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What are higher structures?

“We will need to use some very simple notions of cate-
gory theory, an esoteric subject noted for its difficulty and
irrelevance.”

G. Moore and N. Seiberg, 1989

“We’ll only use as much category theory as is necessary.
Famous last words...”

Roman Abramovich

Christian Sämann Higher Gauge Theory and 6d SCFTs



Categories

Observation
Mathematical objects come with corresponding maps.
Combine them into one entity: Category

Examples:
Vector spaces and linear maps → Vect

Groups and group homomorphisms → Grp

Topological spaces and homeomorphisms → Top

Smooth manifolds and smooth maps between them → Mfd

Category: C = C1 ⇒ C0

C0 : objects C1 : maps/morphisms

a b
f
uu a b

f
uu c

g
uu

h=f◦g
ii

a

ida

��
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From Categories to Higher Categories

Categories: meta-language, “essence” of mathematical structures

But also: Categories give us more freedom than sets:
Set theory: objects a, b. Either a = b or a 6= b.

Categories: objects a, b. Relating morphism f : a b
f
uu

However: What about the morphisms? Relations between them?

Yes, with 2-categories: a b

f1
{{

f2

dd
α�� , morphisms: set → category

This can be iterated to ∞-categories with general n-morphisms.
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Examples

Homotopies: Relations between
proofs:

Assumptions

Proof 1

��

Proof 2

��

Rel +3

Theorem

Parallel Transport
of Strings

• •
��

__

KS

“Indeed, the subject might better have been called ...
archery.”

Steve Awodey

Christian Sämann Higher Gauge Theory and 6d SCFTs



Constructing Higher Structures

A mathematical structure (“Bourbaki-style”) consists of

• Sets • Structure Functions • Structure Equations

“Categorification”:

Sets→ Categories
Structure Functions→ Structure Functors
Structure Equations→ Structure Isomorphisms

Example: Group → 2-Group
Set G → Category G

product, identity (1 : ∗ → G), inverse → Functors
a(bc) = (ab)c → Associator a : a⊗ (b⊗ c)⇒ (a⊗ b)⊗ c
1a = a1 = a → Unitors la : a⊗ 1⇒ a, ra : 1⊗ a⇒ a

aa−1 = a−1a = 1 → weak inv. inv(x)⊗ x⇒ 1⇐ x⊗ inv(x)

Note: Process not unique, variants: weak/strict/...
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Why should You care?

“Before functoriality, people lived in caves.”
Brian Conrad

“It’s like déjà vu all over again.”
Yogi Berra
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Because you’re already using higher structures ... 9/56

In String Theory:
Point particles → Strings : Manifold M → Loop Space LM
Bundles over LM correspond to higher bundles over M
Higher form fields: Connections on higher bundles

Kalb–Ramond B-field: connective structure on gerbe
Higher forms coupling to Dp-branes: higher gerbes

T-duality/Generalized Geometry:
Courant algebroid = symplectic higher Lie algebroid
Double/Exceptional Field Theory: gnrlzd Courant algebroids
generalized manifolds, e.g. orbifolds = stacks ∈ bicategory

String Field Theory:
Closed SFT based on higher Lie algebras
Open (s)SFT based on higher associative algebras

(2,0)-theory, (1,0)-theories in F-theory: Higher gauge theories
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Because you’re already using higher structures ... 10/56

In Supergravity:
Higher form fields (as above) belong to higher bundles
Tensor hierarchies in gauged SUGRA are higher gauge theories

In Field Theory:
Abstract Definition of TQFTs: higher categories of cobordisms
AKSZ construction: based on symplectic higher Lie algebroids
BRST/BV formalism:

Any Classical Field Theory ⇒ Higher Lie Algebra/L∞-algebra
Any QFT yields loop or quantum L∞-algebra

Moduli spaces to gauge field equations: stacks
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... or will have to use them ... 11/56

In Quantum Gravity:
Quantum spacetimes:

Noncommutative geometry only first approximation.
Nonassociative spaces from higher geometric quantisation
Ultimately: C∞(some manifold) → some A∞-algebra

Visibile in string theory:
D1-branes ending on D3-branes: Fuzzy funnel with fuzzy S2

M2-branes ending on M5-branes: Fuzzy funnel with fuzzy S3
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... or should be using them.

In Generalizing/Deforming mathematical objects:
Category theory extracts essence of mathematical notions.
Mathematically consistent generalizations become obvious.

Example: Principal Fiber Bundles (as transition functions)
Group G as category G ⇒ ∗, composition: group product
Cover U = taUa of a manifold M yields category Č(U):

(x, Ua) (x, Ub)
(x,Uab)
oo (x, Ua) (x, Ub)

(x,Uab)
qq

(x, Uc)
(x,Ubc)
qq

(x,Uac)

mm

t a,b Uab
gab //

�� ��

G

�� ��
t a Ua ∗ // ∗

Transition functions gab,
cocycle cond. gabgbc = gac
cobndries.: gabγb = γag̃ab

Generalizations: replace both sides e.g. with higher categories
Christian Sämann Higher Gauge Theory and 6d SCFTs



If we can’t escape higher structures, we might as well
learn the mathematics behind them.

It’s beautiful stuff!
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Examples : L∞-algebras and L∞-algebroids
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NQ-Manifolds 15/56

N-manifolds, NQ-manifold
N0-graded manifold with coordinates of degree 0, 1, 2, . . .

M◦ ← E1 ⊕ E2 ⊕ . . .

manifold
���

linear spaces
@@IHH

HY

NQ-manifold: vector field Q of degree 1, Q2 = 0

Physicists: think ghost numbers, BRST charge, SFT
Functions on (M,Q) form differential graded algebra

“Chevalley–Eilenberg algebra”

First Example:
Tangent algebroid T [1]M , local coordinate functions xµ, ξµ

f(xµ, ξµ)↔ f(xµ, dxµ) and Q = ξµ ∂
∂xµ ↔ dxµ ∂

∂xµ

⇒ Recover de Rham complex: C∞(T [1]M) ∼= Ω•(M).
Christian Sämann Higher Gauge Theory and 6d SCFTs



NQ-Manifolds 16/56

M◦ ← E1 ⊕ E2 ⊕ . . ., vector field Q with |Q| = 1, Q2 = 0

More Examples:
Lie algebra g[1], coordinate functions ξα of degree 1:

Q = −1
2f

α
βγξ

βξγ
∂

∂ξα
, Q2 = 0 ⇔ Jacobi identity

∗ ← E1 ⊕ E2 ⊕ · · · ⊕ En: Lie n-algebra
(indeed equivalent, at least for n = 2)

M◦ ← E1 ⊕ E2 ⊕ · · · ⊕ En: Lie n-algebroid:
Symplectic Lie n-algebroids: add ω, LQω = 0:

|ω|N = 0: Symplectic manifold
|ω|N = 1: M ∼= T ∗[1]M◦, Poisson manifold
|ω|N = 2: M ∼= T ∗[2]E, E →M vec bndl: Courant algebroid
Symplectic Lie n-algebras: Metric Lie n-algebras

Skipped: Relation higher categories ⇔ differential graded structs.
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Example: Lie 2-Algebras 17/56

Graded vector space: ∗ ←W [1]← V [2]← ∗ ← . . .

Coords: wa of degree 1 on W [1], vi of degree 2 on V [2]

Most general vector field Q of degree 1:

Q = −ma
i v
i ∂

∂wa
− 1

2
mc
abw

awb
∂

∂wc
−mj

aiw
avi

∂

∂vj
− 1

3!
mi
abcw

awbwc
∂

∂vi

Induces “brackets”/“higher products”:
µ1(τi) = ma

i τa
µ2(τa, τb) = mc

abτc , µ2(τa, τi) = mj
aiτj

µ3(τa, τb, τc) = mi
abcτi

Q2 = 0⇔ Homotopy Jacobi identities, e.g.
µ1(µ1(−)) = 0: µ1 is a differential
µ1(µ2(x, y)) = µ2(µ1(x), y)±µ2(x, µ1(y)): compatible w. µ2,
µ2(x, µ2(y, z)) + cycl. = µ1(µ3(x, y, z)): Jacobiator

Analogously: Lie 3-, 4-, ...-algebras
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L∞-algebras

Lie algebra in bracket picture:
Vector space g

Antisymmetric bilinear product [−,−] : ∧2g→ g

Satisfying Jacobi identity:
∑

σ[xσ(i), [xσ(j), xσ(k)]] = 0

L∞-algebra in bracket picture:
Graded vector space L = L0 ⊕ L−1 ⊕ L−2 ⊕ . . .
Graded antisym. multilin. products µi : ∧iL→ L, |µi| = 2− i
Satisfying higher/homotopy Jacobi identity:∑
i+j=n

∑
σ∈Sh(i,n−i)

±µi+1(µj(xσ(1), . . . , xσ(j)), xσ(j+1), . . . , xσ(n)) = 0

Recall: roughly Q∗ = µ1 + µ2 + µ3 + . . .

Categorification: e.g. L = L0 ⊕ L−1 ↔ L = (L−1 n L0 ⇒ L0)
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Morphisms and Quasi-Isomorphisms

Morphisms of NQ-manifolds clear:

M
Φ−−→M ′ , Q ◦ Φ∗ = Φ∗ ◦Q

Morphisms of L∞-algebras φ : L→ L′ derived from this:
φ consists of maps φi : ∧iL→ L′, |φi| = 1− i.
φ1: chain map from complex (L, µ1) to (L′, µ′1)
φi, i > 1, link higher products between L and L′

New here: Categorical equivalence/quasi-isomorphisms:

M

Φ
((

M ′

Ψ

ff ,
Ψ ◦ Φ ∼= idM
Φ ◦Ψ ∼= idM ′

⇔
φ is morphisms

induces H•µ1(L) ∼= H•µ′1
(L′)

Lie 2-algebra examples:

g
id−−→ g u ∗ → ∗ and ∗ → g u Ωg

e−−→ P0g

Consistency: Constructions mostly agnostic to quasi-isomorphisms!
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Higher Gauge Theory

“Category theory is the subject where you can leave the
definitions as exercises.”

John Baez
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Higher Gauge Theory 21/56

1st step: Construct Kinematical Data:
Gauge group → Higher gauge group
Principal Bundle → Higher Principal Bundle
Connection → ?

Local Connections: Lie algebra-valued differential forms.

⇒ Work in unifying category: (functions on) NQ-manifolds:
(Ω•(M), d)→ (T [1]M,Q) , (g, [−,−])→ (g, Q)

“Mathematics is the art of giving the same name to differ-
ent things.”

Henri Poincaré (1908)
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First Attempt

Inspiration from Category Theory: Everything is a morphism.

1st attempt: Consider morphism of dgas: C∞(g[1])→ Ω•(Rd):
a : ξα 7→: Aα ∈ Ω1(Rd), gauge potential Aατα ∈ Ω1(Rd)⊗ g

Qξα = −1
2f

α
βγξ

βξγ 7→ dAα = −1
2f

α
βγA

β ∧Aγ

equivalently: dA+ 1
2 [A,A] = 0: gauge potential is flat
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Improved version

Extend Chevalley–Eilenberg C∞(g[1]) algebra of g to Weil algebra:

W(g) := C∞(T [1]g[1]) = C∞(g[1]⊕ g[2]) , σ : g∗[1]
∼=−−→ g∗[2]

Q|C∞(g[1]) = QCE + σ , QCEσ = −σQCE

Natural morphism of differential graded algebras:

(A,F ) : W(g) −→ W (Rd) = Ω•(Rd)

ξα 7−→ Aα

(σξα) = Qξα + 1
2f

α
βγξ

βξγ 7−→ Fα = (dA+ 1
2 [A,A])α

Q(σξα) = −fαβγ(σξα)ξβ 7−→ (∇F )α = 0

We obtain gauge potential, curvature and Bianchi identity.
Gauge transformations follow straightforwardly from homotopies

(At, Ft) : W(g) −→ W (Rd) = Ω•(Rd × I)
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Complete picture

Let M manifold and Y �M be a cover.

Ω•vert(Y ) CE(g)
Avertoo flat connections

Cartan–Ehresmann 1 connection form is flat
canonical form on fibres

Ω•(Y )

OOOO

W(g)

OOOO

(A,FA)
oo connection and curvature

Cartan–Ehresmann 2 the characteristic form
descends to base space

Ω•(X)
?�

OO

inv(g)
?�

OO

(ci)

mod ∼: Chern–Weil
oo topological invariants

Cartan 1949/1950 Sati, Schreiber, Stasheff 2008
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Higher Gauge Theory 25/56

Other, equivalent ways to get essentially same formulas:
L∞-algebras and Homotopy Maurer–Cartan equations
Differentiating Maurer–Cartan forms on L∞-algebras
Penrose–Ward transforms

Attention!
inv(g) does not respect quasi-isomorphisms!

Fine for (higher) Chern–Simons theories: inv(g) = 0

Problematic for (1,0)/(2,0)-theories with curvatures 6= 0.
Alternative: simple modification of W (g) → String structures
(My) Conclusion:

Chern–Simons and Yang–Mills theories: same kinematical data
Higher analogues, however, require different kinematical data
Source of dismissal of higher non-abelian bundles.
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Higher Gauge Theory and M5-branes

“... it can often be profitable to try a technique on a prob-
lem even if you know in advance that it cannot possibly
solve the problem completely.”

Terence Tao

“Take it with a grin of salt.”
Yogi Berra
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Motivation: Dynamics of multiple M5-branes 27/56

To understand M-theory, an effective description of M5-branes would be very useful.

D-branes
D-branes interact via strings.
Effective description: theory of endpoints
Parallel transport of these: Gauge theory
Study string theory via gauge theory

M5-branes
M5-branes interact via M2-branes.
Eff. description: theory of self-dual strings
Parallel transport: Higher gauge theory
Long sought (2, 0)-theory a HGT?

Christian Sämann Higher Gauge Theory and 6d SCFTs



What we know about the (2,0)-theory 28/56

Pre-history:
Conformal QFTs: particularly interesting and important
Conformal algebra on Rp,q: so(p+ 1, q + 1)

Supersymmetric extensions only for p+ q ≤ 6 Nahm, 1978
Examples for p+ q ≤ 4 known for long time
Belief: p+ q = 4 maximum for interacting QFTs

String theory: Witten, 1995
Type IIB superstring theory on R1,5 ×K3

Moduli space has orbifold singularities of ADE-type
At singularities: volume of S2↪→K3 vanishes
D3-branes wrapping S2↪→K3 become massless strings
B-field self-dual: self-dual strings, SUGRA decouples
⇒ (2,0)-theory, a six-dimensional N = (2, 0) SCFT
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What we know about the (2,0)-theory 29/56

More on the (2,0)-theory
Also appears in M-theory Witten, Strominger 1995/1996

self-dual strings: boundaries of M2- between M5-branes
become massless, if M5-branes approach each other
description of stacks of parallel M5-branes

Field content: N = (2, 0) tensor multiplet Nahm 1978
a self-dual 3-form field strength
five (Goldstone) scalars
fermionic partners

Observables: Wilson surfaces, i.e. parallel transport of strings
Belief: No Lagrangian description
As important as N = 4 super Yang-Mills for string theory
Huge interest in string theory: AGT, AdS7-CFT6, S-duality, ...
Mathematics: Geom. Langlands, Khovanov Homology, ...
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Wishlist 30/56

A successful M5-brane model should have the following properties:
Contain an interacting, self-dual 2-form gauge potential
Based on a sound mathematical foundation: higher bundles
Field content of the (2, 0)-theory, N = (1, 0) supersymmetric
Gauge structure natural, match some expectations (ADE, ...)
Non-trivial coupling, interacting field theory
Possible restriction to free N = (2, 0) tensor multiplet
contains the non-abelian self-dual string soliton as BPS state
Reduction to 4d SYM theory with ADE gauge algebras
and to 3d Chern–Simons-matter models with discrete coupling
Explain S-duality after reduction to 4d
Match expected moduli space of (2, 0)-theory
...

BTW: help expanding this list appreciated!
Christian Sämann Higher Gauge Theory and 6d SCFTs



Arguments against existence of classical M5-brane model
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Objection 1: Parallel transport of strings is problematic 32/56

Non-abelian parallel transport of strings problematic:

•
��
oo
^^

g1��

g′1��

•�� oo
]]

g2��

g′2��

Consistency of parallel transport requires:

(g′1g
′
2)(g1g2) = (g′1g1)(g′2g2)

This renders group G abelian. Eckmann and Hilton, 1962
Physicists 80’ies and 90’ies

Way out: 2-categories, Higher Gauge Theory.

Two operations ◦ and ⊗ satisfying Interchange Law:

(g′1 ⊗ g′2) ◦ (g1 ⊗ g2) = (g′1 ◦ g1)⊗ (g′2 ◦ g2) .
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Objection 2: No Coupling Constant 33/56

Standard objection beyond the previous no-go theorem:
theory at conformal fixed points ⇒ no dimensionful parameter
fixed points are isolated ⇒ no dimensionless parameter
“No parameters ⇒ no classical limit ⇒ no Lagrangian.”

string theory folklore
Furthermore: no continuous deformations of free theory

Bekaert, Henneaux, Sevrin (1999)

Answers:
Same arguments for M2-brane Schwarz, 2004
There, integer parameters arose from orbifold R8/Zk

Same should happen for M5-branes
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Objection 3: Dimensional Reduction Unclear 34/56

Final common objection: Dimensional reduction is unclear.
(2,0)-theory should reduce to N = 2 SYM theory in 5d
Reduction on R1,4×S1, radius R yields volume form 2πR d5x

Conformal invariance of F ∧ ∗F requires volume form 1
Rd5x

Our solution:
Reduction to N = 2 SYM in 4d works fine
Can dimensionally oxidize to 5d SYM afterwards (?)
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Our attempt so far...

“Problems worthy of attack prove their worth by hitting
back.”

Piet Hein

“If you ask me anything I don’t know, I’m not going to
answer.”

Yogi Berra
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First Questions: Which higher Lie algebra to take?

Guidance from BPS self-dual strings
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The non-abelian self-dual string 37/56

0 1 2 3 4 5 6
D1 × ×
D3 × × × ×

BPS configuration

Perspective of D3:
Bogomolny monopole eqn.

F = ∇2 = ∗∇Φ on R3

M 0 1 2 3 4 5 6
M2 × × ×
M5 × × × × × ×

BPS configuration

Perspective of M5:
Abelian Self-dual string eqn.

H := dB = ∗dΦ on R4
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Identifying gauge structure: Monopoles 38/56

Monopoles
Solution to Bogomolny equation F = ∗∇φ
Abelian: singular on R3, Dirac strings
Principal bundle over S2

Non-Abelian: non-singular on R3

U(1) �
�

//

ρ

((

SU(2) ∼= S3

π
��

π×id

))

SU(2) �
�

// S2 × SU(2)

pr
��

S2

id

++ S2

⇒ Choose SU(2), as trivialization possible.

Christian Sämann Higher Gauge Theory and 6d SCFTs
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Identifying gauge structure: Self-Dual Strings 39/56

Self-Dual Strings
Abelian: singular on R4, Dirac strings
Solution to H = ∗∇φ
Gerbe over S3

Non-Abelian: ?

BU(1) �
�

//

ρ

((
GF

π
��

π×id

))

GF
� � // (S3 ⇒ S3)× GF

pr

��

(S3 ⇒ S3)

id

,,

(S3 ⇒ S3)

⇒ Choose GF , with 2-group structure: String 2-group
(many other reasons for this)

Christian Sämann Higher Gauge Theory and 6d SCFTs
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String Lie 2-algebra 40/56

String 2-group GF and M-theory: many reasons long story...
GF is analogue of Spin(3) ∼= SU(2) from many perspectives
Lie differentiate (e.g. Demessie, CS (2016))
Result:
String Lie 2-algebra string(3) = (su(2)

µ1=0←−−−− R[1]) with

Qξα = −1
2f

α
βγξ

βξγ , Qb = − 1
3!fαβγξ

αξβξγ

or
µ2(x1, x2) = [x1, x2] , µ3(x1, x2, x3) = (x1, [x2, x3])

Equivalently: (quasi-isomorphic):

P0su(2)←↩ Ω̂su(2)

Remarks:
Can be defined for any ADE Lie algebra g→ string(g)

Can twist the Weil algebra to W̃ (string(g)) by inv. polynomial
Christian Sämann Higher Gauge Theory and 6d SCFTs



Higher Chern–Simons with String Lie 2-algebra 41/56

Recall: Chevalley-Eilenberg algebra of String Lie 2-algebra g:
CE(g) = C∞(R[2]→ su(2)[1]) ,

Qξα = −1
2f

α
βγξ

βξγ and Qb = 1
3!fαβγξ

αξβξγ .

Double to Weil algebra:

W(g) := C∞(T [1]g[1]) = C∞(g[1]⊕ g[2]) , σ : g∗[1]
∼=−−→ g∗[2]

Q|C∞(g[1]) = QCE + σ , QCEσ = −σQCE

Potentials/curvatures/Bianchi identities from dga-morphisms

(A,B, F,H) : W(g) −→ Ω•(M) = W (M)

ξα 7−→ Aα ∈ Ω1(M) and b 7−→ B ∈ Ω2(M)

(σξα) = Qξα + 1
2f

α
βγξ

βξγ 7−→ Fα = (dA+ 1
2 [A,A])α

(σb) = Qb− 1
3!fαβγξ

αξβξγ 7−→ H = dB − 1
3!(A, [A,A])

Bianchi identities: ∇F = 0 and dH = −1
2(dA, [A,A])

Gauge trafos and Top. invariants derived as above
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Adjustment for non-zero curvatures 42/56

1. Kinematical data
Readily from dga-morphisms W (string(3))→ Ω•(R4)

twist Weil algebra Sati, Schreiber, Stasheff (2009)
Get: string structures

A ∈ Ω1(R4)⊗ g , B ∈ Ω2(R4)⊗ u(1) ,

F = dA+ 1
2 [A,A] , H = dB + 1

2(A,dA) + 1
3!(A, [A,A]) ,

∇F = 0 , dH = −(F, F )

Add by hand: Higgs field φ ∈ Ω0(R4)⊗ u(1)

2.Dynamical principle Schmidt, CS (2017)
Obvious: H = ∗dφ, implying dH = (F, F ) = ∗�φ
Motivates: F = ± ∗ F
Full picture:
g = su(2)⊕ su(2), instanton + anti-instanton c2(F ) = 0
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Conclusions so far 43/56

EOM matches story known from (1,0)-theories, so what?

Higher analogue of SU(2) ∼= Spin(3) is String(3)

String structures allow for gauge invariant field equations
Examples of truly non-abelian and non-trivial higher bundles
Agnostic about quasi-isomorphs.: also for P0su(2)←↩ Ω̂su(2)
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The 6d superconformal field theory
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Extension from BPS to (1,0)-theory 45/56

Look for candidate theory in the literature and find:

6d (1,0)-model derived from tensor hierarchies
Samtleben, Sezgin, Wimmer (2011)

Open problems with this model:
Issue 1: Choice of gauge structure unclear
Issue 2: cubic interactions
Issue 3: scalar fields with wrong sign kinetic term
Issue 4: Self-duality of 3-form imposed by hand
Issue 5: Unclear, how to fulfill “wishlist”

Previous observation:
Gauge structure is Lie 3-algebra with “extra structure.”

Palmer, CS (2013), Samtleben et al. (2014)
Christian Sämann Higher Gauge Theory and 6d SCFTs



From string Lie 2-algebra to (1,0) gauge structure 46/56

New: Schmidt, CS (2017)
Idea: use string(g) as gauge structure in this model
Issue: need suitable notion of inner product for action
Inner product/cyclic L∞-algebras ⇔ symplectic NQ-manifold
Consequence: Extend string(g) from

(g←−− R id←−− R) ∼= g

to symplectic graded vector space T ∗[2]string(g):

R
∗

⊕

oo
µ1=id

R
∗[1]

⊕

g∗[2]

⊕

g∗[3]
µ1=id

oo

g R[1] oo
µ1=id

R[2]

This carries natural inner product
Has necessary extra structure for (1,0)-model
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Properties of resulting (1,0)-theory 47/56

Field content:
(1,0) tensor multiplet (φ, χi, B), values in R2, φ = φs +φr, ...
(1,0) vector multiplet (A, λi, Y ij), values in g⊕R
C-field, values in R⊕ g∗

Action (schematically):

S =

∫
R1,5

(
Hr ∧ ∗Hs + dφr ∧ ∗dφs − ∗χ̄r∂/χs +Hs ∧ ∗(λ̄, γ(3)λ) + ∗(Y, λ̄)χs

+ φs
(
(F , ∗F)− ∗(Y, Y ) + ∗(λ̄,∇/ λ)

)
+ (λ̄,F) ∧ ∗γ(2)χs

+ µ1(C) ∧Hs +Bs ∧ (F ,F) +Bs ∧ ([A,A], [A,A])
)

This solves problems 1 and 2:
Choice of gauge structure for ADE-(2,0)-theories clear.
No cubic interaction term for scalar fields
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Completing the theory 48/56

Adding Pasti-Sorokin-Tonin-type action:
Recall: PST action has self-duality of H as equation of motion
Bosonic part of (1,0)-theory was PST completed

Bandos, Sorokin, Samtleben (2013)
Full PST action announced, never appeared (not possible?)
With string structure, construction possible and simplifies

Adding matter fields:
Add hypermultiplet to get fields of (2,0)-tensor multiplet
General construction and couplings discussed

Samtleben, Sezgin, Wimmer (2012)
Can make concrete choices with twisted string structures

⇒ A (1,0)-theory in 6d satisfying many of the “wishlist” items.
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Dimensional reductions

Recall from wishlist:
...

→ Reduction to 4d SYM theory with ADE gauge algebras
→ and to 3d Chern–Simons-matter models with discrete coupling

...
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Consistency check: Reduction to SYM theory 50/56

Crucial consistency check: Reduction to D-branes/SYM theory

S =

∫
R1,5

(
〈H, ∗H〉+ 〈dφ, ∗dφ〉 − ∗〈χ̄, ∂/χ〉+Hs ∧ ∗(λ̄, γ(3)λ) + ∗(Y, λ̄)χs

+ φs
(
(F , ∗F)− ∗(Y, Y ) + ∗(λ̄,∇/ λ)

)
+ (λ̄,F) ∧ ∗γ(2)χs

+ µ1(C) ∧Hs +Bs ∧ (F ,F) +Bs ∧ ([A,A], [A,A])
)

Start from ADE-String Lie 3-algebra
Anticipate 4d gauge couplings:

τ = τ1 + iτ2 =
θ

2π
+

i

g2
YM

,

VEVs from compactification on T 2 along x9 and x10

〈φs〉 = − 1

32π2

τ2

R9R10
and 〈Bs〉 =

1

16π2

τ1

R9R10

Strong coupling expansion around VEVs (cf. M2 → D2)
⇒ 4d N = 4 SYM with ADE-gauge group and θ-term
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Consistency check: Reduction to M2-brane models 51/56

Additional consistency check: Reduction to M2-brane models
Replace R1,5 by R1,2 × S3.
Assumptions:

String Lie 3-algebra of su(n)× su(n)
A trivial on S3, non-trivial on R1,2

B trivial on R1,2

B encodes abelian gerbe with DD class k on S3.

Recall: H = dB + cs(A)

Then we get the integer Chern–Simons coupling:
H ∧ ∗H → kvolS3 cs(A)∫

R1,5

H ∧ ∗H → k

∫
R1,2

cs(A)

Altogether: Chern–Simons matter theory of ABJM type.
Note: This theory has N = 4, different potential from ABJM.
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Reality check

“The first law of physical mathematics: Every cloud has a
silver lining.”

Yuri Manin

“It ain’t over till it’s over.”
Yogi Berra
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Open Problems 53/56

Our model is not the desired (2,0)-theory!

Problems:
Free Yang–Mills multiplet contradicts N = (2, 0) SUSY
Moduli space of vacua is not that of multiple M5-branes
S-duality unclear
PST mechanism relies on φs > 0

Scalar field with wrong sign kinetic term
Model not compatible with categorical equivalence
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Current Work 54/56

Turn problems into hints of solution:
Scalar field with wrong sign kinetic term

(rigid feature of Samtleben et al. model)
Model not compatible with categorical equivalence

(rigid feature of Samtleben et al. model)
Last point: the model of Samtleben et al. is too rigid:

(Xr)s
t = f trs + dtrs = f t[rs] + dt(rs)

Next steps/work in progress:
String 2-algebra → Lie 2-algebras with right branching
Metric twisted Weil algebras and categorical equivalence

L Schmidt & CS, arXiv 1901.?????
Rederive SUSY action in bigger picture
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Conclusions 55/56

Summary and Outlook.

Summary:
Higher gauge theory classically underlies M-theory
Higher analogue of SU(2) is String(3)

There is non-abelian self-dual string
There is classical action with many of desired features
However: Clear differences to (2,0)-theory

Soon to come:
� Understand generalization of String Structure (WIP)
� Understand Categorical Equivalence, Higher Twists (WIP)
� Study N = (1, 0)-models (next on our list)
� Link to categorified integrability, fuzzy S3, etc. (future)
� Better understanding of M-theory (far future)
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Announcement

1 Postdoc (3 years) + 1 PhD position (3.5 years)

Mathematics of M5-branes
starting Sep/Oct 2019

More: Contact me if interested.
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