {0, 1},%k, k = nzT,
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Summary

We establish the minimax rates of convergence for estimating
precision matrices with bandable Cholesky factor (P,(n, M) and
Qa(n, M)) under both Operator norm and Frobenius norm.

A striking phenomenon: Unlike the results for bandable
covariance matrix estimation, estimating P, (n, M) and Q. (n, M)
are fundamental different under operator norm.

Novel rate optimal procedures: Local cropping estimator and
regression-based estimator with block-thresholding rule.

An adaptive procedure: Lepski’'s method.

An extension to nonparanormal models.
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Summary

Comparison of minimax rates of estimating bandble covariance
matrices [Cai et al., 2010].

bandable Cholesky factors

Operator norm  Frobenius norm
_ 2a-—1 lo _ 2041
7304(777 M) n 2« + 7%[77 n 2a+2
_ 2a41

2a
Qa(n, M) n 2o+l + IO%7 n 2o+2

bandable covariance matrices

Operator norm  Frobenius norm

_ 2« _2a+1

Pa('/]’ M) n 2o+l + b%’ n 2a+2
_ 2a _ 2a+t1

Qa(n’ /\/]) n_ 2a+l 4 I"%’ n_ 2a+2
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