Supergeometry analysis of geometric structure of double field theory

Noriaki Ikeda
Ritsumeikan University, Kyoto, Japan

DFT in supermanifold formulation and group manifold as background geometry,
U. Carow-Watamura, NI, T. Kaneko and S. Watamura, arXiv:1812.03464. etc.

§1. Introduction

Purposes

- Understanding and clarifying general theory and formulas of geometry of DFT, section conditions, generalized Bianchi identities, etc.
- Analyzing T-duality
- Can we obtain a simple method to compute complicated T-duality equations?
\rightarrow We use super symplectic geometry (topological field theory, BRST-BV formalism)

Plan of Talk

2. Double field theory
3. Supergeometry (graded manifold and pre-QP structure)
4. Generalized fluxes and generalized Bianchi identity
5. Generalized Scherk-Schwarz compactification
6. $G L(2 D)$ covariant DFT

§2. Double field theory

Let M be an original D-dimensional manifold and \widetilde{M} be a T-dualized manifold.
We first construct a T-duality invariant theory on 2D-dimensional doubled space \widehat{M}, and project the theory to physical spacetime to $p r: \widehat{M} \rightarrow M$ and $\widetilde{p r}: \widehat{M} \rightarrow$ M.
$X^{\hat{M}}=\left(\tilde{X}_{M}, X^{M}\right)$: coordinates of this doubled space
hat index: 2D dimensional indices,
unhat index: D dimensional indices
M, N, \cdots : spacetime indices,
A, B, \cdots : tangent flat space indices

We assume $O(D, D)$ an invariant tensor $\eta_{\hat{M} \hat{N}}$.

Generalized Lie derivative and section condition (closure condition)

The generalized Lie derivative a generalized vector $V^{\hat{M}}$ is defined as

$$
\mathcal{L}_{\Lambda} V^{\hat{M}}=\Lambda^{\hat{N}} \partial_{\hat{N}} V^{\hat{M}}+\left(\eta^{\hat{M} \hat{P}} \eta_{\hat{N} \hat{Q}} \partial_{\hat{P}} \Lambda^{\hat{Q}}-\partial_{\hat{N}} \Lambda^{\hat{M}}\right) V^{\hat{N}}
$$

where $\Lambda^{\hat{M}}$ is a gauge parameter.
\mathcal{L}_{Λ} does not satisfy the Leibniz rule,

$$
\Delta^{M}\left(\Lambda_{1}, \Lambda_{2}, V\right)=\mathcal{L}_{\Lambda_{1}}\left(\mathcal{L}_{\Lambda_{2}} V^{M}\right)-\mathcal{L}_{\mathcal{L}_{\Lambda_{1}} \Lambda_{2}} V^{M}-\mathcal{L}_{\Lambda_{2}} \mathcal{L}_{\Lambda_{1}} V^{M} \neq 0
$$

Vanishing of $\Delta^{M}\left(\Lambda_{1}, \Lambda_{2}, V\right)$ is also called the closure condition (the strong section condition), which means that the generalized Lie derivative satisfies

$$
\left[\mathcal{L}_{\Lambda_{1}}, \mathcal{L}_{\Lambda_{2}}\right]=\mathcal{L}_{\mathcal{L}_{\Lambda_{1}} \Lambda_{2}}
$$

Closure is always guaranteed, when the section condition is imposed

$$
\eta^{\hat{M} \hat{N}}\left(\partial_{\hat{M}} \Phi\right)\left(\partial_{\hat{N}} \Psi\right)=0
$$

where Φ and Ψ denote any fields and gauge parameters of DFT.

Generalized metric and generalized vielbein

$\mathcal{H}_{\hat{M} \hat{N}}$ a generalized metric,

$$
\mathcal{H}_{\hat{M} \hat{N}}=\left(\begin{array}{cc}
g^{M N} & -g^{M P} b_{P N} \\
b_{M P} g^{P N} & g_{M N}-b_{M P} g^{P Q} b_{Q N}
\end{array}\right) .
$$

$E_{\hat{A}}^{\hat{M}}$: we introduce the generalized vielbein.

$$
E_{\hat{\hat{A}}}^{\hat{M}}=\left(\begin{array}{cc}
E_{A}{ }^{M} & E_{B M} \\
E^{A N} & E^{B}{ }_{N}
\end{array}\right)=\left(\begin{array}{cc}
e_{A}{ }^{M} & e_{B}{ }^{L} B_{L M} \\
e^{A}{ }_{L} \beta^{L N} & e^{B}{ }_{N}+e^{B}{ }_{L} B_{N K} \beta^{K L}
\end{array}\right) .
$$

$\eta^{\hat{A} \hat{B}}$: the $O(D, D)$ invariant metric.
$S_{\hat{A} \hat{B}}$: an $O(1, D-1) \times O(1, D-1)$ invariant double Lorentz metric. The $O(D, D)$
metric $\eta_{\hat{M} \hat{N}}$ and the generalized metric $\mathcal{H}_{\hat{M} \hat{N}}$ are written as

$$
\eta_{\hat{M} \hat{N}}=E_{\hat{M}}^{\hat{A}} \eta_{\hat{A} \hat{\bar{B}}} E_{\hat{N}}^{\hat{B}}, \quad \mathcal{H}_{\hat{M} \hat{N}}=E_{\hat{M}}^{\hat{A}} S_{\hat{A} \hat{\bar{B}}} E_{\hat{N}}^{\hat{B}} .
$$

The generalized Lie derivative is

$$
\mathcal{L}_{\Lambda} E_{\bar{A}}^{\hat{M}}=\Lambda^{\hat{N}} \partial_{\hat{N}} E_{\bar{A}}^{\hat{M}}+\left(\eta^{\hat{M} \hat{P}} \eta_{\hat{N} \hat{Q}} \partial_{\hat{P}} \Lambda^{\hat{Q}}-\partial_{\hat{N}} \Lambda^{\hat{M}}\right) E_{\bar{A}}^{\hat{N}} .
$$

§3. Supergeometry of double field theory

Deser, Stasheff, '14, Deser, Saemann '16, Heller, NI, Watamura, '16

Graded manifold

A graded manifold $\mathcal{M}=\left(M, \mathcal{O}_{M}\right)$ on a smooth manifold M is a ringed space which structure sheaf \mathcal{O}_{M} is \boldsymbol{Z}-graded commutative algebras over M, locally isomorphic to $C^{\infty}(U) \otimes S(V)$, where U is a local chart on M, V is a graded vector space and $S \cdot(V)$ is a free graded commutative ring on V.

Grading is called degree.
We denote $C^{\infty}(\mathcal{M})=\mathcal{O}_{M}$.
If degrees are nonnegative, a graded manifold is called an \mathbf{N}-manifold.

pre-QP-manifold

An N-manifold is called a pre-QP-manifold if it has the following structure.

- ω : a graded symplectic form of degree n on \mathcal{M} and the induced (nondegenerate) Poisson bracket $\{-,-\}$.
- Q : a graded vector field of degree +1 , satisfying $\mathcal{L}_{Q} \omega=0$.

We take a Hamiltonian function $\Theta \in C^{\infty}(\mathcal{M})$ of degree $n+1$ such that $Q(-)=\{\Theta,-\}$.

Note: If $Q^{2}=0$, a pre-QP-manifold is called a QP-manifold. $Q^{2}=0$ is equivalent to the classical master equation, $\{\Theta, \Theta\}=0$.

Note: Θ corresponds to a BRST charge (an AKSZ sigma model).

Example of QP-manifold

Derived bracket construction of Courant algebroid
Let M be a smooth manifold. we consider a graded double cotangent bundle, $\mathcal{M}=T^{*}[2] T^{*}[1] M$.
$\left(x^{i}, p_{i}\right)$: local coordinates of degree $(0,1)$, on $T^{*}[1] M$.
$\left(\xi_{i}, q^{i}\right)$: canonical conjugate coordinates of degree $(2,1)$ on $T^{*}[2]$.
This means that the symplectic form is of degree 2 ,

$$
\omega=\delta x^{i} \wedge \delta \xi_{i}+\delta q^{i} \wedge \delta p_{i}
$$

We consider a Hamiltonian function Θ of degree 3. The simplest Hamiltonian function is

$$
\Theta_{0}=\xi_{i} q^{i},
$$

which trivially satisfies the classical master equation $\left\{\Theta_{0}, \Theta_{0}\right\}=0$.
A degree 1 function is $X^{i}(x) p_{i}+\alpha_{i}(x) q^{i}$, is identified to $X+\alpha=X^{i}(x) \partial_{i}+$ $\alpha_{i}(x) d x^{i} \in \Gamma\left(T M \oplus T^{*} M\right)$ by the degree shifting map,

$$
j: T M \oplus T^{*} M \rightarrow T^{*}[2] T^{*}[1] M
$$

defined by $j:\left(x^{i}, \partial_{i}, d x^{i}\right) \mapsto\left(x^{i}, p_{i}, q^{i}\right)$.
The derived bracket for degree 0 and 1 functions $\left\{\left\{-, \Theta_{0}\right\},-\right\}$ gives operations of a Courant algebroid.

The Dorfman bracket for two generalized vector fields, $X+\alpha$ and $Y+\beta$, is

$$
\begin{aligned}
{[X+\alpha, Y+\beta]_{D} } & =-\left\{\left\{X+\alpha, \Theta_{0}\right\}, Y+\beta\right\} \\
& =[X, Y]+\mathcal{L}_{X} \beta-\iota_{Y} \alpha
\end{aligned}
$$

The anchor map is $\rho(X+\alpha) f=-\left\{\left\{X+\alpha, \Theta_{0}\right\}, f\right\}=X f$.
All the identities of a Courant algebroid are given by the classical master equation $\left\{\Theta_{0}, \Theta_{0}\right\}=0$, i.e. $Q^{2}=0$.

Derived bracket construction of generalized Lie derivative

Take 2D dimensional doubled spacetime \widehat{M} with a local coordinate $X^{\hat{M}}=$ $\left(\tilde{x}_{M}, x^{M}\right)$.

We take a pre-QP-manifold $\left(\mathcal{M}=T^{*}[2] T[1] \widehat{M}, \omega, Q\right)$. Here $Q=\{\Theta,-\}$.
A generalized Lie derivative is defined by a derived bracket,

$$
\mathcal{L}_{V} V^{\prime}=\left[V, V^{\prime}\right]_{D}=\left[V, V^{\prime}\right] \equiv-\left\{\{V, \Theta\}, V^{\prime}\right\},
$$

for generalized vector fields V, V^{\prime}, which are functions of degree 1 .

Closure condition

In general, $\{\Theta, \Theta\} \neq 0$ on a pre-QP-manifold.
We obtain the following identity of the derived bracket for any $f, g, h \in C^{\infty}(\mathcal{M})$ using identities of $\{-,-\}$,

$$
\begin{aligned}
{[f,[g, h]]=} & \{\{f, \Theta\},\{\{g, \Theta\}, h\}\} \\
= & {[[f, g], h]+(-1)^{(|f|+n+1)(|g|+n+1)}[g,[f, h]] } \\
& +(-1)^{|g|+n} \frac{1}{2}\{\{\{\{\Theta, \Theta\}, f\}, g\}, h\} .
\end{aligned}
$$

Case 1, If $\{\Theta, \Theta\}=0$, the derived bracket $[\cdot, \cdot]$ satisfies the following Leibniz identity of degree $-n+1$,

$$
[f,[g, h]]=[[f, g], h]+(-1)^{(|f|-n+1)(|g|-n+1)}[g,[f, h]]
$$

$[-,-]=\{\{-, \Theta\},-\}$: The Dorfman bracket of a Courant algebroid.
Case 2, We can relax the classical master equation as

$$
\{\{\{\{\Theta, \Theta\}, f\}, g\}, h\}=0,
$$

which is sufficient for closure of the derived bracket. We call the condition the weak master equation. It is the DFT case!

Generalized Lie derivative in DFT in local coordinates

We take a $2 D$ dimensional doubled space, $\widehat{M}=\widetilde{M} \times M$, with an $O(D, D)$ invariant metric $\eta_{\hat{M} \hat{N}}$,

Consider an $n=2$ graded symplectic manifold $\mathcal{M}=T^{*}[2] T[1](\widetilde{M} \times M)$.
$X^{\hat{M}}=\left(\tilde{X}_{M}, X^{M}\right)$ is a general coordinate on the base manifold $\widetilde{M} \times M$.
$\left(X^{\hat{M}}, Q^{\hat{M}}, P_{\hat{M}}, \Xi_{\hat{M}}\right):$ local coordinates on \mathcal{M} of degree $(0,1,1,2)$.
The symplectic structure on \mathcal{M} is

$$
\omega=\delta X^{\hat{M}} \wedge \delta \Xi_{\hat{M}}+\delta Q^{\hat{M}} \wedge \delta P_{\hat{M}} .
$$

DFT basis

$$
Q^{\prime \hat{M}}:=\frac{1}{\sqrt{2}}\left(Q^{\hat{M}}-\eta^{\hat{M} \hat{N}} P_{\hat{N}}\right) \quad, \quad P_{\hat{M}}^{\prime}:=\frac{1}{\sqrt{2}}\left(P_{\hat{M}}+\eta_{\hat{M} \hat{N}} Q^{\hat{N}}\right),
$$

In the DFT basis, Poisson brackets are

$$
\left\{Q^{\prime \hat{M}}, Q^{\prime \hat{N}}\right\}=\eta^{\hat{M} \hat{N}}, \quad\left\{P_{\hat{M}}^{\prime}, P_{\hat{N}}^{\prime}\right\}=\eta_{\hat{M} \hat{N}}, \quad\left\{Q^{\prime \hat{M}}, P_{\hat{N}}^{\prime}\right\}=0
$$

We identify geometric elements and supermanifold elements as follows,

$$
j^{\prime}:\left(X^{\hat{M}}, \partial_{\hat{M}}, \partial_{\hat{M}}, d X^{\hat{M}}\right) \longmapsto\left(X^{\hat{M}}, \Xi_{\hat{M}}, P_{\hat{M}}^{\prime}, Q^{\prime \hat{M}}\right)
$$

with degree shifting. Especially,

$$
V^{\hat{M}} \partial_{\hat{M}} \sim V^{\hat{M}} P_{\hat{M}}^{\prime}
$$

Simplest Hamiltonian function

We consider the following $O(D, D)$ invariant degree 3 function,

$$
\Theta_{0}=\eta^{\hat{M} \hat{N}} \Xi_{\hat{M}} P_{\hat{N}}^{\prime},
$$

which consists only of the coordinate P_{M}^{\prime} of the DFT basis.
A derived bracket using this Θ_{0} gives the generalized Lie derivative on a generalized vector field V,

$$
\begin{aligned}
\mathcal{L}_{\Lambda} V=[\Lambda, V]_{D} & =-\left\{\left\{\Lambda, \Theta_{0}\right\}, V\right\} \\
& =\Lambda^{\hat{N}} \partial_{\hat{N}} V^{\hat{M}}+\left(\eta^{\hat{M} \hat{P}} \eta_{\hat{N} \hat{Q}} \partial_{\hat{P}} \Lambda^{\hat{Q}}-\partial_{\hat{N}} \Lambda^{\hat{M}}\right) V^{\hat{N}} .
\end{aligned}
$$

Closure condition

The classical master equation is not satisfied,

$$
\left\{\Theta_{0}, \Theta_{0}\right\}=\eta^{\hat{M} \hat{N}} \Xi_{\hat{M}} \Xi_{\hat{N}} \neq 0
$$

We impose the closure condition, $\left\{\left\{\left\{\left\{\Theta_{0}, \Theta_{0}\right\}, f\right\}, g\right\}, h\right\}=0$, which is

$$
2\left(\partial^{\hat{M}} V_{1}^{\hat{N}} V_{2 \hat{N}} \partial_{\hat{M}} V_{3}^{\hat{Q}}-2 \partial^{\hat{M}} V_{1}^{[\hat{P}} \partial_{\hat{M}} V_{2}^{\hat{Q}]} V_{3 \hat{P}}\right) P_{\hat{Q}}^{\prime}=0
$$

This condition is rewritten as the section condition,

$$
\partial^{\hat{M}} V_{1}^{\hat{P}} \partial_{\hat{M}} V_{2}^{\hat{Q}}=0
$$

A similar condition is obtained for functions on the doubled spacetime.

§4. Twist and generalized fluxes

We introduce fluxes in DFT by a canonical transformation called twist.

Twist

$$
e^{\delta_{\alpha}} f=f+\{f, \alpha\}+\frac{1}{2}\{\{f, \alpha\}, \alpha\}+\cdots,
$$

for $f \in C^{\infty}(\mathcal{M})$. Here α is a local function of degree 2 , corresponding to a gerbe connection (a stack of groupoids). It is degree-preserving and obeys

$$
\left\{e^{\delta_{\alpha}} f, e^{\delta_{\alpha}} g\right\}=e^{\delta_{\alpha}}\{f, g\},
$$

for all $f, g \in C^{\infty}(\mathcal{M})$,

Note

If a Hamiltonian function Θ is twisted by $\alpha, \Theta \rightarrow \Theta^{\prime}=e^{\delta_{\alpha}} \Theta$, then a twist changes the closure condition.

$$
\left\{\left\{\left\{\left\{\Theta^{\prime}, \Theta^{\prime}\right\}, f\right\}, g\right\}, h\right\}=0
$$

which is equivalent to

$$
e^{\delta_{\alpha}}\left\{\left\{\left\{\{\Theta, \Theta\}, e^{-\delta_{\alpha}} f\right\}, e^{-\delta_{\alpha}} g\right\}, e^{-\delta_{\alpha}} h\right\}=0 .
$$

- A twist does not change a D-dimensional physical spacetime $M \subset \widetilde{M}$.
- A twist introduces 'connection' terms to the section condition for a generalized vector field.

Local Lorentz frame

$\bar{Q}^{\hat{A}}, \bar{P}_{\hat{A}}$: flat tangent and cotangent coordinates of degree 1 corresponding to the local Lorentz frame. The DFT basis is

$$
\bar{Q}^{\prime \hat{A}}:=\frac{1}{\sqrt{2}}\left(\bar{Q}^{\hat{A}}-\eta^{\hat{A} \hat{\bar{B}}} \bar{P}_{\hat{\bar{B}}}\right) \quad, \quad \bar{P}_{\hat{A}}^{\prime}:=\frac{1}{\sqrt{2}}\left(\bar{P}_{\hat{A}}+\eta_{\hat{A} \hat{\bar{B}}} \bar{Q}^{\prime \hat{\bar{B}}}\right)
$$

Twists in DFT

DFT has the following three twists,

$$
\begin{aligned}
E & :=E_{\hat{\hat{A}}}^{\hat{M}}(X) \eta^{\hat{A} \hat{\bar{B}}} P_{\hat{M}}^{\prime} \bar{P}_{\hat{\hat{B}}}^{\prime} \\
u & :=u_{\hat{M}}^{\hat{M}}(X) \eta^{\hat{N} \hat{P}} P_{\hat{M}}^{\prime} P_{\hat{N}}^{\prime}, \quad \bar{u}:=\bar{u}_{\hat{A}}^{\hat{B}}(X) \eta^{\hat{C} \hat{A}} \bar{P}_{\hat{\bar{B}}}^{\prime} \bar{P}_{\hat{C}}^{\prime} .
\end{aligned}
$$

We have the following formulas of twists,

$$
\begin{gathered}
e^{\frac{\pi}{2} \delta_{E}} P_{\hat{M}}^{\prime}=E_{\hat{M}}^{\hat{A}} \bar{P}_{\hat{A}}^{\prime}, \quad e^{\frac{\pi}{2} \delta_{E}} \bar{P}_{\hat{A}}^{\prime}=-E_{\hat{A}}^{\hat{M}} P_{\hat{M}}^{\prime}, \\
e^{\frac{\pi}{2} \delta_{E}} \Xi_{\hat{M}}=\Xi_{\hat{M}}-\frac{1}{2} \Omega_{\hat{M} \hat{N} \hat{P}} P^{\prime \hat{N}} P^{\prime \hat{P}}+\frac{1}{2} \Omega_{\hat{M} \hat{N} \hat{P}} E_{\hat{A}}^{\hat{N}} E_{\hat{C}}^{\hat{P}} \bar{P}^{\prime \hat{A}} \bar{P}^{\prime \hat{C}} .
\end{gathered}
$$

where $\Omega_{\hat{A} \hat{\bar{B}} \hat{\bar{C}}}:=E_{\hat{\hat{A}}}^{\hat{M}} \partial_{\hat{M}} E_{\hat{\bar{B}}}^{\hat{N}} E_{\hat{\mathrm{C}} \hat{N}}$ is a generalized Weitzenböck connection, and $\Omega_{\hat{M} \hat{N} \hat{P}}=E^{\hat{A}}{ }_{\hat{M}} E^{\hat{\bar{B}}}{ }_{\hat{N}} E^{\hat{C}}{ }_{\hat{P}} \Omega_{\hat{A} \hat{\bar{B}} \hat{C}}$.

Then, the twisted Hamiltonian function becomes,

$$
\Theta_{F}=e^{\frac{\pi}{2} \delta_{E}} \Theta_{0}=E_{\hat{A}}^{\hat{M}} \Xi_{\hat{M}} \bar{P}^{\prime \hat{A}}+\frac{1}{3!} \mathcal{F}_{\hat{A} \hat{B} \hat{C}} \bar{P}^{\prime \hat{A}} \bar{P}^{\prime \hat{B}} \bar{P}^{\prime \hat{C}}+\frac{1}{2} \Phi_{\hat{C} \hat{M} \hat{N}} P^{\prime \hat{M}} P^{\prime \hat{N}} \bar{P}^{\prime \hat{C}}
$$

where

$$
\mathcal{F}_{\hat{A} \hat{\bar{B}} \hat{C}}=3 \Omega_{[\hat{A} \hat{\bar{B}} \hat{C}]}, \quad \Phi_{\hat{\hat{C}} \hat{M} \hat{N}}=-\Omega_{\hat{C} \hat{A} \hat{\bar{B}}} E_{\hat{M}}^{\hat{A}} E_{\hat{N}}^{\hat{\bar{B}}}
$$

We obtained the correct forms of a generalized flux and a generalized Weitzenböck connection.

Aldazabal, Baron, Marques, Nunez, '11

§5. Generalized Bianchi identity via pre-QP-manifold

 Bianchi identity of fluxes in SUGRAIn a QP-manifold (SUGRA), the Bianchi identity of fluxes is equivalent to the classical master equation $\{\Theta, \Theta\}=0$ for a Hamiltonian twisted by fluxes Θ.

A general form of Θ on a D-dimensional manifold M is of degree 3 and identifications of fluxes is,

$$
\begin{aligned}
\Theta & =\rho^{M}{ }_{N}(x) \xi_{M} q^{N}+\pi^{M N}(x) \xi_{M} p_{N}+\frac{1}{3!} H_{M N P}(x) q^{L} q^{M} q^{N} \\
& +\frac{1}{2} F_{L M}^{N}(x) q^{L} q^{M} p_{N}+\frac{1}{2} Q_{L}^{M N}(x) q^{L} p_{M} p_{N}+\frac{1}{3!} R^{L M N}(x) p_{L} p_{M} p_{N}
\end{aligned}
$$

1. Original Neveu-Schwarz H-flux

$H=d B, F=0, Q=0, R=0$.

$$
\Theta_{1}=e^{\delta_{B}} \Theta_{0}=\xi_{M} q^{M}+\frac{1}{3!} H_{L M N}(x) q^{L} q^{M} q^{N}
$$

where $B=\frac{1}{2} B_{M N}(x) q^{M} q^{N}$.
$\left\{\Theta_{1}, \Theta_{1}\right\}=0$ is equivalent to $d H=0$.
2. Fluxes with metric

$$
\begin{aligned}
& H=\nabla B \\
& F=T+\beta^{\sharp} H \\
& Q=\nabla \beta+\wedge^{2} \beta^{\sharp} H, \\
& R=[\beta, \beta]_{S}^{\nabla}+\wedge^{3} \beta^{\sharp} H,
\end{aligned}
$$

where ∇ is a covariant derivative with respect to the Riemannian connection and T is a torsion tensor. Four fluxes satisfy complicated Bianchi identity.

Corresponding Hamiltonian function

Let

$$
\begin{aligned}
& B=\frac{1}{2} B_{M N}(x) q^{M} q^{N}, \quad \beta=\frac{1}{2} \beta^{M N}(x) p_{M} p_{N} \\
& e=e_{A}^{M}(x) q^{A} p_{M}, \quad e^{-1}=e_{M}^{A}(x) q^{M} p_{A}
\end{aligned}
$$

and consider twist $\Theta_{2}=e^{-\delta_{e}} e^{\delta} e^{-1} e^{-\delta_{e}} e^{-\delta_{\beta}} \Theta_{1}$.
From Θ_{2}, we obtain forms H, F, Q, R in the previous page, and

$$
\left\{\Theta_{2}, \Theta_{2}\right\}=0
$$

gives the correct Bianchi identity of H, F, Q, R.

Generalized Bianchi identity of generalized fluxes in DFT

The Hamiltonian function with generalized fluxes is

$$
\Theta_{F}=E_{\hat{\hat{A}}}^{\hat{M}} \Xi_{\hat{M}} \bar{P}^{\prime \hat{A}}+\frac{1}{3!} \mathcal{F}_{\hat{A} \hat{\bar{B}} \hat{\hat{C}}} \bar{P}^{\prime \hat{A}} \bar{P}^{\prime \hat{B}} \bar{P}^{\prime \hat{C}}+\frac{1}{2} \Phi_{\hat{\hat{C}} \hat{M} \hat{N}} P^{\prime \hat{M}} P^{\prime \hat{N}} \bar{P}^{\prime \hat{C}}
$$

pre-Bianchi identity

In a pre-QP-manifold, $\{\Theta, \Theta\} \neq 0$. Then, we propose a weak version of the classical master equation

$$
\mathcal{B}\left(\Theta_{F}, \Theta_{0}, \alpha\right)=\left\{\Theta_{F}, \Theta_{F}\right\}-e^{\delta_{\alpha}}\left\{\Theta_{0}, \Theta_{0}\right\}=0
$$

where α is a canonical transformation function of degree 2 , and Θ_{0} is a Hamiltonian function without fluxes. A generalized Bianchi identity is derived from this equation.

We choose a twist by $\alpha=E=E_{\hat{\hat{A}}}^{\hat{M}} \eta^{\hat{A} \hat{B}} P_{\hat{M}}^{\prime} \bar{P}_{\hat{\bar{B}}}^{\prime}$, we obtain

$$
\begin{aligned}
& \mathcal{B}\left(\Theta_{F}, \Theta_{0}, E\right) \\
& =\left(2 \partial_{\hat{N}} E_{\hat{C}}^{\hat{M}} E_{\hat{\bar{D}}}^{\hat{N}}+\eta^{\hat{A} \hat{\bar{B}}} E_{\hat{\hat{A}}}^{\hat{M}} \mathcal{F}_{\hat{\bar{B}} \hat{C} \hat{\bar{D}}}-\eta^{\hat{M} \hat{N}} \Omega_{\hat{N} \hat{Q} \hat{U}} E_{\hat{C}}^{\hat{Q}} E_{\hat{\bar{D}}}^{\hat{U}}\right) \Xi_{\hat{M}} \bar{P}^{\prime \hat{C}} \bar{P}^{\prime} \hat{\bar{D}} \\
& +\left(\eta^{\hat{A} \hat{B}} E_{\hat{A}}^{\hat{M}} \Phi_{\hat{\hat{B}} \hat{N} \hat{P}}+\eta^{\hat{M} \hat{Q}} \Omega_{\hat{Q} \hat{N} \hat{P}}\right) \Xi_{\hat{M}} P^{\prime \hat{N}} P^{\prime \hat{P}} \\
& +\left(-\frac{2}{3!} E_{\hat{\hat{A}}}^{\hat{M}} \partial_{\hat{M}} \mathcal{F}_{\hat{B} \hat{C} \hat{\bar{D}}}+\frac{3}{4} \eta^{\hat{E} \hat{F}} \mathcal{F}_{\hat{E} \hat{A} \hat{\bar{B}}} \mathcal{F}_{\hat{\vec{F}} \hat{\bar{C}} \hat{\bar{D}}}-\frac{1}{4} \eta^{\hat{E} \hat{F}} \Omega_{\hat{E} \hat{A} \hat{\bar{B}}} \Omega_{\hat{F} \hat{\bar{C}} \hat{\bar{D}}}\right) \bar{P}^{\prime \hat{A}} \bar{P}^{\prime \hat{\bar{B}}} \bar{P}^{\prime} \hat{\bar{C}} \bar{P}^{\prime \hat{D}} \\
& +\left(-E_{\hat{\hat{A}}}^{\hat{P}} \partial_{\hat{P}} \Phi_{\hat{\bar{B}} \hat{M} \hat{N}}+\frac{1}{2} \eta^{\hat{C} \hat{\bar{D}}} \mathcal{F}_{\hat{A} \hat{\bar{B}} \hat{C}} \Phi_{\hat{\bar{D}} \hat{M} \hat{N}}\right. \\
& \left.-\eta^{\hat{Q} \hat{R}} \Phi_{\hat{A} \hat{Q} \hat{M}} \Phi_{\hat{\bar{B} \hat{R} \hat{N}}}+\frac{1}{2} \eta^{\hat{P} \hat{R}} \Omega_{\hat{P} \hat{M} \hat{N}} \Omega_{\hat{R} \hat{Q} \hat{U}} E_{\hat{A}}^{\hat{Q}} E_{\hat{\hat{B}}}^{\hat{U}}\right) P^{\prime \hat{M}} P^{\prime \hat{N}} \bar{P}^{\prime \hat{A}} \bar{P}^{\prime \hat{B}} \\
& +\frac{1}{4}\left(\eta^{\hat{R} \hat{S}} \Phi_{\hat{R} \hat{M} \hat{N}} \Phi_{\hat{S} \hat{P} \hat{Q}}-\eta^{\hat{R} \hat{S}} \Omega_{\hat{R} \hat{M} \hat{N}} \Omega_{\hat{S} \hat{P} \hat{Q}}\right) P^{\prime \hat{M}} P^{\prime \hat{N}} P^{\prime \hat{P}} P^{\prime \hat{Q}} .
\end{aligned}
$$

The pre-Bianchi identity is

$$
\begin{aligned}
& 2 \partial_{\hat{N}} E_{[\hat{M}}^{\hat{M}} E_{\hat{\hat{D}}]}^{\hat{N}}+E_{\hat{A}}^{\hat{A} \hat{M}} \mathcal{F}_{\hat{B} \hat{C} \hat{C}}-\Omega^{\hat{M}}{ }_{\hat{Q} \hat{U}} E_{\hat{C}}^{\hat{Q}} E_{\hat{D}}^{\hat{U}}=0, \\
& E^{\hat{A} \hat{M}} \Phi_{\hat{A} \hat{N} \hat{N}}+\Omega^{\hat{M}}{ }_{\hat{N} \hat{P}}=0, \\
& -\frac{2}{3!} E_{[\hat{A}}^{\hat{M}} \partial_{\hat{M}} \mathcal{F}_{\hat{B} \hat{C} \hat{C}]}+\frac{3}{4} \mathcal{F}_{\hat{\hat{E}}[\hat{A} \hat{B}} \mathcal{F}_{\hat{C} \hat{C} \hat{D}]}^{\hat{C}}-\frac{1}{4} \Omega_{\hat{E}[\hat{A} \hat{B}} \Omega^{\hat{E}}{ }_{\hat{C} \hat{D}]}=0, \\
& -E_{[\hat{A}}^{\hat{P}} \partial_{\hat{P}} \Phi_{\hat{\hat{B}}] \hat{M} \hat{N}}+\frac{1}{2} \mathcal{F}^{\hat{C}}{ }_{\hat{A} \hat{B}} \Phi_{\hat{\hat{C}} \hat{M} \hat{N}}-\Phi_{[\hat{A}[\hat{M}} \Phi_{\hat{\hat{B}}] \hat{N}] \hat{Q}}+\frac{1}{2} \Omega^{\hat{P}}{ }_{\hat{M} \hat{N}} \Omega_{\hat{P} \hat{Q} \hat{U}} E_{\hat{A}}^{\hat{Q}} E_{\hat{B}}^{\hat{U}}=0, \\
& \Phi_{\hat{R}[\hat{M} \hat{N}} \Phi^{\hat{R}}{ }_{\hat{P} \hat{Q}]}-\Omega_{\hat{R}[\hat{M} \hat{N}} \Omega^{\hat{R}}{ }_{\hat{P} \hat{Q}]}=0 .
\end{aligned}
$$

1st and 2nd: local expressions of $\mathcal{F}_{\hat{A} \hat{B} \hat{C}}$ and $\Phi_{\hat{A} \hat{N} \hat{P}}$. 3rd: the generalized Bianchi identity in DFT in Aldazabal, Marques, Nunez, '13, Geissbühler, Marques, Nunez, Penas, '13.
4th: another generalized Bianchi identity for $\Phi_{\hat{A} \hat{M} \hat{N}}$.
5th: trivially satisfied.

General form

The most general degree 3 Hamiltonian which consist of $\left(X^{\hat{M}}, \Xi_{\hat{M}}, P^{\prime \hat{M}}, \bar{P}^{\prime} \hat{C}\right)$.

$$
\begin{aligned}
\Theta_{F}= & \bar{\rho}_{\hat{A}}^{\hat{M}}(X) \Xi_{\hat{M}} \bar{P}^{\prime \hat{A}}+\rho_{\hat{N}}^{\hat{M}}(X) \Xi_{\hat{M}} P^{\prime \hat{N}}+\frac{1}{3!} \mathcal{F}_{\hat{A} \hat{\hat{B}} \hat{\hat{C}}}(X) \bar{P}^{\prime \hat{A}} \bar{P}^{\prime \hat{B}} \bar{P}^{\prime \hat{C}} \\
& +\frac{1}{2} \Phi_{\hat{\hat{C}} \hat{M} \hat{N}}(X) P^{\prime \hat{M}} P^{\prime \hat{N}} \bar{P}^{\prime \hat{C}} \\
& +\frac{1}{2} \Delta_{\hat{A} \hat{\bar{B}} \hat{M}}(X) P^{\prime \hat{M}} \bar{P}^{\prime \hat{A}} \bar{P}^{\prime \hat{B}}+\frac{1}{3!} \Psi_{\hat{M} \hat{N} \hat{P}}(X) P^{\prime \hat{M}} P^{\prime \hat{N}} P^{\prime \hat{P}} \\
\Theta_{0}= & \eta^{\hat{M} \hat{N}} \Xi_{\hat{M}} P_{\hat{N}}^{\prime} .
\end{aligned}
$$

We obtain more general generalized Bianchi identity.

§6. Generalized Scherk-Schwarz twist as supergeometry twist

We apply our method to a concrete application, which is a generalized ScherkSchwarz (GSS) compactification.

Generalized Scherk-Schwarz (GSS) compactification Aldazabal,

Baron, Marques, Nunez, '11, Grana, Marques, '12, Berman, Lee, '13
The $2 D$-dimensional target space splits into $2 d$-dimensional external space and $2(D-d)$-dimensional internal space, $X=(\mathbb{X}, \mathbb{Y})$.

GSS ansatz of splits for each field are

$$
\mathcal{E}_{\hat{M}}^{\hat{A}}(X)=\widehat{E}_{\hat{I}}^{\hat{A}}(\mathbb{X}) U_{\hat{M}}^{\hat{I}}(\mathbb{Y}), \quad \Lambda^{\hat{M}}(X)=\widehat{\Lambda}^{\hat{I}}(\mathbb{X}) U_{\hat{I}}^{\hat{M}}(\mathbb{Y})
$$

We use the characters $\hat{I}, \hat{J}, \hat{K}, \hat{L}$ and \hat{H} for the indices of an intermediate theory with an $O(D, D)$ metric $\eta^{\hat{I} \hat{J}}$.

The matrix $U_{\hat{I}}{ }_{\hat{M}}(\mathbb{Y})$ and its inverse $U^{\hat{I}}{ }_{\hat{M}}(\mathbb{Y})$ are elements of $O(D, D)$, which give the GSS twist.

We obtain a GSS generalized fluxes:

$$
\mathcal{F}_{\hat{A} \hat{\bar{B}} \hat{\bar{C}}}=\widehat{F}_{\hat{A} \hat{\bar{B}} \hat{\bar{C}}}+f_{\hat{I} \hat{J} \hat{K}} \widehat{E}_{\hat{A}}{ }^{\hat{I}} \widehat{E}_{\hat{\bar{B}}} \hat{J}^{\hat{J}} \widehat{E}_{\hat{C}}^{\hat{K}}
$$

where $\widehat{F}_{\hat{A} \hat{\bar{B}} \hat{\bar{C}}}=3 \widehat{\Omega}_{[\hat{A} \hat{\bar{B}} \hat{\bar{C}}]}=3 \widehat{E}_{[\hat{A} \mid} \hat{I}_{\hat{I}} \widehat{E}_{|\hat{\bar{B}}|}{ }^{\hat{J}} \widehat{E}_{\mid \hat{\bar{C}}] \hat{J}}$ is a generalized flux obtained from $\widehat{E}_{\hat{A}}^{\hat{I}}$ in the external spacetime, and an internal flux is

$$
f_{\hat{I} \hat{J} \hat{K}}:=3 \widetilde{\Omega}_{[\hat{I} \hat{J} \hat{K}]}=3 U_{[\hat{I} \mid}^{\hat{M}} \partial_{\hat{M}} U_{\hat{\mid J}}^{\hat{N}} U_{\hat{K}] \hat{N}} .
$$

In the GSS compactification, the internal flux $f_{\hat{I} \hat{J} \hat{K}}$ is assumed to be a constant.

Generalized Lie derivative and closure constraints

$$
\widehat{\mathcal{L}}_{\widehat{\Lambda}(\mathbb{X})} \widehat{V}^{\hat{I}}(\mathbb{X})=\mathcal{L}_{\widehat{\Lambda}(\mathbb{X})} \widehat{V}^{\hat{I}}(\mathbb{X})+f^{\hat{I}}{ }_{\hat{J} \hat{K}} \widehat{\Lambda}^{\hat{J}}(\mathbb{X}) \widehat{V}^{\hat{K}}(\mathbb{X})
$$

The algebra of $\widehat{\mathcal{L}}$ closes if

$$
\partial_{\hat{I}} \widehat{V}(\mathbb{X}) \partial^{\hat{I}} \widehat{W}(\mathbb{X})=0, \quad f_{[\hat{I} \hat{J}}^{\hat{H}} f_{\hat{K}] \hat{L} \hat{H}}=0
$$

the closure constraint for DFT fields and the Jacobi identity of the structure constant $f_{\hat{I} \hat{J}} \hat{K}$. This theory is called a gauged DFT (GDFT).

Pre-QP manifold for GSS twist

We introduce a $2 D$-dimensional intermediate coordinates of a graded tangent and cotangent space, denoted by $\left(\widehat{Q}^{\hat{I}}, \widehat{P}_{\hat{I}}\right)$. The corresponding DFT basis is

$$
\widehat{Q}^{\prime \hat{I}}:=\frac{1}{\sqrt{2}}\left(\widehat{Q}^{\hat{I}}-\eta^{\hat{I} \hat{J}} \widehat{P}_{\hat{J}}\right) \quad, \quad \widehat{P}_{\hat{I}}^{\prime}:=\frac{1}{\sqrt{2}}\left(\widehat{P}_{\hat{I}}+\eta_{\hat{I} \hat{J}} \widehat{Q}^{\hat{J}}\right) .
$$

We can introduce three new types of canonical transformation functions using a new coordinate $\widehat{P}_{\hat{I}}^{\prime}$,

$$
\widehat{E}:=\widehat{E}_{\hat{A}}^{\hat{I}} \eta^{\hat{A} \hat{B}} \widehat{P}_{\hat{I}}^{\prime} \bar{P}_{\hat{B}}^{\prime}, \quad U:=U_{\hat{I}}^{\hat{M}} \eta^{\hat{I} \hat{J}} \widehat{P}_{\hat{J}}^{\prime} P_{\hat{M}}^{\prime}, \quad \widehat{a}:=\widehat{a}_{\hat{I}}^{\hat{J}} \eta^{\hat{I} \hat{K}} \widehat{P}_{\hat{J}}^{\prime} \widehat{P}_{\hat{K}}^{\prime} .
$$

The GSS twist is produced by the canonical transformation U, where the parameter $U_{\hat{I}}^{\hat{M}}(\mathbb{Y})$ depends only on \mathbb{Y}, and the components of $U_{\hat{I}}^{\hat{M}}$ are non-trivial only when both indices lie in the internal directions.

Then, the canonical transformation $e^{-\frac{\pi}{2} \delta_{U}}$ provides the GSS twist of the generalized vielbein $\widehat{E}_{\hat{A}} \hat{I}(\mathbb{X})$ and the gauge parameter $\Lambda^{\hat{I}}(\mathbb{X})$,

$$
\begin{aligned}
& e^{-\frac{\pi}{2} \delta_{U}}\left(\widehat{E}_{\hat{A}}^{\hat{I}}(\mathbb{X}) \widehat{P}_{\hat{I}}^{\prime}\right)=\widehat{E}_{\hat{A}}^{\hat{I}}(\mathbb{X}) U_{\hat{I}}^{\hat{M}}(\mathbb{Y}) P_{\hat{M}}^{\prime} \\
& e^{-\frac{\pi}{2} \delta_{U}}\left(\widehat{\Lambda}^{\hat{I}}(\mathbb{X}) \widehat{P}_{\hat{I}}^{\prime}\right)=\widehat{\Lambda}^{\hat{I}}(\mathbb{X}) U_{\hat{I}}^{\hat{M}}(\mathbb{Y}) P_{\hat{M}}^{\prime}
\end{aligned}
$$

Hamiltonian function and derived bracket

The twisted Hamiltonian function is given by

$$
\begin{aligned}
\Theta_{\mathrm{GSS}} & =e^{-\frac{\pi}{2} \delta_{U}} \Theta_{0} \\
& =U_{\hat{I}}^{\hat{M}} \Xi_{\hat{M}} \widehat{P}^{\prime \hat{I}}+\frac{1}{3!} f_{\hat{I} \hat{J} \hat{K}} \widehat{P}^{\prime \hat{I}} \widehat{P}^{\prime \hat{J}} \widehat{P}^{\prime \hat{K}}-\frac{1}{2} \widetilde{\Omega}_{\hat{I} \hat{J} \hat{K}} U^{\hat{J}}{ }_{\hat{M}} U^{\hat{K}}{ }_{\hat{N}} P^{\prime \hat{M}} P^{\prime \hat{N}} \widehat{P}^{\prime \hat{I}},
\end{aligned}
$$

where
$\widetilde{\Omega}_{\hat{I} \hat{J} \hat{K}}=U_{\hat{I}}^{\hat{M}} \partial_{\hat{M}} U_{\hat{J}}^{\hat{N}} U_{\hat{K} \hat{N}}$: internal Weitzenböck connection
$f_{\hat{I} \hat{J} \hat{K}}=3 \widetilde{\Omega}_{[\hat{I} \hat{J} \hat{K}]}$: internal flux
The generalized Lie derivative on the reduced theory is derived by the derived bracket,

$$
\begin{aligned}
\mathcal{L}_{\Lambda} V & =-\left\{\left\{\Lambda, \Theta_{0}\right\}, V\right\} \\
& =-e^{-\frac{\pi}{2} \delta_{U}}\left\{\left\{\widehat{\Lambda}^{\hat{I}}(\mathbb{X}) \widehat{P}_{\hat{I}}^{\prime}, \Theta_{\mathrm{GSS}}\right\}, \widehat{V}^{\hat{J}}(\mathbb{X}) \widehat{P}_{\hat{J}}^{\prime}\right\} \\
& =U_{\hat{I}}^{\hat{M}}\left(\widehat{\mathcal{L}}_{\widehat{\Lambda}} \widehat{V}^{\hat{I}}+f_{\hat{J} \hat{K}} \hat{I} \widehat{\Lambda}^{\hat{J}} \widehat{V}^{\hat{K}}\right) P_{\hat{M}}^{\prime} .
\end{aligned}
$$

The closure condition for the derived bracket is provided by the weak master equation,

$$
\{\{\{\{\Theta, \Theta\}, f\}, g\}, h\}=0 .
$$

Then, the weak master equation for generalized vectors $\widehat{V}_{1}^{\hat{I}}(\mathbb{X})$ and $\widehat{V}_{2}^{\hat{I}}(\mathbb{X})$ leads closure conditions,

$$
\eta^{\hat{I} \hat{J}} \partial_{\hat{I}} \widehat{V}_{1}^{\hat{K}}(\mathbb{X}) \partial_{\hat{J}} \widehat{V}_{2}^{\hat{L}}(\mathbb{X})=0, \quad f_{\hat{H}[\hat{I} \hat{J}} f^{\hat{H}}{ }_{\hat{K} \hat{L}]}=0
$$

Introduction of external generalized vielbein

By the canonical transformation function \widehat{E}, the twisted Hamiltonian function is

$$
\begin{aligned}
& e^{\frac{\pi}{2} \delta_{\widehat{E}}} \Theta_{\mathrm{GSS}} \\
= & E_{\hat{A}}{ }^{\hat{I}} U_{\hat{I}} \hat{M} \Xi_{\hat{M}} \bar{P}^{\prime \hat{A}}+\frac{1}{3!}\left(\widehat{F}_{\hat{A} \hat{B} \hat{\bar{C}}}+f_{\hat{I} \hat{J} \hat{K}} \widehat{E}_{\hat{A}} \hat{I} \widehat{E}_{\hat{\bar{B}}} \hat{J} \widehat{E}_{\hat{C}}^{\hat{K}}\right) \bar{P}^{\prime \hat{A}} \bar{P}^{\prime \hat{B}} \bar{P}^{\prime \hat{C}} \\
& -\frac{1}{2} \widehat{\Omega}_{\hat{C} \hat{A} \hat{\bar{B}}} \widehat{E}^{\hat{A}}{ }_{\hat{I}} \widehat{E}^{\hat{B}}{ }_{\hat{J}} \widehat{P}^{\prime \hat{I}} \widehat{P}^{\prime \hat{J}} \bar{P}^{\prime \hat{C}}-\frac{1}{2} \widetilde{\Omega}_{\hat{I} \hat{J} \hat{K}} U^{\hat{J}}{ }_{\hat{M}} U^{\hat{K}}{ }_{\hat{N}} E_{\hat{A}}^{\hat{I}} P^{\prime \hat{M}} P^{\prime \hat{N}} \bar{P}^{\prime \hat{A}} .
\end{aligned}
$$

We obtain correct $\widehat{F}_{\hat{A} \hat{B} \hat{\bar{C}}}, f_{\hat{M} \hat{N} \hat{R}}$ and $\mathcal{F}_{\hat{A} \hat{B} \hat{\bar{C}}}$,

$$
\begin{aligned}
& \widehat{F}_{\hat{A} \hat{\bar{B}} \hat{C}}=3 \widehat{E}_{[\hat{A} \mid} \hat{I}_{\hat{I}} \widehat{E}_{\mid \hat{\bar{B} \mid}} \hat{J}_{\widehat{E}_{\mid \hat{\bar{C}}] \hat{J}}, \quad f_{\hat{I} \hat{J} \hat{K}}=3 U_{[\hat{I} \mid}^{\hat{M}} \partial_{\hat{M}} U_{\mid \hat{J}} \hat{N} U_{\hat{K}] \hat{N}},}^{\mathcal{F}_{\hat{A} \hat{\bar{B}} \hat{C}}=\widehat{F}_{\hat{A} \hat{\bar{B}} \hat{C}}+f_{\hat{I} \hat{J} \hat{K}} \widehat{E}_{\hat{A}} \hat{I} \widehat{E}_{\hat{\bar{B}}} \hat{J} \widehat{E}_{\hat{C}}^{\hat{K}} .}
\end{aligned}
$$

§7. Covariantized pre-QP-manifold and DFT on group manifold

We generalize the formalism to a covariant pre-QP formulation.

$G L(2 D)$ covariant formulation

Let \widehat{M} be a $2 D$-dimensional (curved) manifold with local coordinates $X^{\hat{M}}=$ (\tilde{x}_{M}, x^{M}) where \hat{M}, \hat{N}, \cdots are $G L(2 D)$ indices.

We define a basis $\Xi_{\hat{M}}^{\nabla}$ of degree 2, corresponding to the covariant derivative $\nabla_{\hat{M}}$, with affine connection Γ and spin connection W,

$$
\Xi_{\hat{M}}^{\nabla}:=\Xi_{\hat{M}}+\Gamma_{\hat{M} \hat{N}}^{\hat{P}} Q^{\hat{N}} P_{\hat{P}}+W_{\hat{M} \hat{I}}^{\hat{J}} \widehat{Q}^{\hat{I}} \widehat{P}_{\hat{J}} .
$$

The Poisson bracket $\left\{-, \Xi_{\hat{M}}^{\nabla}\right\}$ with the vector fields $V^{\hat{M}} P_{\hat{M}}, \widehat{V^{\hat{I}}} \widehat{P}_{\hat{I}}$ and 1-forms
$\alpha_{\hat{M}} Q^{\hat{M}}, \widehat{\alpha}_{\hat{I}} \widehat{Q}^{\hat{I}}$ give their covariant derivative on \widehat{M} :

$$
\begin{aligned}
\left\{V^{\hat{M}}(X) P_{\hat{N}}, \Xi_{\hat{N}}^{\nabla}\right\}=\nabla_{\hat{N}} V^{\hat{M}}(X) P_{\hat{M}}, & \left\{\alpha_{\hat{M}}(X) Q^{\hat{M}}, \Xi_{\hat{N}}^{\nabla}\right\}=\nabla_{\hat{N}^{\alpha}} \alpha_{\hat{M}}(X) Q^{\hat{M}}, \\
\left\{\widehat{V}^{\hat{I}}(X) \widehat{P}_{\hat{I}}, \Xi_{\hat{N}}^{\nabla}\right\}=\nabla_{\hat{N}} \widehat{V}^{\hat{I}}(X) \widehat{P}_{\hat{I}}, & \left\{\widehat{\alpha}_{\hat{I}}(X) \widehat{Q}^{\hat{I}}, \Xi_{\hat{N}}^{\nabla}\right\}=\nabla_{\hat{N}} \widehat{\alpha}_{\hat{I}}(X) \widehat{Q}^{\hat{I}} .
\end{aligned}
$$

If we require the vielbein postulate $\left\{E_{\hat{I}}^{\hat{N}} P_{\hat{N}} \widehat{Q}^{\hat{I}}, \Xi_{\hat{M}}^{\nabla}\right\}=0$, i.e.

$$
\nabla_{\hat{M}} E_{\hat{I}}^{\hat{N}}=0,
$$

we obtain a condition of generalized connections,

$$
\begin{aligned}
& W_{\hat{M} \hat{I}}{ }^{\hat{I}} E^{\hat{N}} E_{\hat{J}}^{\hat{P}}-\Omega_{\hat{M} \hat{N}}{ }^{\hat{P}}-\Gamma_{\hat{M} \hat{N}} \hat{P}=0, \\
& W_{\hat{M} \hat{H} \hat{K}}+W_{\hat{M} \hat{K} \hat{J}}=0 .
\end{aligned}
$$

Here

$$
\nabla_{\hat{M}} \eta_{\hat{I} \hat{J}}=0
$$

The covariant derivative of $\eta_{\hat{M} \hat{N}}$ automatically vanishes

$$
\nabla_{\hat{M}} \eta_{\hat{N} \hat{P}}=\partial_{\hat{M}} \eta_{\hat{N} \hat{P}}-\Gamma_{\hat{M} \hat{N}} \hat{Q} \eta_{\hat{Q} \hat{P}}-\Gamma_{\hat{M} \hat{P}}^{\hat{Q}} \eta_{\hat{N} \hat{Q}}=0 .
$$

Hamiltonian function and generalized Lie derivative
A Hamiltonian function is covariantized as

$$
\Theta_{0}^{\nabla}=\eta^{\hat{M} \hat{N}} \Xi_{\hat{M}}^{\nabla} P_{\hat{N}}^{\prime}
$$

The generalized Lie derivative is defined by

$$
-\left\{\left\{\Lambda, \Theta_{0}^{\nabla}\right\}, V\right\}=\mathcal{L}_{\Lambda}^{\nabla} V
$$

Closure condition

The closure condition of the generalized Lie derivative is the weak master equation:

$$
\left\{\left\{\left\{\left\{\widehat{\Theta}_{0}^{\nabla}, \widehat{\Theta}_{0}^{\nabla}\right\}, \widehat{V}_{1}\right\}, \widehat{V}_{2}\right\}, \widehat{V}_{3}\right\}=0
$$

This condition leads to the following conditions for the spin connection $W_{\hat{M} \hat{I}}{ }^{\hat{J}}$
and arbitrary generalized vectors $\widehat{V}_{1}, \widehat{V}_{2}$ and \widehat{V}_{3},

$$
\begin{aligned}
& -2\left(\partial^{\hat{M}} \widehat{V}_{1}^{\hat{J}} \widehat{V}_{2 \hat{J}} \partial_{\hat{M}} \widehat{V}_{3}^{\hat{I}}-2 \partial^{\hat{M}} \widehat{V}_{1}^{[\hat{J}} \partial_{\hat{M}} \widehat{V}_{2}^{\hat{I}]} \widehat{V}_{3 \hat{J}}\right) \\
& -2\left(2 \Omega_{[\hat{I} \hat{J} \hat{K}}-3 W_{[\hat{I} \hat{J} \hat{K}]}\right) E^{\hat{K} \hat{M}} \\
& \times\left[\partial_{\hat{M}} \widehat{V}_{1}^{\hat{L}} \widehat{V}_{2 \hat{L}} \widehat{V}_{3}^{\hat{J}}-\partial_{\hat{M}} \widehat{V}_{1}^{\hat{L}} \widehat{V}_{2}^{\hat{J}} \widehat{V}_{3 \hat{L}}+\widehat{V}_{1}^{\hat{J}} \partial_{\hat{M}} \widehat{V}_{2}^{\hat{L}} \widehat{V}_{3 \hat{L}}\right] \\
& +2\left(2 \Omega_{[\hat{L} \hat{J}] \hat{K}}-3 W_{[\hat{L} \hat{J} \hat{K}]}\right) E^{\hat{K} \hat{M}} \\
& \times\left[\partial_{\hat{M}} \widehat{V}_{1}^{\hat{I}} \widehat{V}_{2}^{\hat{L}} \widehat{V}_{3}^{\hat{J}}-\widehat{V}_{1}^{\hat{L}} \partial_{\hat{M}} \widehat{V}_{2}^{\hat{I}} \widehat{V}_{3}^{\hat{J}}+\widehat{V}_{1}^{\hat{L}} \widehat{V}_{2}^{\hat{J}} \partial_{\hat{M}} \widehat{V}_{3}^{\hat{I}}\right] \\
& -3!\widehat{V}_{1}^{\hat{I}} \widehat{V}_{2}^{\hat{J}} \widehat{V}_{3}^{\hat{K}}\left[2 R_{[\hat{I} \hat{J} \hat{K} \hat{L}]}-W_{\hat{H}[\hat{I} \hat{J}} W^{\hat{H}}{ }_{\hat{K} \hat{L}]}\right. \\
& \left.\times-2\left(2 W_{[\hat{I} \hat{J}}^{\hat{H}}-2 \Omega_{[\hat{I} \hat{J}} \hat{H}\right) W_{\hat{H} \hat{K} \hat{L}]}\right] \\
& =0
\end{aligned}
$$

Twist

The possible twist functions made from $P^{\prime}, \widehat{P}^{\prime}$ and \bar{P}^{\prime} are

$$
\begin{gathered}
A:=A^{\hat{I} \hat{M}} P_{\hat{M}}^{\prime} \widehat{P}_{\hat{I}}^{\prime}, \quad \widehat{A}:=\widehat{A}^{\hat{A} \hat{J}} \widehat{P}_{\hat{J}}^{\prime} \bar{P}_{\hat{A}}^{\prime}, \quad \mathcal{A}:=\mathcal{A}^{\hat{A} \hat{M}} P_{\hat{M}}^{\prime} \bar{P}_{\hat{A}}^{\prime}, \\
u:=u_{\hat{P}}^{\hat{M}} \eta^{\hat{N} \hat{P}} P_{\hat{M}}^{\prime} P_{\hat{N}}^{\prime}, \quad \widehat{u}:=\widehat{u}_{\hat{I}}^{\hat{J}} \eta^{\hat{K} \hat{I}} \widehat{P}_{\hat{J}}^{\prime} \widehat{P}_{\hat{K}}^{\prime}, \quad \bar{u}:=\bar{u}_{\hat{A}}^{\hat{B}} \eta^{\hat{C} \hat{A}} \bar{P}_{\hat{B}}^{\prime} \bar{P}_{\hat{C}}^{\prime} .
\end{gathered}
$$

Here $A^{\hat{I} \hat{M}}, \widehat{A}_{\hat{A} \hat{J}}$ and $\mathcal{A}^{\hat{A} \hat{M}}$ are $G L(2 D)$ matrices and we can take them as vielbein $E_{\hat{I}}^{\hat{M}}, \widehat{E}_{\hat{A}}^{\hat{I}}$ and $\mathcal{E}_{\hat{A}} \hat{M}^{\hat{M}}$.

Applying the similar discussion to \widehat{A}, we can introduce the fluctuation vielbein $\widehat{E}_{\hat{A}} \hat{I}$. When we take $\widehat{A}_{\hat{A}} \hat{I}=\frac{\pi}{2} \widehat{E}_{\hat{A}}{ }^{\hat{I}}$, we obtain the canonical transformation rules
as follows.

$$
\begin{aligned}
& e^{\frac{\pi}{2} \delta_{\widehat{E}}} \widehat{P}_{\hat{I}}^{\prime}=\widehat{E}^{\hat{B}}{ }_{\hat{I}} \bar{P}_{\hat{\hat{B}}}^{\prime}, \\
& e^{\frac{\pi}{2} \delta_{\widehat{E}}} \bar{P}_{\hat{A}}^{\prime}=-\widehat{E}_{\hat{A}}^{\hat{I}} \widehat{P}_{\hat{I}}^{\prime}, \\
& e^{\frac{\pi}{2} \delta_{\hat{E}} \Xi_{\hat{M}}} \nabla=\Xi_{\hat{M}}-\frac{1}{2} \mathcal{E}^{\hat{C}}{ }_{\hat{M}} \tilde{\Omega}_{\hat{\bar{C}} \hat{\hat{A}} \hat{\bar{B}}} \widehat{E}^{\hat{A}}{ }_{\hat{I}} \widehat{E}^{\hat{B}}{ }_{\hat{J}} \widehat{P}^{\prime \hat{I}} \widehat{P}^{\prime \hat{J}}+\frac{1}{2} \mathcal{E}^{\hat{C}}{ }_{\hat{M}} \tilde{\Omega}_{\hat{\hat{C}}} \overline{\hat{A}}_{\hat{B}} \hat{\bar{B}} \bar{P}^{\prime \hat{A}} \bar{P}^{\prime \hat{B}} .
\end{aligned}
$$

Here we have defined $\widehat{\Omega}_{\hat{A} \hat{\hat{B}} \hat{C}}:=\mathcal{E}_{\hat{A}}{ }^{\hat{M}} \nabla_{\hat{M}} \widehat{E}_{\hat{\hat{B}}} \hat{I}^{\hat{E}} \widehat{\hat{C}}_{\hat{C} \hat{I}}$. This is just the covariantized Weitzenböck connection $\widehat{\Omega}_{\hat{A} \hat{B} \hat{C}}$. Twist of the Hamiltonian function $\bar{\Theta}_{0}^{\nabla}$ gives

$$
e^{\frac{\pi}{2} \delta_{\widehat{E}}} \widehat{\Theta}_{0}^{\nabla}=\mathcal{E}_{\hat{A}} \hat{M}^{\hat{M}} \Xi_{\hat{M}}^{\nabla} \bar{P}^{\prime \hat{A}}+\frac{1}{3!} \widehat{\mathcal{F}}_{\hat{\hat{A}} \hat{\bar{B}} \hat{\bar{C}}} \bar{P}^{\prime \hat{A}} \bar{P}^{\prime \hat{B}} \bar{P}^{\prime \hat{C}}-\frac{1}{2} \widehat{\Omega}{ }_{\hat{A} \hat{B} \hat{C}} \widehat{E}^{\hat{B}}{ }_{\hat{I}} \widehat{E}^{\hat{C}}{ }_{\hat{J}} \widehat{P}^{\hat{I}} \widehat{P}^{\prime \hat{J}} \bar{P}^{\prime \hat{A}}
$$

Pre-Bianchi identities

Now we can consider the pre-Bianchi identity for DFT on covariantized pre-QPmanifold. \mathcal{B} as

$$
\mathcal{B}\left(\Theta_{F}, \Theta_{0}, \alpha\right):=\left\{\Theta_{F}, \Theta_{F}\right\}-e^{\delta_{\alpha}}\left\{\Theta_{0}, \Theta_{0}\right\}=0
$$

gives the generalized Bianchi identities.

Application to DFT ${ }_{\text {WZW }}$ Blumenhagen, Hassler, Luest, '14

We assume the background space as a group manifold G, so we can regard the coordinate $\widehat{P}_{\hat{I}}^{\prime}$ of its tangent space $T G$ as the generator of the Lie algebra of G by the injection map $j^{\prime *}\left(\widehat{P}_{\hat{I}}^{\prime}\right)=T_{\hat{I}}$. Then, the derived bracket of $\widehat{P}_{\hat{I}}^{\prime}$ should reproduce the Lie bracket:

$$
-\left\{\left\{\widehat{P}_{\hat{I}}^{\prime}, \widehat{\Theta}_{0}^{\nabla}\right\}, \widehat{P}_{\hat{J}}^{\prime}\right\}=j_{*}^{\prime}\left[T_{I}, T_{J}\right]_{\text {Lie }}
$$

The left hand side is calculated as,

$$
-\left\{\left\{\widehat{P}_{\hat{I}}^{\prime}, \widehat{\Theta}_{0}^{\nabla}\right\}, \widehat{P}_{\hat{J}}^{\prime}\right\}=\left(W_{\hat{I} \hat{J}}^{\hat{K}}+2 W_{[\hat{I} \hat{I}]}^{\hat{K}}\right) \widehat{P}_{\hat{K}}^{\prime},
$$

and the right hand side is written by definition of a Lie algebra as

$$
j_{*}^{\prime}\left[T_{I}, T_{J}\right]_{\text {Lie }}=F_{\hat{I} \hat{J}}^{\hat{K}} \widehat{P}_{\hat{K}}^{\prime}
$$

Thus, the above equality leads the condition of the spin connection: $W^{\hat{K}}{ }_{\hat{I} \hat{J}}+$ $2 W_{[\hat{I} \hat{J}]}^{\hat{K}}=F_{\hat{K} \hat{I}} \hat{J}$. This condition is solved by

$$
W_{\hat{I} \hat{J}}^{\hat{K}}=\frac{1}{3} F_{\hat{I} \hat{J}}^{\hat{K}},
$$

and this solution is just the one proposed in the $\mathrm{DFT}_{\text {WZW }}$ model.
With this spin connection, the derived bracket with $\widehat{\Theta}_{0}^{\nabla}$ reproduces the generalized Lie derivative of $\mathrm{DFT}_{\text {WZw }}$ as

$$
-\left\{\left\{\widehat{\Lambda}, \widehat{\Theta}_{0}^{\nabla}\right\}, \widehat{V}\right\}=\Lambda^{\hat{J}} D_{\hat{J}} V^{\hat{I}}+\left(D^{\hat{I}} \Lambda_{\hat{J}}-D_{\hat{J}} \Lambda^{\hat{I}}\right) V^{\hat{J}}+F^{\hat{I}}{ }_{\hat{J}} \Lambda^{\hat{J}} V^{\hat{K}}
$$

Thus, the weak master equation yields the section condition and the Jacobi identity as the closure condition of generalized Lie derivative of $\mathrm{DFT}_{\text {WZW }}$.

§. Summary and outlook

- We have formulated DFT geometry by supergeometry in term of pre-QPmanifold.

A generalized Lie derivative is defined by a derived bracket,

$$
\mathcal{L}_{V} V^{\prime}=-\left\{\{V, \Theta\}, V^{\prime}\right\}
$$

and the closure condition (the weak master equation) is the weak master equation,

$$
\{\{\{\{\Theta, \Theta\}, f\}, g\}, h\}=0 .
$$

Generalized fluxes are introduced by twist on a pre-QP-manifold,

$$
\Theta_{F}=e^{\delta_{\alpha}} \Theta_{0}
$$

taking a twisting function α properly. A generalized Bianchi identity is equivalently formulated by a pre-Bianchi identity,

$$
\mathcal{B}\left(\Theta_{F}, \Theta_{0}, \alpha\right)=\left\{\Theta_{F}, \Theta_{F}\right\}-e^{\delta_{\alpha}}\left\{\Theta_{0}, \Theta_{0}\right\}=0
$$

We confirmed this formulation in the GSS compactification and DFT on group manifold.

Outlook

- Inclusion of a dilaton
- Characteristic classes of T^{d} bundles and nongeometric fluxes. (Q defines a complex and cohomology.)
- nonabelian/Poisson-Lie T-duality
- Geometry of exceptional field theory (T-duality + S-duality)
- Physics: action, quantization, etc.

Thank you for your attention!

