Rational higher structures and variations of topological actions

Matthew Wheeler

Joint Work with Hisham Sati

Department of Mathematics University of Arizona

String and M-theory: The New Geometry of the 21st Century National University of Singapore, December 10-14, 2018

Based on 1612.06983, 1810.05349

Outline

Whitehead tower and structures

Ø Motivation

Rational Homotopy

The Whitehead tower of a space X is a factorization of the point inclusion $* \to X$

$$* \simeq \lim_{n \to \infty} X_n \to \dots \to X_2 \to X_1 \to X_0 \simeq X$$

such that

- the space X_k is (k-1)-connected
- the map $X_k \to X_{k-1}$ is a fibration which is an isomorphism on homotopy groups π_i for $i \ge k$

Examples:

- Tower for $K(G, n): * \to K(G, n)$
- Tower for $S^2_{\mathbb{Q}}: * \to K(\mathbb{Q},3) \to S^2_{\mathbb{Q}}$

Constructing the Whitehead tower

- Inductively, X_n is (n-1)-connected
- There is an isomorphism $\pi_n(X) \cong H^n(X; \pi_n(X))$
- Choose a representative $u \in [X, K(\pi_n(X), n)]$
- X_{n+1} is then the homotopy pullback

Whitehead tower for BSO

Using the fact that $\Omega BSO \simeq SO$ and thus $\pi_i(BSO) \cong \pi_{i-1}(SO)$

Whitehead tower for BSO

Using the fact that $\Omega BSO \simeq SO$ and thus $\pi_i(BSO) \cong \pi_{i-1}(SO)$

Connected Covers of SO(n)

$$\mathbf{SO}(n) := \left\{ A \in M_n(\mathbb{R}) \middle| A^t A = I \text{ and } \det(A) = 1 \right\}$$

Spin(n): the universal cover of SO(n) and is a double covering.

$$1 \to \mathbb{Z}_2 \to \operatorname{Spin}(n) \to \operatorname{SO}(n) \to 1$$

String(n): introduced by Stolz, is the 6-connected cover of Spin(n) fitting in the short exact sequence

$$1 \to K(\mathbb{Z}, 2) \to \operatorname{String}(n) \to \operatorname{Spin}(n) \to 1$$

Following this pattern, Sati, Schreiber, and Stasheff define the **Fivebrane**(n) group as the 7-connected cover of String(n)

$$1 \to K(\mathbb{Z}, 6) \to \operatorname{Fivebrane}(n) \to \operatorname{String}(n) \to 1$$

Given: Principal $O(n)\langle k \rangle$ -bundle $P \to M$. A lifting of the structure group to $O(n)\langle k+1 \rangle$ is a lift of the classifying map

$$M \xrightarrow{\tilde{f}} BO(n)\langle k+1 \rangle$$

$$M \xrightarrow{\tilde{f}} V$$

$$M \xrightarrow{f_P} BO(n)\langle k \rangle$$

- k = 4 corresponds to String structures
- k = 8 corresponds to Fivebrane structures
- k = 12 corresponds to Ninebrane structures

String Structures

- Killingback: existence of String structure required for anomaly cancellation in the worldvolume of a string
- Stolz-Teichner: String structures can be understood as a trivialization of a Chern-Simons theory
- Sati: C-field corresponds to a string structure
- Hopkins: String structure gives orientation for Witten genus
- Bunke: choice of string structure trivializes the pfaffian line bundle

Fivebrane Structures

- Setting: *X* a 10-dimensional spin manifold possibly equipped with gauge bundle.
- H₃ is (electric) NS field coupled to string and H₇ = *H₃ is (magnetic) dual field now coupled to fundamental 5-brane.
- Dual Green-Schwarz mechanism requires that the differential

$$dH_7 = \frac{1}{48}p_2(\omega) - ch_4(A)$$

vanish.

• Sati,Schreiber,Stasheff: This is equivalent to the choice of Fivebrane structure on a Spin manifold.

- We'll call a space rational if every homotopy group is a Q vector space.
- A key property of rational homotopy is the following universal property

Rationalization

The **rationalization** of a space *X* is a map $l : X \to X_{\mathbb{Q}}$ such that

- $l_*: \pi_*(X) \otimes \mathbb{Q} \to \pi_*(X_{\mathbb{Q}})$ is an isomorphism,
- Every map *f* : *X* → *Y* where *Y* is a rational space, factors uniquely up to homotopy through *l*,

Fact: Every 1-connected space admits a rationalization

Examples:

• $K(\mathbb{Z}, n)$: Since $H^n(K(\mathbb{Z}, n); \mathbb{Q}) \cong \mathbb{Q}$, the generator gives a map

$$\iota: K(\mathbb{Z}, n) \to K(\mathbb{Q}, n)$$

• BSO:

$$\pi_i(BSO_{\mathbb{Q}}) = \begin{cases} \mathbb{Q} & i = 4k, \\ 0 & i \neq 4k \end{cases}$$

= $H^*(BSO_{\mathbb{Q}}; \mathbb{Q}) = \mathbb{Q}[p_1, p_2, \ldots]$ where $|p_i| = 4i$ is the *i*th Pontrjagin class

•
$$S^4_{\mathbb{Q}} \simeq K(\mathbb{Q}, 4) \times K(\mathbb{Q}, 7).$$

Rational Abelianization

By rationalizing, we lose information about torsion of the space. However the cohomology becomes more tractable and with regards to the Whitehead tower of BSO(n)

Theorem (Sati, W.)

Each element in the sequence of connected spaces $\{\operatorname{String}(n)_{\mathbb{Q}}, \operatorname{Fivebrane}(n)_{\mathbb{Q}}, \operatorname{Ninebrane}(n)_{\mathbb{Q}}, \ldots\}$ is an abelian topological group, and this group structure is unique up to rational *H*-equivalence.

The proof combines results of Lupton, Phillips, Schochet, and Smith and Wockel.

- For Lie group G, its Samelson product vanishes
- This is equivalent to *G* being rationally homotopy abelian.
- Spaces in Whitehead tower are rationally H-equivalent to a product of Eilenberg-MacLane spaces.
- Samelson product vanishes for each of these spaces.
- The standard loop multiplication on $\Pi K(G_i, n_i)$ is unique group-like, homotopy abelian *H*-structure (up to rational equivalence).

Gauge Group in Rational Homotopy Theory

For a *G*-principal bundle $P \rightarrow X$, the gauge group is

$$\mathcal{G}(P) := \{ \eta \in \operatorname{Aut}(P) \mid \pi \circ \eta = \pi \},\$$

i.e. the group of G-equivariant homeomorphisms of P.

•
$$\mathcal{G}(P) \cong \operatorname{Map}(P, G)^G$$

- For $X \times G \to X$, $\mathcal{G}(P) \cong Map(X, G)$.
- For G abelian, $\mathcal{G}(P) \cong \operatorname{Map}(X, G)$.

Pointed gauge group:

$$\mathcal{G}_1(P) := \{ \eta \in \mathcal{G}(P) \mid \eta(*) = * \}$$

Gauge Group in Rational Homotopy Theory

For a *G*-principal bundle $P \rightarrow X$, the gauge group is

$$\mathcal{G}(P) := \{ \eta \in \mathsf{Aut}(P) \mid \pi \circ \eta = \pi \}$$

The Pointed gauge group is

$$\mathcal{G}_1(P) := \{ \eta \in \mathcal{G}(P) \mid \eta(*) = * \}$$

• Félix, Oprea: For *G* a compact group, and *X* having the homotopy type of a finite CW complex, there are rational homotopy equivalences

 $\mathcal{G}(P) \simeq_{\mathbb{Q}} \mathsf{Map}(X, K), \text{ and } \mathcal{G}_1(P) \simeq_{\mathbb{Q}} \mathsf{Map}_*(X, K)$

- This works for $\operatorname{Spin}(n)\langle k \rangle$ -bundles as well.
- Proof relies on structure of rational cohomology.
- Structure preserved when killing homotopy groups.

Proposition (Sati, W.)

For a $\text{Spin}(n)\langle k \rangle$ -principal bundle $P \to X$ over a finite CW complex, there are rational homotopy equivalences

• $\mathcal{G}(P) \simeq_{\mathbb{Q}} \Pi_j Map(X, K(\mathbb{Q}, 4n_j)), and$

•
$$\mathcal{G}_1(P) \simeq_{\mathbb{Q}} \Pi_j Map_*(X, K(\mathbb{Q}, 4n_j))$$

 We also find that for X an n-dimensional manifold X and G k-connected, then G(P) is (k − n)-connected

• For $G = \operatorname{Spin}(n) \langle k \rangle_{\mathbb{Q}}$, we have

$$\pi_q(\mathcal{G}(P)) \cong \pi_{q+4}(\mathcal{G}(P))$$

Rational Whitehead Tower of BSO

BSO is 1-connected $\Rightarrow BSO_{\mathbb{Q}}$ is 1-connected, so we can construct the Whitehead tower for $BSO_{\mathbb{Q}}$.

Fact: For every k, there is a map l_k such that $l_k : BSO\langle k \rangle \rightarrow BSO_{\mathbb{Q}}\langle k \rangle$ is the rationalization of $BSO\langle k \rangle$.

Rational Whitehead Tower of BSO

BSO is 1-connected $\Rightarrow BSO_{\mathbb{Q}}$ is 1-connected, so we can construct the Whitehead tower for $BSO_{\mathbb{Q}}$.

Fact: For every k, there is a map l_k such that $l_k : BSO\langle k \rangle \rightarrow BSO_{\mathbb{Q}}\langle k \rangle$ is the rationalization of $BSO\langle k \rangle$.

- $\pi: P \to M$ is an $O(n)\langle k \rangle$ bundle.
- Rationalizing the classifying map gives

 $f_{\mathbb{Q}}: M_{\mathbb{Q}} \to BO(n) \langle k \rangle_{\mathbb{Q}}$

• A rational $O(n)\langle k+1 \rangle$ -structure is a lift

$$M \xrightarrow{\tilde{f}_{\mathbb{Q}}} BO(n)\langle k+1 \rangle_{\mathbb{Q}}$$

$$M \xrightarrow{\tilde{f}_{\mathbb{Q}}} BO(n)\langle k \rangle_{\mathbb{Q}} \xrightarrow{u_{\mathbb{Q}}} K(\pi_{k+1} \otimes \mathbb{Q}, k+1)$$

• A rational Fivebrane class is a class $F_{\mathbb{Q}} \in H^7(P; \mathbb{Q})$ such that $\iota_x^* F_{\mathbb{Q}} = \tau(p_2)_{\mathbb{Q}}$ for every $x \in M$.

$$0 \longrightarrow H^{7}(M; \mathbb{Q}) \xrightarrow{\pi^{*}} H^{7}(P; \mathbb{Q}) \xrightarrow{\iota_{*}} H^{7}(\mathcal{O}(n)\langle k \rangle; \mathbb{Q}) \longrightarrow H^{8}(M; \mathbb{Q})$$
$$F_{\mathbb{Q}} \longmapsto \iota_{*} F_{\mathbb{Q}}$$
$$\tau(p_{2})_{\mathbb{Q}} \longmapsto (p_{2})_{\mathbb{Q}}$$

- Every Fivebrane class corresponds to a rational Fivebrane class
- Isomorphism classes of rational Fivebrane structures in 1-1 correspondence with rational Fivebrane classes
- The set of rational Fivebrane classes is a torsor for $H^7(M;\mathbb{Q})$

Let $\pi: P \to M$ be a String bundle and $f: M \to B$ String its classifying map

The map $g = B\rho \circ f$ classifies a Spin bundle over M.

We'll refer to the bundle $g^*ESpin \to M$ of a String bundle $\pi : P \to M$ as **underlying Spin bundle**.

Rational Spin-Fivebrane Classes

Again $\pi: P \to M$ is a String(n) bundle, but now let $\tilde{\pi}: Q \to M$ be its underlying Spin(n) bundle

- There is a bundle map $\mu: P \to Q$
- $\rho^* : H^7(\operatorname{Spin}(n); \mathbb{Q}) \cong H^7(\operatorname{String}(n); \mathbb{Q})$
- Set S := (ρ*)⁻¹τ(p₂)_Q to be the image of transgression of the obstruction under the isomorphism ρ.
- There is an induced map $\mu^*: H^7(Q;\mathbb{Q}) \to H^7(P;\mathbb{Q})$

Definition

A rational Spin-Fivebrane class is a class $W_{\mathbb{Q}} \in H^7(Q; \mathbb{Q})$ such that $\iota_x^*W = S$

Rational Spin-Fivebrane Classes

- μ^* maps rational Spin-Fivebrane Classes to Fivebrane classes
- µ* is also surjective
- Using spectral sequences, we calculate the kernel of this map.

Theorem (Sati, W)

- Any rational Fivebrane class F_Q is the image of a rational Spin-Fivebrane class W_Q
- Two rational Spin-Fivebrane classes correspond to the same rational Fivebrane structure if

$$W_{\mathbb{Q}} - W'_{\mathbb{Q}} = \mathcal{S} \cdot \pi^* \phi_4$$

where *S* is the String class and $\phi_4 \in H^4(M; \mathbb{Q})$.

We will work in "extended" spacetime which in our case is the Spin bundle.

- Fibered WZW models [Distler-Sharpe]
- T-duality in loop space [Bouwknegt, Han, Mathai]
- Double/Exceptional Field Theories [Berman, Cederwall, Ikeda]
- Supergerbes [Sati-Schreiber]
- Many others

NS5-brane action

Setting: NS5-brane extended on seven-dimensional Spin manifold X^7 .

Topological part of action functional is

$$S = \int_{X^7} C_3 \wedge G_4$$

- C₃ is the C-field and can be interpreted as a choice of String structure
- Cohomologically we consider the action as the pairing

$$S^{\mathsf{coh}} = \langle [C_3] \cup [G_4], [X^7] \rangle$$

where $[X^7]$ is the fundamental homology class.

• We interpret integrand as difference of two rational Spin-Fivebrane structures on *X*⁷.

We have a similar story for Ninebrane structures. Let $P \to M$ be an $O(n)\langle 11 \rangle$ -bundle.

 A rational ninebrane structure is a lift of the rationalized classifying map

- A rational Ninebrane class is a class $N_{\mathbb{Q}} \in H^{11}(P; \mathbb{Q})$ such that $\iota_x^* N = \tau p_3$ for every $x \in M$.
- A rational Spin-Ninebrane class is a class $W \in H^{11}(Q; \mathbb{Q})$

Rational Spin-Ninebrane Classes

Let $\pi_{11}: P \to M$ be an $O(n)\langle 11 \rangle$ -bundle and $\pi: Q \to M$ it's underlying Spin-bundle.

- There is an isomorphism $\rho^* : H^{11}(\text{Spin}; \mathbb{Q}) \to H^{11}(O(n)\langle 11 \rangle; \mathbb{Q})$
- There is a bundle map $\rho: P \to Q$
- Under the pullback, rational Spin-Ninebrane classes are mapped to rational Ninebrane classes.

Theorem (Sati, W)

- Any rational Ninebrane structure N_Q is the image of a rational Spin-Ninebrane class M_Q = ρ^{*}N_Q.
- Two Spin-Ninebrane classes correspond to the same rational Ninebrane structure if

$$\mathcal{N}_{\mathbb{Q}} - \mathcal{N}'_{\mathbb{Q}} = \mathcal{S} \cdot \pi^* \psi_8 + \mathcal{F} \cdot \pi^* \phi_4$$

where S is the String class and \mathcal{F} is the Fivebrane structure class.

Setting: 10-dimensional manifold M^{10} with Spin bundle along with Yang-Mills gauge bundle E.

- Dual Green-Schwarz involves the dual $H_7 = \star H_3$.
- The action functional involves a term of the form

$$\mathcal{L} = H_7 \wedge J_4$$

where
$$\phi_4 = [J_4] = p_1(TM) - ch_2(E) \in H^4(M^{10}).$$

- $[H_7]$ corresponds to a rational Spin-Fivebrane class \mathcal{F} .
- Setting $\psi_8 = 0$ in this case, we then interpret the action functional as a difference

$$\mathcal{N}_{\mathbb{Q}} - \mathcal{N}'_{\mathbb{Q}} = \mathcal{F} \cdot \pi^* \phi_4$$

Setting: String manifold Y^{11}

• Topological action functional given by

$$\int_{Y^{11}} \left(\frac{1}{6} G_4 \wedge G_4 \wedge C_3 - I_8 \wedge C_3 \right)$$

- Interpret $[\frac{1}{6}G_4 \wedge G_4 I_8]$ as a class $y_8 \in H^8(Y^{11}; \mathbb{Q})$.
- Again we interpret C_3 as a String structure S and set $\phi_4 = 0$
- So the integrand can be interpreted as a variation of the Spin-Ninebrane structure

$$\mathcal{N}_{\mathbb{Q}} - \mathcal{N}'_{\mathbb{Q}} = \mathcal{S} \cdot \pi^* y_8$$

Summary

- By studying the Whitehead tower rationally, Whitehead tower simplifies and structure groups become abelian
- Isomorphisms of specific degrees of cohomology allow us to classify structures using underlying Spin bundles
- Terms in the action functionals can be identified as variations of classes on the Spin bundle

Future Directions

- Lift from the rational to the integral setting
- Study corresponding partition functions

Thank You!