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Summary of Talk

This talk is based on:

M.-C. Tan, “Higher AGT Correspondences, W-algebras, and Higher
Quantum Geometric Langlands Duality from M-Theory”, Adv. Theor.
Math. Phys. 22: 429-507, 2018, [arXiv:1607.08330]

which is a culmination of the insights and work over the years in:

M.-C. Tan, “M-Theoretic Derivations of 4d-2d Dualities: From a
Geometric Langlands Duality for Surfaces, to the AGT Correspondence, to
Integrable Systems”, JHEP 07 (2013) 171, [arXiv:1301.1977].

M.-C. Tan, “An M-Theoretic Derivation of a 5d and 6d AGT
Correspondence, and Relativistic and Elliptized Integrable Systems”, JHEP
12 (2013) 31, [arXiv:1309.4775].

M.-C. Tan, “Quasi-Topological Gauged Sigma Models, The Geometric
Langlands Program, And Knots”, Adv. Theor. Math. Phys. 19, 277-450,
2015, [arXiv:hep-th/1111.0691].
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Summary of Talk

In this talk, we will, via a pair of dual M-theory compactifications with
Mb5-branes wrapping hyperkahler four manifolds which spacetime BPS
spectra are therefore expected to be equivalent, present an M-theoretic
derivation of a 5d and 6d AGT correspondence for arbitrary compact Lie
groups, namely

Zhue & (e, 2,3, 8,) = (Gg| G) (1)
where the coherent state
Ge) € Wi(‘a,4) (2)
and
Zom Sy (a1, €1, €2, 1, B, Re) = (&Y (21) B (22) )2 (3)
where the vertex operators
&S - WY (Lau(N)ag) — WY (Lo N)agr) (4)
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Summary of Talk

from which we can obtain identities of various W-algebras which underlie
a quantum geometric Langlands duality and its higher analogs,

. €2 — 0 L
Waff,k(g) = Waﬂ,Lk( g) 0 Z( U(g)crlt) cl( g)
€ >
B—0]|p+0 B—o]|g»
q7 tq L —)62 - 0 ~ L
Waff k( ) Waﬁ‘ Lk( g) ‘ﬁ Z(Uq(g)crlt) Wcl( g)
2
R6—>OTJR6—/->0 R5—)0H(R5—/->0
s €2 — 0
Wiz (a) = Wit (") |m——| Z(Ug (8)exit) = WT" (“0)
€ > 0

(g is arbitrary while g is simply-laced)
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Summary of Talk

whence we will be able to

(i) elucidate the sought-after connection between the 4d gauge-theoretic
realization of the geometric Langlands correspondence by

Kapustin-Witten [2, 3] and its algebraic 2d CFT formulation by
Beilinson-Drinfeld [4],

String Duality fat
DI (Bung(Zg))5. oo MG )W) i

S-duality | KW realization BD formulation | FF-duality

String Duality d
DIE. (Te) by M (Bune(Ee) )., g

(6)
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(i) explain what the higher 5d and 6d analogs of the geometric Langlands
correspondence for simply-laced Lie (Kac-Moody) groups G (G), ought to
involve, namely for 5d and G,

On(M35 (G, Zz))-module <= circle-valued flat “G-bundle on ¥,

. (7)
for 5d and G

Oh,(Mléil‘g.Sl(G, ¥ ))-module <= circle-valued flat LG-bundle on ¥ (8)

for 6d and G

(’)ﬁ(MIS{l.S'(G, Y 12))-mod <= elliptic-valued flat LG-bundle on Y0

. (9)
for 6d and G

On(MS 38" (G, £1))-mod | <= | elliptic-valued flat LG-bundle on T
(10)
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(iii) demonstrate Nekrasov-Pestun-Shatashvili's recent result in [5], which
relates the moduli space of 5d/6d N =1 G (G)-quiver SU(K;) gauge
theories to the representation theory of quantum/elliptic affine (toroidal)

G-algebras, namely for 5d and G-quiver,

€ MG T = x (Vi) = Ti(2), Vi € Rep[Us¥(g)(c,y,, ]| (11)

Sl-mono,k

for 5d and a—quiver

ue Mg k= xg(Vi) = Til2), Vi€ Rep[U3(8)c.] (12)

S1xSl-inst

for 6d and G-quiver

G7CX7 9.
u € M I o= xg (Vi) = Ti(2), Vi € Rep [Ugh(8)icyiay ]

S!-mono,k

~ (13)
for 6d and G-quiver

ue Mg xl = xqu(Vi) = Til2), Vi€ Rep[UgL(8)c.]| (14)

SlxSl-inst
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Punchline?

M-THEORY KNOWS
EVERYTHING, AND MORE!




Main Body of the Talk

Let's now explain how we
can derive these results

ational University of SirHigher AGT Correspondences, WW-algebras, a



Lightning Review: An M-Theoretic Derivation of the 4d Pure AGT Correspondence

for Compact Groups

Via a chain of string dualities in a background of fluxbranes as introduced
in [6, 7], we have the dual M-theory compactifications

R4’61,€2 X Xnt XR5|63;X5,7 — R5|63;><4,5 X C x TNII\7_>0|€3;X6,7’ (15)
ﬁ,—/ .
N M5-branes

1 M5-branes

where n =1 or 2 for G = SU(N) or SO(N + 1) (N even), and

4 5 5 R—0
R |€1,62 X zn,f xR |63:X6,7 — R |63;X4,5 X C % SNN |63;X6,77 (16)
— ~~

N Mb5-branes + OMS5-plane 1 M5-branes

where n =1, 2 or 3 for G = SO(2N), USp(2N — 2) or Gy (with N = 4).

Here, €3 = €1 + €3, the surface C has the same topology as ¥, = S}, x I,
and we have an M9-brane at each tip of I;. The radius of S! is given by
B, which is much larger than I;.
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Lightning Review: An M-Theoretic Derivation of the 4d Pure AGT Correspondence

for Compact Groups

The relevant spacetime (quarter) BPS states on the LHS of (15) and (16)
are captured by a gauged sigma model on instanton moduli space, and are
spanned by

@ IHU(I)ZXTZ/{ MG m) (17)

while those on the RHS of (15) and (16) are captured by a gauged chiral
WZW model on the I-brane C in the equivalent IIA frame, and are spanned
by .

W( gar)- (18)
The physical duality of the compactifications in (15) and (16) will mean
that (17) is equivalent to (18), i.e.

@ TH}) 12 7 UM m) = W(-gar) (19)
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Lightning Review: An M-Theoretic Derivation of the 4d Pure AGT Correspondence

for Compact Groups

The 4d Nekrasov instanton partition function is given by

Zinst (N, €1, €2,3) = Z/\2mhg Zpps,m(€1, €2,3, f — 0), (20)

where A can be interpreted as the inverse of the observed scale of the
R*|, ¢, space on the LHS of (15), and Zgps m is a 5d worldvolume index.

Thus, since Zgps m is a weighted count of the states in
HBps.m = IH{qy2 7 U(Mg,m), it would mean from (20) that

Zinst(/\7€17627‘§) = <w’w>7 (21)

where |W) = @, A" (W) € @, TH}y y 2, 7 UM m)-
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Lightning Review: An M-Theoretic Derivation of the 4d Pure AGT Correspondence

for Compact Groups

In turn, the duality (19) and the consequential observation that |W) is a
sum over 2d states of all energy levels m, mean that

V) =1q,4), (22)

where |gq, A) € W\(Lgaﬁ) is a coherent state, and from (21),

| Zinst (A €1, €2,3) = (g, A]q, ) | (23)

Since the LHS of (23) is defined in the 5 — 0 limit of the LHS of (15),

lg, A) and (g, A| ought to be a state and its dual associated with the
puncture at z = 0,00 on C, respectively (as these are the points where the
S} fiber has zero radius). This is depicted in fig. 1 and 2.

Incidentally, sy in fig. 1 and 2 can also be interpreted as the
Seiberg-Witten curve which underlies Zins (A, €1, €3, 3)!
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Lightning Review: An M-Theoretic Derivation of the 4d Pure AGT Correspondence

for Compact Groups

Figure 2: Y5y as a 2N-fold cover of C
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Lightning Review: An M-Theoretic Derivation of the 4d AGT Correspondence with

Matter

Let us now extend our derivation of the pure AGT correspondence to
include matter.

For illustration, we shall restrict ourselves to the A-type superconformal
quiver gauge theories described by Gaiotto in [8].

To this end, first note that our derivation of the pure 4d AGT
correspondence is depicted in fig. 3.

| 2, (p20) |

Qu

Figure 3: A pair of M9-branes in the original compactification in the limit 8 — 0 and
the corresponding CFT on C in the dual compactification in our derivation of the 4d
pure AGT correspondence.
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Lightning Review: An M-Theoretic Derivation of the 4d AGT Correspondence with

Matter

This suggests that we can use the following building blocks in fig. 4 for
our derivation of the 4d AGT correspondence with matter.

| 2. (p20)

f | Va,a Vi,

Figure 4: Building blocks with “minimal” M9-branes for our derivation of the AGT
correspondence with matter
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Lightning Review: An M-Theoretic Derivation of the 4d AGT Correspondence with

Matter

Consider a conformal necklace quiver of n SU(N), N > 2.

(f(l . 4)

Figure 5: The necklace quiver diagram and the various steps that lead us to the overall
Riemann surface ¥ on which our 2d CFT lives.
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Lightning Review: An M-Theoretic Derivation of the 4d AGT Correspondence with

Matter

.
N

Figure 6: The effective 4d-2d correspondence
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Lightning Review: An M-Theoretic Derivation of the 4d AGT Correspondence with

Matter

In the case of a necklace quiver of n SU(N) gauge groups,

Zusk o~ (VEV3(@) - V(e ama)) (24)
where \/JT"(Z) is a primary vertex operator of the Verma module
W(Lsu(N)ag) with highest weight

fs’:& for s=1,2,...,n (25)

€162

and conformal dimension

O _ 2 B Js - ip (1 + €)
s 2 €1€2

, where s=1,2,...,n (26)
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An M-Theoretic Derivation of a 5d Pure AGT Correspondence for A-B Groups

A pure U(1) theory can also be interpreted as the m — oo, e2miT 5 0
limit of a U(1) theory with an adjoint hypermultiplet matter of mass m
and complexified gauge coupling 7/, where me2™™ = A remains fixed.
This means from fig. 5 (with n = 1) that the 5d Nekrasov instanton
partition function for pure U(1) can be expressed as

Zbue e (et e, B, A) = (0@ msoo(1)|0) 2, (27)

where @, (1) is the 5d analog of the 4d primary vertex operator \/Jr1 in
fig. 6 in the m — oo limit.

Meng-Chwan Tan (National University of SitHigher AGT Correspondences, W-algebras, a



An M-Theoretic Derivation of a 5d Pure AGT Correspondence for A-B Groups

In the 5d case where 5 - 0, states on C are no longer localized to a point
but are projected onto a circle of radius 5. This results in the contribution
of higher excited states which were decoupled in the 2d CFT of chiral
fermions when the states were defined at a point. Consequently, we can
compute that

Ziizflfa)(ﬁl, €2, 8, \) = (Gy(n)|Guq)) (28)
with

|Guq)) = exp (- Z % iﬁ_/\)t: a_n> 0), (29)

n>0
where the deformed Heisenberg algebra

1— t|P|

[ap, 3n] = P1_7q|p‘5p+n,0, 3p>0’@> =0 (30)
and
- e—iﬁ\/@’ q= e Blatetyae) (31)
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An M-Theoretic Derivation of a 5d Pure AGT Correspondence for A-B Groups

According to fig. 1, the 2d CFT in the SU(N) case is just an N-tensor
product of the 2d CFT in the U(1) case. In other words, we have

Zﬁ’f;if’s?,d(,v)(el, €2,d, 8,\) = (Gsyn)| Gsuw)) (32)
n > 0 LM a—n; n

|Gsy(ny) = (®i=ge =m=0m 1= ") (®7410);) (33)

where

1 — tlm«l
[amw a”k] = mk1—7q|m’<| my+ny,05 amk>0’@>k =0 (34)
and

= e—iﬁx/61€2, q= e~ Blateatyeaea) (35)
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An M-Theoretic Derivation of a 5d Pure AGT Correspondence for A-B Groups

Note that (33)—(35) means that |Gsy(n)) is a coherent state state in a

level N module of a Ding-lohara algebra [9], which, according to [10],
means that

‘ GSU(N)> € W\q(Lﬁu(N)aﬁ?)

is a coherent state in the Verma module of W9(Lsu(N).g), the
g-deformed affine W-algebra associated with tsu(N).g.

(36)

The relations (32) and (36) define a 5d pure AGT correspondence for the

An_1 groups.

Meng-Chwan Tan (National University of SitHigher AGT Correspondences, W-algebras, a



An M-Theoretic Derivation of a 5d Pure AGT Correspondence for A-B Groups

Therefore, according to [11, 12, 13], with regard to the 2d CFT's on the
RHS of (23) and (32), we have the diagram

?(g[(l)afm) Q- ® ?(g[(l)aﬁ“,lz W (su(N)at &)

g

N times
posof|so 80|60
L/J;(Lg[(l)aff,l) ®--® L/J;(Lg[(l)afm) — )7v\cz(5u(N) f k)
N times 7 (37)

where ?(g[(l)am) and L/j\(l(l.g[(].)affyl) are level one modules of the
Yangian and quantum toroidal algebras, respectively, and the level
k(N,e€12).
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An M-Theoretic Derivation of a 5d Pure AGT Correspondence for A-B Groups

Let e3 =0, i.e. turn off Omega-deformation on 2d side. This ungauges the
chiral WZW model on C. Then, conformal invariance, and the remarks
above (28), mean that we have the following diagram

— —

gl(1) 1 ® - @ gl(1), T
ff,1 g ff,1 511( N)afﬁl
N times
ﬁ—>OH5+>O 8—=0[|B8-~0

Lg[(l)aﬂ,l Q& Lg[(l)aﬂ,l) L;l(\/v)
-~ aff,1

N times (38)
From diagrams (37) and (38), turning on Omega-deformation on the 2d
side effects (i) gl(1)ag1 — Y(9l(1)a,1) and su(N),g; — W(su(N),q 4);
(i) Lgl(1)ag1 — Ug(Lgl(1)ag,1) and Lsu(N)afﬂ1 — W"(su(N)aﬁ,k).
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An M-Theoretic Derivation of a 5d Pure AGT Correspondence for A-B Groups

Now, with €3 = 0 still, let n =2 in (15), i.e. G = SO(N +1). Then, we
have, on the 2d side, the following diagram

Dy @ @ (Do —
? aff,1 - g aff,1 511( N)af—f )
N times
5—>0|hﬁ+>0 B8—=0[|B-»0
Lol © -+ © Lgi(D)yry) — )
N aff,1 . aff,1 Lﬁu( N)a,fﬂl
N times (39)
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An M-Theoretic Derivation of a 5d Pure AGT Correspondence for A-B Groups

Now, turn on Omega-deformation on 2d side, i.e. €3 # 0. According to
the remarks below (38), we have

Y(al(1)d)) © - © Y(al()F,)

-~
N times

s W(su(V)3 )

8—0|8-+0 8—=0[|B-=»0

Ug(Lal()R) @ 0 Ua(bal)E) @)
aff k

N times ( 40)
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An M-Theoretic Derivation of a 5d Pure AGT Correspondence for A-B Groups

Comparing the bottom right-hand corner of (40) with the bottom
right-hand corner of (37) for the A groups, and bearing in mind the
isomorphism 5u(N)$f) > Lso(N + 1).4, it would mean that we ought to

have

iilsltrfgsod(,\,ﬂ)(q, €2,3, 3,N) = (Gso(n+1)l Gso(n+1)) (41)

where the coherent state

|Gsont1)) € Wi(Lso(N + 1)ag) (42)

The relations (41) and (42) define a 5d pure AGT correspondence for the
By 2 groups.
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An M-Theoretic Derivation of a 5d Pure AGT Correspondence for C—D—-G, Groups

Now, with e3 =0, let n =1, 2 or 3iin (16), i.e. G = SO(2N),

USp(2N — 2) or G (with N = 4). This ungauges the chiral WZW model
on C. Then, conformal invariance, and the remarks above (28), mean that
we have, on the 2d side, the following diagram

———(n) n
50(2q @ - ®50(2)g, 50/(2\,\,)(’;3
aff,1

Nagles
68—=0[|B8—»0 8—=0[|B-=»0
—— (N — (n)
L50(2)aﬁ,1 Q- L50( )aff,l) —_— Lﬁ/(2\IV)(n)
~ aff,1
N times (43)
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An M-Theoretic Derivation of a 5d Pure AGT Correspondence for C—D—-G, Groups

Now, turn on Omega-deformation on 2d side, i.e. €3 # 0. According to
the remarks below (38), we have

Y(s0(2){7) @+ @ Y(s0(2){h) Feo2M). )
- aff,k’

Vv
N times

,8—>0Hﬂ—/»0 8—=0[|B-»0

™ (n)

Ug(Lso(2),5,) @+ ® @(Lso(z)g;f),l)

' — Wa(so(2N)'%,.)
N times (44)
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An M-Theoretic Derivation of a 5d Pure AGT Correspondence for C—D—-G, Groups

Comparing the bottom right-hand corner of (44) with the bottom
right-hand corner of (37) for the A groups, and bearing in mind the

isomorphism 50(2N)$f) >~ Lg & it would mean that we ought to have

ZPie e e2,3, 8, ) = (Gg|Ge) (45)

inst, G

where the coherent state

Gs) € Wi(ta,g) (46)

The relations (45) and (46) define a 5d pure AGT correspondence for the
Cn_1, Dy and G, groups.
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An M-Theoretic Derivation of a 5d Pure AGT Correspondence for Es 7.8 and Fy

Groups

By starting with M-theory on K3 with G = Eg 78 and F4 singularity and
its string-dual type |IB on the same K3 (in the presence of fluxbranes), one
can, from the principle that the relevant BPS states in both frames ought

to be equivalent, obtain, in the limit e = h = —ey, the relation

THY (1), u(1) (Mg = g1, (47)

Then, repeating the arguments that took us from (21) to (23), we have

ZP224(h, & ) = (cohp|cohy,). (48)
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An M-Theoretic Derivation of a 5d Pure AGT Correspondence for Es 7.8 and Fy

Groups

In turn, according to the remarks above (28), we find that

zPwe (b, & N) = (ciry|cirp) (49)

where

lcirn) € Llgag 1 (50)

and LLgan is a Langlands dual toroidal Lie algebra given by the loop
algebra of g, q ;.

Together, (49) and (50) define a 5d pure AGT correspondence for the

Eeé.78 and F4 groups in the topological string limit. They are consistent
with (39) and (43).

The analysis for €3 # 0 is more intricate via this approach. Left for future
work.
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An M-Theoretic Derivation of a 6d AGT Correspondence for A Groups

Consider the non-anomalous case of a conformal linear quiver SU(N)
theory in 6d. As explained in [14, §5.1], we have

lerllrsléfigu(N)(qla 617 627 rﬁa I87 R6) = <&>VW(21) éZ(Z2) >T2 (51)

where 3 and Rs are the radii of S! and S} in T?2 = S! x S}, 8> Rg, and
the 6d vertex operators 5>(z) have a projection onto two transverse circles
Cg and Cgq in T2 of radius 8 and R, respectively, which intersect at the
point z. Here, w, v, u are related to the matter masses.

In the same way that we arrived at (32) and (33), we have
PG Foy @ F g, @ @Fgy — Fq@F,® @ Fe,  (52)

where ]t'c,d is a module over the elliptic Ding-lohara algebra [15] defined by
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An M-Theoretic Derivation of a 6d AGT Correspondence for A Groups

[8m, dn] = m(1 — V|m|)i:;||:|5m+n,0> 5m>0|®> =0 (53)
il = T = e Balli=0| (50
where [, b,] = 0, and
t=e VAR g g-iflatetvaa) e_Ri6 (55)
In other words,
®g : W (“su(N)ar) = W (“su(N)ar) (56)

where W4V is a Verma module over WY (Lsu(N).g), an elliptic affine
W(Lsu(N)ag)-algebra.
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An M-Theoretic Realization of Affine W-algebras and a Quantum Geometric

Langlands Duality

To derive Wh-algebra identities which underlie a Langlands duality, let us
specialize our discussion of the 4d AGT correspondence to the N' = 4 or
massless A/ = 2* case, so that we can utilize S-duality. From fig. 6 (and

its straighforward generalization to include an OM5-plane), we have the
dual compactifications

4 2 5 5 2 R—0
R |€1,62 X Ta xR |€3:X6,7 — R |€3;X4,5 X ch X TNN |€3;X6,7’ (57)
——
N Mb5-branes 1 Mb5-branes
and

4 2
R ’61762 X TO’
N————

5 5 2 R—0
xR ’53?X6,7 <~ R |63;X4,5 x Tg x SNy |53;X6,77
N M5-branes + OM5-plane

1 M5?granes
(58)
where T2 = S! x SL.
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An M-Theoretic Realization of Affine W-algebras and a Quantum Geometric

Langlands Duality

Recall from earlier that

P e UMem) = Wagin('e),  tu+thg=—= (59)
m

Let n = 1. From the symmetry of €; <> €3 in (57) and (58), and
La.¢ = gagr for simply-laced case, we have, from the RHS of (59),

Watt k(8) = Wag ("),  where r¥(k+h") = ("k+ th)—l (60)

r¥ = n is the lacing number, and g = su(N) or so(2N).
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An M-Theoretic Realization of Affine W-algebras and a Quantum Geometric

Langlands Duality

Let n =2 or 3. Effect a modular transformation 7 — —1/r"7 of T2 in
(57) and (58) which effects an S-duality in the 4d gauge theory along the
directions ortohgonal to it. As the LHS of (59) is derived from a
topological sigma model on T2 that is hence invariant under this
transformation, it would mean from (59) that

Wit k() = Wag ti("g),  where rY(k+h)=("k+th)~Y  (61)

h = h(g) and “h = h(‘g) are Coxeter numbers; and
g =Lso(2M + 1), Lusp(2M) or Lgs.
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An M-Theoretic Realization of Affine W-algebras and a Quantum Geometric

Langlands Duality

In order to obtain an identity for g = g, i.e. the Langlands dual of (61),
one must exchange the roots and coroots of the Lie algebra underlying
(61). This also means that h must be replaced by its dual h". In other
words, from (61), one also has

Wit k(9) = Wag i("g),  where rY(k+h") = ("k+ LRyt (62)

and g = s0(2M + 1), usp(2M) or g».

Clearly, (60) and (62), define a quantum geometric Langlands duality for
G as first formulated by Feigin-Frenkel [16].
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An M-Theoretic Realization of g-deformed Affine W-algebras and a Quantum

g-Geometric Langlands Duality

From the relations (34) and (35), it would mean that we can write the
algebra on the RHS of (36) as a two-parameter algebra

Waff k( (N)) (63)

Note that as 50(2).q,1 in diagram (44) is also a Heisenberg algebra like

gl(1)af 1, it would mean that Ug(Lso(2).q 1) therein is also a Ding-lohara
algebra at level 1 (with an extra reality condition) that can be defined by
the relations (34) and (35). Hence, we also have a two-parameter algebra

Wi (s0(2N)). (64)
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An M-Theoretic Realization of g-deformed Affine W-algebras and a Quantum

g-Geometric Langlands Duality

Note that the change (e1,€2) — (—€2, —€1) is a symmetry of our physical
setup, and if we let p = g/t = e~ "#(c1+€)  then, the change p — p~!
which implies g <> t, is also a symmetry of our physical setup. Then, the
last two paragraphs together with k + hY = —e€p/€1 mean that

Wi (@) = Wi, (fa),  where rV(k+hY) = (tk+Lh") L (65)

a a

and g = su(N) or so(2N).

Identity (65) is just Frenkel-Reshetikhin’s result in [17, §4.1] which defines
a quantum g-geometric Langlands duality for the simply-laced groups!

The nonsimply-laced case requires a modular transformation of Tg which
effects the swop SL <+ SI, where in 5d, S! is a preferred circle as states
are projected onto it. So, (65) doesn't hold, consistent with
Frenkel-Reshetikhin's result.
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An M-Theoretic Realization of Elliptic Affine Y/-algebras and a Quantum

q, v-Geometric Langlands Duality

Similarly, from (53) and (54), we can express W%" (su(N),g ) on the
RHS of (56) as a three-parameter algebra

Wik (su(N)). (66)

Repeating our arguments, we have

Wi (a) = Wi (fa),  where  Y(k+hY) = (tk+Lh")L] (67)

and g = su(N) or so(2N).

Clearly, identity (67) defines a quantum g, v-geometric Langlands duality
for the simply-laced groups!

The nonsimply-laced case should reduce to that for the 5d one, but since
the latter does not exist, neither will the former.
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Summary: M-Theoretic Realization of W-algebras and Higher Geometric

Langlands Duality

In summary, by considering various limits, we have

i €2 — 0 [
Waff,k(g) = WaH,Lk( g) 0 Z( U(g)crlt) cl( g)
€x
B—0][B+»0 B—0[|g~0
q tq i €2 — 0 -
Waf} k( ) Waﬁ Lk( g) ‘ﬁ Z(Uq(g)crlt) ( )
2
R6—>OTJR6—/->0 R()—)OH(R@—HO
» » €2 — 0
Wik (8) = Wit (he) | ———| Z(Uqg (8)exit) = W5 (0)
€ > 0
(68)

where g is arbitrary while g is simply-laced.
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A Quantum Geometric Langlands Correspondence as an S-duality and a Quantum

W-algebra Duality

From the fact that in the low energy sector of the worldvolume theories in
(57) and (58) that is relevant to us, the worldvolume theory is topological
along R*, we have

PR,GI X DR,ez X Z]) and DR,el X DR,62 X Zl s (69)

N Mb5-branes N Mb5-branes + OMS5-plane

where ¥, = S} x S! is a Riemann surface of genus one with zero
punctures.

Macroscopically at low energies, the curvature of the cigar tips is not
observable. Therefore, we can simply take (69) to be

T2, xhxlxE and T2, xlixlx¥, (70)
N Mb5-branes N Mb5-branes + OM5-plane
where Tgm = S! x Sl is a torus of rotated circles, and I3, = Ry
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A Quantum Geometric Langlands Correspondence as an S-duality and a Quantum

W-algebra Duality

Clearly, the relevant BPS states are captured by the remaining
uncompactified 2d theory on I; x lo which we can regard as a sigma model
which descended from the ' =4, G theory over I; x I, x X, so

o pE] YA (L L L €
bl (X6 1)B = Wag 1( 9)217 k+"h= o (71)
Now consider
~ . ~5 -
T, o xhixlaxX, and Tg , xlhxlhxi, (72)
N M5-branes N Mb5-branes + OMb5-plane

where T2 _ and Zl are T2

e and X ; with the one-cycles swopped.

€1,€2

So, in place of (71), we have

Lo’ —
My, (X2 is = Wag k(@) rY(k+h)=——. (73)

Meng-Chwan Tan (National University of SitHigher AGT Correspondences, W-algebras, a



A Quantum Geometric Langlands Correspondence as an S-duality and a Quantum

W-algebra Duality

Since (70) and (72) are equivalent from the viewpoint of the worldvolume
theory, we have

String Duality —_—
>
1, (Xch)B “Watt i (9)5,

S-duality | 7 — — rV(k+h) = (tx +Lh)~1 | W-duality

String Duality —
Lo > L
Hllxlz(XLG)LB LWaﬁC,Ln( g)zl

(74)

where LWafLN(g) is the “Langlands dual” of W,g .(g), an affine
Wh-algebra of level x labeled by the Lie algebra g, and kK + h = —ep/€;.

Meng-Chwan Tan (National University of SitHigher AGT Correspondences, W-algebras, a



A Quantum Geometric Langlands Correspondence as an S-duality and a Quantum

W-algebra Duality

Figure 7: Building blocks relevant to our discussion on the connection between the
gauge-theoretic realization and algebraic CFT formulation of the geometric Langlands
correspondence.
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A Quantum Geometric Langlands Correspondence as an S-duality and a Quantum

W-algebra Duality

(a). Dual M-theory compactifications which realize the AGT
correspondence for ' = 2* SU(N) theory and N/ = 2 necklace quiver
theory with two SU(N) gauge groups, where 3 denotes the size of ¥.

(b). Dual M-theory compactifications which realize the AGT
correspondence for N' = 2 pure SU(N) theory.

(c). Gluing together g copies of the (a)-compactifications via the
(b)-compactifications.

(d). Finally, a single compactification on Zi’,? without M9-planes on the 4d
side, corresponding to a genus g surface with no punctures on the 2d side.
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A Quantum Geometric Langlands Correspondence as an S-duality and a Quantum

W-algebra Duality

So, we can effectively replace X; with Xz in (70), (72), and thus in (71),
(73), whence we can do the same in (74), and
o P mo

M7, (X6")8 = Hixr, (Mu(G. T))5,...5, = Dty (Bung(Zg))  (75)

where My(¥,%;) and Bung(X,) are the moduli space of & Hitchin
equations and ¥c-bundles on ¥, [2, 3], so in place of (74), we have

String Duality —

mod

Dﬁwfhv (BunG(zg)) LWaff,n(g)zg
S-duality | bw = — 5 (ts+Lth) = W FF-duality

String Duality L/\ L
Waff,Ln( g)zg

DLy (Buneg ()

(76)
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A Geometric Langlands Correspondence as an S-duality and a Classical WW-algebra

Duality

Let e = 0 whence we would also have K = oo and W = 0. Then, (76)
becomes

String Duality
od flat
Dt (Bung(Xg)) MLGC(zg)
S-duality | KW realization BD formulation | FF-duality
String Duality
flat mod
DLGC(Zg) Mcrit (BunG(Zg))
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A Geometric Langlands Correspondence as an S-duality and a Classical WW-algebra

Duality

Adding boundary M2-branes which realize line operators in the gauge

theory and performing the chain of dualities would replace (57) and (58)
with

4 &1 1 5 5 1 &1 R—0
R |0,62 X Sn X St xR |€2;X6,7 <~ R |62;X4,5 X St X Sn X TNN |€2;X6,7?

N M5 + M2 on o 1 M5-branes + MO on o
(78)
and
54 &1 1 5 5 1. &1 R—0
R%0,e, X S, xS; xR ’62;Xs,7 ~— R ‘62;X4,5 X S; x §;, x SNy ’62;X6,77

N M5 + OM5 + M2 on o 1 M5 + MO on o

(79)
Here, the MO-brane will become a D0-brane when we reduce M-theory on
a circle to type IlA string theory [18].
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A Geometric Langlands Correspondence as an S-duality and a Classical WW-algebra

Duality

As such, in place of (70) and (72), we have

M2 on R+><S},Ng M2 on R+><S},7g
— —_—
T, x I xRy x ¥, and Tg, x xRy x¥, (80)
N M5-branes N Mb5-branes + OMS5-plane
and M2 on Ry xSk, M2 on Ry x 8L,

T3, x I xRy x fi’no and T3, x I x Ry x ii’,,b (81)

N M5-branes N Mb5-branes + OMb5-plane
Here, S},yg is a disjoint union of a g number of S} one-cycles of X,

Similarly, ¥ on the RHS of (71), (73) will now be £ — ¥, with a loop
operator that is a disjoint union of g number of loop operators around its g
number of S one-cycles, each corresponding to a worldoop of a DO-brane.
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A Geometric Langlands Correspondence as an S-duality and a Classical WW-algebra

Duality

mod String Duality
D (BunG(zg))B‘t—Hooﬂz

crit

M2 (£,)

W(Lg) “Wilson”

S-duality | KW realization BD formulation | FF-duality
String Duality
flat mod e
DLG(C (Zg)LBWilson Mcrit (BunG (Zg))W(g)mt_Hooft”

(82)

There is a correspondence in the actions of 4d line operators and 2d loop
operators:
Bt Hooft <= W(8) w_Hooft» (83)

LBWHSOH > W(Lg) “Wilson” (84)
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A Geometric Langlands Correspondence as an S-duality and a Classical WW-algebra

Duality

Bi_Hooft: Mo — mg + £(LR), where magnetic flux mg and £(ER) are
characteristic classes that classify the topology of G-bundles over ¥, and
S2, respectively. Thus, the 't Hooft line operator acts by mapping each
object in D94 (Bung(X,)) labeled by mg, to another labeled by

mo + £(°R).

On the other hand, W(g)“’t—Hooft” is a monodromy operator which acts on
the chiral partition functions of the module M™294(Bung (1)) as (c.f. [19,
§3.2])

Zy(a) — Z Aap Zy(Pk)- (85)

Pk

where px = a 4 bhy, where hy are coweights of a representation R of G;
and the A,p's and b are constants. Therefore, W(g) wy_tjooq Maps each
state in M99 (Bung(X,)) labeled by a, to another labeled by a + h,
where h is a weight of a representation 'R of LG.
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A Geometric Langlands Correspondence as an S-duality and a Classical WW-algebra

Duality

LBwilson : €0 — €0 + O.r, where electric flux eg and f.r are characters of
the center of (the universal cover of) LG. Because the eg-labeled
zerobranes are points whence the shift eg — eg + 0.z which twists them is

flat
trivial, the Wilson line operator acts by mapping each object in D72 (Zg)
to itself.

On the other hand, W(L )«wilson» 1S @ monodromy operator which acts on
the chiral partition functions of the module M2* (Zl) as (c.f. [19,
Appendix D])

Zi (av) — dav Zu (av), (86)

where the highest coweight vector a” of Lg labels a submodule, and \,v is

a constant. Thererfore, W( 9) «wilson» Maps each state in Mﬁat (Z ) to
itself.
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A g-Geometric Langlands Correspondence for Simply-Laced Lie Groups

In the 5d case where 3 — 0, in place of (80), we have

T2, xRy xIxT5 and T3, xRy x Ix IS (87)

/

N Mb5-branes N Mb5-branes + OMb5-plane
1. e . .
where ZE, is the compactified Riemann surface ¥z (where g > 1) with an
S loop of radius 3 over every point.

Then,
or HlXR (M (G Zg)) BT /E(Lg)zg, (88)
CEMiLs (G, X)) = Mg (Tg)fas (89)

(Oy, is a noncommutative algebra of holomorphic functions), so

Oh(M%I.S.(G, ¥ ;))-module [<=>| circle-valued flat - G-bundle on T,
(90)

Clearly, this defines a g-geometric Langlands correspondence for
simply-laced G!
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A g-Geometric Langlands Correspondence for Simply-Laced Kac-Moody Groups

Note that nonsingular @—monopoles on a flat three space M3 can also be
regarded as well-behaved G-instantons on S' x Mz in [20], while
nonsingular G-monopoles on M3 = S! x ¥ correspond to S!-valued G
Hitchin equations on X. Since principal bundles on a flat space with
Kac-Moody structure group are also well-defined [20], a consistent G
version of (90) would be

O;L(M%I_S.(C?, Y))-module <= circle-valued flat LG-bundle on ¥ (91)

or equivalently,

Oh(MIS{{gSl(G, ¥))-module <= circle-valued flat L G-bundle on &

(92)
where £ = R x S. This defines a G version of the g-geometric Langlands
correspondence for simply-laced G.
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Quantization of Elliptic-Valued G Hitchin Systems and Transfer Matrices of a

a—type XXZ Spin Chain

In light of the fact that a &-bundle can be obtained from a ¥-bundle by
replacing the underlying Lie algebra g of the latter bundle with its
Kac-Moody generalization g, from (68), it would mean that we now have,

OWMS 5 (6, %)) = Tuu(G,X) (93)

which relates the quantization of an elliptic-valued G Hitchin system on X

to the transfer matrices of a G-type XXZ spin chain on X!
This also means that

x € MG, X)) «= vqo(Vi) = Ti(2), VieRep[U2T(8)s]|  (94)

where i = 0,...,rank(g), Tj(z) is a polynomial whose degree depends on
V;, and Ugff(ﬁ) is the quantum toroidal algebra of g.
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A Realization of Nekrasov-Pestun-Shatashvili's Results for 5d, ' =1 G

(G)-Quiver SU(K;) Gauge Theories

Consider instead of the theories in figure (7), an n =1 linear quiver
theory; then the present version of (90) and (68) imply

u e MG e s xo(Vi) = Ti(2), Vi € Rep[Us"(9) (e, ]| (95)

where Cx = R x S*, 7 € I, the G Dynkin vertices.
Note that (94) also means that

ue MK = xg(Vr) = Ti(2), Vi € Rep[U3T(d)c,] (96)

S1xSl-inst
where C, =R x S, j e fr, the affine-G Dynkin vertices.

Can argue via momentum around S} (counted by DO-branes) «+ 2d CFT
energy level correspondence that degree of T; (T;) is Ki (aK;).

(95)/(96) are Nekrasov-Pestun-Shatashvili's main result in [5, §1.3] which
relates the moduli space of the 5d G/G quiver gauge theory to the
representation theory of U3 (g)/Uaf (§)!
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A g, v-Geometric Langlands Correspondence for Simply-Laced Lie Groups

In our derivation of the 6d AGT W-algebra identity in diagram (68), the
2d CFT is defined on a torus S' x S! with two punctures at positions

712 [14, §5.1]. i.e. X12. Here, S! corresponds to the decompactified fifth
circle of radius 3 + 0, while S} corresponds to the sixth circle formed by
gluing the ends of an interval I, of radius Rg much smaller than 3. So, we
effectively have a single decompactification of circles, like in the 5d case,
although the 2d CFT states continue to be projected onto two circles of
radius 8 and Rg, whence in place of (90), we have

Op(Mi1s.(G, T1,))-mod

<

elliptic-valued flat LG-bundle on Y10

(97)

Clearly, this defines a g, v-geometric Langlands correspondence for

simply-laced G!
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Quantization of Circle-Valued G Hitchin Systems and Transfer Matrices of a

G-type XYZ Spin Chain

Consequently, from diagram (68), if Txy,(G,X1,2) is the polynomial
algebra of commuting transfer matrices of a G-type XYZ spin chain with
Uqg,v(§) symmetry on X1 5, where i =1,...,rank(g), we now have

Op(MP5.(G,T12)) <= TG, T12) (98)

which relates the quantization of a circle-valued G Hitchin system on >
to the transfer matrices of a G-type XYZ spin chain on ¥ 5!
This also means that

1 e
x € Mig.(G,T12) <= xqu(Vi) = Ti(2), Vi€ Rep[U\(9)s,,]| (99)

and T;(z) is a polynomial whose degree depends on V.
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A g, v-Geometric Langlands Correspondence for Simply-Laced Kac-Moody Groups

Note that with regard to our arguments leading up to (97), one could also
consider unpunctured ¥; instead of X1 (i.e. consider the massless limit
of the underlying linear quiver theory). Consequently, in place of (91), we

have

OE(MIS{I.S.(EJ\, Y;))-mod <= elliptic-valued flat LG-bundle on ¥; (100)

or equivalently,

On(MS 25 (G, 51))-mod | =

elliptic-valued flat L/E—bundle on ¥,

(101)

This defines a G version of the g, v-geometric Langlands correspondence

for simply-laced G.
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Quantization of Elliptic-Valued G Hitchin Systems and Transfer Matrices of a

a—type XYZ Spin Chain

Via the same arguments which led us to (93), we have

OWMSZS(G,51)) = Tayu(G,X1) (102)

which relates the quantization of an elliptic-valued G Hitchin system on
> 1 to the transfer matrices of a G-type XYZ spin chain on X!
This also means that

x € M5 ZSU(G,51) <= xqu (Vi) = Ti(2), Vi € Rep[USL(8)s,]| (103)

where i = 0,...,rank(g), Ti(z) is a polynomial whose degree depends on
V;, and Ueu (g) is the elliptic toroidal algebra of g.

Meng-Chwan Tan (National University of SitHigher AGT Correspondences, W-algebras, a




A Realization of Nekrasov-Pestun-Shatashvili's Results for 6d, N' =1 G

(G)-Quiver SU(K;) Gauge Theories

Note that (99) also means that

€ MG <= xg (Vi) = Ti(2), Vi € Rep[USh(0)ic,y,, ]| (104)

Sl-mono,k

where C, = S! x Sl and i € Ir.

Note that (103) also means that

ue MG = g (Vi) = Ti(2), Vi€ Rep[UL(§)c,]| (105)

StxSl-inst

where Cy, =S! x Sl and i € Jr.

Can again argue via momentum around S} (counted by DO-branes) « 2d

A

CFT energy level correspondence that degree of T; (T;) is K; (aK;).

(104)/(105) are Nekrasov-Pestun-Shatashvili's main result in [5, §1.3]
which relates the moduli space of the 6d G/G-quiver gauge theory to the
representation theory of U, (g)/ Uk, (8)!
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Conclusion

@ We furnished purely physical derivations of higher AGT
correspondences, W-algebra identities, and higher geometric
Langlands correspondences, all within our M-theoretic framework.

o We elucidated the connection between the gauge-theoretic realization
of the geometric Langlands correspondence by Kapustin-Witten and
its original algebraic CFT formulation by Beilinson-Drinfeld, also
within our M-theoretic framework.

o Clearly, M-theory is a very rich and powerful framework capable of
providing an overarching realization and generalization of
cutting-edge mathematics and mathematical physics.

@ At the same time, such corroborations with exact results in pure
mathematics also serve as “empirical” validation of string dualities
and M-theory, with the former as the “lab”.
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THANK YOU FOR COMING AND LISTENING!
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