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Martin Wolf L∞-Algebras, the BV Formalism, and Classical Fields



Outline

L∞-Algebras and the Batalin–Vilkovisky Formalism

Higher Gauge Group(oid)s and Higher Principal Bundles

Self-Dual Higher Gauge Theory

Yang–Mills Theory

Conclusions and Outlook

Martin Wolf L∞-Algebras, the BV Formalism, and Classical Fields



L∞-Algebras
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Q-Manifolds

For a Z-graded vector space L =
⊕

k Lk , we set
L[l] =

⊕
k (L[l])k with (L[l])k := Lk+l for l ∈ Z.

A Q-manifold is a Z-graded manifold quipped with a degree
1 vector field Q with Q2 = 0 called homological vector field.

Consider the de Rahm complex (Ω•(X ),d) on a smooth
manifold X . Using C∞(T [1]X ) ∼= Ω•(X ) it can be described
equivalently by the Q-manifold (T [1]X ,Q) where Q ↔ d.
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L∞-Algebroids

Consider L[1] for an ordinary vector space L ≡ L0. Coordinates,
denoted by ξα, on L[1] are thus of degree 1 so that the most
general degree 1 vector field Q is

Q := −1
2
ξαξβ fαβ

γ ∂

∂ξγ

with fαβ
γ constant. Then, Q2 = 0 is equivalent to requiring fαβ

γ

to satisfy the Jacobi identity. Thus, the Q-manifold (L[1],Q)
describes a Lie algebra (L, [−,−]) with Q as its
Chevalley–Eilenberg differential.

Generally, an n-term L∞-algebra is a Q-manifold concentrated in
degrees 1, . . . ,n and Q2 = 0 corresponds to higher or homotopy
Jacobi identities∑

j+k=i

∑
σ(j;i)

±µk+1(µj (`σ(1), . . . , `σ(j)), `σ(j+1), . . . , `σ(i)) = 0

for the higher brackets µi . If concentrated in degrees 0, . . . ,n, we
call it an n-term L∞-algebroid.
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Cyclic L∞-Algebras

A symplectic Q-manifold of degree k is a Q-manifold with a
symplectic form ω of degree k such that Q is symplectic
with respect to ω.

For k 6= −1, Q is automatically Hamiltonian. Letting {−,−}
be the Poisson bracket induced by ω and S the Hamiltonian
for Q, then for k 6= −2, the condition Q2 = 0 is equivalent
to {S,S} = 0, called the classical master equation.

In the L∞-language, a symplectic Q-manifold corresponds
to a cyclic L∞-algebra which is an L∞-algebra L equipped
with a graded symmetric non-degenerate bilinear pairing
〈−,−〉 : L× L→ R cyclic in the sense of

〈`1, µi(`2, . . . , `i+1)〉 = ±〈`i+1, µi(`1, . . . , `i)〉
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Quasi-Isomorphisms

A morphism of Q-manifolds is a map φ : (X ,Q)→ (X ′,Q′) such
that φ ◦Q = Q′ ◦ φ.

In the L∞-language, a morphism of Q-manifolds corresponds to
a map φ : (L, µi )→ (L′, µ′i ), called an L∞-morphism, consisting
of a collection of maps φi : L× · · · × L→ L′ such that∑
j+k=i

∑
σ(j;i)

±φk+1(µj (`σ(1), . . . , `σ(j)), `σ(j+1), . . . , `σ(i))

=
i∑

j=1

1
j!

∑
k1+···+kj =i

∑
σ(k1,...,kj−1;i)

± µ′j
(
φk1

(
`σ(1), . . . , `σ(k1)

)
, . . . , φkj

(
`σ(k1+···+kj−1+1), . . . , `σ(i)

))
An L∞-morphism is called an L∞-quasi-isomorphism provided
φ1 induces an isomorphism H•µ1

(L) ∼= H•µ′1 (L′).

Every L∞-algebra (L, µi ) is quasi-isomorphic to an L∞-algebra
(L′, µ′i ) with µ′1 = 0, known as the minimal model theorem.
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Maurer–Cartan Theory

For (L, µi ) an L∞-algebra, we call a ∈ L1 a gauge potential and
define its curvature as

f := µ1(a) + 1
2µ2(a,a) + · · · =

∑
i≥1

1
i!µi (a, . . . ,a)

Due to the higher Jacobi identities, f satisfies a Bianchi identity

µ1(f ) + µ2(a, f ) + · · · =
∑
i≥0

(−1)i

i! µi+1(f ,a, . . . ,a) = 0

For c0 ∈ L0, gauge transformations act as

δc0 a := µ1(a) + µ2(a, c0) + · · · =
∑
i≥0

1
i!µi+1(a, . . . ,a, c0)

δc0 f = −µ2(c0, f ) + · · · =
∑
i≥0

(−1)i

i! µi+2(f ,a, . . . ,a, c0)

and there are higher gauge transformations with c−k ∈ L−k and

δc−k−1 c−k :=
∑
i≥0

1
i!µi+1(a, . . . ,a, c−k−1)
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Maurer–Cartan Theory

The equation f = 0 is called the Maurer–Cartan equation and
solutions to this equation are called Maurer–Cartan elements.

An L∞-morphism φi : (L, µi )→ (L′, µ′i ) acts as

a 7→ a′ :=
∑
i≥1

1
i!φi (a, . . . ,a)

f 7→ f ′ =
∑
i≥0

(−1)i

i! φi+1(f ,a, . . . ,a)

and provided a is a Maurer–Cartan element, gauge equivalence
classes [a] are mapped to gauge equivalence classes [a′]. Thus, for
a quasi-isomorphism between (L, µi ) and (L′, µ′i ), the corresponding
moduli spaces of Maurer–Cartan elements are isomorphic.

For (L, µi , 〈−,−〉) a cyclic L∞-algebra with 〈−,−〉 of degree −3, the
Maurer–Cartan equation follows from the gauge-invariant action
functional

S = 1
2 〈a, µ1(a)〉+ 1

3! 〈a, µ2(a,a)〉+ · · · =
∑
i≥0

1
(i+1)!

〈a, µi (a, . . . ,a)〉
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Higher Chern–Simons Theory

Let X be a d-dimensional compact orientable manifold without
boundary and consider the de Rham complex (Ω•(X ),d). Let
(L, µi , 〈−,−〉) with L =

⊕0
k=−n+1 Lk a finite-dimensional cyclic

L∞-algebra called the gauge algebra. The degree of 〈−,−〉 is
necessarily n − 1 i.e. (Lk )∗ ∼= L−n+1−k . Next, we form the tensor
product (Ω•(X ,L), µ′i , 〈−,−〉

′) by setting

Ω•(X ,L) :=

d⊕
k=−n+1

Ω•k (X ,L) , Ω•k (X ,L) :=
⊕

i+j=k

Ωi (X )⊗ Lj

with

µ′1(ω1 ⊗ `1) := dω1 ⊗ `1 + (−1)|ω1|ω1 ⊗ µ1(`1) ,

µ′i (ω1 ⊗ `1, . . . , ωi ⊗ `i ) := (−1)i
∑i

j=1 |ωj |+
∑i−2

j=0 |ωi−j |
∑i−j−1

k=1 |`k |×
× (ω1 ∧ . . . ∧ ωi )⊗ µi (`1, . . . , `i ) ,

〈ω1 ⊗ `1, ω2 ⊗ `2〉′ := (−1)|ω2||`1|
∫

X
ω1 ∧ ω2 〈`1, `2〉

and −3 = −d + n − 1 so that n = d − 2.
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Higher Chern–Simons Theory

For d = 3, we have a = A ∈ Ω1(X ,L0) and f = F ∈ Ω2(X ,L0) with
F := dA + 1

2 [A,A] and

S =

∫
X

{
1
2 〈A,dA〉+ 1

3! 〈A, [A,A]〉
}

that is, ordinary Chern–Simons theory. The gauge transformations
read as δcA := dA + [A, c] and δcF = −[c,F ].

For d = 4, we have a = A + B ∈ Ω1(X ,L0)⊕ Ω2(X ,L−1) and
f = F + H ∈ Ω2(X ,L0)⊕ Ω3(X ,L−1) with

F := dA + 1
2µ2(A,A) + µ1(B) , H := dB + µ2(A,B)− 1

3!µ3(A,A,A)

and

S =

∫
X

{
〈B,dA + 1

2µ2(A,A) + 1
2µ1(B)〉+ 1

4! 〈µ3(A,A,A),A〉
}

that is, higher Chern–Simons theory. The gauge transformations are

δc,ΛA = dc + µ2(A, c) + µ1(Λ) ,

δc,ΛB = −µ2(c,B) + dΛ + µ2(A,Λ) + 1
2µ3(c,A,A) ,

δc,ΛF = −µ2(c,F) , δc,ΛH = −µ2(c,H) + µ2(F ,Λ)− µ3(F ,A, c) .
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BRST-BV Operator

For any cyclic L∞-algebra (L, µi , 〈−,−〉) with 〈−,−〉 of degree k , we
define a cyclic L∞-algebra (L′, µ′i , 〈−,−〉

′) by L′ := C∞(L[1])⊗ L and

µ′1(ζ ⊗ `) := (−1)|ζ|ζ ⊗ µ1(`) ,

µ′i (ζ1 ⊗ `1, . . . , ζi ⊗ `i ) := (−1)i
∑i

j=1 |ζi |+
∑i

j=2 |ζj |
∑j−1

k=1 |`k |×
× (ζ1 · · · ζi )⊗ µi (`1, . . . , `i )

〈ζ1 ⊗ `1, ζ2 ⊗ `2〉′ := (−1)k((|ζ1|+|ζ2|)+|`1||ζ2|(ζ1ζ2)〈`1, `2〉

which allows us to write the Q action on coordinate functions as

Qξ = −
∑
i≥1

1
i!µ
′
i (ξ, . . . , ξ)

To BRST quantise the Maurer–Cartan action, we need to introduce
ghosts, ghosts-for-ghosts, etc so we get:

a c0 c−1 · · · c−k · · ·
L∞-degree 1 0 −1 . . . −k · · ·
ghost degree 0 1 2 · · · k + 1 · · ·
field type b f b · · · f/b · · ·

Thus, the field space is FBRST = Ltrunc[1] with Ltrunc :=
⊕

k≤1 Lk .
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BRST-BV Operator

To write down the BRST operator, we consider C∞(Ltrunc[1])⊗ Ltrunc
and set

a := a +
∑
k≥0

c−k , f :=
∑
i≥1

1
i!µ
′
i (a, . . . , a)

so that
QBRSTa = −f ⇒ Q2

BRSTa = 0 mod f = 0

for f =
∑

i≥1
1
i!µi (a, . . . , a). Essentially, this is due to the fact that Ltrunc

is not an L∞-algebra.

To fix this we simply transition to the Batalin–Vilkovisky formalism and
define FBV := T ∗[−1]FBRST. However, FBV

∼= L[1] so that

QBVa = −f ⇒ Q2
BVa = 0

Furthermore,
S =

∑
i≥0

1
(i+1)!
〈a, µ′i (a, . . . , a)〉′

satisfies the classical master equation

{S,S} = −〈f, f〉′ = 0

so that QBV = {S,−}. Note that S also satisfies formally the quantum
master equation.
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Yang–Mills Theory in the 2nd Order Formulation
Let X be a d-dimensional compact oriented Riemannian manifold and let
g be a simple Lie algebra with inner product 〈−,−〉. Consider

Ω0(X , g)︸ ︷︷ ︸
=: L′0

µ′1 := d
−−−−−→ Ω1(X , g)︸ ︷︷ ︸

=: L′1

µ′1 := d?d
−−−−−−→ Ωd−1(X , g)︸ ︷︷ ︸

=: L′2

µ′1 := d
−−−−−→ Ωd (X , g)︸ ︷︷ ︸

=: L′3

with

µ′1(c1) := dc1 , µ′1(A1) := d?dA1 , µ′1(A+
1 ) := dA+

1 ,

µ′2(c1, c2) := [c1, c2] , µ′2(c1,A1) := [c1,A1] ,

µ′2(c1,A
+
2 ) := [c1,A

+
2 ] , µ′2(c1, c

+
2 ) := [c1, c

+
2 ] ,

µ′2(A1,A
+
2 ) := [A1,A

+
2 ] ,

µ′2(A1,A2) := d?[A1,A2] + [A1, ?dA2] + [A2, ?dA1]

µ′3(A1,A2,A3) := [A1, ?[A2,A3]] + [A2, ?[A3,A1]] + [A3, ?[A1,A2]]

and
〈ω1, ω2〉′ := ±

∫
X
〈ω1, ω2〉

Then, the Maurer–Cartan action becomes

S =

∫
X

{
1
2 〈F , ?F 〉 − 〈A+,∇c〉+ 1

2 〈c
+, [c, c]〉

}
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Yang–Mills Theory in the 1st Order Formulation

Let X be a 4-dimensional compact oriented Riemannian manifold and
let g be a simple Lie algebra with inner product 〈−,−〉. Consider

Ω0(X , g)︸ ︷︷ ︸
=: L′0

µ′1 := d
−−−−−→ Ω2

+(X , g)⊕ Ω1(X , g)︸ ︷︷ ︸
=: L′1

µ′1 := (ε+d)+P+d
−−−−−−−−−−−→

Ω2
+(X , g)⊕ Ω3(X , g)︸ ︷︷ ︸

=: L′2

µ′1 := 0+d
−−−−−−→ Ω4(X , g)︸ ︷︷ ︸

=: L′3

with

µ′1(c1) := dc1 , µ′1(B+1 + A1) := (εB+1 + P+dA1) + dB+1 , µ′1(A+
1 ) := dA+

1 ,

µ′2(c1, c2) := [c1, c2] , µ′2(c1,B+1 + A1) := [c1,B+1] + [c,A1] ,

µ′2(c1,B+
+1 + A+

1 ) := [c1,B+
+1] + [c,A+

1 ] , µ′2(c1, c+
2 ) := [c1, c+

2 ] ,

µ′2(B+1 + A1,B+2 + A2) := P+[A1,A2] + [A1,B+2] + [A2,B+1] ,

µ′2(B+1 + A1,B+
+2 + A+

2 ) := [A1,A+
2 ] + [B1,B+

+2]

and
〈ω1, ω2〉′ := ±

∫
X
〈ω1, ω2〉
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Yang–Mills Theory in the 1st Order Formulation

Then, the Maurer–Cartan action becomes

S =

∫
X

{
〈F ,B+〉+ ε

2 〈B+,B+〉−

− 〈A+,∇c〉 − 〈B+
+ , [B+, c]〉+ 1

2 〈c
+, [c, c]〉

}
Both formulations, the first- and the second-order formulations, of
Yang–Mills theory are, in fact, L∞-quasi-isomorphic. Indeed, we have
have φ with QYM2BV ◦ φ = φ ◦QYM1BV given by

φ(c) := c , φ(B+) := − 1
ε
F+ , φ(A) := A ,

φ(B+
+) := 0 , φ(A+) = A+ , φ(c+) := c+
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Higher Principal Bundles
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Lie Quasi-Groupoids

The finite counter part of L∞-algebras (algebroids) are Lie
quasi-groups (groupoids) which are special simplicial manifolds
known as Kan manifolds.

In particular, a simplicial manifold is a presheaf X : ∆op → Mfd on
the simplex category ∆. Morphisms between simplicial manifolds,
known as simplicial maps, are the natural transformations between
the defining functors.

Letting ∆p be the standard simplicial p-simplex, the simplicial
p-simplices of a general simplicial manifold X are homsSet(∆p,X )

For each i , the (p, i)-horn Λp
i of ∆p is the simplicial subset of ∆p

given by all faces of ∆p except for the i-th one. The (p, i)-horns of a
simplicial manifold X is the set homsSet(Λp

i ,X ).

The horns Λp
i of ∆p can always be filled (i.e. completed) to ∆p. For a

simplicial manifold X this is, in general, not the case.

A Kan manifold is a simplicial manifold for which the restrictions
homsSet(∆p,X )→ homsSet(Λp

i ,X ) surjective submersions.

Importantly, for Y a Kan manifold, simplicial homotopy induces an
equivalence relation on homsSet(X ,Y ).
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Principal Bundles

For G a Lie group, the delooping BG is the Lie groupoid
G −→−→ ∗, where the source and target maps are trivial,
id∗ = 1G, and the composition is group multiplication in G.

Next, consider an ordinary cover
⋃

a{(x , a)|x ∈ Ua} → X for
a manifold X so that the morphisms of the corresponding
Čech groupoid Č are

⋃
a,b{(x , a, b)|x ∈ Ua ∩ Ub} with the

composition (x , a, b) ◦ (x , b, c) = (x , a, c).

A principal G-bundle over X subordinate to the cover is a
simplicial map g : N(Č)→ N(BG). Explicitly,

ga(x) := g0(x , a) = ∗ , gab(x) := g1(x , a, b) ∈ G ,

gabc(x) := g2(x , a, b, c) = (g1
abc(x), g2

abc(x)) ∈ G ×G , etc.

and being simplicial implies the constraints

g1
abc(x) = gab(x) , g1

abc(x)g2
abc(x) = gac(x) , g2

abc(x) = gbc(x)
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Higher Groupoid Bundles

Since, in addition, homotopies yield equivalent bundles, we
give the following definition ...

For G a Lie quasi-groupoid, a Lie quasi-groupoid bundle or
principal G -bundle over X subordinate to a cover is a
simplicial map g : N(Č)→ G . Two such principal
G -bundles g, g̃ : N(Č)→ G are called equivalent if and only
if there is a simplicial homotopy between g and g̃.

This can be generalised to higher bases spaces i.e. base
spaces which are Kan simplicial manifolds.
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Higher Non-Abelian Deligne Cohomology

Let G be a Lie 2-quasi group with the induced 2-term L∞
algebra L−1

µ1−→ L0. Let
⋃

a{(x ,a)|x ∈ Ua} → X be a cover.
A Deligne cocycle describing a principal G -bundle with
connective structure consists of the transition functions
{gab,gabc ,Λab} with Λab ∈ Ω1(Ua ∩ Ub,L−1) and the
connective structure {Aa,Ba} ∈ Ω1(Ua,L0)⊕ Ω2(Ua,L−1)
with curvatures

Fa := dAa + 1
2µ2(Aa,Aa) + µ1(Ba) ,

Ha := dBa + µ2(Aa,Ba)− 1
3!µ3(Aa,Aa,Aa)
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6D Self-Dual Higher Gauge Theory
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Twistor Space

Consider N = (2,0) superspace M := C6|16 with
coordinates (xAB, ηA

I ) with A,B, . . . = 1, . . . ,4 and
I, J, . . . = 1, . . . ,4. Then,

PAB := ∂AB , DI
A := ∂I

A − 2ΩIJηB
J ∂AB

have the non-vanishing (anti-)commutation relations

{DI
A,D

J
B} = −4ΩIJPAB

Define the correspondence space F to be F := C6|16 ×P3

with coordinates (xAB, ηA
I , λA).

Introduce a rank-3|12 distribution 〈V A,V I AB〉 ↪→ TF by
V A := λB∂

AB and V I AB := 1
2ε

ABCDλCDI
D which is

integrable. Hence, we have foliation P := F/〈V A,V I AB〉.
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Twistor Space

On P, we may use coordinates (zA, ηI , λA) with
zAλA = ΩIJηIηJ and thus

P M

F
π1 π2�
�	

@
@R

with π2 being the trivial projection and

π1 : (xAB, ηA
I , λA) 7→ (zA, ηI , λA) =

= ((xAB + ΩIJηA
I η

B
J )λB, η

A
I λA, λA)

A point x ∈ M corresponds to a P3 in P, while a point
p ∈ P corresponds to a 3|12-superplane

xAB = xAB
0 + εABCDµCλD + 2ΩIJεCDE [AλCθIDEη0

B]
J ,

ηA
I = η0

A
I + εABCDλBθICD
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Penrose–Ward Transform: P π1← F π2→ M

Let G be a Lie 2-quasi-group. There is a bijection between
equivalence classes

(i) of holomorphic M-trivial principal G -bundles on P and

(ii) of solutions to the constraint system on the chiral
superspace M

FA
B = µ1(BA

B) , FAB
I
C = µ1(BAB

I
C) , F IJ

AB = µ(BIJ
AB) ,

HAB = 0 ,

HA
BI

C = δB
Cψ

I
A − 1

4δ
B
Aψ

I
C ,

HAB
IJ
CD = εABCDφ

IJ , with φIJΩIJ = 0

H IJK
ABC = 0

This is a quasi-isomorphism of L∞-algebras.
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4D Super Yang–Mills Theory
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Ambitwistor Space

Consider M := C4|12 with coordinates (xαα̇, θiα, ηα̇i ) where
α, α̇, . . . = 1,2 and i , j , . . . = 1, . . . ,3. Then,

Pαα̇ := ∂αα̇ , Diα := ∂iα + ηα̇i ∂αα̇ , Di
α̇ := ∂ i

α̇ + θiα∂αα̇

have the non-vanishing (anti-)commutation relations

{Diα,D
j
α̇} = 2δj

i Pαα̇

Define F := C4|12 ×P1 ×P1 with coordinates
(xαα̇, θiα, ηα̇i , µα, λα̇).

Introduce a rank-1|6 distribution 〈V ,Vi ,V i〉 ↪→ TF by
V := µαλα̇∂αα̇, Vi := µαDiα, and V i := λα̇Di

α̇ which is
integrable. Hence, we have foliation L := F/〈V ,Vi ,V i〉.
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Ambitwistor Space

On L, we may use coordinates (zα,w α̇, θi , ηi , µα, λα̇) with
zαµα − w α̇λα̇ = 2θiηi and thus

L M

F
π1 π2�
�	

@
@R

with π2 being the trivial projection and

π1 : (xαα̇, θiα, ηα̇i , µα, λα̇) 7→ (zα,w α̇, θi , ηi , µα, λα̇) =

= ((xαα̇ − θiαηα̇i )λα̇, (xαα̇ + θiαηα̇i )µα, θ
iαµα, η

α̇
i λα̇, µα, λα̇)

A point x ∈ M corresponds to a P1 ×P1 in L, while a point
p ∈ L corresponds to a 1|6-superline

xαα̇ = xαα̇0 + tµαλα̇ + t iµαηα̇i − tiθiαλα̇ ,

θiα = θiα
0 + t iµα , ηα̇i = ηα̇0 i + tiλα̇
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Penrose–Ward Transform: L π1← F π2→ M

Due to Witten and Isenberg–Yasskin–Green we have the
following result. Let G be a Lie group. There is a bijection
between equivalence classes

(i) of holomorphic M-trivial principal G-bundles on L and

(ii) of solutions to the constraint system of maximally
supersymmetric Yang–Mills theory on M

Fiαjβ = εαβεijkφ
k , F ij

α̇β̇
= εα̇β̇ε

ijkφk , Fiα
j
β̇

= 0

To prove this theorem, one makes use of the Čech description
of holomorphic principal bundles. This is an intrinsically
on-shell approach as the holomorphicity of the bundles
encodes the equations of motion. How do we go off-shell?
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Dolbeault Approach and Higher Gauge Theory

To go off-shell, we make use of the Dolbeault approach. In
particular, a holomorphic principal G-bundle can be
described by a smooth principal G-bundle equipped with a
(0,1)-connection locally given by a Lie(G)-valued
(0,1)-form A0,1 subject to

F 0,2 = ∂̄A0,1 + 1
2 [A0,1,A0,1] = 0

For a 3-dimensional Calabi–Yau manifold X , this equation
is variational as it follows from the holomorphic
Chern–Simons action functional

S =

∫
X

Ω3,0 ∧
{

1
2〈A

0,1, ∂̄A0,1〉+ 1
3!〈A

0,1, [A0,1,A0,1]〉
}

Ambitwistor space is a Calabi–Yau supermanifold,
however, its bosonic part is 5-dimensional, and so we
cannot use this action functional.
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Dolbeault Approach and Higher Gauge Theory

We propose to consider higher holomorphic Chern–Simons
theory.

Let G be a Lie 3-quasi-group. Consider a smooth principal
G -bundle equipped with Lie(G )-valued (0, p|0)-forms A0,1|0,
B0,2|0, and C0,3|0 with

S :=

∫
Ω5|6,0 ∧

{
〈A0,1|0, ∂̄C0,3|0〉+ 〈B0,2|0, µ1(C0,3|0)〉+

+ 1
2〈B

0,2|0, ∂̄B0,2|0〉+ 1
2〈A

0,1|0, µ2(A0,1|0,C0,3|0)〉+

+ 1
2〈A

0,1|0, µ2(B0,2|0,B0,2|0)〉+

+ 1
3!
〈A0,1|0, µ3(A0,1|0,A0,1|0,B0,2|0)〉+

+ 1
5!
〈A0,1|0, µ4(A0,1|0,A0,1|0,A0,1|0,A0,1|0)〉

}
where the fermionic integration is in the sense of Berezin.
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Dolbeault Approach and Higher Gauge Theory

The corresponding equations of motion are

∂̄A0,1|0 + 1
2µ2(A0,1|0,A0,1|0) + µ1(B0,2|0) = 0 ,

∂̄B0,2|0 + µ2(A0,1|0,B0,2|0) +

+ 1
3!µ3(A0,1|0,A0,1|0,A0,1|0) + µ1(C0,3|0) = 0 ,

∂̄C0,3|0 + µ2(A0,1|0,C0,3|0) + 1
2µ2(B0,2|0,B0,2|0) +

+ 1
2µ3(A0,1|0,A0,1|0,B0,2|0) + 1

4!µ4(A0,1|0,A0,1|0,A0,1|0,A0,1|0) = 0

Recall the minimal model theorem that says that every L∞-algebra
is L∞-quasi-isomorphic to an L∞-algebra which has µ1 = 0. For this
algebra, the first equation turns into

∂̄A0,1|0 + 1
2µ2(A0,1|0,A0,1|0) = 0

and by means of the Penrose–Ward transform this will correspond
to maximally supersymmetric Yang–Mills theory in four dimensions.
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Conclusions and Outlook
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Summary

Any field theory admits an L∞-algebra and can be recast in
Maurer–Cartan form, and the Batalin–Vilkovisky formalism
provides the natural framework to discuss higher gauge theory.

The area of twistor geometry and categorified principal bundles
can be fruitfully combined to formulate self-dual higher gauge
theory in six dimensions. The advantage of twistor geometry is
that the e.o.m. and the gauge transformations follow directly
from complex algebraic data on twistor space. Higher gauge
theory enables us to write down a twistor action principle for 4d
maximally supersymmetric Yang–Mills theory.

Many open questions remain, quantisation of higher
Chern–Simons theory, the choice of higher gauge group for the
self-dual models, the explicit constructions of higher bundles,
including the dimensional reductions.
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Thank You!
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