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§1. Introduction

Purposes

e Understanding and clarifying general theory and formulas of geometry of DFT,
section conditions, generalized Bianchi identities, etc.

e Analyzing T-duality
e Can we obtain a simple method to compute complicated T-duality equations?

— We use super symplectic geometry (topological field theory, BRST-BV
formalism)



Plan of Talk

2. Double field theory

3. Supergeometry (graded manifold and pre-QP structure)
4. Generalized fluxes and generalized Bianchi identity

4. Generalized Scherk-Schwarz compactification

5. GL(2D) covariant DFT



§2. Double field theory Siegel '93, Hull-Zwiebach '09
Let M be an original D-dimensional manifold and M be a T-dualized manifold.

We first construct a T-duality invariant theory on 2D-dimensional doubled space
M and project the theory to physical spacetime to pr : M — M and pr: M —
M.

XM = (X7, XM): coordinates of this doubled space
hat index: 2D dimensional indices,

unhat index: D dimensional indices

M, N,---: spacetime indices,

A, B, ---: tangent flat space indices



We assume O(D, D) an invariant tensor 7, -

Generalized Lie derivative and section condition (closure
condition)

The generalized Lie derivative a generalized vector VM is defined as
LAVM = AN9 VM 4 (M P 50pA9 — 9 AM )V,

where AM is a gauge parameter.

L does not satisfy the Leibniz rule,

AM(A1, A, V) = Lo, (LA, V) = Ly 0,V = La,La, VY #0



Vanishing of AM (A1, A3, V) is also called the closure condition (the strong
section condition), which means that the generalized Lie derivative satisfies

[£A1 ) ‘CAz] — ‘C/lAl Ag-

Closure is always guaranteed, when the section condition is imposed
"N (9,®)(950) =0,

where ® and ¥ denote any fields and gauge parameters of DFT.



Generalized metric and generalized vielbein

H 0 a generalized metric,

MN _ MPy
H o — g g PN .
MN brvrpg™™™ g — bapgtCbon

EEM: we introduce the generalized vielbein.
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. the O(D, D) invariant metric.

an O(1,D—1)xO(1,D—1) invariant double Lorentz metric. The O(D, D)
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metric 7, 5 and the generalized metric H,, 5 are written as

A

_pA B A o
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The generalized Lie derivative is

~ ~

LAEY = AVOgEY + (0 ngye0pA° — 0 AM



83. Supergeometry of double field theory
Deser, Stasheff, '14, Deser, Saemann '16, Heller, NI, Watamura, '16

Graded manifold

A graded manifold M = (M, Oj;) on a smooth manifold M is a ringed space
which structure sheaf O); is Z—graded commutative algebras over M, locally
isomorphic to C*°(U) ® S*(V'), where U is a local chart on M, V is a graded
vector space and S° (V') is a free graded commutative ring on V.

Grading is called degree.
We denote C°(M) = Oyy.

If degrees are nonnegative, a graded manifold is called an N-manifold.



pre-QP-manifold
An N-manifold is called a pre-QP-manifold if it has the following structure.

e w: a graded symplectic form of degree n on M and the induced (nondegenerate)
Poisson bracket {—, —}.

e (): a graded vector field of degree +1, satisfying Low = 0.

We take a Hamiltonian function © € C°°(M) of degree n + 1 such that

Q(_> — {@7 _}'

Note: If Q% = 0, a pre-QP-manifold is called a QP-manifold. Q? = 0 is
equivalent to the classical master equation, {©,0} = 0.

Note: O corresponds to a BRST charge (an AKSZ sigma model).



Example of QP-manifold

Derived bracket construction of Courant algebroid Roytenberg '99

Let M be a smooth manifold. we consider a graded double cotangent bundle,
M = T*2]T*[1] M.

(x*, p;): local coordinates of degree (0, 1), on T*[1]M.
(&;,4"): canonical conjugate coordinates of degree (2,1) on T*[2].

This means that the symplectic form is of degree 2,
w = 0z" A\ 8&; + 5" A Op;.

We consider a Hamiltonian function © of degree 3. The simplest Hamiltonian
function is

Op = giqia
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which trivially satisfies the classical master equation {©¢, Oy} = 0.

A degree 1 function is X*(x)p; + a;(x)q", is identified to X + o = X*(2)0; +
a;(z)dzt € T'(TM @ T*M) by the degree shifting map,

j i TM & T*M — T*[2]T* 1] M,

defined by j : (2%, 0;, dx*) — (2%, pi, q*).

The derived bracket for degree 0 and 1 functions {{—, Oy}, —} gives operations
of a Courant algebroid.

The Dorfman bracket for two generalized vector fields, X +a and Y + 3, is

X +a,Y+flp=—{{X+0a,060}Y + [}
:[X, Y] -+ ﬁxﬁ — Ly O,

11



The anchor map is p(X + a)f = —{{X + a,0¢}, f} = X .

All the identities of a Courant algebroid are given by the classical master equation
{@Q, @0} = O, l.e. Q2 = 0.
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Derived bracket construction of generalized Lie derivative

—

Take 2D dimensional doubled spacetime M with a local coordinate XM —
(fM,ZEM).

We take a pre-QP-manifold (M = T*[2]T[1]]\/4\,w, Q). Here Q = {6, —}.

A generalized Lie derivative is defined by a derived bracket,
LyV' =[V,Vp=[V,V]=-{{V,0},V'},

for generalized vector fields V, V', which are functions of degree 1.

13



Closure condition
In general, {©,0} £ 0 on a pre-QP-manifold.

We obtain the following identity of the derived bracket for any f,g,h € C°°(M)
using identities of {—, —},

Lfilg, hl] =111, 0}, {{9,0},h}}
=[[f,g], B + (=) FHFntDUglntD g 15 p])

+ (DI H{{0,0}, 1.0}, h).
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Case 1, If {©,0} = 0, the derived bracket |-, -] satisfies the following Leibniz
identity of degree —m + 1,

£ 19, B} =1, 9], b] + (=)W I=n D lsl=ntD1g £ p).
[—,—] = {{—, 0}, —}: The Dorfman bracket of a Courant algebroid.

Case 2, We can relax the classical master equation as

{{{{67 @}7 f}7g}7 h} = 0,

which is sufficient for closure of the derived bracket. We call the condition the

weak master equation. It is the DFT case!
Deser-Saemann, Bruce-Grabowski
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Generalized Lie derivative in DFT in local coordinates

—

We take a 2D dimensional doubled space, M = M x M ,with an O(D, D)
Invariant metric 7,; 5,

Consider an n = 2 graded symplectic manifold M = T*[2]T[1](M x M).
XM = (Xar, XM) is a general coordinate on the base manifold M x M.
(XM,QM,PM,EM): local coordinates on M of degree (0,1,1,2).

The symplectic structure on M is

w=0XMAGE,, +6QY ASPy,.

16



DFT basis

~ 1 ~ ~ - 1 ~
IM . M MN p I A NN

In the DFT basis, Poisson brackets are
QM. QNy =", {P. P} =nyg, {QM. Piy=0.
We identify geometric elements and supermanifold elements as follows,
i (XM,(’?M,(‘?M,dXM) — (XM, 2, Pl Q™)
with degree shifting. Especially,
VM, ~ VMPL

17



Simplest Hamiltonian function

We consider the following O(D, D) invariant degree 3 function,

which consists only of the coordinate P;, of the DFT basis.

A derived bracket using this ©g gives the generalized Lie derivative on a generalized
vector field V,

LAV — [Aa V]D — = {{A7 @0}7 V}
ANV 4 (M P 5002 — D ANV,
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Closure condition

The classical master equation is not satisfied,
{00,600} =" VEpEg £ 0.
We impose the closure condition, {{{{©q,©¢}, f}, g}, h} =0, which is

20"V, 0, Ve — 20"V 0 VIV, ) Pl = 0.

This condition is rewritten as the section condition,
M+ -P Q _

A similar condition is obtained for functions on the doubled spacetime.
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84. Twist and generalized fluxes

We introduce fluxes in DFT by a canonical transformation called twist.

Twist .
e f=f+{f,e}+{{f,ala}+--,

for f € C°°(M). Here « is a local function of degree 2, corresponding to a
gerbe connection (a stack of groupoids). It is degree-preserving and obeys

{e% f,e*g} = e*{f. g},

for all f,g € C°(M),

20



Note

If a Hamiltonian function © is twisted by a, ©® — O’ = e%2@ then a twist
changes the closure condition.

{{{{@/7 6/}7 f}vg}a h} = 0,

which is equivalent to
e {{{{O,0},e % f1 e%ag} e7O%p) = .

e A twist does not change a D-dimensional physical spacetime M C M.

e A twist introduces 'connection’ terms to the section condition for a generalized
vector field.

21



Local Lorentz frame

QA P.: flat tangent and cotangent coordinates of degree 1 corresponding to the
local Lorentz frame. The DFT basis is

_ Eay kay fagra _ _ 1 _ fa
A VA AB /. A _N'B
Q' (@ ) Pfl ‘__(PA+77ABQ )

Con

L1
=7

Twists in DFT

DFT has the following three twists,

o M AB /
E °_Efl (X)n PMPB’

e M NP pr / —,_—é éﬁ‘/
u:=ug (X)n" " Py Py, U= (X)n~ P

22



We have the following formulas of twists,

s / A / T6m D M 1/
50F sOE P! _— _ [ - .
e2"E Py EMP!, e2"F P ESSP

TS o —_ 1 IN /P 1 N P oA e
9 F= . — ' = . _ _ A A A _1__ NP -~ N

— EQM(?MEENEA - is a generalized Weitzenbock connection, and

23



where

o

_ _ A

Con
Con

CA

Qp

[ABC]

Con
Q»

We obtained the correct forms of a generalized flux and a generalized Weitzenbock
connection. Aldazabal, Baron, Marques, Nunez, '11

24



85. Generalized Bianchi identity via pre-QP-manifold
Bianchi identity of fluxes in SUGRA

In a QP-manifold (SUGRA), the Bianchi identity of fluxes is equivalent to the
classical master equation {©,0©} = 0 for a Hamiltonian twisted by fluxes ©.

A general form of © on a D-dimensional manifold M is of degree 3 and
identifications of fluxes is,

1
O = p" N (@)&ng"™ + 7" (@)npn + S Hunp()g g g
1

1 1
+5Fon(@)a ¢ oy + Q1 ()¢ prupn + RN (@)prpmpn-

25



1. Original Neveu-Schwarz H-flux

H=dB, F=0,Q=0 R=0.

1
@1 = 66360 = quM + gHLMN(x)quMqNa

where B = 1 Byn(z)gM g™,

{01,081} =0 is equivalent to dH = 0.



2. Fluxes with metric Blumenhagen-Deser-Plauschinn-Rennecke '12

H=VB
F=T+p'H
Q=VB+ANBH,
R = (8,85 + N°B*H,

where V is a covariant derivative with respect to the Riemannian connection and
T" is a torsion tensor. Four fluxes satisfy complicated Bianchi identity.

27



Corresponding Hamiltonian function

Let
1 1
B = §BMN($)QMC]N7 b= iﬁMN(37>pMpN7
€= GAM(fE)qAPM, e ! = GAM(ﬂf)CIMpA-

and consider twist Oy = e %eelc—1e 9980,

From ©,, we obtain forms H, F, (), R in the previous page, and
{05,605} =0,

gives the correct Bianchi identity of H, F, (), R.

Heller, NI, Watamura '16

28



Generalized Bianchi identity of generalized fluxes in DFT
The Hamiltonian function with generalized fluxes is

1

OF ZE;XMEMP’A + —F- $.. . pMpNpC

1
9 CMN
pre-Bianchi identity Carow-Watamura, NI, Kaneko and Watamura, '18

In a pre-QP-manifold, {©,0} # 0. Then, we propose a weak version of the
classical master equation

B(Op,00,a) ={0p, Op} — {0y, Oy} = 0.

where « is a canonical transformation function of degree 2, and O( is a
Hamiltonian function without fluxes. A generalized Bianchi identity is derived
from this equation.

29



We choose a twist by «a = F = F Mn‘f‘éP]’w _j§ we obtain
B(Op, 0, F)

—QOgEMELN + 0y PEMF e s =MV 00 ESELY)E POPP
+ (" PE M@ o000 g p) 2 PV PE
(- %EAMaM‘FBéb + Z”EﬁFEAéFﬁéb - %néﬁﬂéAéQﬁéb)
T ( —Bl0p® 50+ %"éb? ;662 BN
_ @ AchQMcI)BRN + ;77 QPMNQJ%QUEAQEé )P’MP’NP’AP’B

Q A )P/MP/NP/PP/Q
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The pre-Bianchi identity is

- !E[Qy T pep + Z%@f ﬁcm - %%@QE@D] =0,
E[gapCI)B]MN + I5A§¢5MN - <I>[A[]§q>§m@ I %QPMNQpQUE;‘QEBU _o,
Dy ®” gy — Qg2 pgy = 0
1st and 2nd: local expressions of ipeand @ ;..

3rd: the generalized Bianchi identity in DFT in Aldazabal, Marques, Nunez, '13,
Geissbuhler, Marques, Nunez, Penas, '13.

4th: another generalized Bianchi identity for Do

5th: trivially satisfied.
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General form ) -
The most general degree 3 Hamiltonian which consist of (X = P'M p'C).

A _ ke _ fa 1 A~ ~ A
A == (X)P/MP/AP/B + gquNp(X>P,MP,NP/P7

AR
wyf]
<

We obtain more general generalized Bianchi identity.

32



§0. Generalized Scherk-Schwarz twist as supergeometry twist

We apply our method to a concrete application, which is a generalized Scherk-
Schwarz (GSS) compactification.

Generalized Scherk-Schwarz (GSS) compactification Aidazabal,

Baron, Marques, Nunez, '11, Grana, Marques, '12, Berman, Lee, '13

The 2D-dimensional target space splits into 2d-dimensional external space and
2(D — d)-dimensional internal space, X = (X,Y).

GSS ansatz of splits for each field are

A
Py

EA(X) = BAUT (), AM(x) = Rxu,(v).

A

We use the characters f, j, K, L and H for the indices of an intermediate theory

A A

with an O(D, D) metric n*~.

33



The matrix UfM(Y) and its inverse UfM(Y) are elements of O(D, D), which
give the GSS twist.

We obtain a GSS generalized fluxes:

- ABC A_B_C*JFJ JKEA_ EB_ Eé ’
P . P . j} . fI .
a2 A A p— o2 o 2o A X In
where Vele SQ[ Velo) 3E 0; E|B| E|C] Is a generalized flux obtained
from E I'in the external spacetlme and an internal flux is

ad _arr M N
Fiik =355 = 30U 0niUpy Uk x

In the GSS compactification, the internal flux ffjf{ Is assumed to be a constant.

34



Generalized Lie derivative and closure constraints

AN ~N 7 AN

['T\(X)VI(X) = £K(X)VI<X) + [N (XOVE(X).
The algebra of L closes if
OV (X)I'W(X) =0, [ frpg =0,

the closure constraint for DFT fields and the Jacobi identity of the structure
constant f; ;. This theory is called a gauged DFT (GDFT).

35



Pre-QP manifold for GSS twist

We introduce a 2D-dimensional intermediate coordinates of a graded tangent and
cotangent space, denoted by (QI :). The corresponding DFT basis is

o ) 1 ~ .

We can introduce three new types of canonical transformation functions using a
new coordinate P,

@f

L. I _ABDIp .M 1D ~. _~ J IK

E = Efx i P}Pé, U:=U;"n P}Pj,\/p a:=a;"n P’P’
The GSS twist is produced by the canonical transformation U, where the parameter
UM (Y) depends only on Y, and the components of U;™ are non-trivial only

when both indices lie in the internal directions.

36



Then, the canonical transformation e 2%V provides the GSS twist

generalized vielbein Ejf(X) and the gauge parameter Af(X),

I(X)Ph) = E/(X)UM(Y) P,

Hamiltonian function and derived bracket

The twisted Hamiltonian function is given by

™

Ocss =€ 2°U6y

of the

~ ~. 7 ]_ AN AN, T AN 1~ z > ~ S
g7 M=  pr] ~ e pIpdp/K  ~O...717d 177K _ p/'M p/N p/]
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where
QIJK = UI 8MUJ UKN. internal Weitzenbock connection

fiipg = 36[11?}%]3 internal flux

The generalized Lie derivative on the reduced theory is derived by the derived
bracket,

LAV - — {{A7 @0}7 V}
= — e U {A(X) P}, Ogss}, V7 (X) P}
UM (ZK‘A/f + fjkf/A\j‘A/K> Py

38



The closure condition for the derived bracket is provided by the weak master
equation,

{{{{@7 @}7 f}? g}v h} = 0.

Then, the weak master equation for generalized vectors V{(X) and V(X) leads
closure conditions,

OV (X)O; Ve (X) =0,  fapiff i =0

39



Introduction of external generalized vielbein

By the canonical transformation function E the twisted Hamiltonian function is

TS~
e2°EOqgs
A~ -~ fay 1 A~ A~ A 2~ A~ . fay . fay _ 2
_ . Iyr M— 1A | & o o I J K\ p'A p/'B p/C

J
AN ~ = NE oA~ A 1~ A A~ A ~ ~ =
A B plIp'dpC -~ 77d 77K I p/M p/N prA
— Qa4 BT PP P = Q5 U g US gE S PP PP,

/\AAA_/\AI"A/\Aj/\A o AM X AN X
AAA_/\AAA AAA/\AI"/\AJ‘/\AK
Fipe =Fipe T /b i B Be
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g7. Covariantized pre-QP-manifold and DFT on group
manifold

We generalize the formalism to a covariant pre-QP formulation.

GL(2D) covariant formulation

Let M be a 2D- dimensional (curved) manifold with local coordinates XM =
(Zar, ™) where M, N, --- are GL(2D) indices.

We define a basis = HM of degree 2, corresponding to the covariant derivative V ,,
with affine connection I' and spin connection W,

= PANp. - JAID
_HM_‘_FMN Q PP—I_WMI QPJ

—
et
e

v
M

AN AN

The Poisson bracket {—,= ¢ V1 with the vector fields VMPM,VIP and 1-forms
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o~ AF : : — )
ap Q7 ,a;Q" give their covariant derivative on M:

(VM(X) Py, EY) = Vi V(X)) Py, {ag(X)QY EY) = Vga, (X)QY,
{‘7[( )AI’HV} Vg VI(X)PD {ai(X)@I Hv} Vgap(X )Qf-

If we require the vielbein postulate {EfNP @f =Y } 0, i.e.

Vi, EN =0,

we obtain a condition of generalized connections,

A A~

J I P P P _
WMI ENEJ _QMN _FMN =0,

WMjK+WMKj:O'
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Here
Viimis =0,

The covariant derivative of 7n,, 5 automatically vanishes
Virse =0umse = Uyx Mop

Hamiltonian function and generalized Lie derivative

A Hamiltonian function is covariantized as

vV __ MN*:V /
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The generalized Lie derivative is defined by

_{{A7 @Ov}v V} — £XV :

Closure condition

The closure condition of the generalized Lie derivative is the weak master equation:
{{{{@Ova @()v}a ‘71}, ‘72}, ‘73} = 0.

This condition leads to the following conditions for the spin connection WMfJ

44



and arbitrary generalized vectors ‘71, V5 and ‘73,

— 2(8M Vlj‘A/zjf’?Mr/sf - 25M‘71[jaz\%‘72ﬂ ‘73f)
_ 2(2Q[fj]f< - SW[fij)EkM

X [0M‘71£‘72 ﬁ‘A/gj - aM‘A/li‘A@j‘A/gi ™ ‘71j8M ‘7;‘734
4 Q(QQ[Ej]K - 3W[£jf<])ERM

X {3 NI VIVEVY — Vs NI ViV + Vi ‘72jaM ‘Zﬂ

= 3V VR 2R 50y = Wi W

X —2(2W[fjH - 2ﬂ[fjﬁ)Wﬁf<ﬁ]}

— 0.
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Twist

The possible twist functions made from P’. P’ and P’ are

IM pr D T . RATD D  AAM D
A=A"P, P, A:=A4 P A=A P 1
_ . M, _NPpl pi ~._ ~J KIpl pr _ . - B CApl p
wi=upmn T Py Py, wi= gty PPy wi=ugmy PP

A

Here AIM 21\ 7 and AAM are GL(2D) matrices and we can take them as

vielbein Ef Eix and 5 M.

Applying the similar dlscu55|on to A, we can introduce the fluctuation vielbein
E I \When we take A = 2EA - we obtain the canonical transformation rules
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as follows.

B7
TS~/ 5 ID
2°F A — — ~ ~
e b k5 PI,
T5~—V —_ C \V4 S A B ST DrJ C 1A —/f?
e2"Em % =1 ——5 Q___E E P P 5 QQMP P,
M M CAB T CAB

Here we have defined QY. . := SEMVMEEIAEC@IA. This is just the covariantized

ABC
Weitzenbock connection {2 ;2 ». Twist of the Hamiltonian function Oy gives
z E@ £.M=V pra 1]?2 ) Qp/flp/ép/é _ EQVA ) AE\B% AE\(? Aﬁ/fﬁ/jp/fl
A TM 31" ABC 92 "Apc I J
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Pre-Bianchi identities

Now we can consider the pre-Bianchi identity for DFT on covariantized pre-QP-
manifold. B as

B(Or,00,0) = {0, 0p} — {0, Oy} = 0.

gives the generalized Bianchi identities.
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Application to DFTyzw Blumenhagen, Hassler, Luest, '14

We assume the background space as a group manifold (=, so we can regard the
coordinate PIi of its tangent space T'G as the generator of the Lie algebra of

GG by the injection map ]’*(ﬁl’) = T;. Then, the derived bracket of ﬁl’ should
reproduce the Lie bracket:

_{{ﬁ;7 oy }. ]3}} = 7.[T7, T1]Lic.
The left hand side is calculated as,
D QVl D K K\D
—{{P;. 00}, P} =(W= 5+ 2W; 57 ) P
and the right hand side is written by definition of a Lie algebra as
311, TylLie = Fijﬁ}(-

49



Thus, the above equality leads the condition of the spin connection: WKU +

QW[U]K FKIJ This condition is solved by

A~

P 1
K K
Wi =3t

and this solution is just the one proposed in the DFTw7zw model.

With this spin connection, the derived bracket with (:)OV reproduces the generalized
Lie derivative of DFTwyzw as

_{{A,6Y}, VY =AD VI 4 (DIA; — DAV 4 B ATVE

Thus, the weak master equation yields the section condition and the Jacobi
identity as the closure condition of generalized Lie derivative of DF Tywzw.
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§. Summary and outlook

e We have formulated DFT geometry by supergeometry in term of pre-QP-
manifold.

A generalized Lie derivative is defined by a derived bracket,
LyV' =-{{V,e},V'},

and the closure condition (the weak master equation) is the weak master equation,

{{{{@7 @}7 f}vg}a h} = 0.

Generalized fluxes are introduced by twist on a pre-QP-manifold,
Op = %0y,
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taking a twisting function « properly. A generalized Bianchi identity is equivalently
formulated by a pre-Bianchi identity,

B(©r,0,0) = {OF,0p} —e’{0y,04} = 0.

We confirmed this formulation in the GSS compactification and DFT on group
manifold.
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Outlook

e Inclusion of a dilaton

e Characteristic classes of 7% bundles and nongeometric fluxes. () defines a
complex and cohomology.)

e nonabelian/Poisson-Lie T-duality
e Geometry of exceptional field theory (T-duality + S-duality)

e Physics: action, quantization, etc.
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Thank you for your attention!
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