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The Whitehead tower

The Whitehead tower of a space X is a factorization of the point
inclusion ∗ → X

∗ ' lim
n→∞

Xn → · · · → X2 → X1 → X0 ' X

such that
the space Xk is (k − 1)-connected
the map Xk → Xk−1 is a fibration which is an isomorphism on
homotopy groups πi for i ≥ k

Examples:
Tower for K(G,n) : ∗ → K(G,n)

Tower for S2
Q : ∗ → K(Q, 3)→ S2

Q
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Construction of the Whitehead tower

Constructing the Whitehead tower
Inductively, Xn is (n− 1)-connected
There is an isomorphism πn(X) ∼= Hn(X;πn(X))

Choose a representative u ∈ [X,K(πn(X), n)]

Xn+1 is then the homotopy pullback

Xn+1
//

��

∗

��
Xn

u // K(πn(X), n)
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Whitehead tower for BSO

Using the fact that ΩBSO ' SO and thus πi(BSO) ∼= πi−1(SO)

...

��
K(Z, 7) // BSO〈9〉

��
K(Z, 3) // BSO〈8〉

1
6
p2 //

��

K(Z, 8)

K(Z2, 1) // BSO〈4〉

��

1
2
p1 // K(Z, 4)

BSO
ω2 // K(Z2, 2)

i (mod 8) 0 1 2 3 4 5 6 7

πi(O) Z2 Z2 0 Z 0 0 0 Z
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Whitehead tower for BSO

Using the fact that ΩBSO ' SO and thus πi(BSO) ∼= πi−1(SO)

...

��
K(Z, 7) // BFivebrane

��
K(Z, 3) // BString

1
6
p2 //

��

K(Z, 8)

K(Z2, 1) // BSpin

��

1
2
p1 // K(Z, 4)

BSO
ω2 // K(Z2, 2)

i (mod 8) 0 1 2 3 4 5 6 7

πi(O) Z2 Z2 0 Z 0 0 0 Z
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Connected Covers of SO(n)

SO(n):=
{
A ∈Mn(R)

∣∣AtA = I and det(A) = 1
}

Spin(n): the universal cover of SO(n) and is a double covering.

1→ Z2 → Spin(n)→ SO(n)→ 1

String(n): introduced by Stolz, is the 6-connected cover of Spin(n)
fitting in the short exact sequence

1→ K(Z, 2)→ String(n)→ Spin(n)→ 1

Following this pattern, Sati, Schreiber, and Stasheff define the
Fivebrane(n) group as the 7-connected cover of String(n)

1→ K(Z, 6)→ Fivebrane(n)→ String(n)→ 1
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Lifting the Structure Group

Given: Principal O(n)〈k〉-bundle P →M .
A lifting of the structure group to O(n)〈k + 1〉 is a lift of the classifying
map

BO(n)〈k + 1〉

��
M

f̃ 44

fP // BO(n)〈k〉

k = 4 corresponds to String structures
k = 8 corresponds to Fivebrane structures
k = 12 corresponds to Ninebrane structures
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Motivation

String Structures
Killingback: existence of String structure required for anomaly
cancellation in the worldvolume of a string
Stolz-Teichner: String structures can be understood as a
trivialization of a Chern-Simons theory
Sati: C-field corresponds to a string structure
Hopkins: String structure gives orientation for Witten genus
Bunke: choice of string structure trivializes the pfaffian line bundle
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Motivation

Fivebrane Structures
Setting: X a 10-dimensional spin manifold possibly equipped with
gauge bundle.
H3 is (electric) NS field coupled to string and H7 = ∗H3 is
(magnetic) dual field now coupled to fundamental 5-brane.
Dual Green-Schwarz mechanism requires that the differential

dH7 =
1

48
p2(ω)− ch4(A)

vanish.
Sati,Schreiber,Stasheff: This is equivalent to the choice of
Fivebrane structure on a Spin manifold.
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Rational Homotopy

We’ll call a space rational if every homotopy group is a Q vector
space.
A key property of rational homotopy is the following universal
property

Rationalization
The rationalization of a space X is a map l : X → XQ such that

l∗ : π∗(X)⊗Q→ π∗(XQ) is an isomorphism,
Every map f : X → Y where Y is a rational space, factors
uniquely up to homotopy through l,

X
f //

l ��

Y

XQ

fQ
66
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Rational Homotopy

Fact: Every 1-connected space admits a rationalization

Examples:
K(Z, n): Since Hn(K(Z, n);Q) ∼= Q, the generator gives a map

ι : K(Z, n)→ K(Q, n)

BSO:

πi(BSOQ) =

{
Q i = 4k,

0 i 6= 4k

H∗(BSOQ;Q) = Q[p1, p2, . . .] where |pi| = 4i is the ith Pontrjagin
class

S4
Q ' K(Q, 4)×K(Q, 7).
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Rational Abelianization
By rationalizing, we lose information about torsion of the space. However the
cohomology becomes more tractable and with regards to the Whitehead
tower of BSO(n)

Theorem (Sati, W.)
Each element in the sequence of connected spaces
{String(n)Q, Fivebrane(n)Q, Ninebrane(n)Q, . . .} is an abelian topological
group, and this group structure is unique up to rational H-equivalence.

The proof combines results of Lupton, Phillips, Schochet, and Smith and
Wockel.

For Lie group G, its Samelson product vanishes

This is equivalent to G being rationally homotopy abelian.

Spaces in Whitehead tower are rationally H-equivalent to a product of
Eilenberg-MacLane spaces.

Samelson product vanishes for each of these spaces.

The standard loop multiplication on ΠK(Gi, ni) is unique group-like,
homotopy abelian H-structure (up to rational equivalence).
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Gauge Group in Rational Homotopy Theory

For a G-principal bundle P → X, the gauge group is

G(P ) := {η ∈ Aut(P ) | π ◦ η = π},

i.e. the group of G-equivariant homeomorphisms of P .
G(P ) ∼= Map(P,G)G

For X ×G→ X, G(P ) ∼= Map(X,G).
For G abelian, G(P ) ∼= Map(X,G).

Pointed gauge group:

G1(P ) := {η ∈ G(P ) | η(∗) = ∗}
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Gauge Group in Rational Homotopy Theory

For a G-principal bundle P → X, the gauge group is

G(P ) := {η ∈ Aut(P ) | π ◦ η = π}

The Pointed gauge group is

G1(P ) := {η ∈ G(P ) | η(∗) = ∗}

Félix, Oprea: For G a compact group, and X having the homotopy
type of a finite CW complex, there are rational homotopy
equivalences

G(P ) 'Q Map(X,K), and G1(P ) 'Q Map∗(X,K)

This works for Spin(n)〈k〉-bundles as well.
Proof relies on structure of rational cohomology.
Structure preserved when killing homotopy groups.
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Gauge Group in Rational Homotopy Theory

Proposition (Sati, W.)
For a Spin(n)〈k〉-principal bundle P → X over a finite CW complex,
there are rational homotopy equivalences

G(P ) 'Q ΠjMap(X,K(Q, 4nj)), and
G1(P ) 'Q ΠjMap∗(X,K(Q, 4nj))

We also find that for X an n-dimensional manifold X and G
k-connected, then G(P ) is (k − n)-connected
For G = Spin(n)〈k〉Q, we have

πq(G(P )) ∼= πq+4(G(P ))

16 / 31



Rational Whitehead Tower of BSO

BSO is 1-connected⇒ BSOQ is 1-connected,
so we can construct the Whitehead tower for BSOQ.

...

��
K(Q, 11) // BSOQ〈12〉

��
K(Q, 7) // BSOQ〈8〉

( 1
6
p2)Q //

��

K(Q, 8)

BSOQ〈4〉
( 1
2
p1)Q // K(Q, 4)

Fact: For every k, there is a map lk such that lk : BSO〈k〉 → BSOQ〈k〉
is the rationalization of BSO〈k〉.
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Rational Whitehead Tower of BSO

BSO is 1-connected⇒ BSOQ is 1-connected,
so we can construct the Whitehead tower for BSOQ.

...

��
K(Q, 11) // BFivebraneQ

��
K(Q, 7) // BStringQ

( 1
6
p2)Q //

��

K(Q, 8)

BSOQ
( 1
2
p1)Q // K(Q, 4)

Fact: For every k, there is a map lk such that lk : BSO〈k〉 → BSOQ〈k〉
is the rationalization of BSO〈k〉.
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Rational Structures

π : P →M is an O(n)〈k〉 bundle.
Rationalizing the classifying map gives

fQ : MQ → BO(n)〈k〉Q

A rational O(n)〈k + 1〉-structure is a lift

BO(n)〈k + 1〉Q

��
M

f̃Q 44

fQ // BO(n)〈k〉Q
uQ // K(πk+1 ⊗Q, k + 1)
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Rational Fivebrane Structures

A rational Fivebrane class is a class FQ ∈ H7(P ;Q) such that
ι∗xFQ = τ(p2)Q for every x ∈M .

0 // H7(M ;Q)
π∗
// H7(P ;Q)

ι∗// H7(O(n)〈k〉;Q) // H8(M ;Q)

FQ
� // ι∗FQ

τ(p2)Q
� // (p2)Q

Every Fivebrane class corresponds to a rational Fivebrane class
Isomorphism classes of rational Fivebrane structures in 1-1
correspondence with rational Fivebrane classes
The set of rational Fivebrane classes is a torsor for H7(M ;Q)
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Underlying Spin Bundles

Let π : P →M be a String bundle and f : M → BString its classifying
map

BFivebrane

��
M

f //

44

g

**

BString

Bρ
��

BSpin

The map g = Bρ ◦ f classifies a Spin bundle over M .

We’ll refer to the bundle g∗ESpin→M of a String bundle π : P →M
as underlying Spin bundle .
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Rational Spin-Fivebrane Classes

Again π : P →M is a String(n) bundle, but now let π̃ : Q→M be its
underlying Spin(n) bundle

String(n)
ιx //

ρ

��

P

µ

��

πString

**M

Spin(n)
ιx // Q

π
44

There is a bundle map µ : P → Q

ρ∗ : H7(Spin(n);Q) ∼= H7(String(n);Q)

Set S := (ρ∗)−1τ(p2)Q to be the image of transgression of the
obstruction under the isomorphism ρ.
There is an induced map µ∗ : H7(Q;Q)→ H7(P ;Q)

Definition
A rational Spin-Fivebrane class is a class WQ ∈ H7(Q;Q) such that
ι∗xW = S
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Rational Spin-Fivebrane Classes

µ∗ maps rational Spin-Fivebrane Classes to Fivebrane classes
µ∗ is also surjective
Using spectral sequences, we calculate the kernel of this map.

Theorem (Sati, W)
Any rational Fivebrane class FQ is the image of a rational
Spin-Fivebrane class WQ

Two rational Spin-Fivebrane classes correspond to the same
rational Fivebrane structure if

WQ −W ′Q = S · π∗φ4

where S is the String class and φ4 ∈ H4(M ;Q).
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Applications

We will work in ”extended” spacetime which in our case is the Spin
bundle.

Fibered WZW models [Distler-Sharpe]
T-duality in loop space [Bouwknegt, Han, Mathai]
Double/Exceptional Field Theories [Berman, Cederwall, Ikeda]
Supergerbes [Sati-Schreiber]
Many others
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NS5-brane action

Setting: NS5-brane extended on seven-dimensional Spin manifold X7.
Topological part of action functional is

S =

∫
X7

C3 ∧G4

C3 is the C-field and can be interpreted as a choice of String
structure
Cohomologically we consider the action as the pairing

Scoh = 〈[C3] ∪ [G4], [X
7]〉

where [X7] is the fundamental homology class.
We interpret integrand as difference of two rational
Spin-Fivebrane structures on X7.
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Rational Spin-Ninebrane Structures

We have a similar story for Ninebrane structures. Let P →M be an
O(n)〈11〉-bundle.

A rational ninebrane structure is a lift of the rationalized classifying
map

BO(n)〈16〉Q

��
M

f̃Q 55

fQ // BO(n)〈12〉Q
(p3)Q // K(π12 ⊗Q, 12)

A rational Ninebrane class is a class NQ ∈ H11(P ;Q) such that
ι∗xN = τp3 for every x ∈M .
A rational Spin-Ninebrane class is a class W ∈ H11(Q;Q)
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Rational Spin-Ninebrane Classes

Let π11 : P →M be an O(n)〈11〉-bundle and π : Q→M it’s underlying
Spin-bundle.

There is an isomorphism ρ∗ : H11(Spin;Q)→ H11(O(n)〈11〉;Q)

There is a bundle map ρ : P → Q

Under the pullback, rational Spin-Ninebrane classes are mapped
to rational Ninebrane classes.

Theorem (Sati, W)
Any rational Ninebrane structure NQ is the image of a rational
Spin-Ninebrane classMQ = ρ∗NQ.
Two Spin-Ninebrane classes correspond to the same rational
Ninebrane structure if

NQ −N ′Q = S · π∗ψ8 + F · π∗φ4

where S is the String class and F is the Fivebrane structure class.
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Dual Green-Schwarz anomaly cancellation

Setting: 10-dimensional manifold M10 with Spin bundle along with
Yang-Mills gauge bundle E.

Dual Green-Schwarz involves the dual H7 = ?H3.
The action functional involves a term of the form

L = H7 ∧ J4

where φ4 = [J4] = p1(TM)− ch2(E) ∈ H4(M10).
[H7] corresponds to a rational Spin-Fivebrane class F .
Setting ψ8 = 0 in this case, we then interpret the action functional
as a difference

NQ −N ′Q = F · π∗φ4
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M-theory action

Setting: String manifold Y 11

Topological action functional given by∫
Y 11

(
1

6
G4 ∧G4 ∧ C3 − I8 ∧ C3

)
Interpret [16G4 ∧G4 − I8] as a class y8 ∈ H8(Y 11;Q).
Again we interpret C3 as a String structure S and set φ4 = 0

So the integrand can be interpreted as a variation of the
Spin-Ninebrane structure

NQ −N ′Q = S · π∗y8
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Conclusion

Summary
By studying the Whitehead tower rationally, Whitehead tower
simplifies and structure groups become abelian
Isomorphisms of specific degrees of cohomology allow us to
classify structures using underlying Spin bundles
Terms in the action functionals can be identified as variations of
classes on the Spin bundle

Future Directions
Lift from the rational to the integral setting
Study corresponding partition functions
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Thank You!
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